Y/

Range Filters

(SURF, Memento Filter, Diyé

P

"

5

4
’

SN
Niv Dayan - CSC2525: Research Topics in atqbase’-Man

\
\

\ \

'
B

!

/\
TN
Wi)
Wl

Last lecture

This was fun...

Logistics

) G

Projects due Oral Exams Course
on April 9 April 8-10 Evaluation

Course Evaluation

3

&

Helps us improve

What is a Filter?

Set

Does X exist? —>

f key X does not exist

Does key
X exist

Memory

f key X does not exist

Does key

Memor
X exist 4

True
negative positive
with prob 1-¢ with prob ¢

Does key
X exist

Saves storage accesses & network hops

only support point queries (to one key)

Set

Does X exist? —

only support point queries (to one key)
How about a range?

Set

Does X exist? —>

How about a range”

Set
Does anything In

[A, B] exist? —

Does anything In
[3, 5] exist?

How about a range”

Set

Does anything in
[3, 5] exist?

True positive

How about a range”

~

Set

Does anythir

[5, 8] exist

Set

Does anythir

[5, 8] exist

True negative
with prob 1-¢

Set

Set
Does anything in

[5, 8] exist? :—: —

True negative False positive
with prob 1-¢ with prob €

Applications?

Set
Does anything in

5, 8] exist? — —

True negative False positive
with prob 1-¢ with prob €

Filters LSM-tree
Does anything in
|5, 8] exist?

Memory Storage

Does anything in Filters L SM-tree

[A, B] exist?

Ideally skip runs that don’t contain relevant key range

Does anything In
A, B| exist?

How to implement a range filter?

Does anything In
A, B| exist?

How to implement a range filter”

Can we use a point filter (Bloom, Quotient) to answer range queries?

Does anything In
A, B| exist?

Bloom

Set
Does anything in

[5, 8] exist? —

Query every key in range

Check 5| Bloom .
Does anything in .._Q_'l.?E_'_(_@,
40 149
[5, 8] exist” Check 7
Check 8

—

Query every key in range

R queries Bloom
. . —_— > Set
Does anything in ——
A Blexs?
R=B-A+1

If all queries return negative, we know key does not exist

Query every key in range

R queries Bloom
. . —_— > Set
Does anything in S—
A Blexs?
R=B-A

f all queries return negative, we know key does not exist

If at least one returns a positive, the overall outcome is a positive

Query every key in range
Problems?

R queries Bloom
—_ Set

Does anything in ——
[A, B] exist? —_—

f all queries return negative, we know key does not exist

It at least one returns a positive, the overall outcome is a positive

Problem 1: Query Cost

O(R) Bloom
—_ Set

Does anything in ——
A, B] exist? R

Problem 2: Does not work for infinite universe (e.g., strings)

Bloom
—_ Set

Does anything in ——
A, B] exist? —_—

Problem 2: Does not work for infinite universe (e.g., strings)

A Bloom
D thing | AA >t
oes anything In
[A, B] exist? AAA
—_—————»
T o

Problem 2: Does not work for infinite universe (e.q., strings)

A Bloom
—_— Set

Does anything in AA
[A, B exist? AAA

There are infinitely many possible keys in a range :)

Problem 3: Higher False Positive Rate

Bloom
—_ Set

Does anything in ——
[A, B exist? —_—

Problem 3: Higher False Positive Rate

R queries FPR ¢
—_ Set

Does anything in ——
[A, B exist? —_—

Problem 3: Higher False Positive Rate

R queries FPR ¢
—_ Set

Does anything In —
[A, B] exist? —_—

P[false positive]?

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
|A, B] exist? —_—

P[false positive] = P|[at least one query returns positive]

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
|A, B] exist? —_—

Plfalse positive] = Plat least one query returns positive]
1 - P[all queries return negative]

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
[A, B] exist? —_—

Plat least one query returns positive]
= 1 - Plall queries return negative]
1 - P[one query return negative]®

Plfalse positive]

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
[A, B] exist? R

Plat least one query returns positive]
1 - Plall gueries return negative]

1 - Plone query return negative|R
1-(1-¢)R

P[false positive]

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
|A, B] exist? —_—

P[false positive] Plat least one query returns positive]
1 - Plall gueries return negative]

