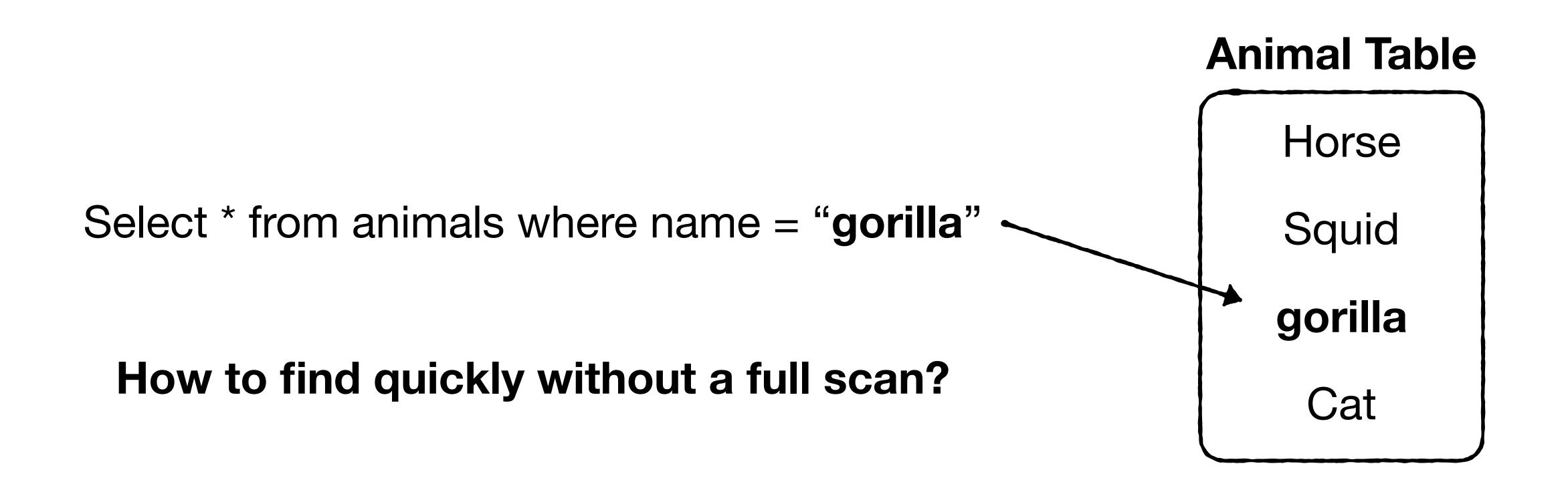
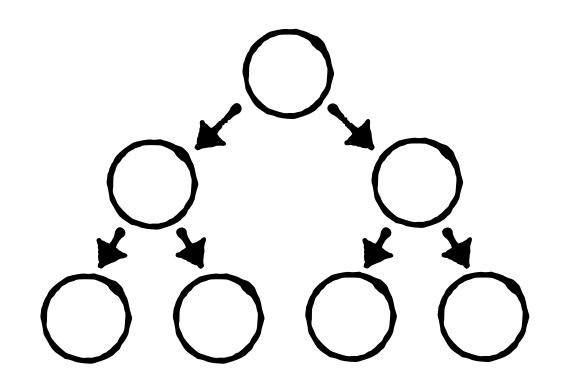
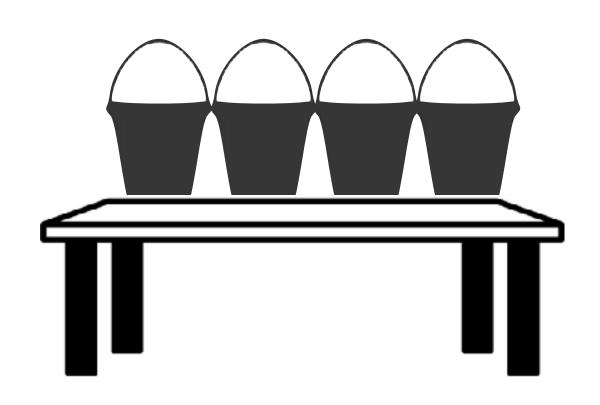
In-Memory Indexing

Niv Dayan - CSC2525 Research Topics in Database Management



You have learned about

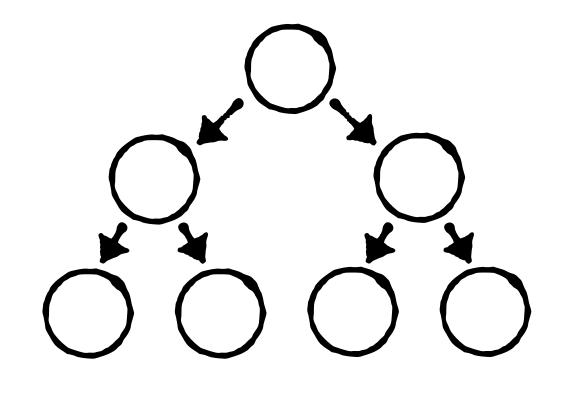


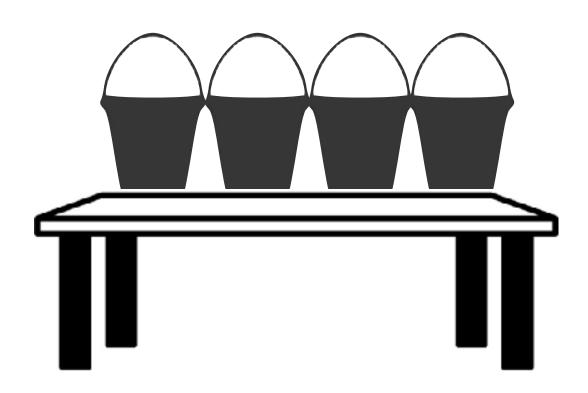


Binary trees

Hash tables

You have learned about

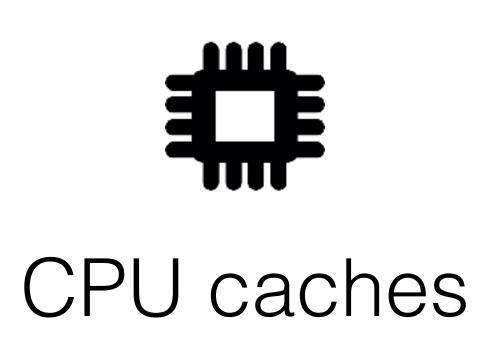




Hash tables

Not a good fit for disks or SSDs (from CSC443)

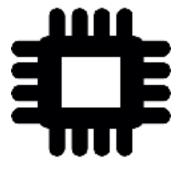
The memory Hierarchy

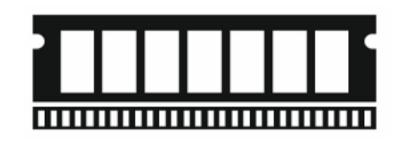


SSD

Expensive & fast

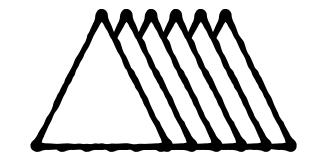
Slow & cheap

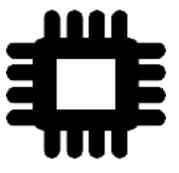


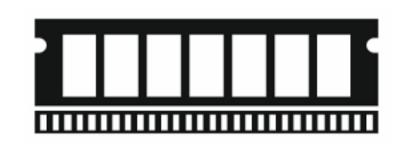


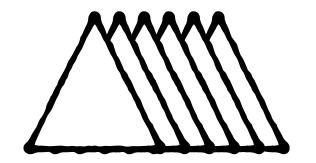
Not enough space

Indexes stored here

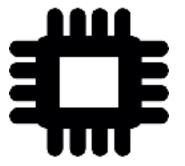


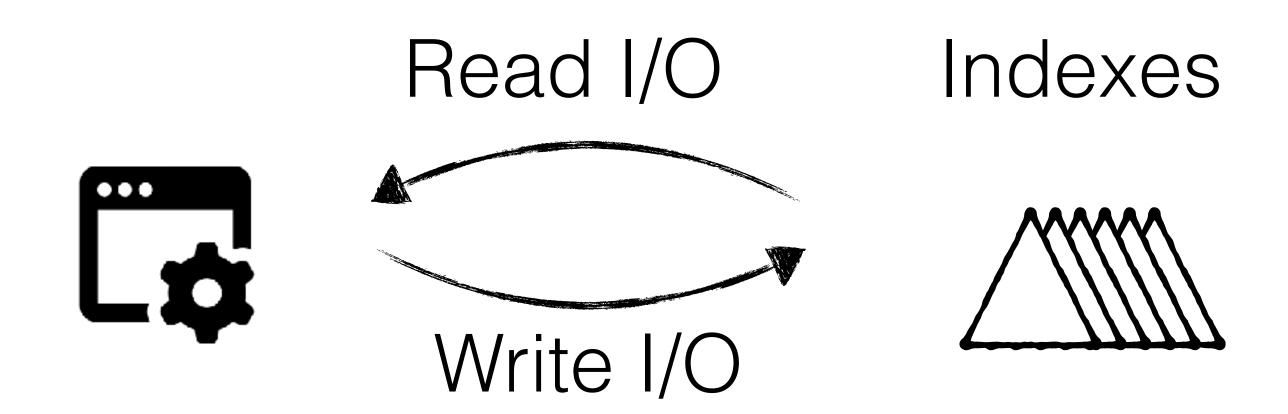






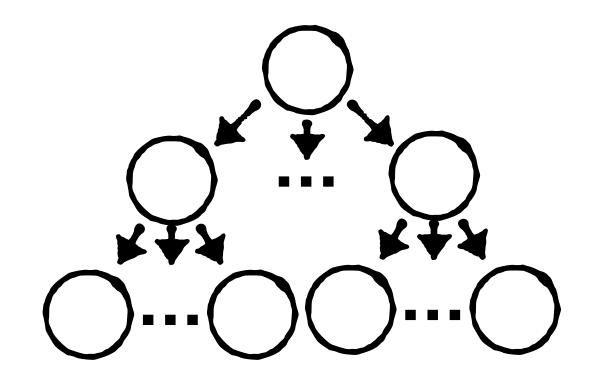
Block-addressable
4-16 KB

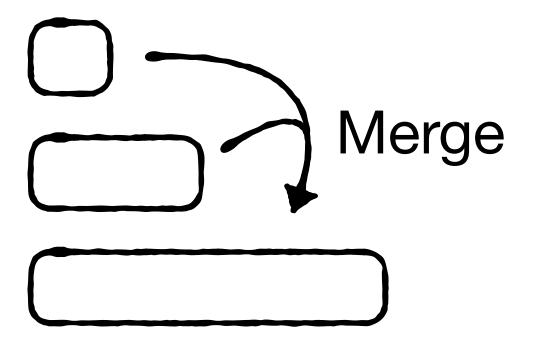


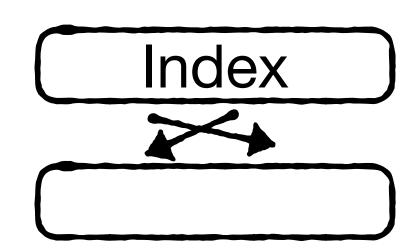


Goal: minimize block I/Os

Indexes for Storage (in CSC443)







B-Trees

1970

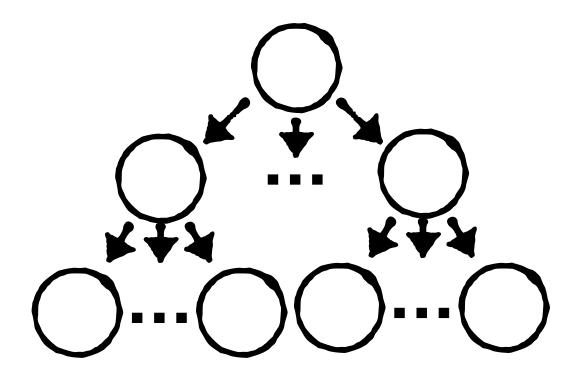
Log-Structured Merge-Trees

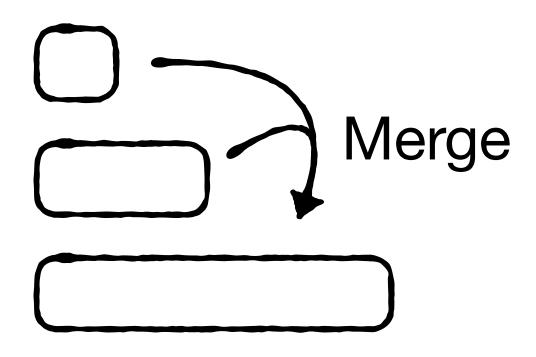
1996

Circular Log

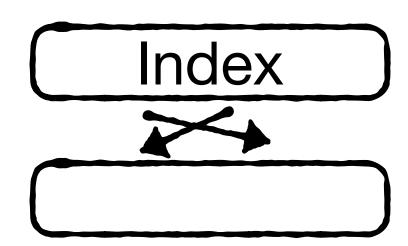
2000's

Indexes for Storage (in CSC443)





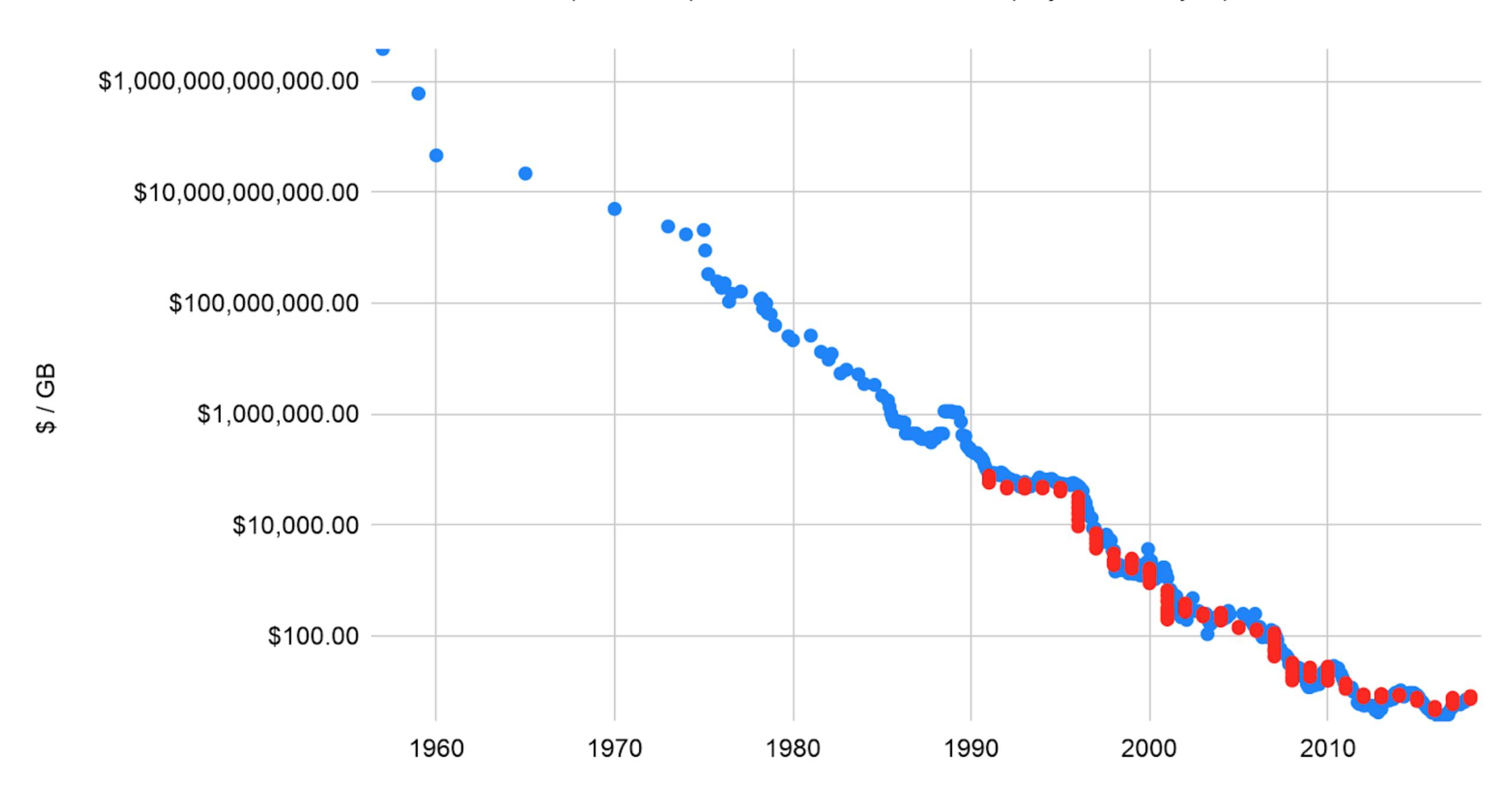
Log-Structured Merge-Trees

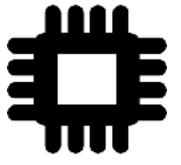


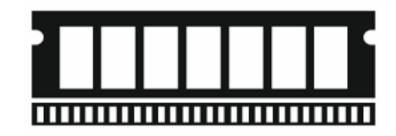
Circular Log

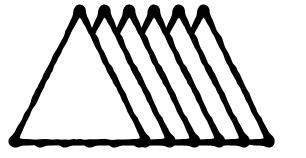
Cheaper queries

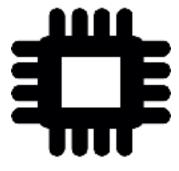
More memory
Cheaper writes





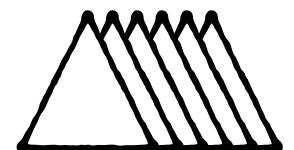




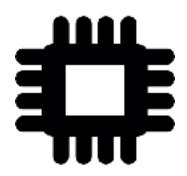




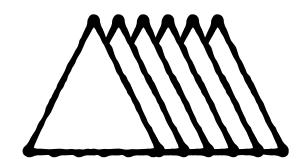
Indexes can fit here

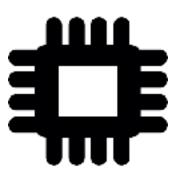


New Design Goals!