1 - Plone query return negative|R
1-(1-¢)R

~ 1-et'R

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
[A, B] exist? R

Plat least one query returns positive]
1 - Plall gueries return negative]

1 - Plone query return negative|R
1-(1-¢)R

~ 1-e& 'R

< €°'R By union bound

P[false positive]

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
[A, B] exist? —_—

P[false positive] < €-R

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
[A, B exist? —
Plfalse positive] < €-R

Useless for large R

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
(A, B] exist? R ¢

Plfalse positive] < € R

|

Recall that: e =2F where F = Dbits / entry

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
A, B] exist? R
Plfalse positive] < 2F-R

How many extra bits per entry do we need to make up for R?

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
A, B] exist? R
Plfalse positive] < 2F-R

How many extra bits per entry do we need to make up for R?
log2(R)

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
A, B] exist? —_—
Plfalse positive] < 2-F-log2(R) - R

How many extra bits per entry do we need to make up for R?

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
A, B] exist? R
Pltalse positive] < 2 -109(R) \R\

How many extra bits per entry do we need to make up for R?

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
A, B] exist? R
Pltalse positive] < 2F- @2@ \R\

FPR is higher by factor of R, or we need log2(R) extra bits / entry
to keep it stable

Problem 3: Higher False Positive Rate

R queries FPR €
—_ Set

Does anything In —
A, B] exist? R
Pltalse positive] < 2F- @2@ \R\

FPR is higher by factor of R, or we need logz(R) extra bits / entry
to keep It stable

But this also requires us to know max range query length in advance

A

query cost
O(R)

FPR
O(e - R)

Problems

111

Fixed-length
keys

*——o
*———o
*———o

T

Bounded
queries

Problems

How much can we improve these?
®

I 2 Tt =

guery cost FPR Fixed-length Bounded
O(R) O(e - R) keys queries

How much can we improve these?
®

I 2 Tt =

query cost FPR Fixed-length Bounded
O(1) O(e - R) keys queries

'

?

How much can we improve these?
®

I 2 Tt =

guery cost FPR Fixed-length Bounded
O(1) O(e /R/) keys queries

1

?

How much can we improve these?

: [—
o—e

R & ch —t
M

guery cost FPR Var-length Bounded
O(1) O(€) keys queries

1

?

How much can we improve these?

‘ [-
¢—
A o =
M
guery cost FPR Var-lengtnh Var-length
O(1) O(€) keys queries

1

?

query cost
O(1)

A%

FPR Var-length
O(€) keys

@

+ Dynamic operations
(Inserts, deletes, expansions, contractions)

*—o

>———e
*—eo

i

Var-length
gueries

Hot research topic in past decade

GGLR SuRF Rosetta SNARF Proteus
SODA14 SIGMOD18 SIGMOD2020 SIGMOD22 SIGMOD22

REncoder BloomRF Grafite Oasis Memento Diva
ICDE23 EDBT23 SIGMOD24 VLDB24 SIGMOD24 .25

SuRF Memento Diva
SIGMOD18 SIGMOD24 ...25

Var-length keys
& queries

FPR guarantee

Query speed

Dynamic

SuRF

Memento

Diva

Var-length keys
& queries

FPR guarantee

Query speed

Dynamic

SuRF

r.

Yes

None

O(L)
(L = key length)

No

Memento

Diva

Var-length keys
& queries

FPR guarantee

Query speed

Dynamic

SuRF

r.

Yes

None

O(L)
(L = key length)

NO

Memento

(8

No

Robust

O(1)

Yes

Diva

Var-length keys
& queries

FPR guarantee

Query speed

Dynamic

SuRF

r.

Yes

None

O(L)
(L = key length)

NO

Memento

(8

NO

Robust

Yes

Diva

>

«*F

Yes

Semi-Robust

O(log L)

Yes

SuRF: Practical Range Query Filtering with Fast Succinct Tries

Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen,
Michael Kaminsky, Kimberly Keeton, Andrew Pavlo

SIGMOD18

Starting Point

Keys
SIGA

SIGMOD
SIGOPS

é@;-;@*‘@‘{;@

0

T o
O O O
D 1S
O O

Keys
SIGAI

SIGMOD
SIGOPS

Starting Point

~03C

O

+—
G)

O
>

Fanout - 256
(1 byte)

Problems?