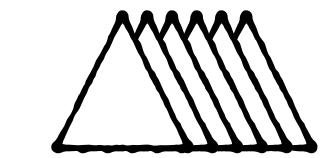
Indexes can fit here



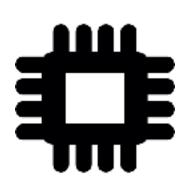


Cache miss

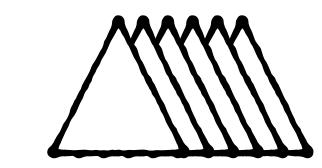
(≈100 cycles)



Goal 1: Minimize Cache Misses

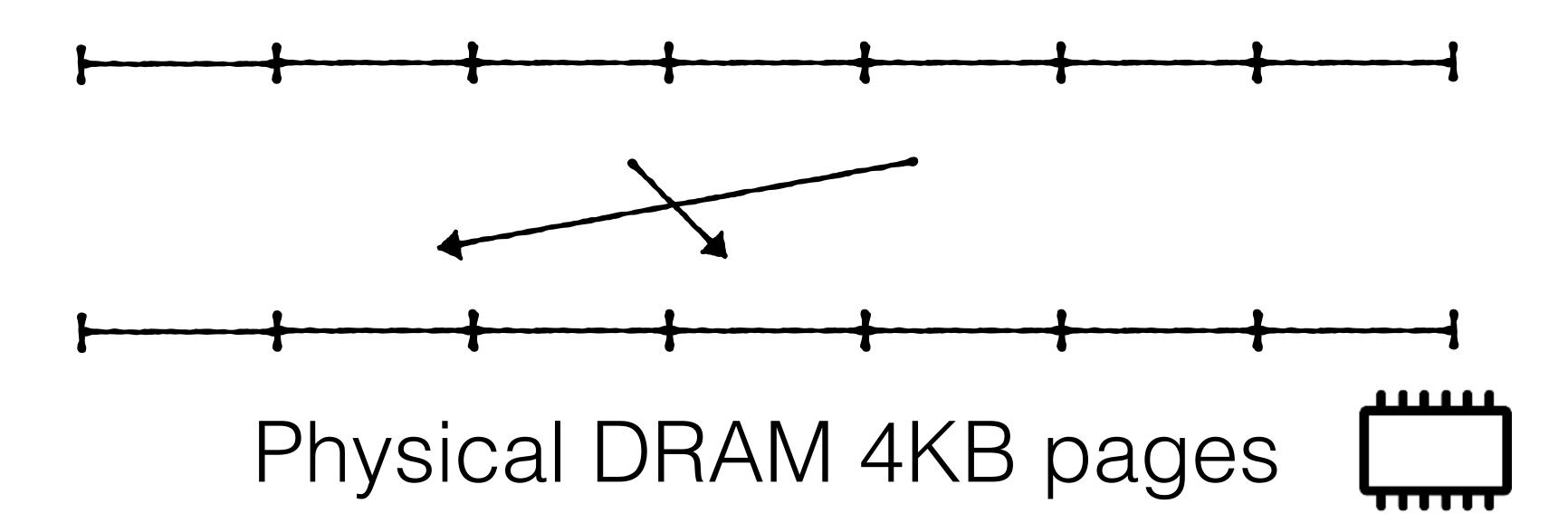


CPU register

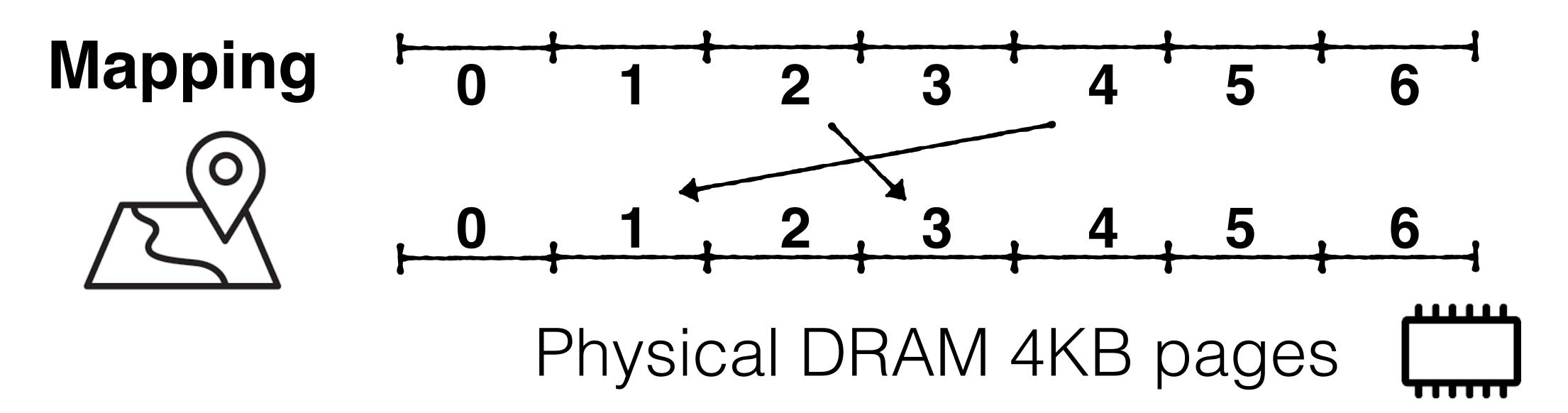


Physical DRAM 4KB pages ("")

Virtual Memory in 4KB pages



Virtual Memory in 4KB pages



Mapping

. . .

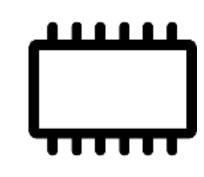


2 → 3

Translation Lookaside Buffer (TLB) in SRAM

Mapping

4 ----

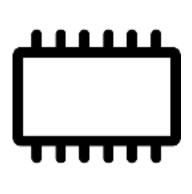


Translation Lookaside Buffer (TLB) in SRAM

miss (≈100 cycles)

Mapping

. . .



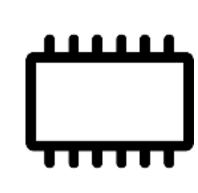
Goal 2: Minimize TLB Misses

Translation Lookaside Buffer (TLB) in SRAM

T miss (≈100 cycles)

Mapping

. . .

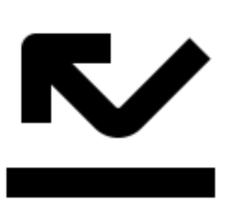


Design goals

Minimize Cache Misses

Minimize TLB
Misses

Design goals



Minimize Cache Misses

Minimize TLB
Misses

Maximize
Parallelism (SIMD
& multi-threading)

Design goals

Minimize Cache Misses

Minimize TLB
Misses

Maximize Parallelism

Minimize Space overheads

Terms

N: # entries in dataset

B: # entries per cache line

Terms

N: # entries in dataset

B: # entries per cache line

Assume a cache line is 128B and a key is 4B

 $\mathsf{B}=32$

Terms

N: # entries in dataset

B: # entries per cache line

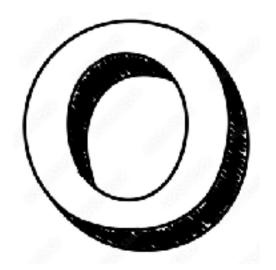
Assume a cache line is 128B and a key is 4B

B = 32

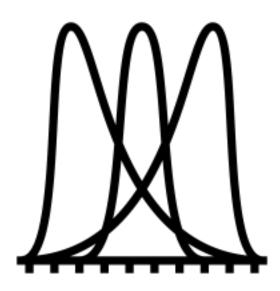
Block size is far smaller than in disk access model

Improvements Along Two Areas

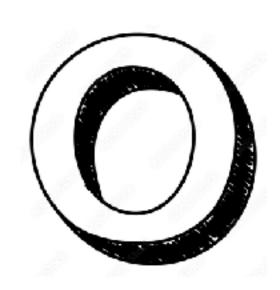
Better Worst-Case



Exploiting Data Distribution

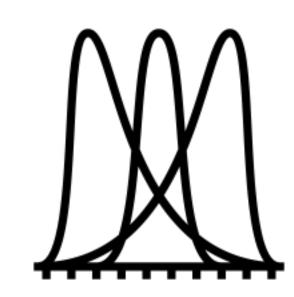


Better Worst-Case



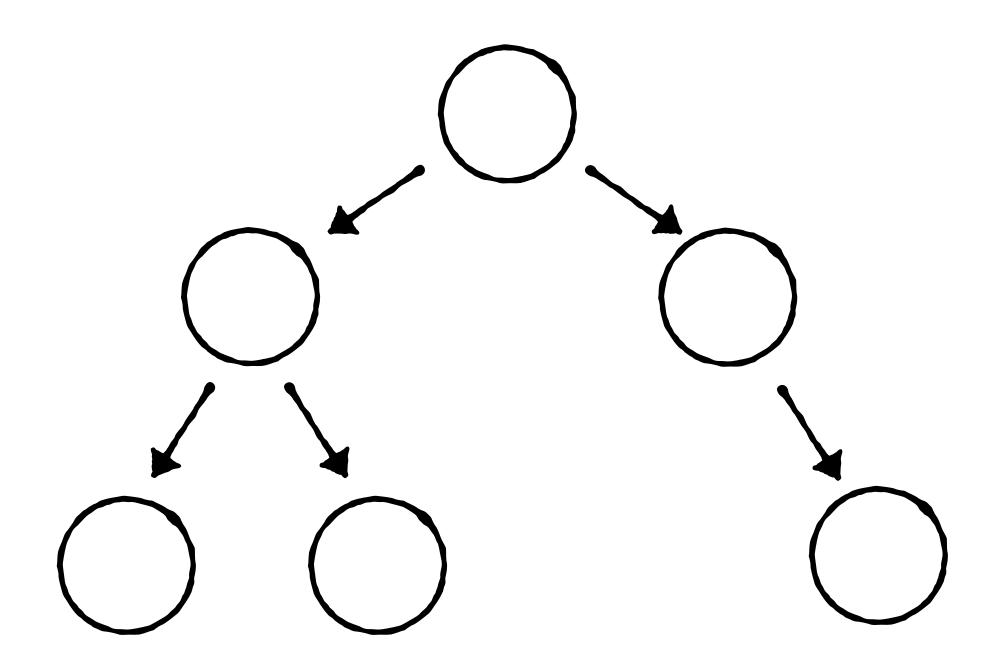
AVL-Tree	B-Tree	T-Tree
1962	1970	1985
CSS-Tree	CSB-Tree	НОТ
1998	2000	2018

Exploiting Data Distribution

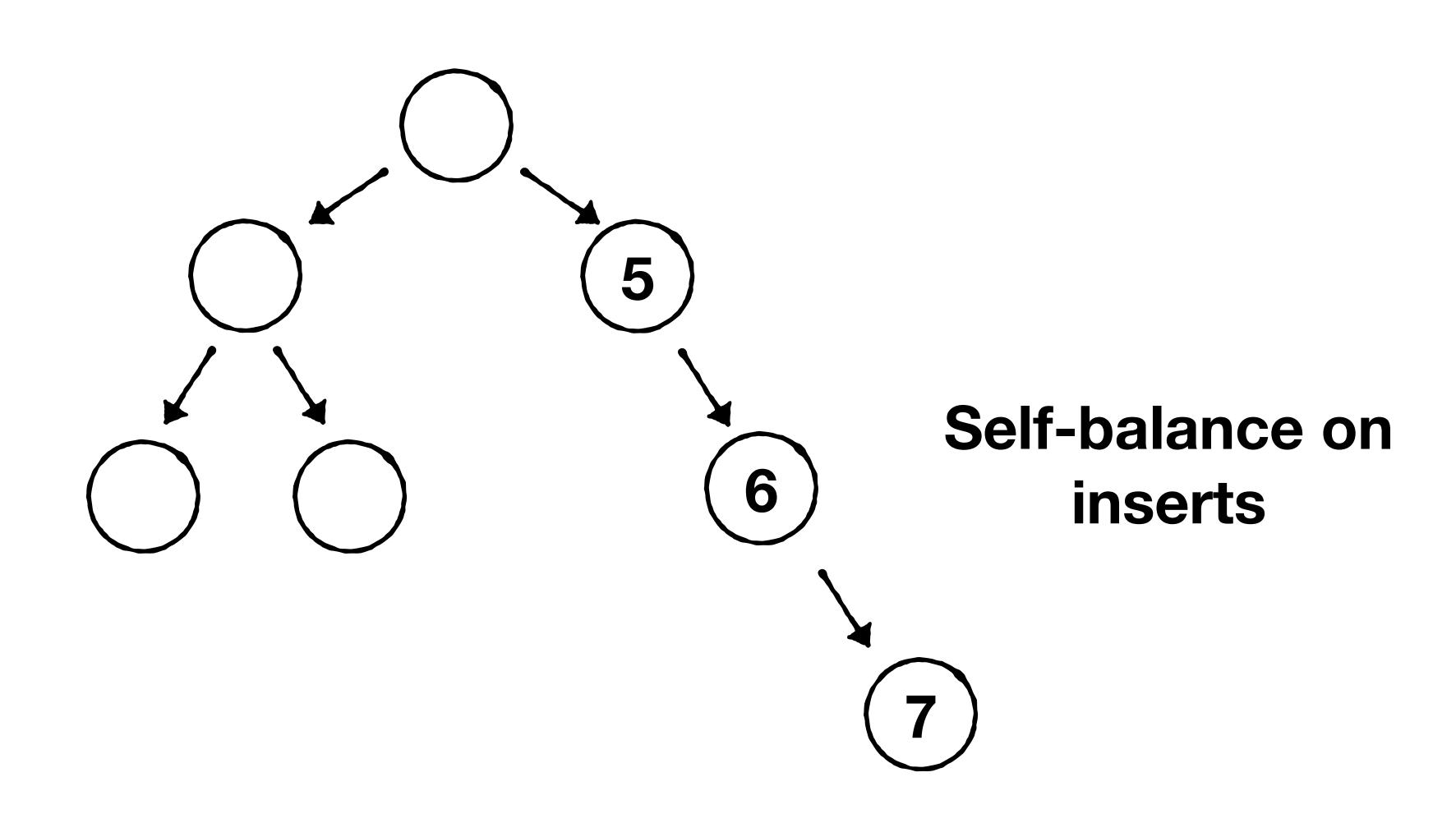


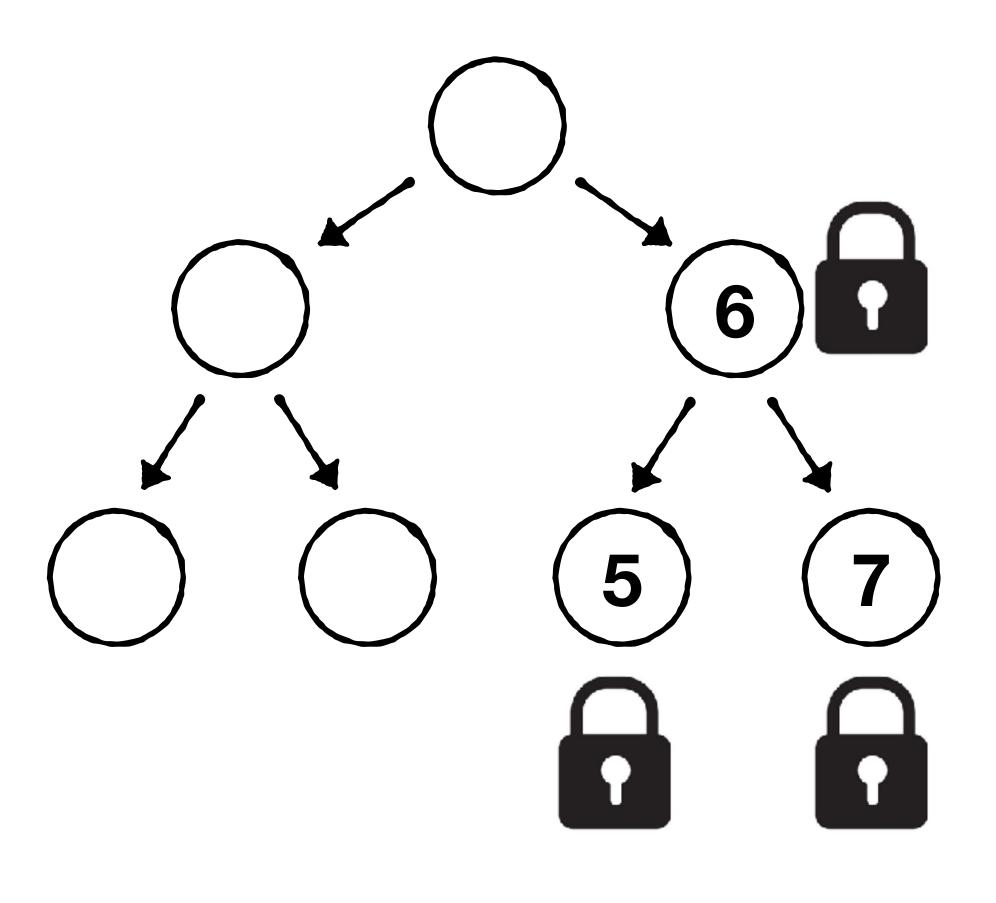
Interpolation search	FITing-Tree
1959	2019

AVL-Tree



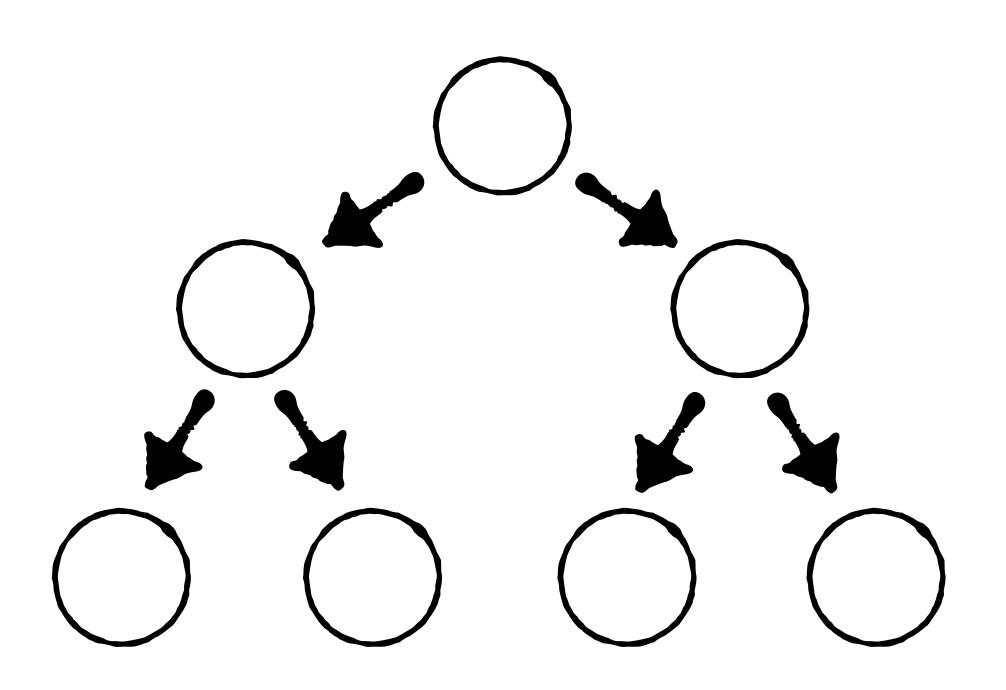
AVL-Tree



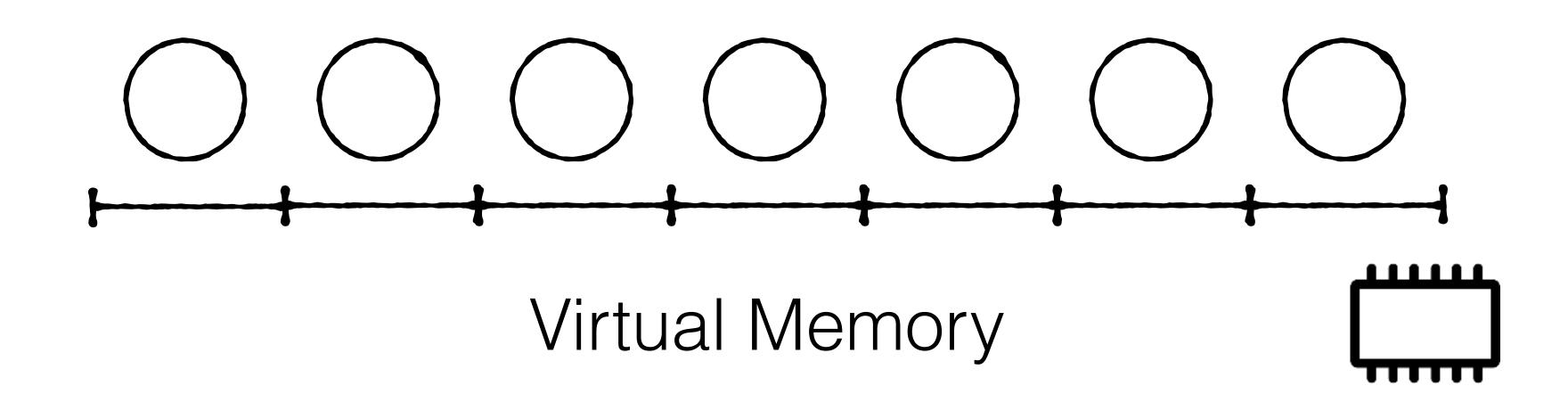


Requires holding multiple latches (damages concurrency)

Pointers create >3X metadata overhead

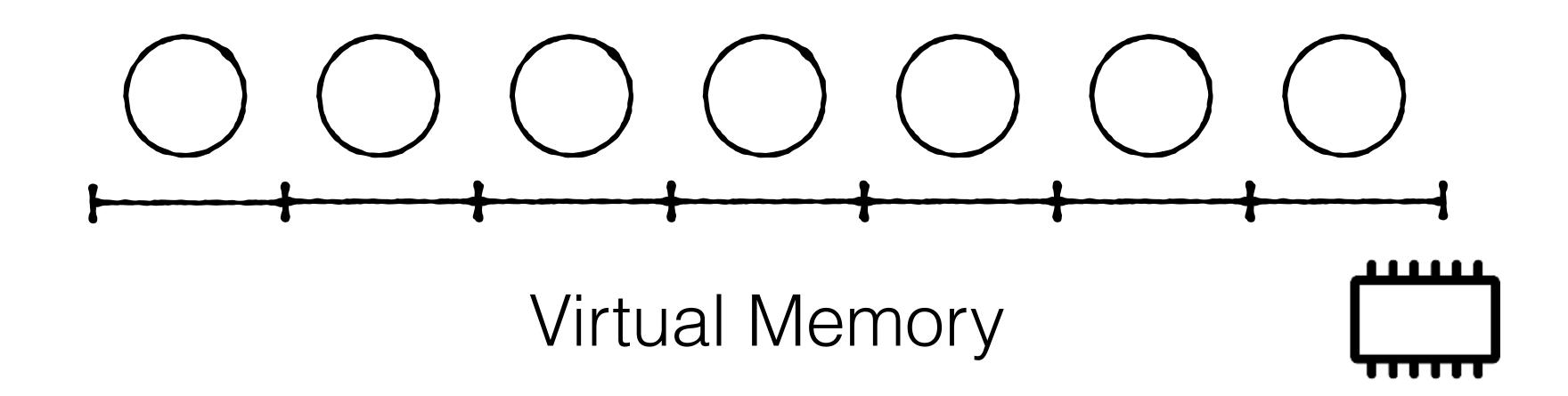


Each node may be on a different virtual page

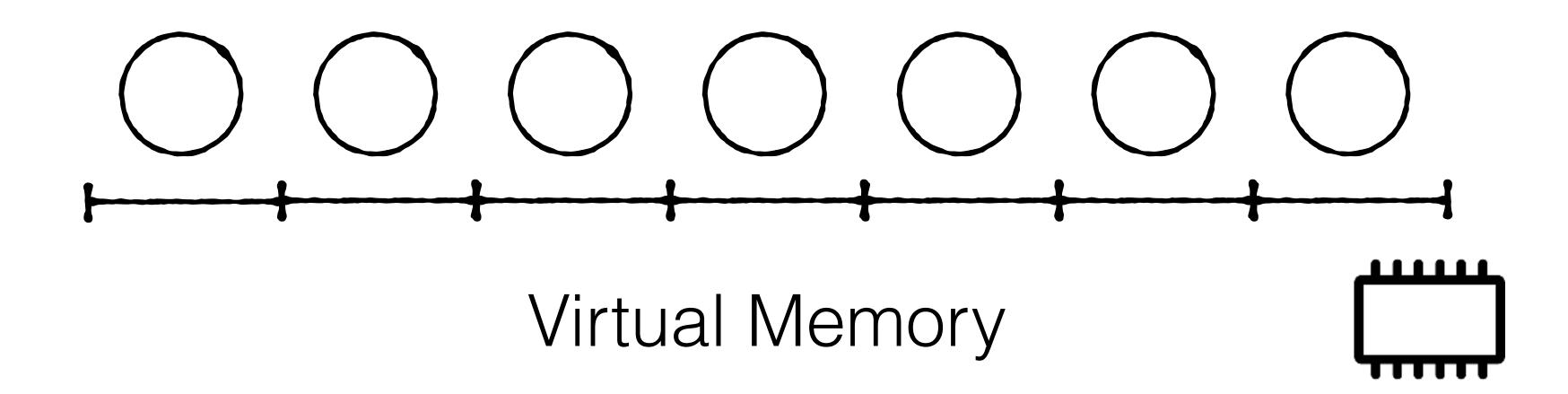


Each node may be on a different virtual page

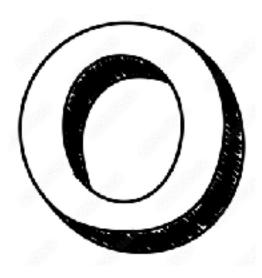
Worst case 1 TLB miss and 1 cache miss per node (≈200 cycles)



2 · log₂(N) Cache misses per search

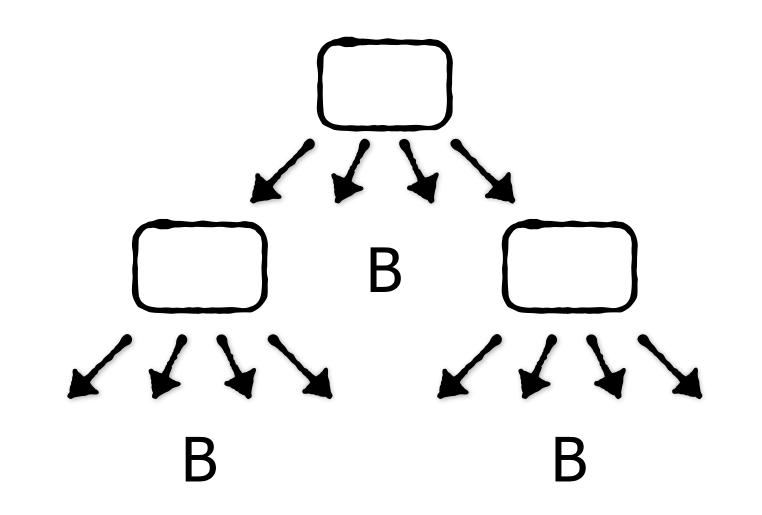


Better Worst-Case

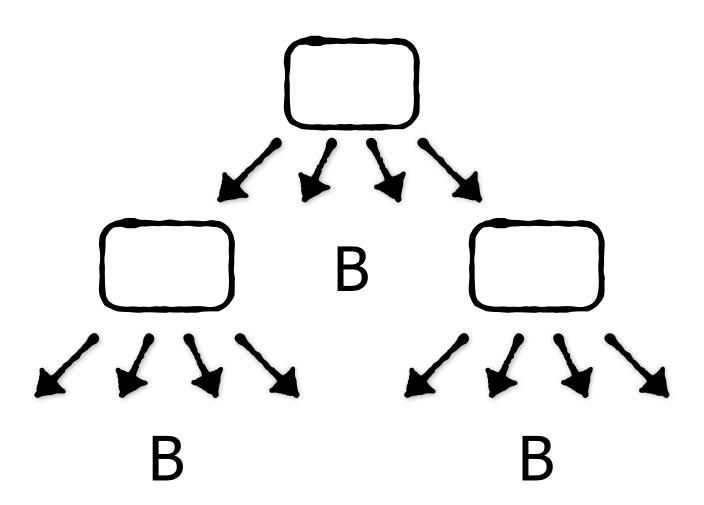


AVL-Tree	B-Tree	T-Tree	CSS-Tree	CSB-Tree	HOT
1962	1970	1985	1998	2000	2018

B-Tree

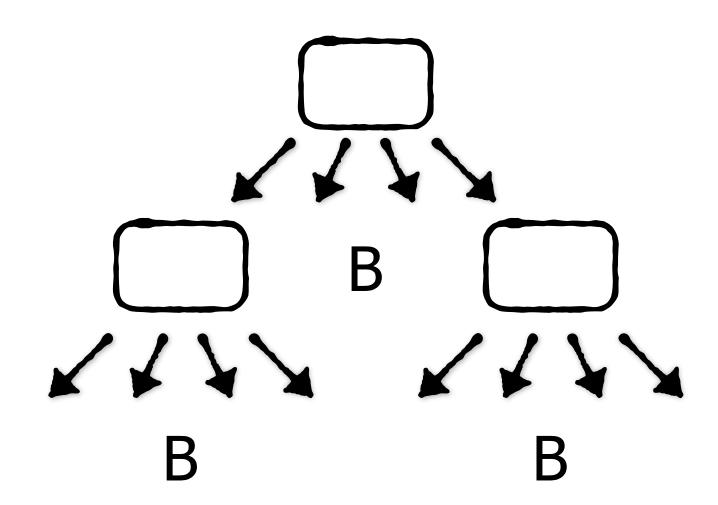


B-Tree



Set each node to be the size of a cache line

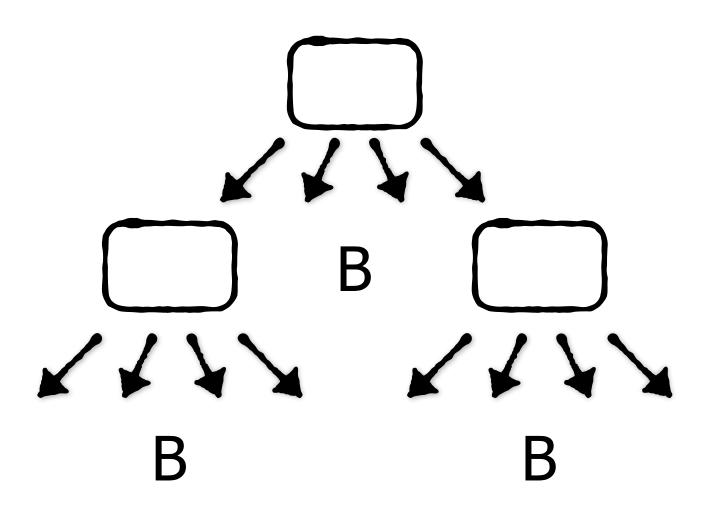
B-Tree



Set each node to be the size of a cache line

We expect O(log_B N)

B-Tree



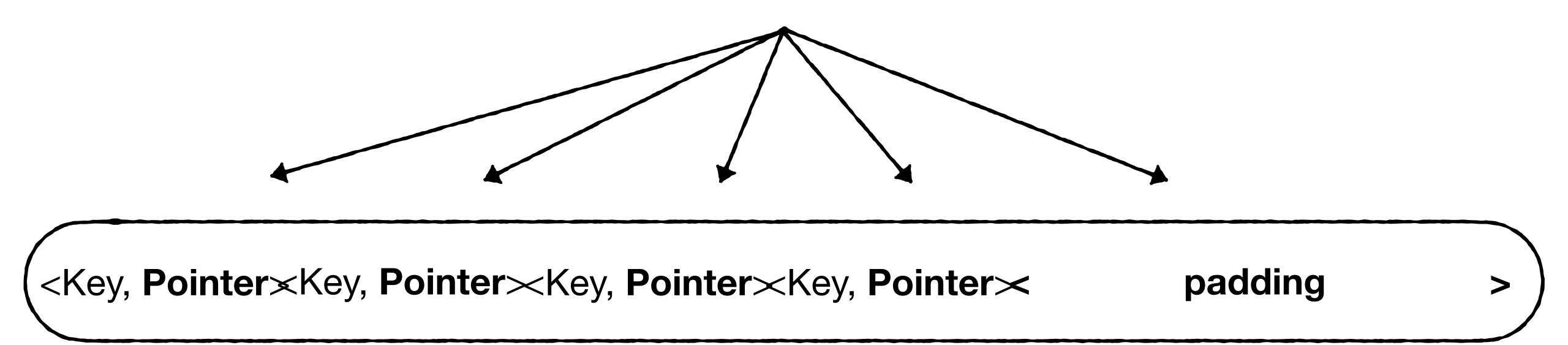
Set each node to be the size of a cache line

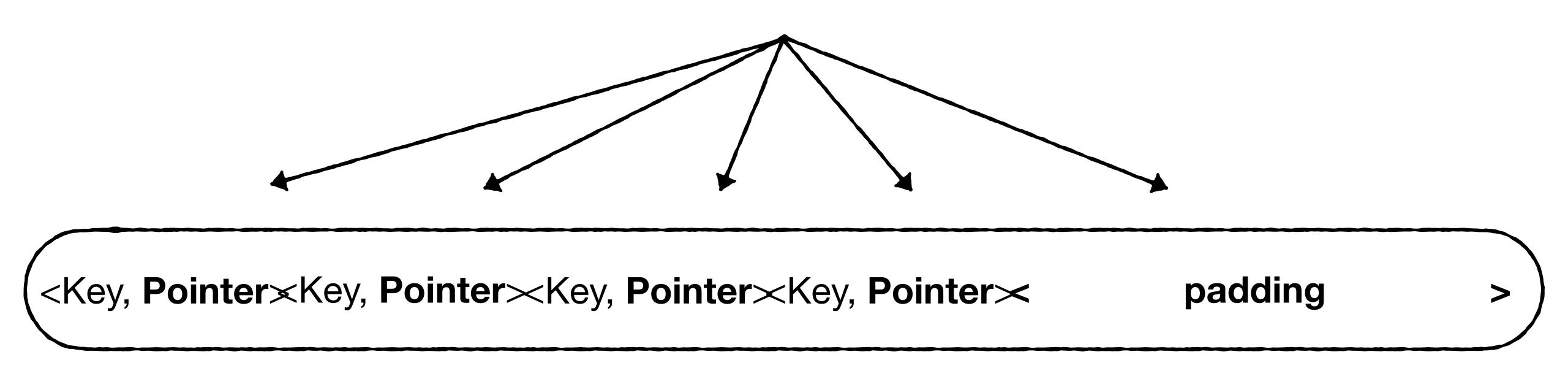
We expect O(log_B N)

Do we get it? Why or why not?

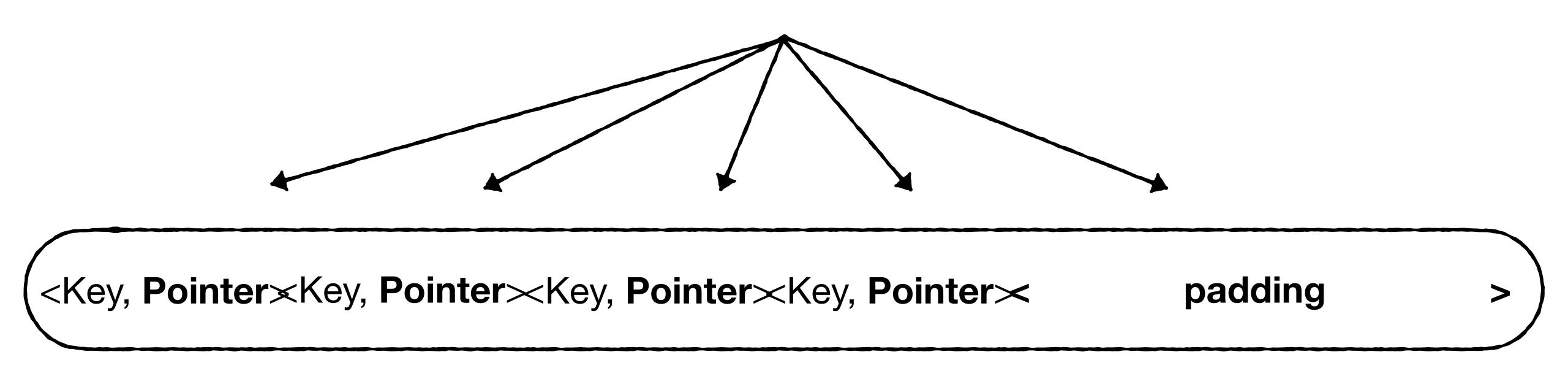
B-trees Page Organization

/ <Key, Pointer≫Key, Pointer><Key, Pointer>< padding >

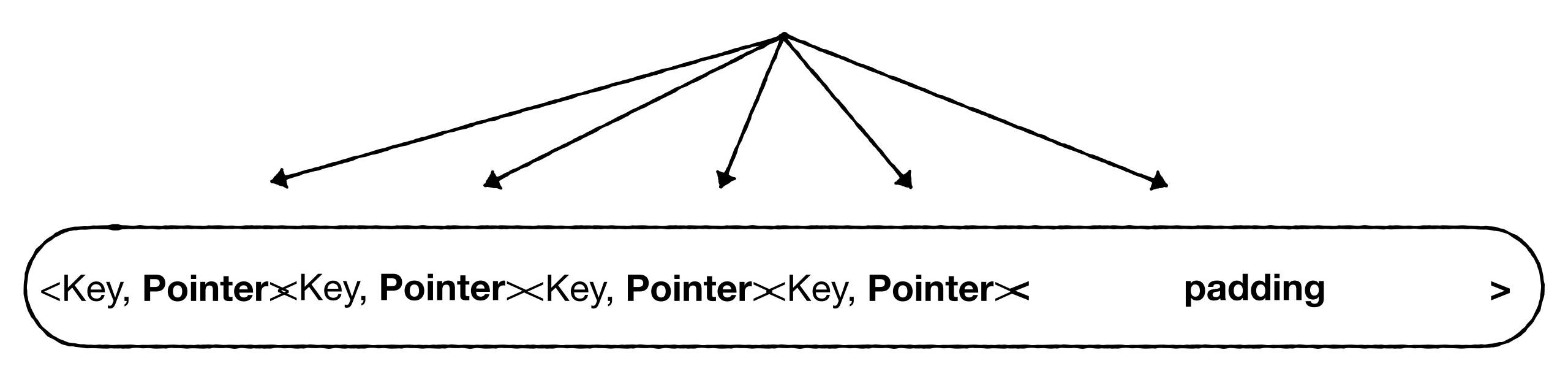




Real fanout: B/4 (e.g., 8 rather than 32)