‘0=0:.0
Ow?@wame%m@
<O=0O

1. Stores full keys

Problems?

é@g()**@;;@

O
T
O O O

D IS
O O

Problems?

1. Stores full keys 2. Pointers take space

~03C

O

+—
G)

O
T
O O O

D IS
O O

2. Pointers take space
Succinct encoding

1. Stores full keys
truncation

A O=0O<O

O—OF
o

Se-0-6
QLQLOLOAQLQiO
oXe

el

truncation

Keep at least one unique byte for each key

vuncsion o g SoRo RN

Keep at least one unigue byte for each key

Not permitted

We now get false positives (e.g., query SIGMETRICS)

5
AN

We now get false positives (e.qg., query SIGMETRICS)

Can truncate later -
better FPR, worse space

We now get false positives (e.g., query SIGMETRICS)

O O

Negative :)

Range query: SIGE - SIGL

é@g()**@;@

OO
E‘Q
ore

O

Range query: SIGE - SIGL

Range query: SIGE - SIGL

Negative :)

Range query: SIGMOR - SIGMOS

é@g()**@;@

OO
E‘Q
ore

O

Range query: SIGMOR - SIGMOS

030

O

+—
G

>
EC
O

OO
E‘Q
ore

— QO

R

S? False positive

If many queries match existing prefixes, the FPR increases

CPS e.g.. SIGMA

SIGMOID

It many queries match existing prefixes, the FPR increases

CPS e.g.. SIGMA

| SIGMOID

D

| G

AA&.O

O O O

Correlated Workload

It many queries match existing prefixes, the FPR increases

CPS e.g.. SIGMA

| SIGMOID

D

| G

AA&.O

O O O

Correlated Workload

Can we alleviate this problem for point queries?

It many queries match existing prefixes, the FPR increases

CPS e.g.. SIGMA

| SIGMOID

D

| G

Ty

® ® @

Can we alleviate this problem for point queries” Add 1 byte hash

How to encode the trie succinctly?

OGO
@@é@;@«—@;@
—()o

@

Typically, the upper levels of the trie are more fulli

Typically, the upper levels of the trie are more fulli

No¥
e
A
S

O

More queries go
through base layers

More queries go
through base layers

A leaf is reached on
avg. by fewer queries

More queries go
through base layers

M
. Exponentially more
hodes as we move down
H

/
A leaf Is reached on

. S T
avg. by fewer queries O ?

O

= .
| Optimize for speed

Optimize for space

= -
L Optimize for speed
A}Kz Asz 1/64

Optimize for space

.
() T? 63/64
H
O

F

D O

$//A 5 \6
1347\. R/ \Y
@ O @ e 0

8/ \T 2/ \F
W W

F, FAR, FAS, FAST, FAT, S, TOP, TOY, TRIE, TRIP, TRY

Each key leads to leaf payload (e.g., pointer and/or hash)

ok Re
a & & &
BN R\ 1/ \y
W O @ » W O
8/ \J £/ \P
ve (9 D2

F FAR, FAS, FAST, FAT, 5, TOP, TOY, TRIE, TRIP, TRY

S leads to leaf: full key
not prefix of any other key

F FAR, FAS, FAST, FAT, S, TOP, TOY, TRIE, TRIP, TRY

T leads to internal node: not full key
prefix of one or more other keys

F FAR, FAS, FAST, FAT, S, TOP, TOY, TRIE, TRIP, TRY

F leads to internal node with $ child: full key
prefix of one or more other keys

ok X .
$//A 5 \5
3/37\. o/ N\ 1/ \y
@ O @ » e O
EB/\T E/\P
¢y @

F, FAR, FAS, FAST, FAT, S, TOP, TOY, TRIE, TRIP, TRY

F leads to internal node with $ child: full key
orefix of one or more other keys

child ofF $//A @ OO\B
(D (D
3/37\. /N
@ O @ @ O
S/ \T £/ \P
¢ @

F, FAR, FAS, FAST, FAT, S, TOP, TOY, TRIE, TRIP, TRY

FAS |leads to internal node with $ child: full key
orefix of one or more other keys