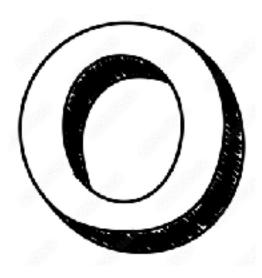
log B/4 (N) cache misses



log B/4 (N) cache misses

Space overheads also harm scans

Better Worst-Case

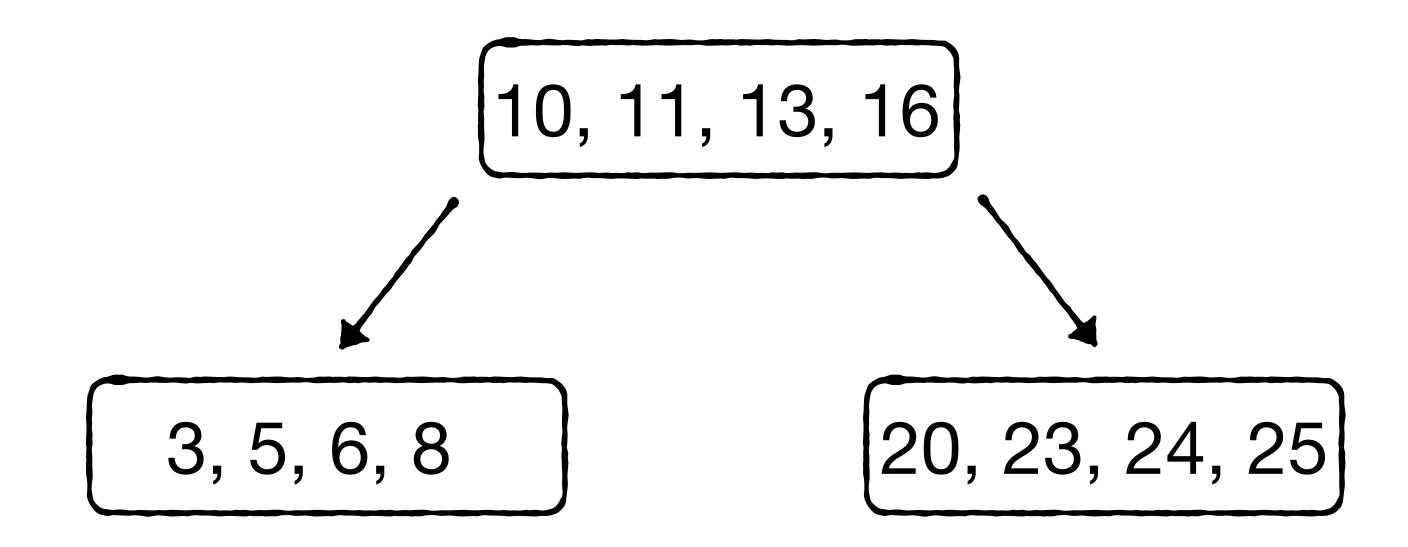


AVL-Tree	B-Tree	T-Tree	CSS-Tree	CSB-Tree	HOT
1962	1970	1985	1998	2000	2018

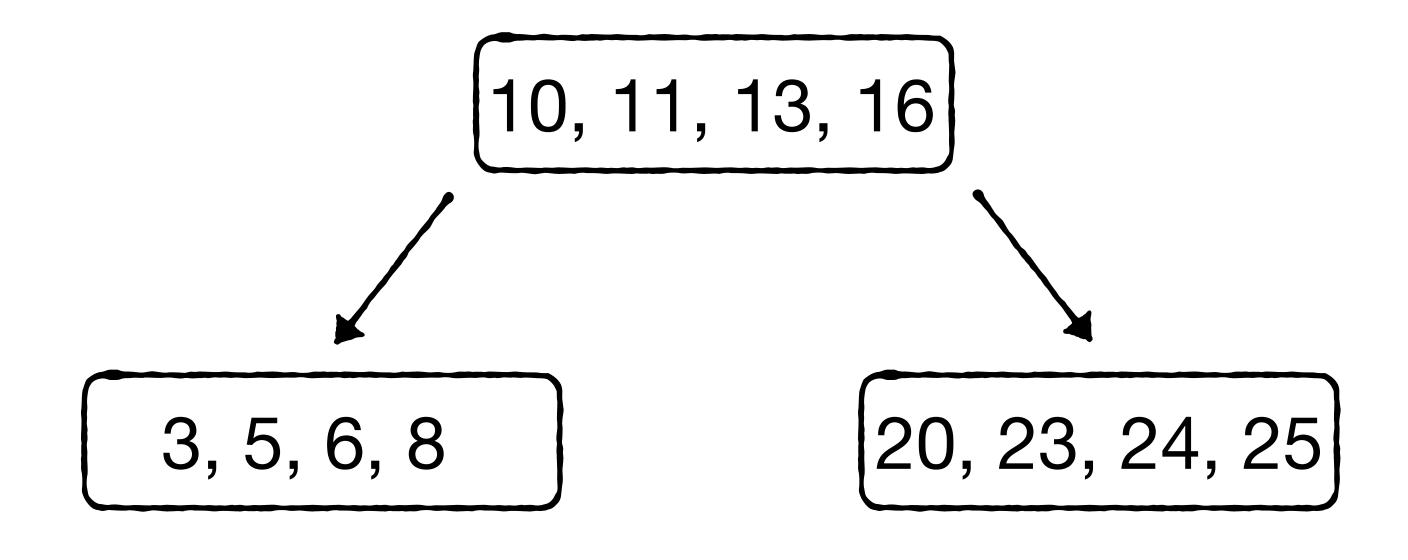
T-Tree

A study of index structures for main memory database management systems Technical Report. 1985

T-Tree: an AVL-Tree with Fat Nodes

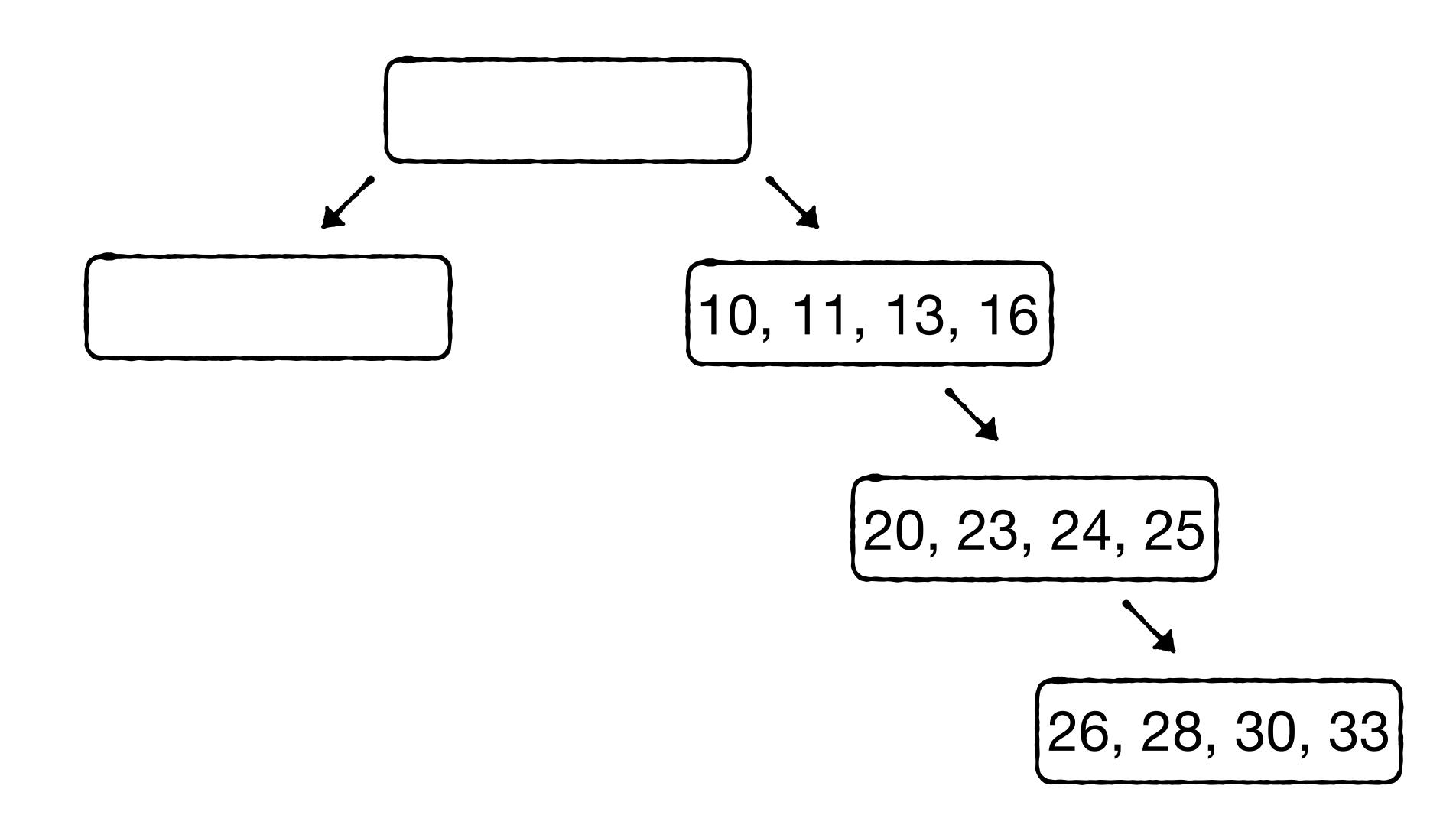


T-Tree: an AVL-Tree with Fat Nodes

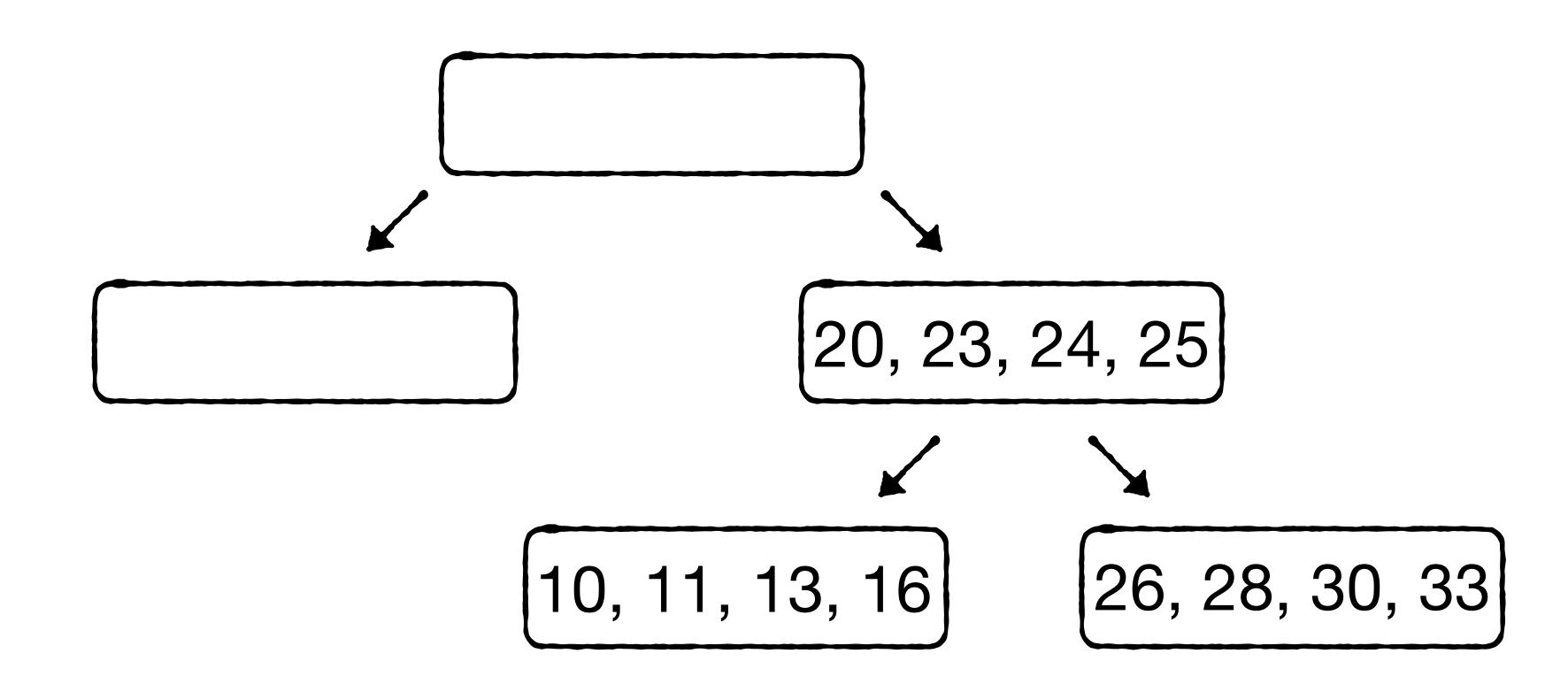


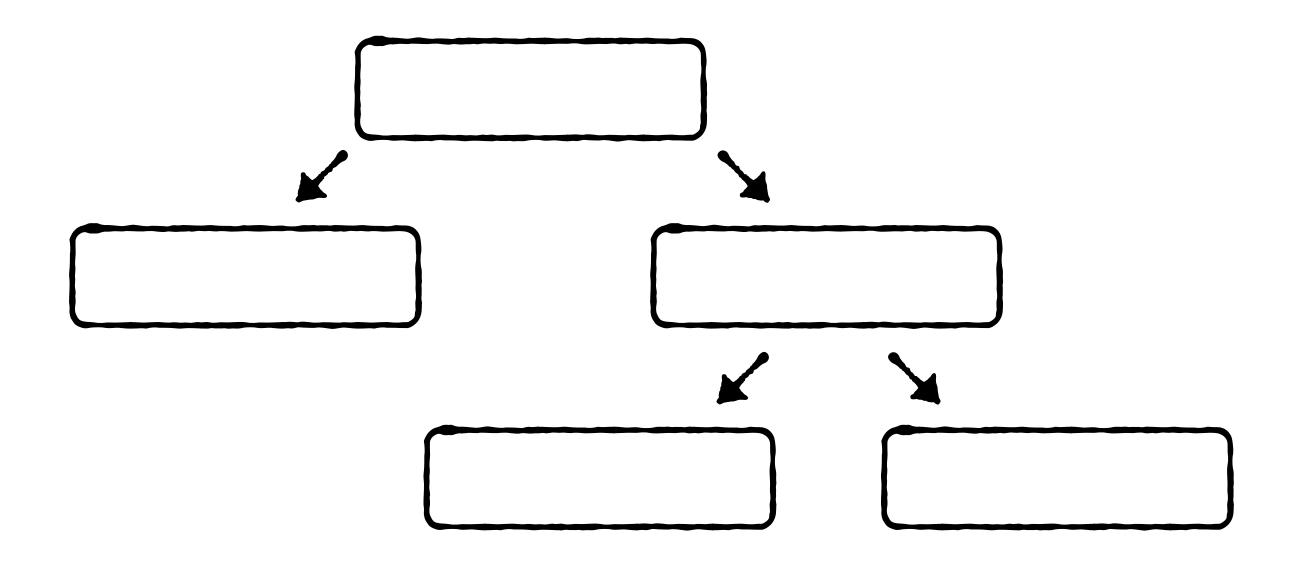
A node can't intersect with its sub-trees in key range

Self-Balancing is Identical to AVL-Tree

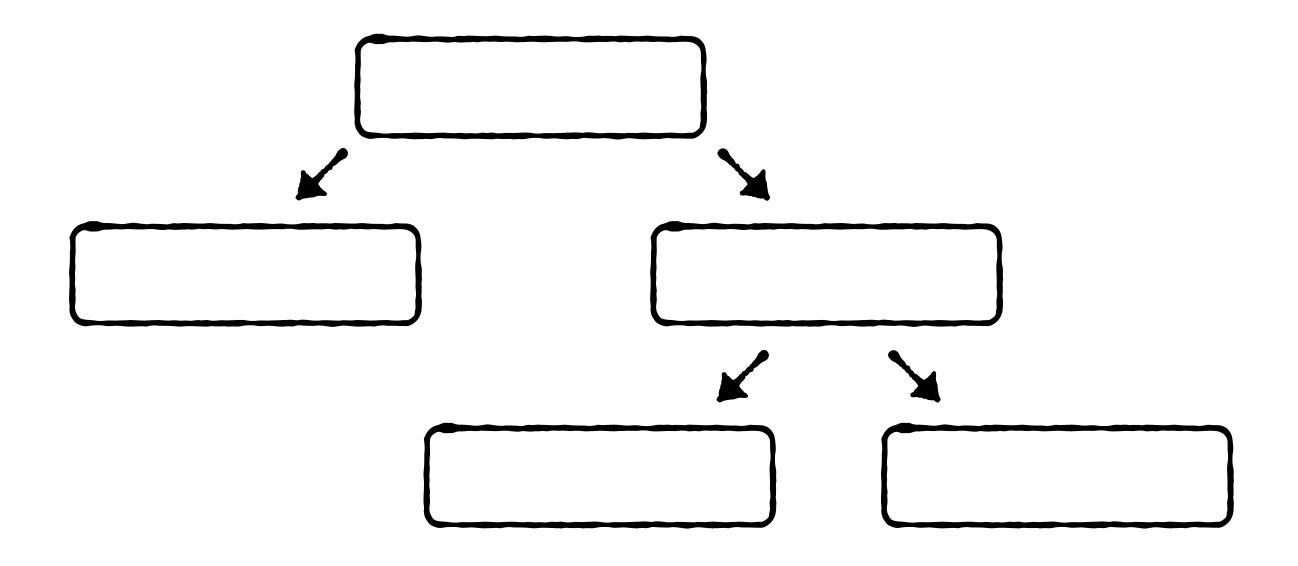


Self-Balancing is Identical to AVL-Tree





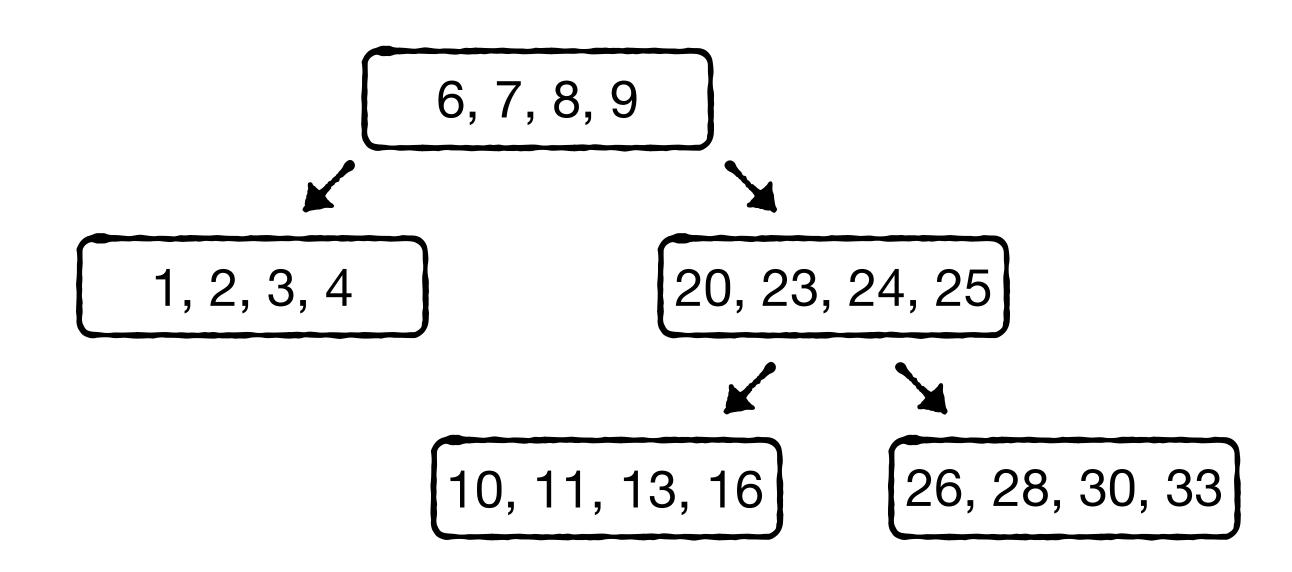
Pros: (1) Less metadata relative to data



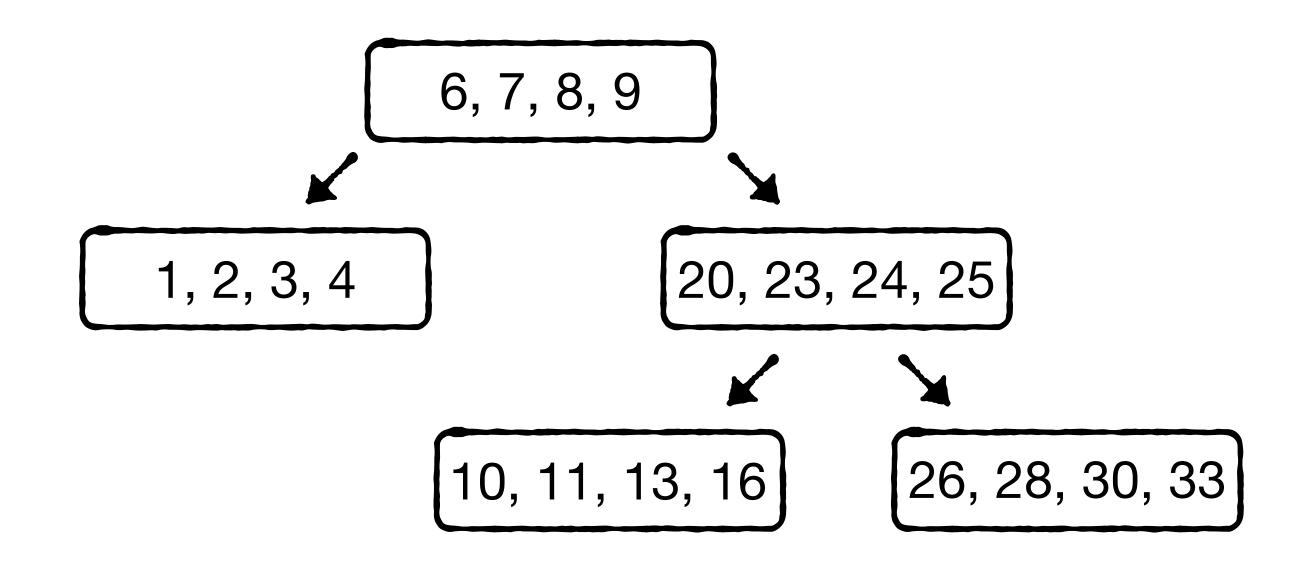
Pros: (1) Less metadata relative to data

(2) Fewer rotations

search cost? (In terms of B and N)

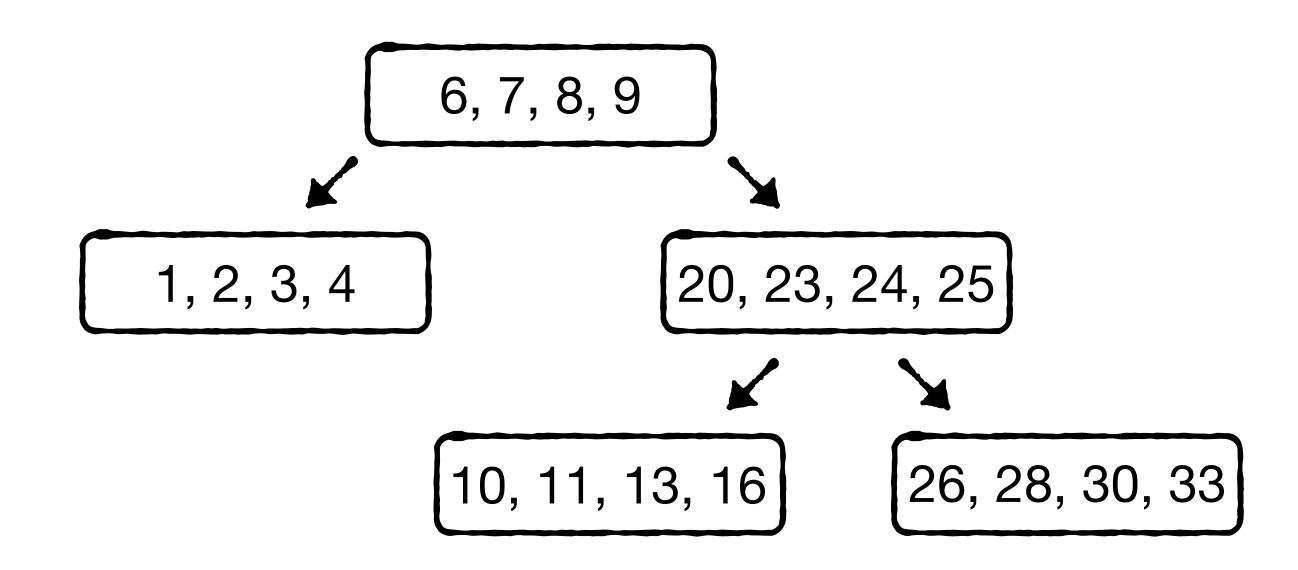


search cost? (In terms of B and N)



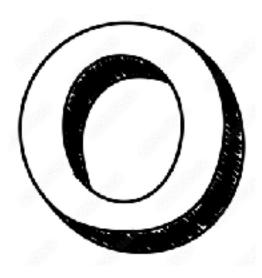
We only prune the search space by 2x per node

search cost? (In terms of B and N)



We only prune the search space by 2x per node $O(log_2(N/B))$ cache misses

Better Worst-Case

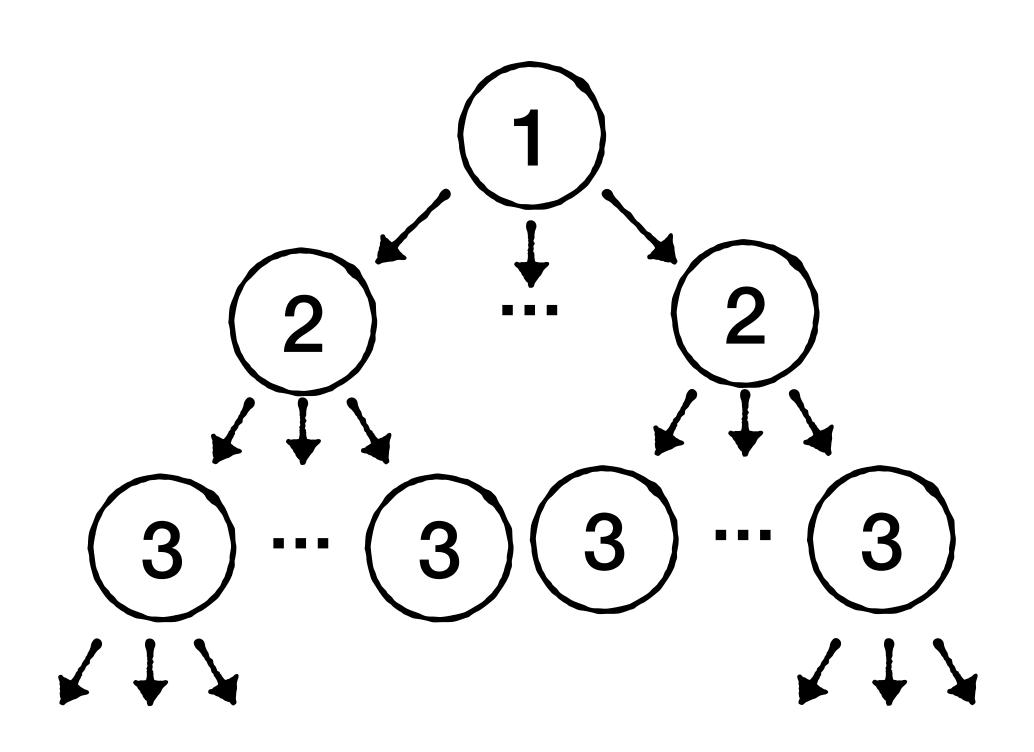


AVL-Tree	B-Tree	T-Tree	CSS-Tree	CSB-Tree	HOT
1962	1970	1985	1998	2000	2018

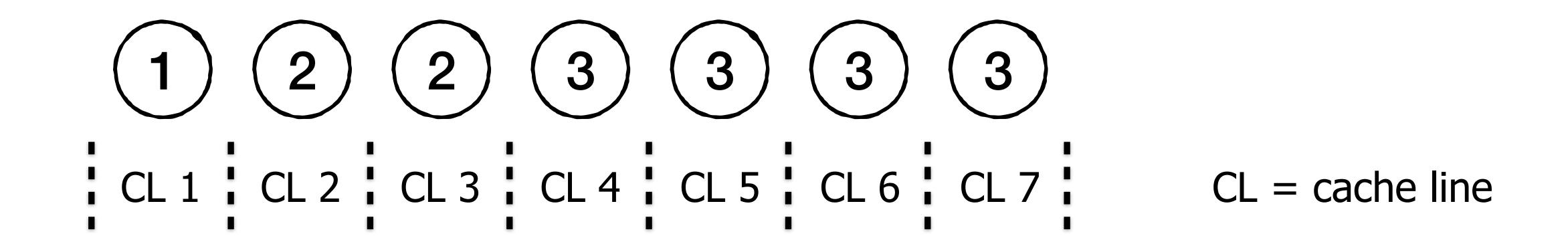
Cache conscious indexing for decision-support in main memory VLDB 1999.

Cache conscious indexing for decision-support in main memory VLDB 1999.

Each node the size of a cache line ...

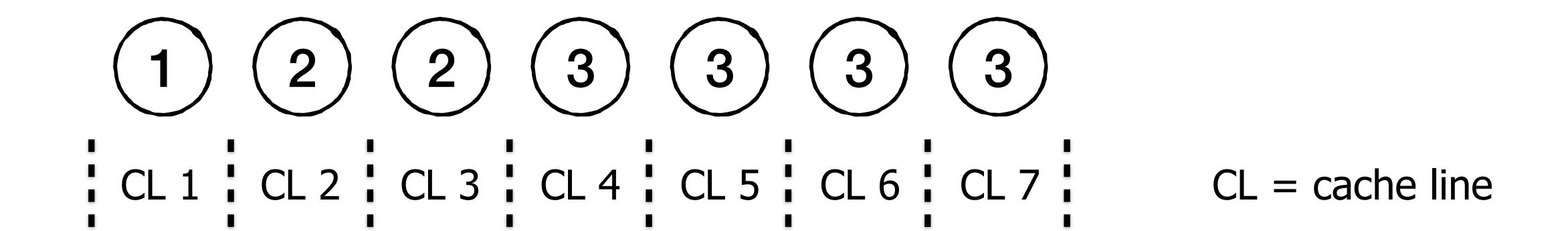


Stored as dense array in breadth-first order



Stored as dense array in breadth-first order

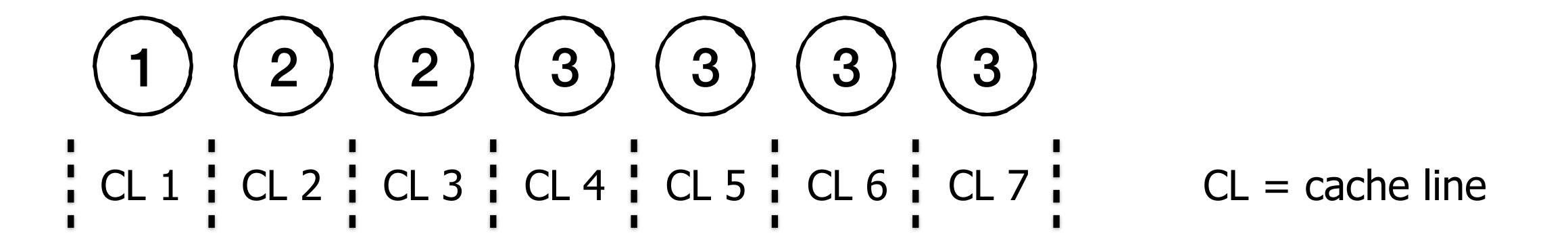
No padding or pointers among nodes (arithmetic is used to find child)



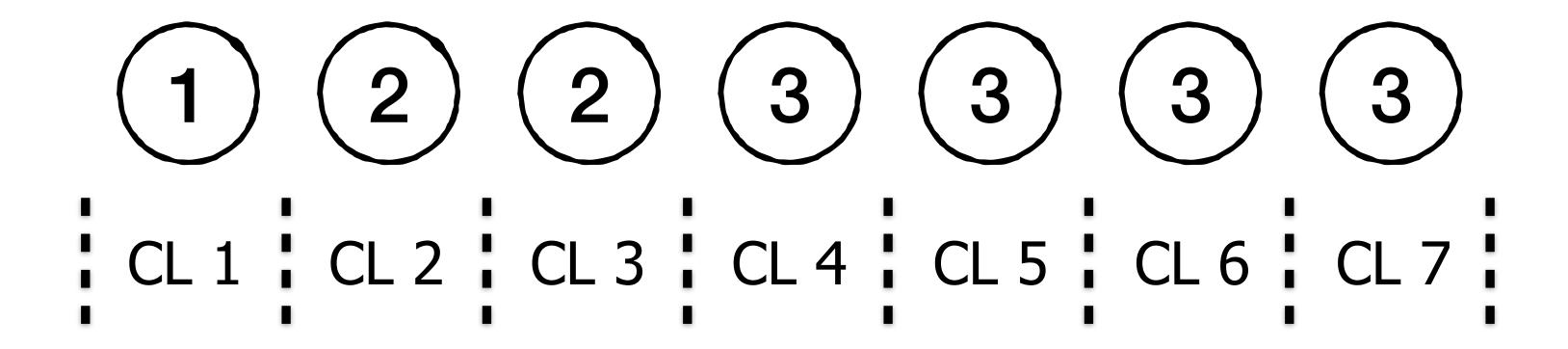
Stored as dense array in breadth-first order

No padding or pointers among nodes (arithmetic is used to find child)

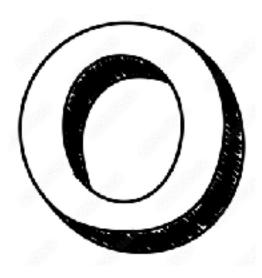
Log_B N Cache misses



Requires full reconstruction to handle updates

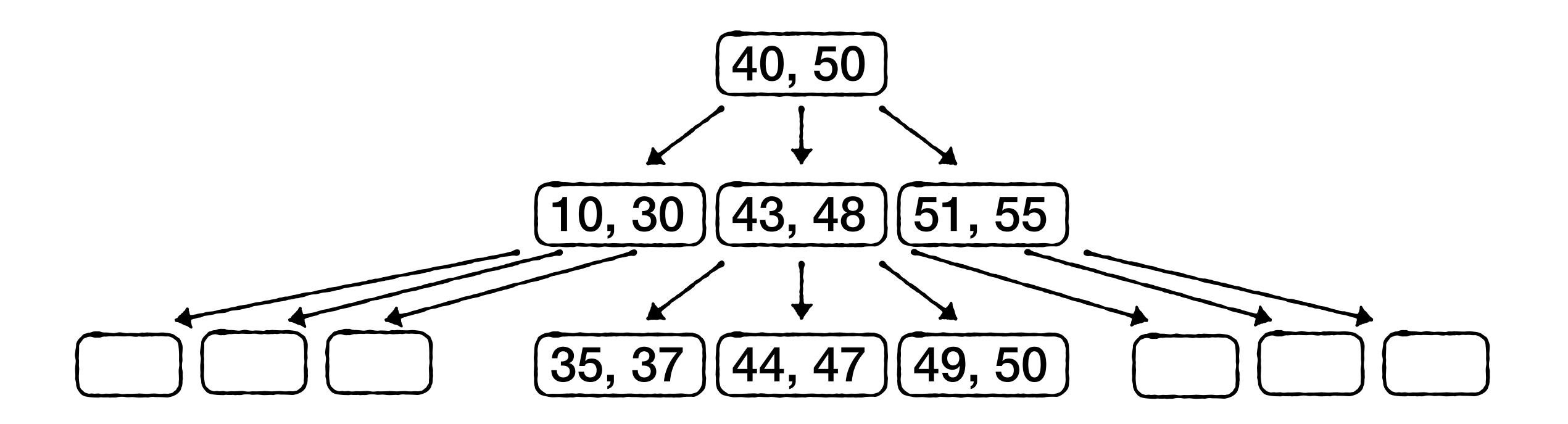


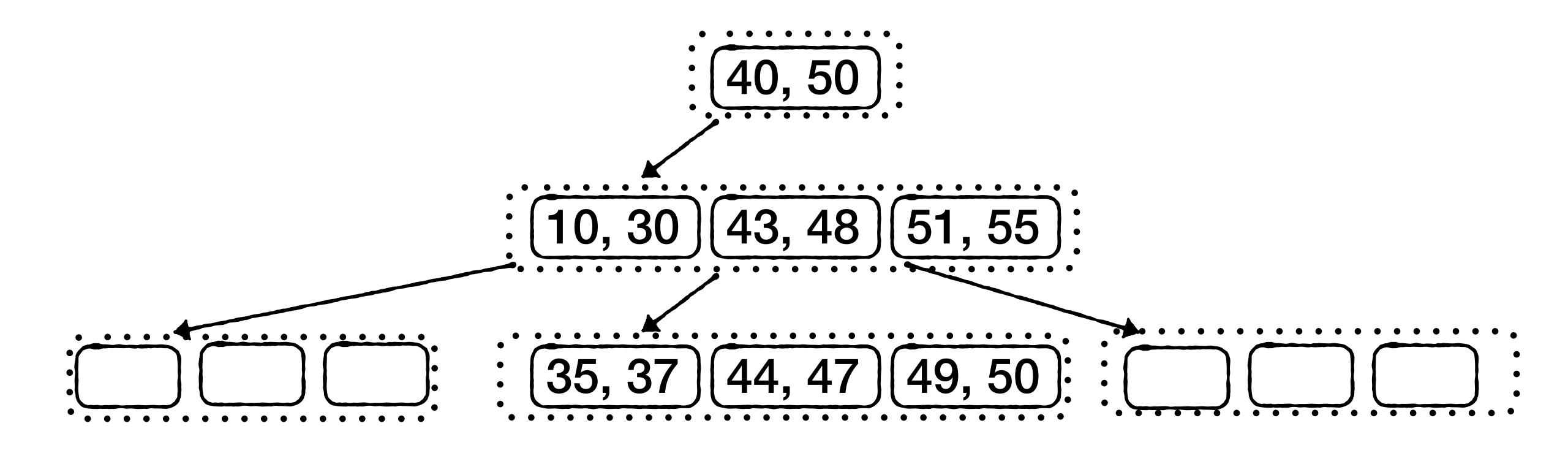
Better Worst-Case



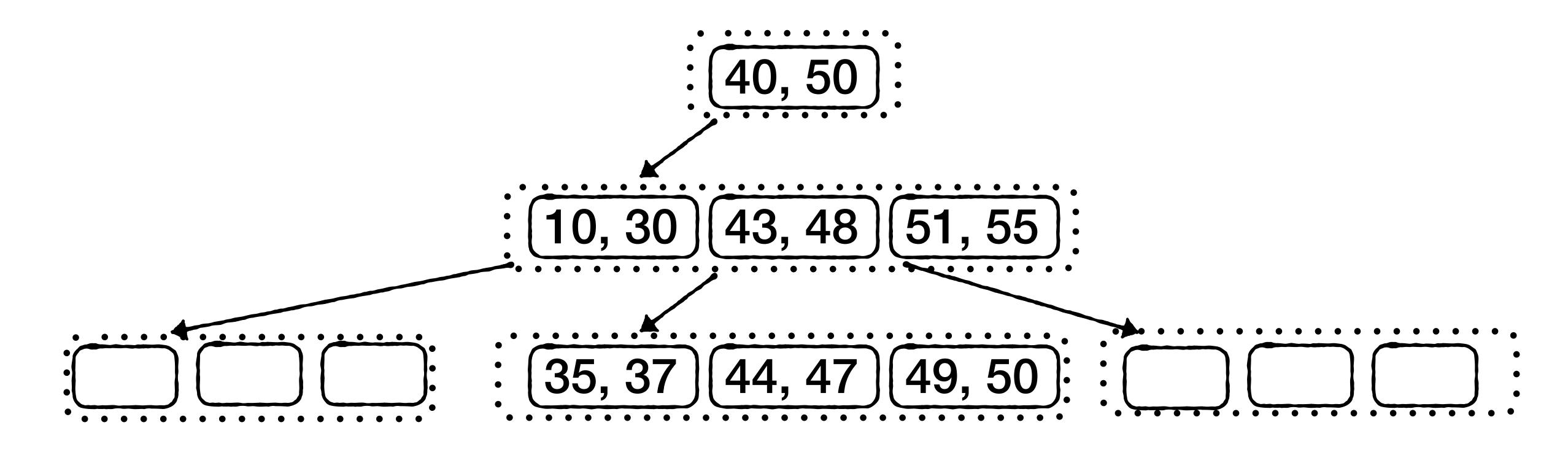
AVL-Tree	B-Tree	T-Tree	CSS-Tree	CSB-Tree	HOT
1962	1970	1985	1998	2000	2018

Cache-Sensitive B-Tree (CSB-Tree)