ok Qe
$//A 5\5
547\, /N)\
@ O W 6 6 O
8/ \J =/ N\

child of FAS

> W

F, FAR, FAS, FAST, FAT, S, TOP, TOY, TRIE, TRIP, TRY

A prefix is always represented by an internal node

ok : Re
a & & &
BNV ®/\y I/ \
3 $/O\T 9 (e /Q\
child of FAS N @ @

F, FAR, FAS, FAST, FAT, S, TOP, TOY, TRIE, TRIP, TRY

Label internal nodes in breadth-first order for clarity

T o/ \y 1/ \Y
@ & @ B 6 O @
8/ \T E/\P

Dense encoding

Sparse encoding

One bit set for every connected character

F ST

O O &

FST

F_S T cdges
@ @ @ Has-child

O O &

Edges
Has-child

F ST

1]

FST

F_S T cdges
@ @ @ Has-child

Node O Node 1 Node 2

Continue in breadth-first order
for each internal node

FST A

F_S T cdges
@ @ @ Has-child

: $ / /A Node O Node 1 Node 2

Continue in breadth-first order
for each internal node

F

() @ Q) Heo

S

T

o/ \&

O

®

Edges

FST A

S a— —

OR

Node O Node 1 Node 2

Continue in breadth-first order

for each internal node

Edges
Has-child
ISPrefix

FST A O R

S A— ——

0 1 0
Node 0O Node 1 Node 2

Edges
Has-child
iIsKey

Node 0 Node 1 Node 2

FST A O R
0 1 0

T

“F” is full key

Edges
Has-child
iIsKey

Node 0 Node 1 Node 2

FST A O R
0 1 0

T

“T” is not full key

Edges

iIsKey

Node 0O Node 1 Node 2
F ST A O R

0 1 0

T

“”1s not full key

Edges
Has-child
IsKey

Values

FST A O R

Edges
Has-child

isKey 0 l 1 0
+
Values V1 V2

Stored contiguously in an array

Edges
Has-child
IsKey

Values

Does “S” exist?

Does “S” exist?

l

F ST

F_S T Edges
@ @ @ Has-child

$//A O‘/ '\B isKey 0 l
@ @ @ @ Values V1

We observe that S exists and has no children, meaning it must be a full key

Does “S” exist?

l

F ST

F_~S T Edges
@ @ @ Has-child

$//A O‘['\B isKey 0 l
@ @ @ @ Values V1

We observe that S exists and has no children, meaning it must be a full key
How to locate its value?

il

Rank(Has-child, S) = 1

S value offset = Rank(Edges, S) - Rank(Has-child, S) =0

S value offset = Rank(Edges, S) - Rank(Has-child, S) = 0

Constant time per each node access :)

S value offset = Rank(Edges, S) - Rank(Has-child, S) = 0

ONG v

Constant time per each node access :)
Few bits per entry when base nodes have many edges

Internal Nodes In breadth first order
3 4 5 6 7

7S 1 Internal Nodes in breadth first order

@j./@A @O)?\E@ 8 g T P4Y \5Y $6T E7P
/

Store children contiguously

Internal Nodes

3 4 o 6 7
——o —o—— o —0o—o

RSTPYI1IYS$TEP
Has-child O 1 O O O1 O O 0O0O0O

Internal Nodes

?\5 3 4 5 6 7

 ——r———0——9

@ RSTPYI1IYS$STEHP
- I ‘]

I/\,Y Has-child O 1 O O O O O0OO0O

@ Start 1 0010101010

Internal Nodes

E
0
1

v vV VvV vV vV V VvV V vV

\ /N
@ ‘ @ @ V32 VaVsVe V7 Vg VgVioVis

Internal Nodes

0. D@ ... 3 4 5 6 7

..... S/t :

| $ TEP
] 0 00O
] 1010

P
0
1

- O O <
-0 o <

\ E/ \P v v v v Vv v oy v
@ ‘ @ @ V3= VaVs5Ve V7 Vg VoVioVi1

Stored Contiguously

Internal Nodes

0. D@ ... 3 4 5 6 7

..... S/t :

| $ TEP
] 0 00O
] 1010

P
0
1

- O O <
-0 o <

v vV VvV v vV VvV VvV VvV vV

\ /N
@ ‘ @ @ V32 VaVsVe V7 Vg VgVioVis

Each leaf connected to payload

FST A O R
Fdges | | [f] b 1
Has-chid | | [J]] |]

IsKey 0 1 0

RSTPY I YS$TEP
Has-child O 1 O O O 1 0 0 0 0O
Start 10010101010

Whole filter :)

Does “FAS” exist?

Edges

Has-chid | | [J]] |]

IsKey

Start

{
F ST A O R
BRI

0 1 0

RSTPY I YS$TEP
Has-child O 1 O O O 1 0 0 0 0O
10010101010

FAS
{

ST A

F

N
Q
O)
S
LL

ke,
.m
¢
n
©
L

10010101010

Start

FAS
!
F ST A
HERES
NN
*—
Rank(F) =0
RS TPY |Y
d 01 00010
10010101010

Edges
Has-chila

Has-chil
Start

\P
2

(5)
i/ \Y

p/ \Y
B, E/@
D

S

F

_l

@ (&)
8/ \T

Edges
Has-child

10010101010

Start

Edges N

A

RS TP
Has-child O 1 O O
Start 1 0 0 1

!
F ST A O
Edges | | | [|[| |
Haschid | | [f| | | |
> ———o
Rank(A) =2 skip skip

Start

RSTPY I Y$TEP
Has-child O 1 O O O 1 0 0 0 0O
10010101010

Edges
Has-child

Start

RS T
Has-child O 1 O
1 00

FAS

{
- ST A O R
BRI EEE
_ll—

Rank(A) =2 skip skip

- O T
O O <

|
1
1

© O <

$ T EP
O 00O
1010

 —_
Select(2 - #dense nodes - 1)

A

Edges | |

pas-child | | (1| | | |

Rank(A) = 2

RS T
Has-child O 1 O
Start 100

- O U
© O <

‘
- ST A O R

1

skip skip

|
1
1

© O <

$ TEP
O 00O
1010

> - o

Select(0) =0

F ST A O R

F SN Edges | |

A
’

Node 3

@ & W » @ @ RSTPY | YS$TESFP
8/ \T =/ \P Has-chid 01 000 100000
(@ Stat 1 0010101010

T
FAS

F ST A O R

F SN Edges | |

A
’

Node 3

@ & W » @ @ RSTPY I YSTEP
8/ \T =/ \P Has-chid 01 000 100000
(@ Stat 1 0010101010

T
FAS

Scan

F ST A O R

F SN Edges | |

A
’

Node 3

@ & W » @ @ RSTPY I YSTEP
8/ \T =/ \P Has-chid 01 000100000
(@ Stat 10010101010

T
FAS

FST A O R
Fdges | | [f b 1l
Haschild | | ||| [| |

‘“ e - e - e _-::*

set bits =5

Node 3

o—

RSTPY I Y$TEP
Has-child O 1 O O O 1 00 0 0O
Start 10010101010

T
FAS

- ST A O R
cages [[[[J1 T 17
5@ pas-child [| (|| |

$./ A g@ T deetbitsss

l/ \.Y Rank(1) =0

w @ W RSTPYIYSTEP
/ N\ Has-child 0 1 0 0 0 1 00 0 0 0
2 Start 10010101010

T

FAS

F ST A O R

Fdges | | LML L L
Has-chid | | []|[| | |
. é/). 5@
VAN
w @ @ RSTPY I YSTEP
/ \P Has-chid 0 1 000100000
2 Stat 10010101010
— e
select(5-2) =7 1

FAS

Edges
Has-child

10010101010

Start

FAS

Edges
Has-child

10010101010

Start

- ST A O R
J& cages [T T [[
pasonid [1 (11 1 11

W@ e @ W RSTPY I Y
e/ \P Has-child 0 1 0 0 0 1 O
(@ Stat 100 10 10

Sparse encoding is space efficient for nodes within many edges

= ST A O R
F Fdges N

A
’

B/V\
@ 6 W @OE/@\P@ RSTPY |

Y $ TEP
Has-child O 1 O O O 1 O O O O O
O 1 010

@@ Start 1 0010 1

Sparse encoding is space efficient for nodes within many edges

But slower as we must scan edges for each node

Var-length keys
& queries

FPR guarantee

Query speed

Dynamic

SuRF

r.

Yes

None

O(L)
(L = key length)

No

SURF Memento Diva