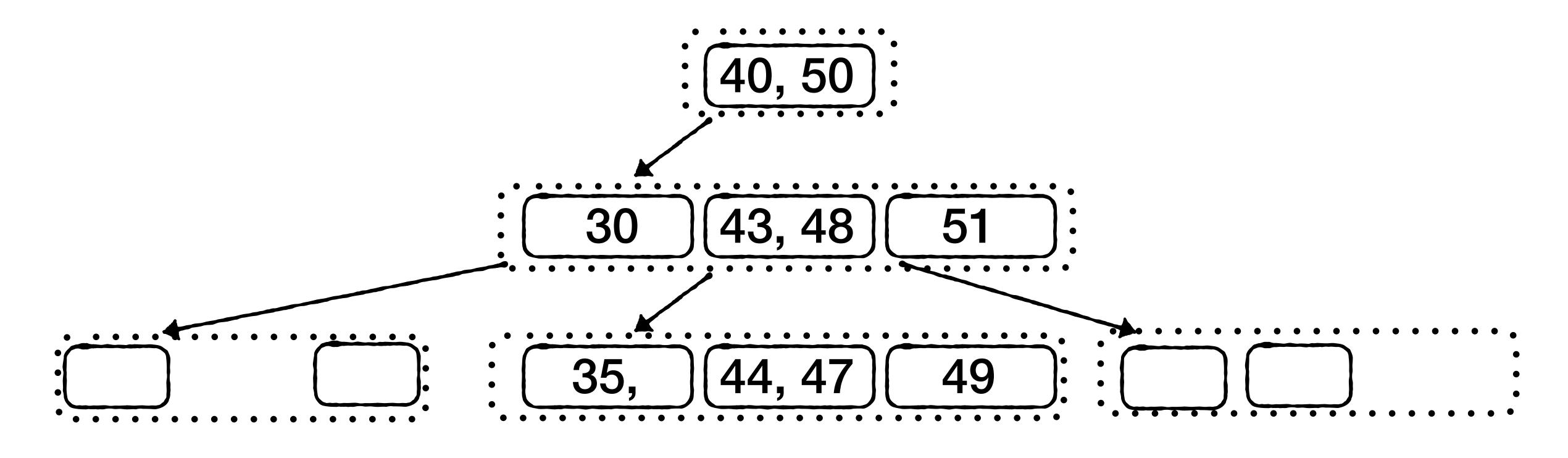


All children of a node are stored contiguously in "node group"



All children of a node are stored contiguously in "node group"

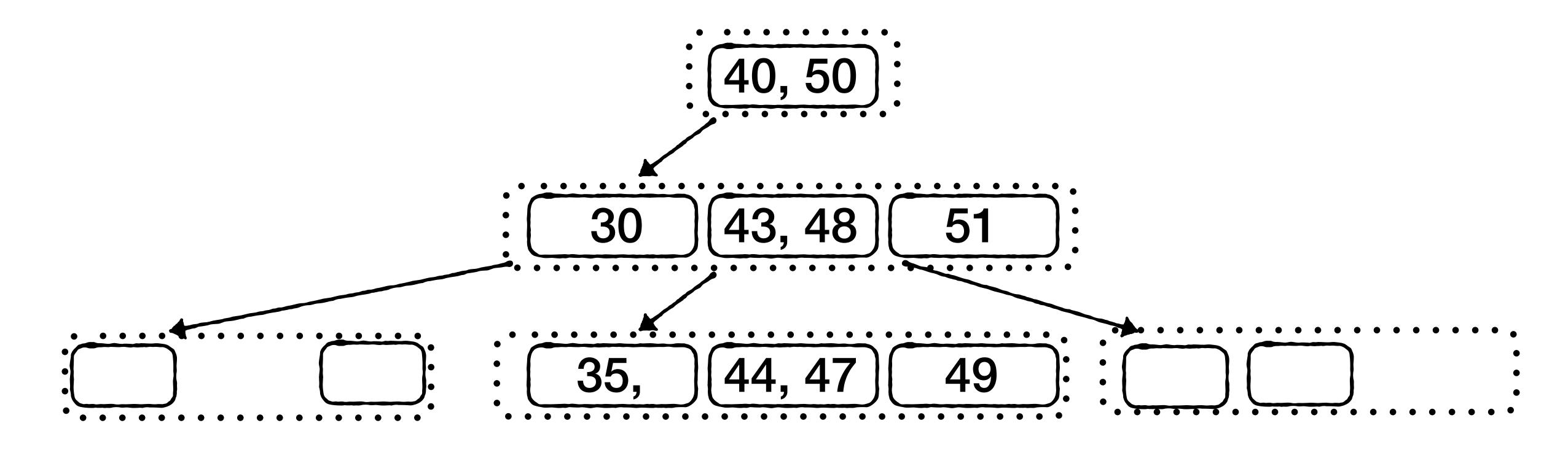
Most pointers are eliminated (only one needed per node group)



All children of a node are stored contiguously in "node group"

Most pointers are eliminated (only one needed per node group)

Padding is still needed to absorb insertions

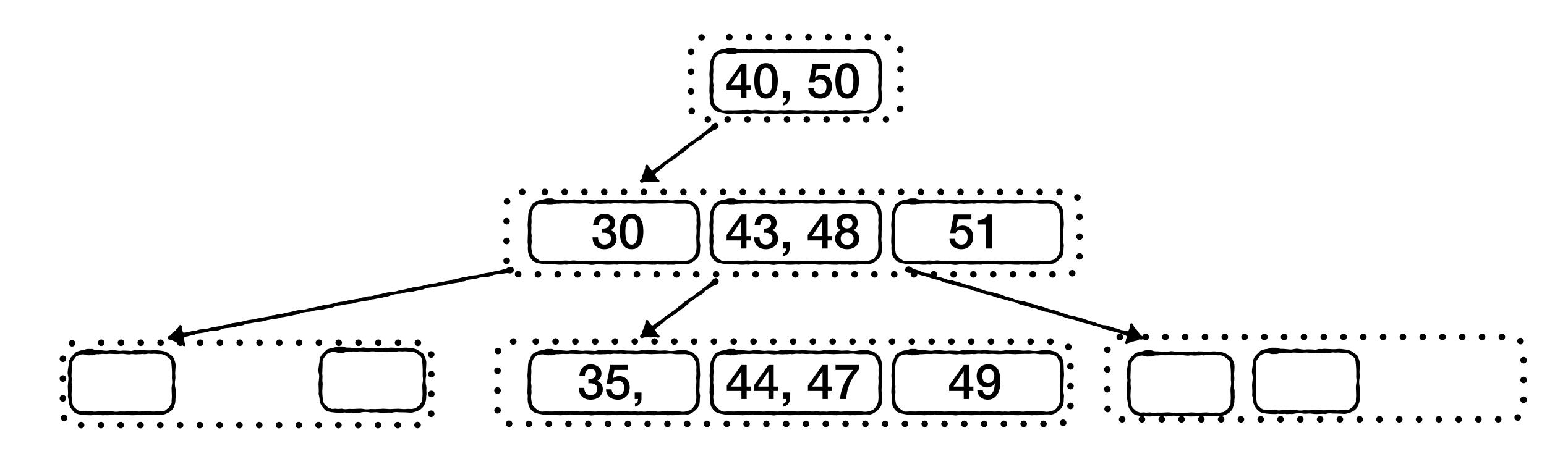


All children of a node are stored contiguously in "node group"

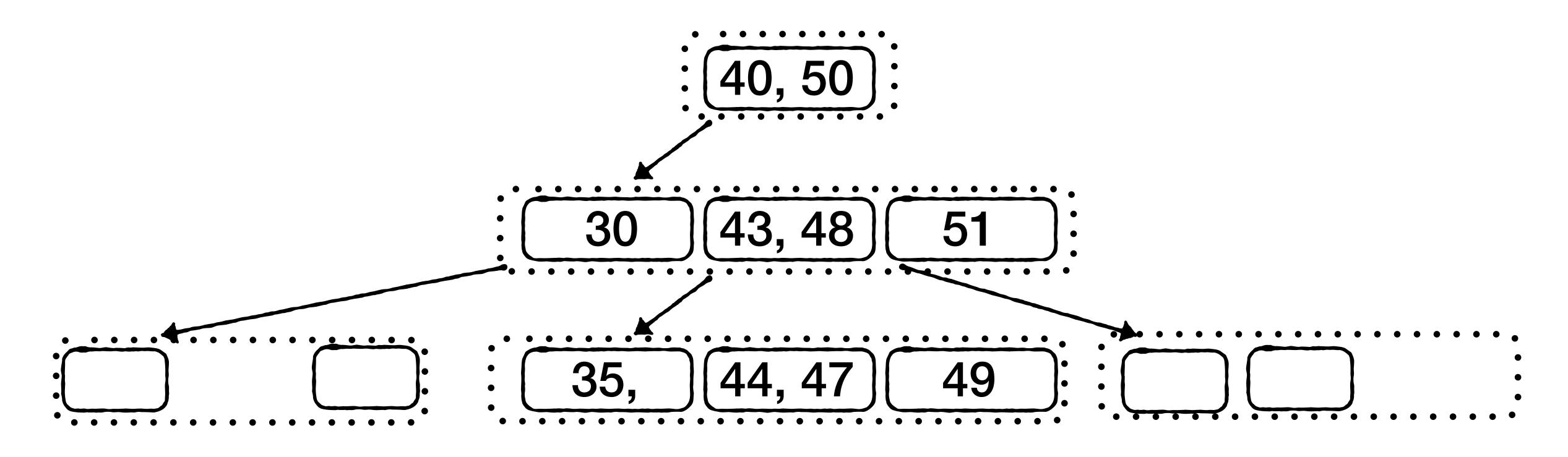
Most pointers are eliminated (only one needed per node group)

Padding is still needed to absorb insertions

B nodes per node group due to fanout of tree

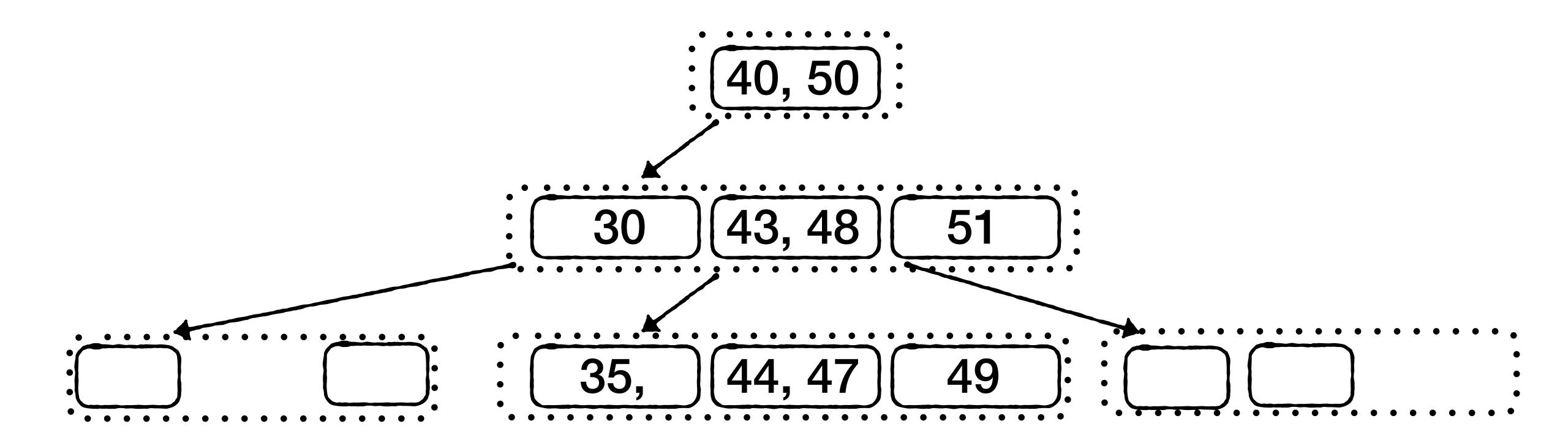


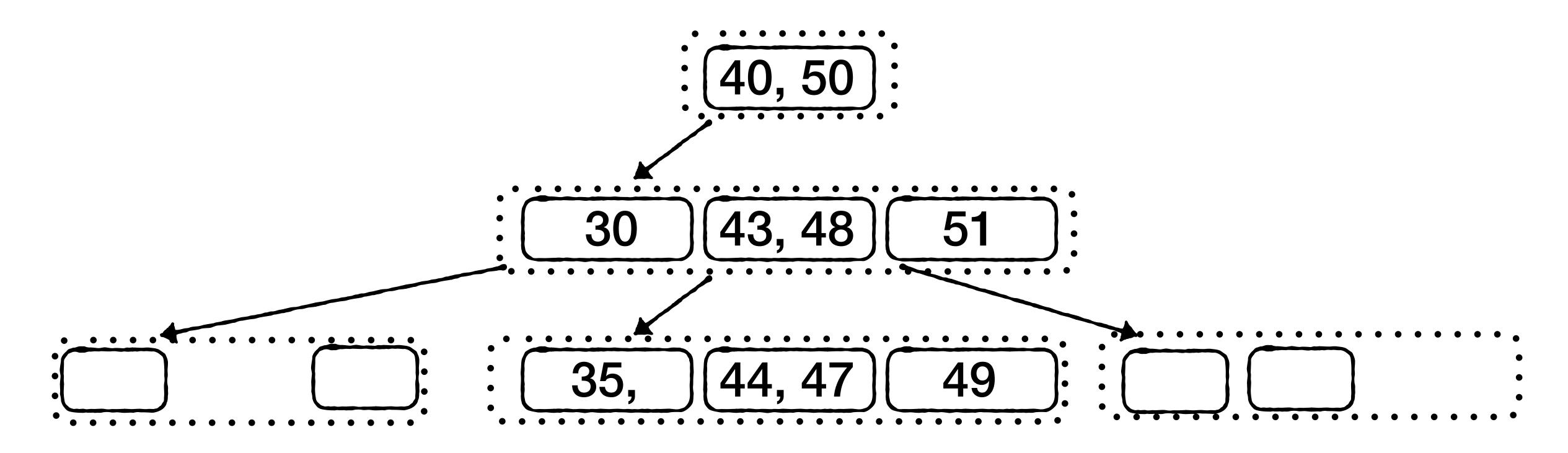
Fanout is B/2 rather than B/4



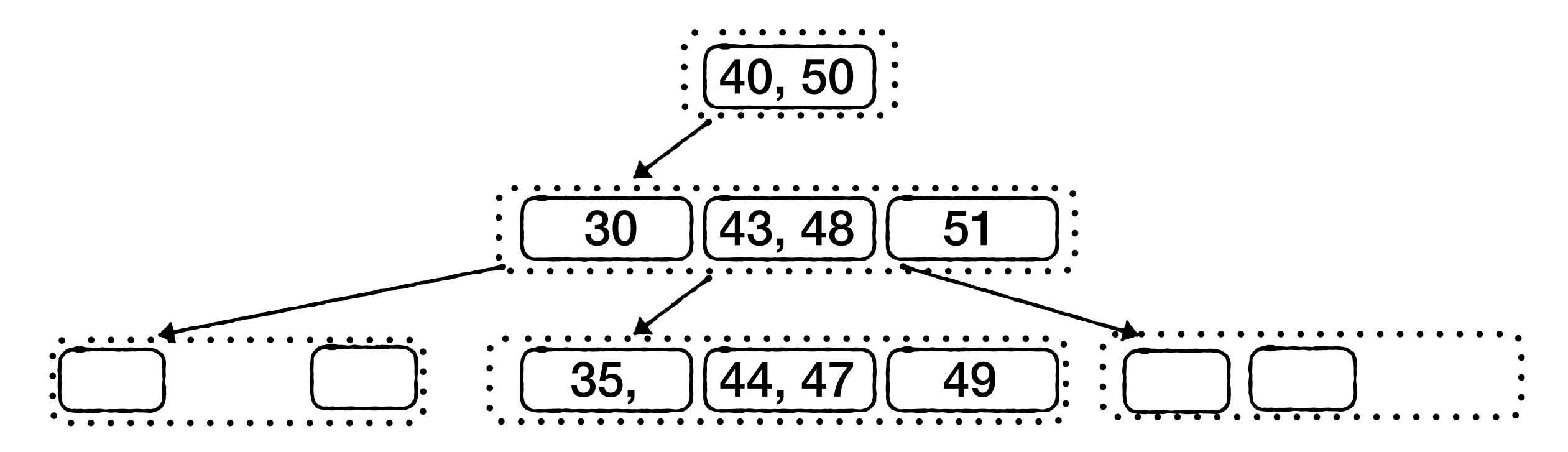
Fanout is B/2 rather than B/4

Depth: O(log_{B/2}(N))



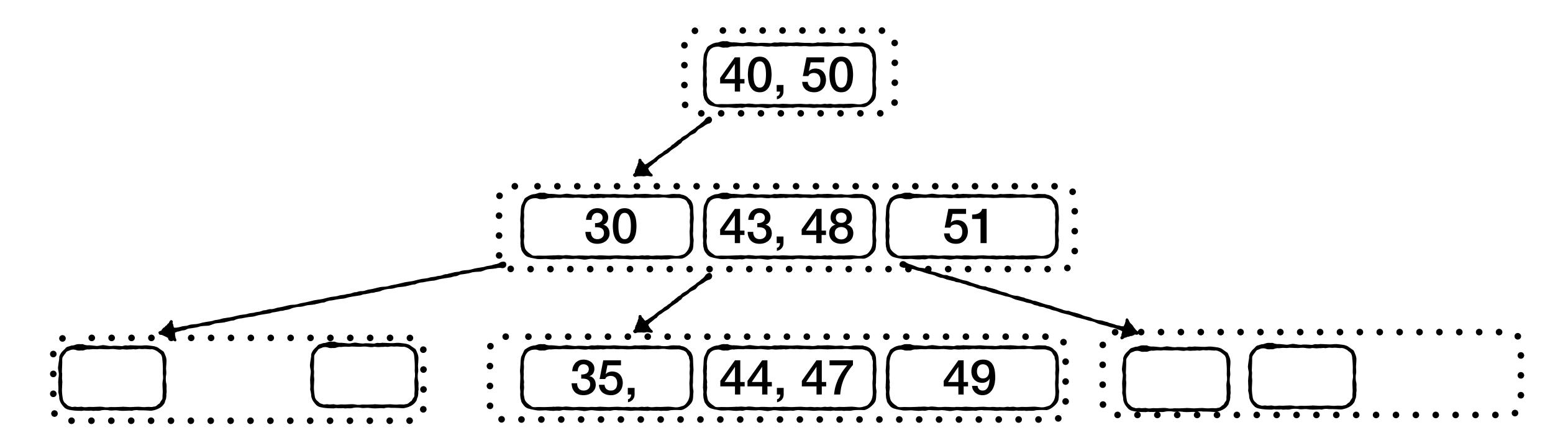


Every B/2 insertions, a leaf splits, causing us to rewrite a node group



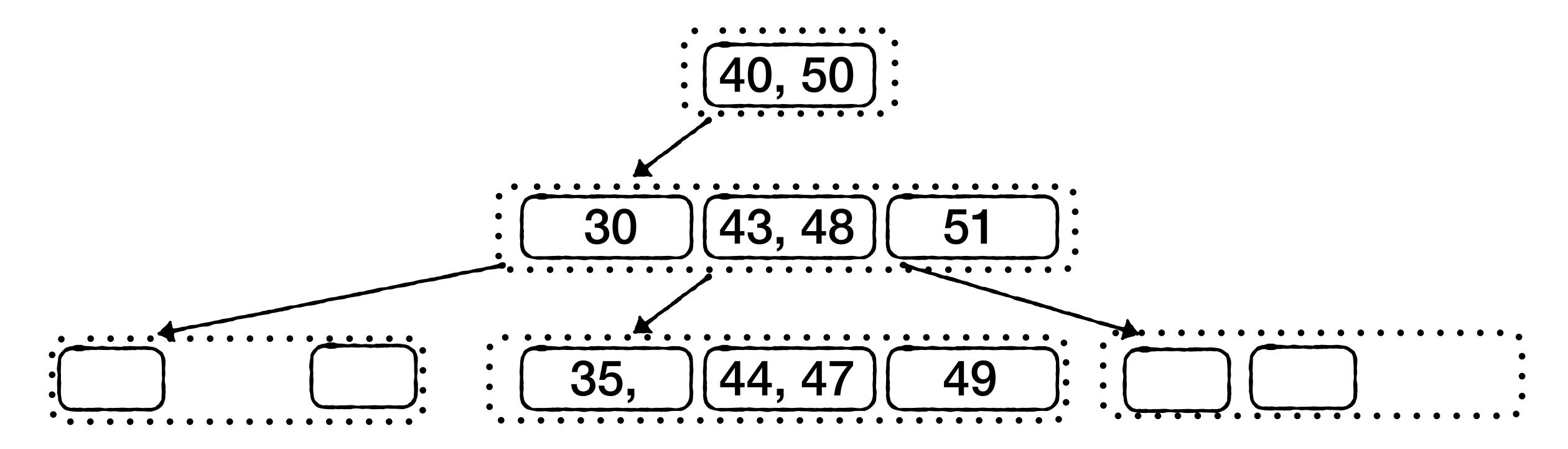
Every B/2 insertions, a leaf splits, causing us to rewrite a node group

Which costs O(B) cache misses



Every B/2 insertions, a leaf splits, causing us to rewrite a node group Which costs O(B) cache misses

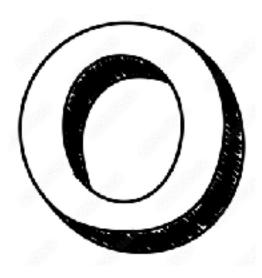
 $O(log_{B/2}(N) + B / (B/2))$



Every B/2 insertions, a leaf splits, causing us to rewrite a node group Which costs O(B) cache misses

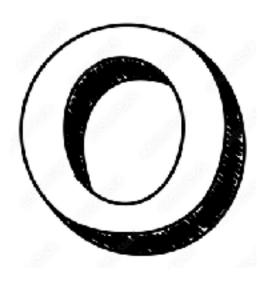
 $O(log_{B/2}(N))$

Better Worst-Case



AVL-Tree	B-Tree	T-Tree	CSS-Tree	CSB-Tree	HOT
1962	1970	1985	1998	2000	2018

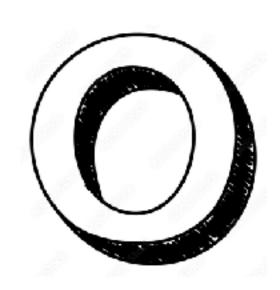
Better Worst-Case



 AVL-Tree
 B-Tree
 T-Tree
 CSS-Tree
 CSB-Tree
 HOT

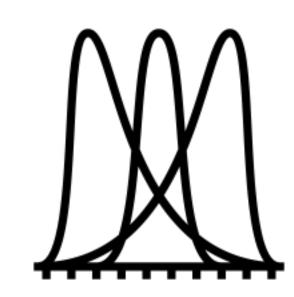
 1962
 1970
 1985
 1998
 2000
 2018

Better Worst-Case



AVL-Tree	B-Tree	T-Tree
1962	1970	1985
CSS-Tree	CSB-Tree	НОТ
1998	2000	2018

Exploiting Data Distribution



Interpolation search	FITing-Tree	
1959	2019	

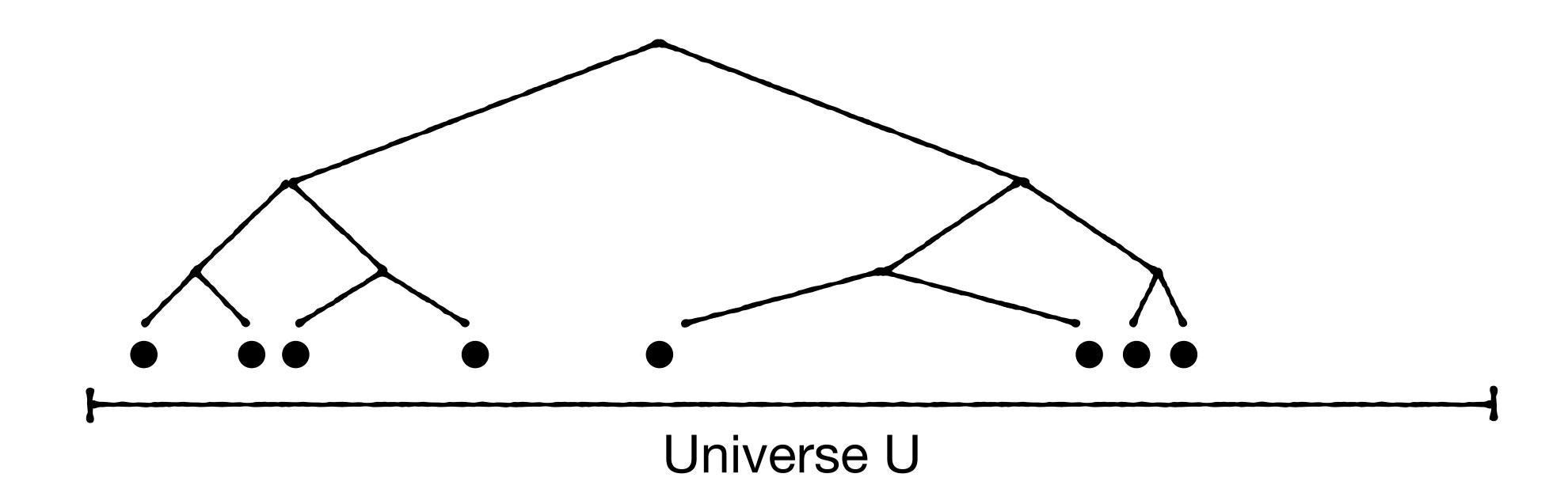
Binary search

O(log₂ N)

Tree search

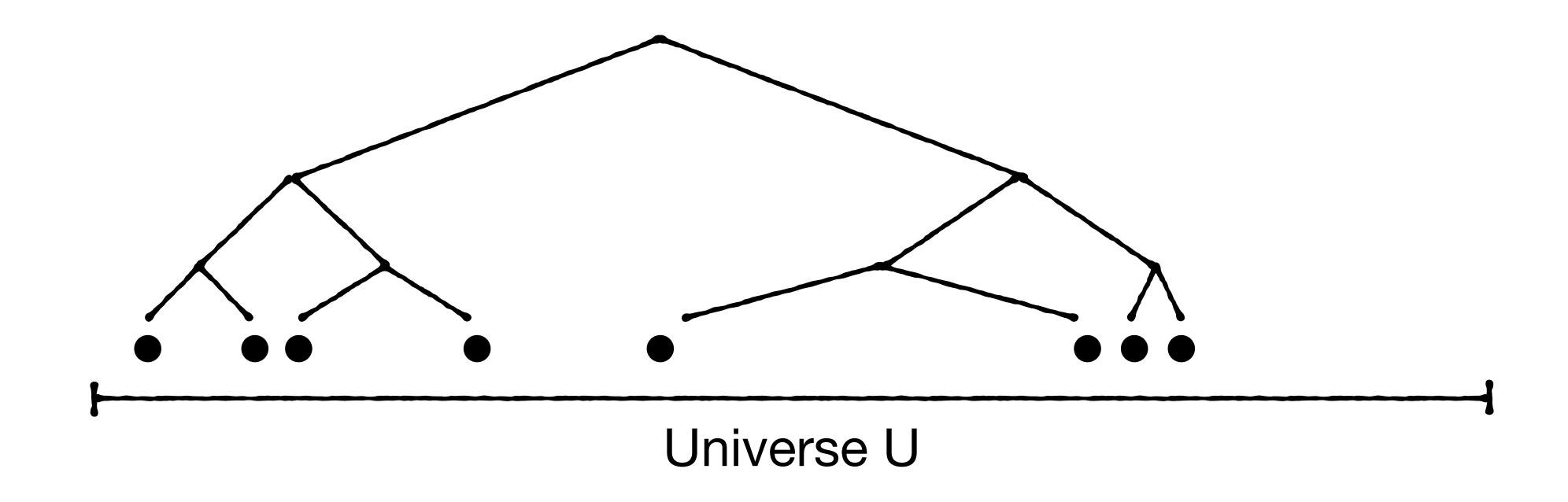
O(log₂ N) cycles

O(log_B N)l/O



These methods' performance is independent of data distribution

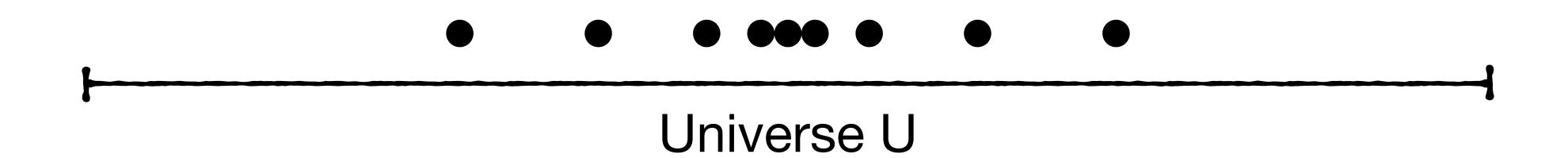
Tree search Binary search



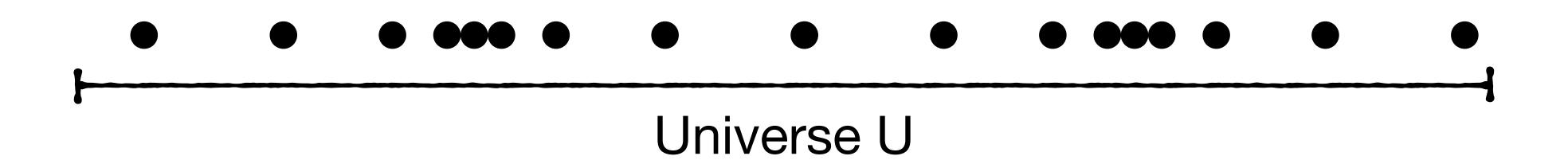
Fixed intervals

Uniform distribution

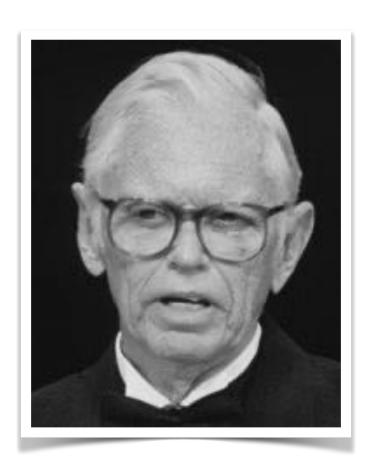
Normal distribution



Bi-modal distribution



Addressing for Random-Access Storage IBM Journal of Research and Development. 1959



W. Wesley Peterson

Uniform distribution

Uniform distribution - e.g., sorted array of hash values

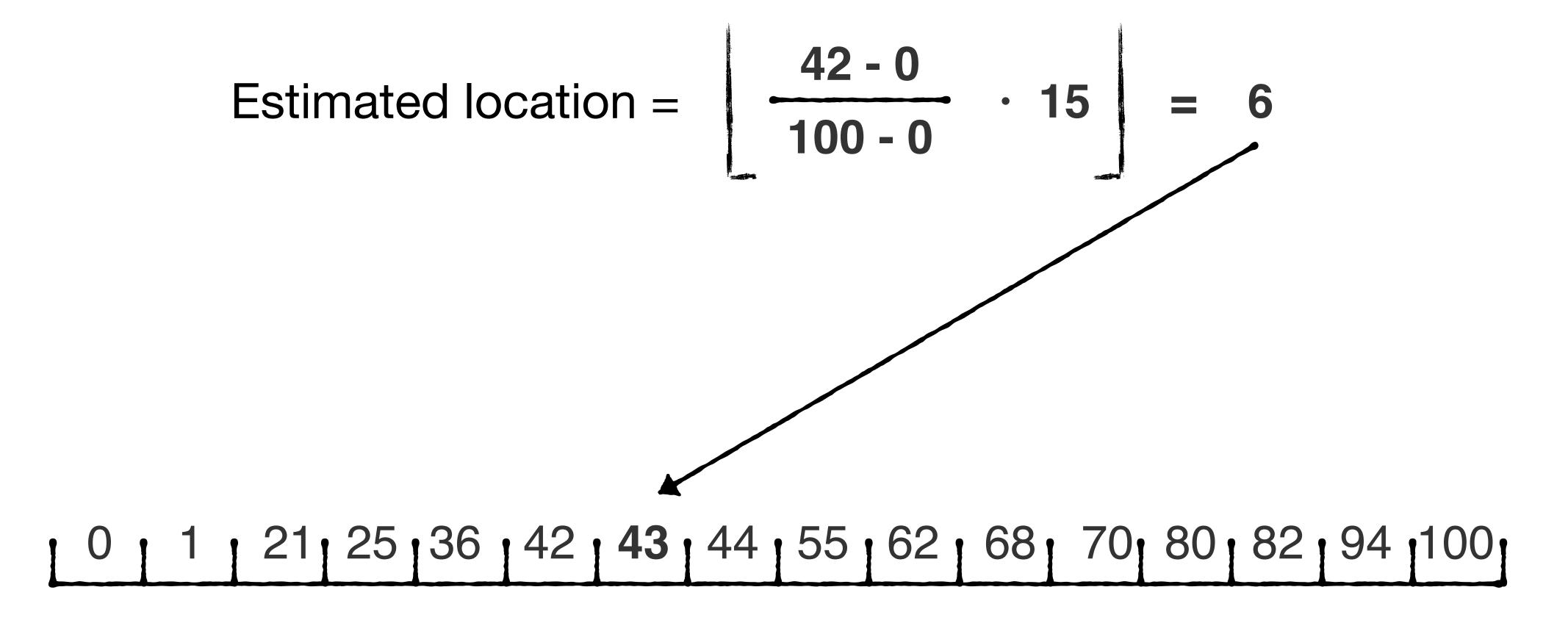
Array

get(X)

Array

Estimated location =
$$\frac{X - \min}{\max - \min} \cdot (\#slots - 1)$$

Estimated location =
$$\frac{42 - 0}{100 - 0} \cdot 15 =$$

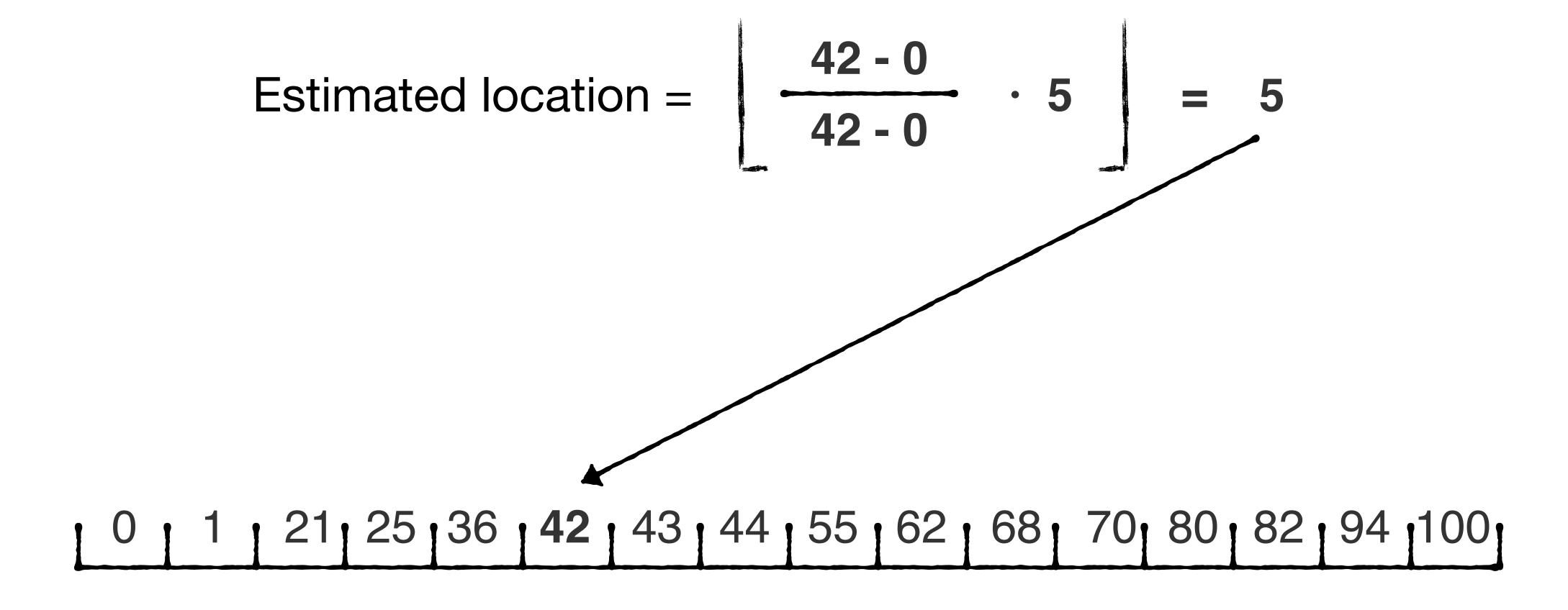


Estimated location =
$$\frac{42 - 0}{100 - 0} \cdot 15 = 6$$

Recurse on this partition

Estimated location =
$$\frac{42 - 0}{42 - 0} \cdot 5$$

Recurse on this partition



get(42)

Found in two steps! As opposed to $log_2(16) = 4$ steps with binary search

For uniformly distributed data:

Interpolation search O(log₂ log₂ N)

Binary search O(log₂ N)

Interpolation search O(log₂ log₂ N)

Intuition: each iteration prunes the search space by \N

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search

 $O(log_2 log_2 N)$

Intuition: each iteration prunes the search space by \N

$$T(n) < C + T(\sqrt{N})$$

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log₂ log₂ N)

Intuition: each iteration prunes the search space by \N

 $T(n) < C \cdot log_2 log_2 N$

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search

O(log₂ log₂ N)

Intuition: each iteration prunes the search space by √N

Interpolation search

O(log₂ log₂ N)

Intuition: each iteration prunes the search space by \N

For details, check our reading for this week.

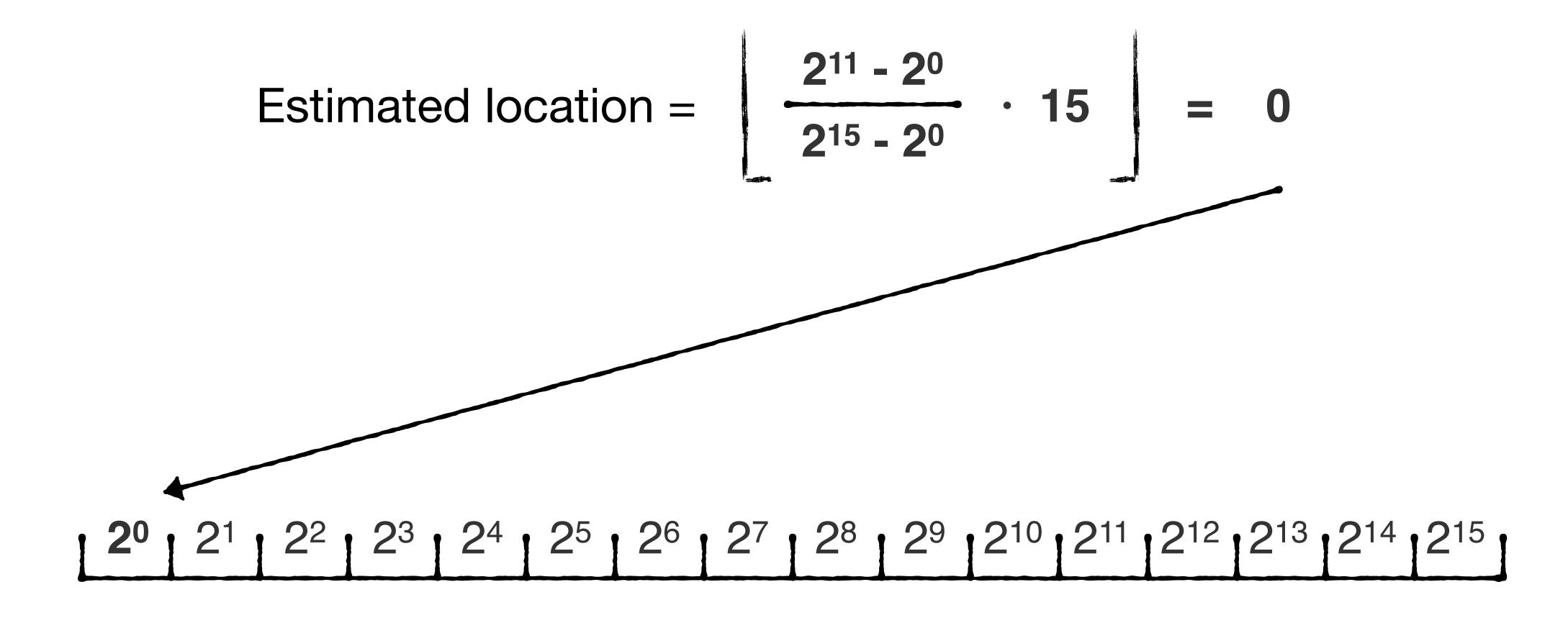
Now suppose the data is geometrically increasing

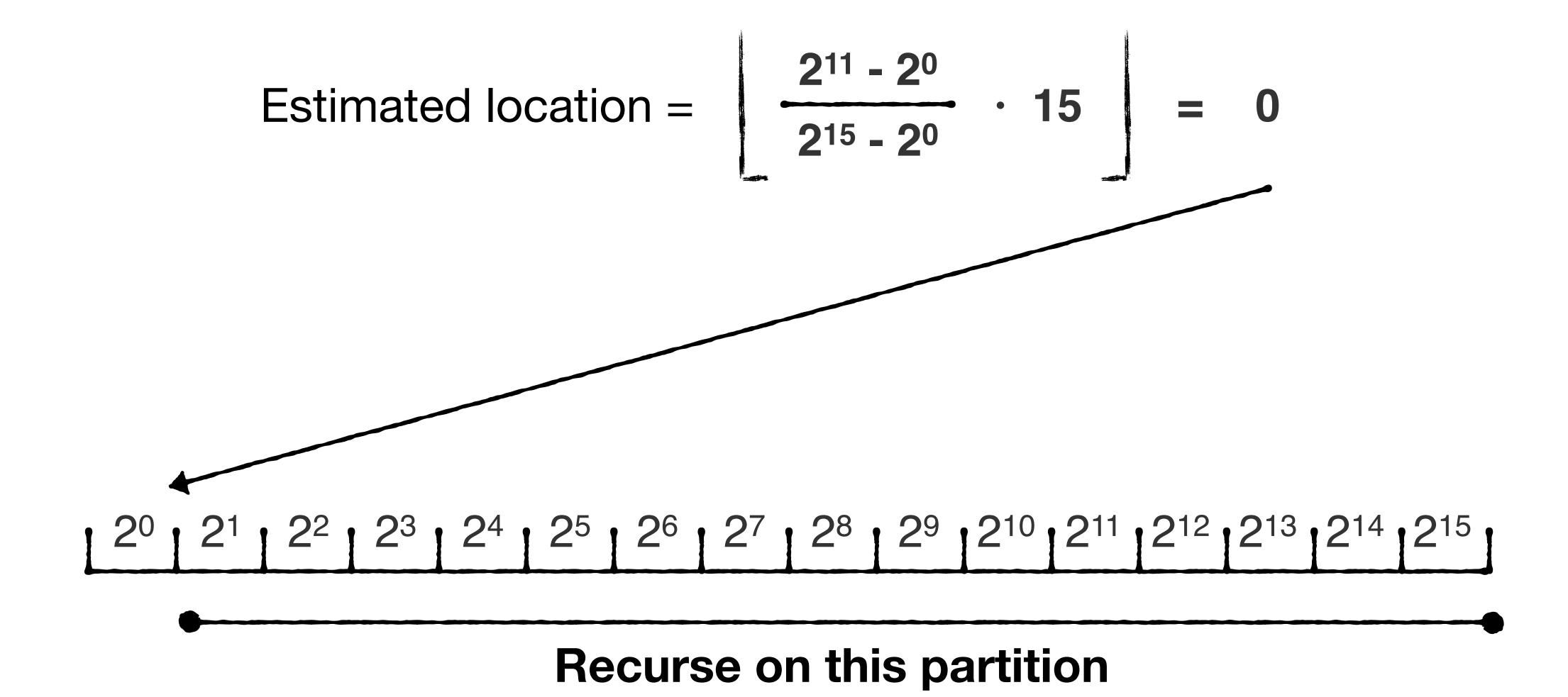
Now suppose the data is geometrically increasing

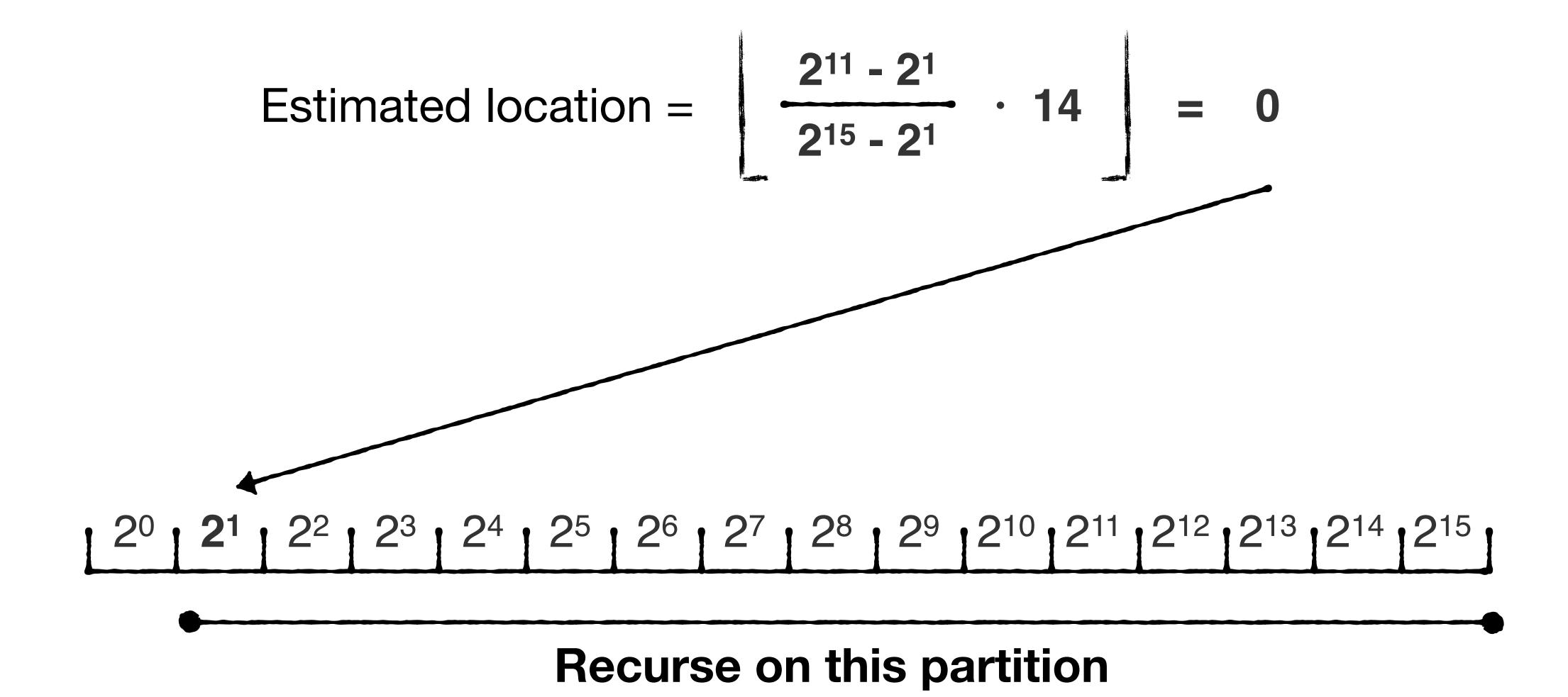
Estimated location =
$$\frac{X - \min}{\max - \min} \cdot (\#slots - 1)$$

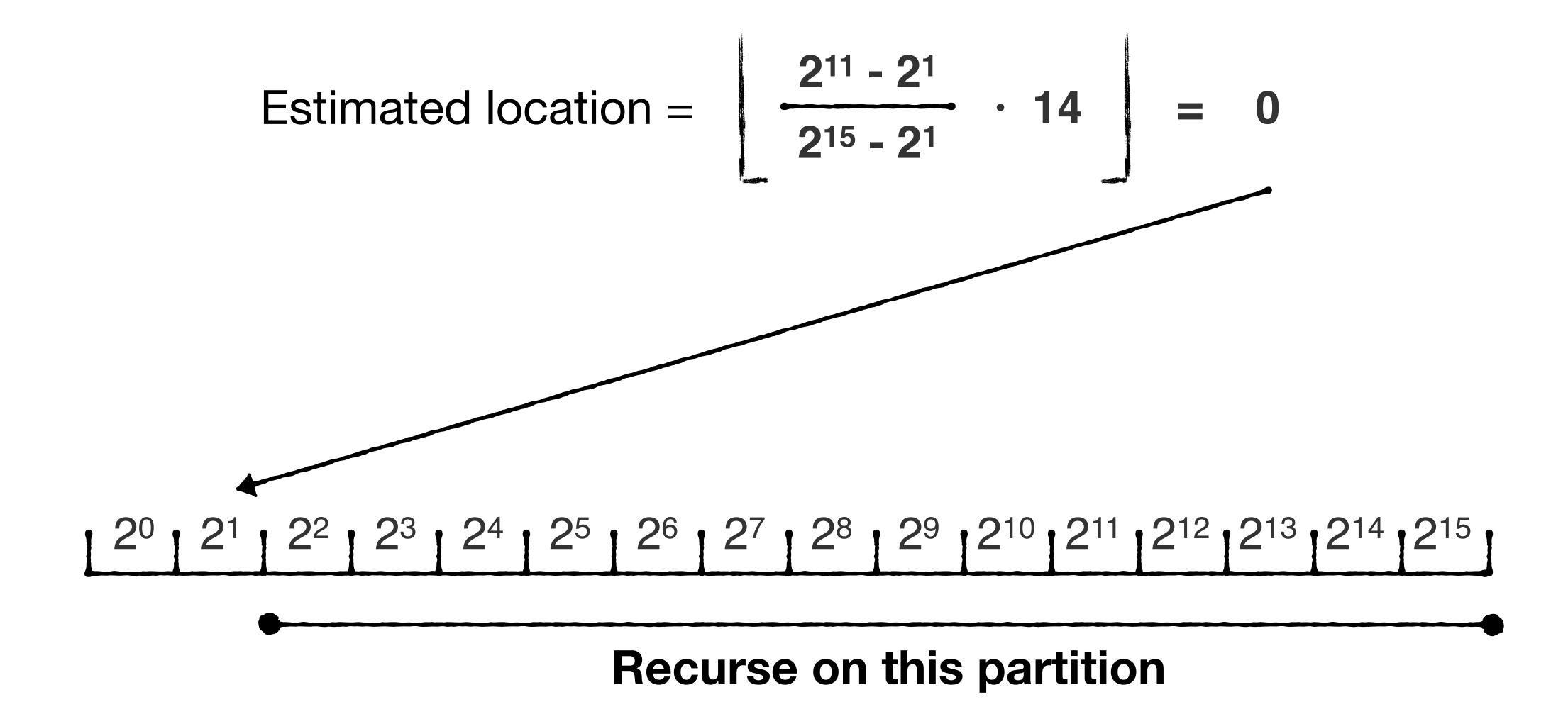
get(2¹¹)

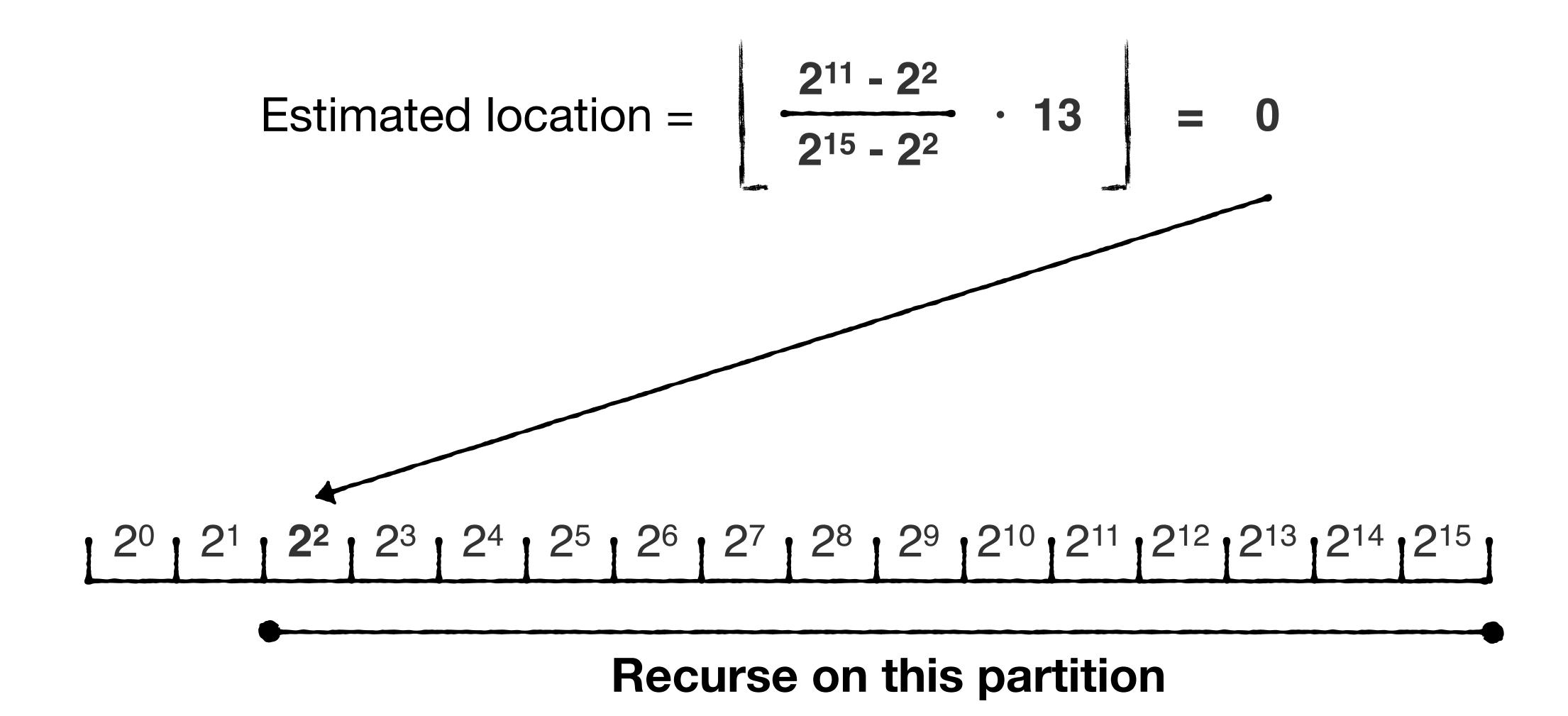
Estimated location =
$$\frac{X - \min}{\max - \min} \cdot (\#slots - 1)$$

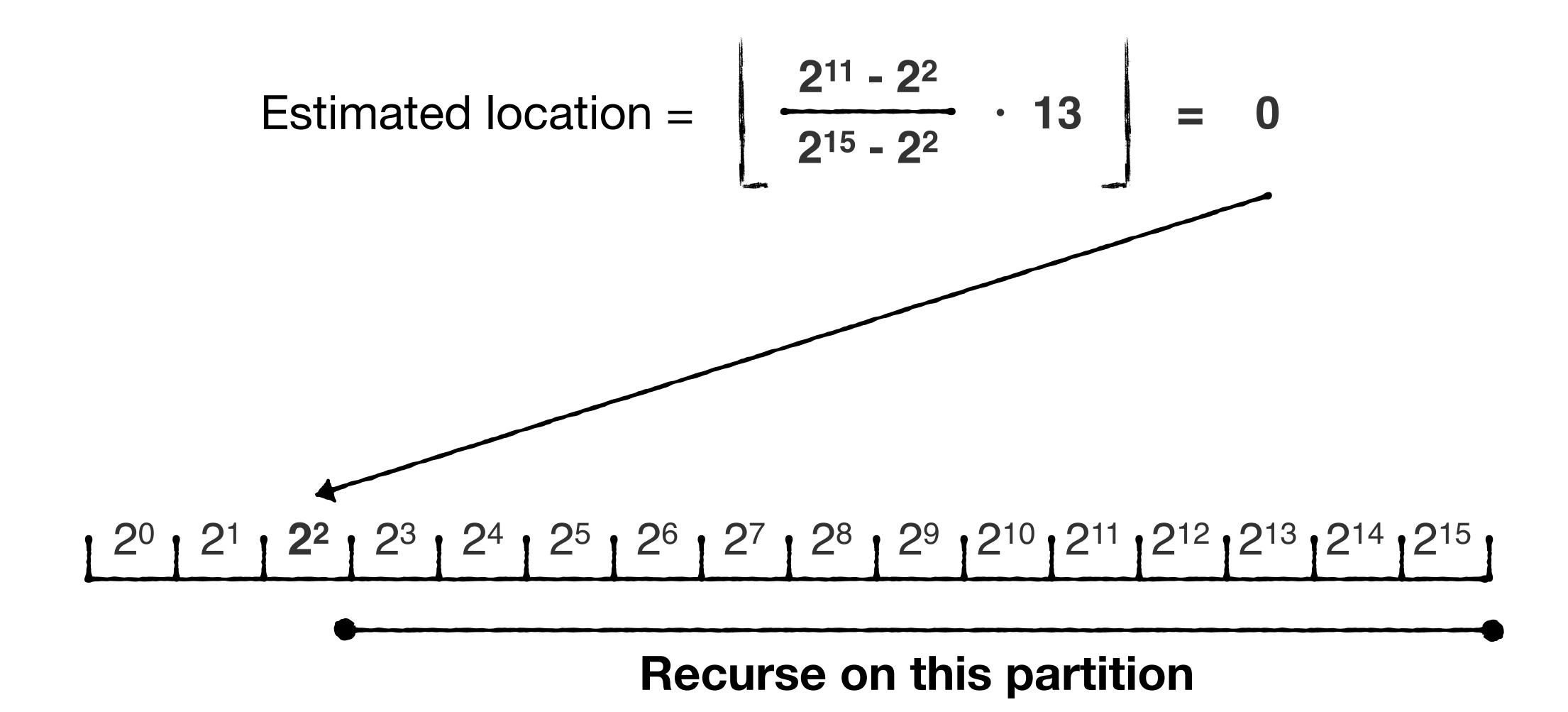


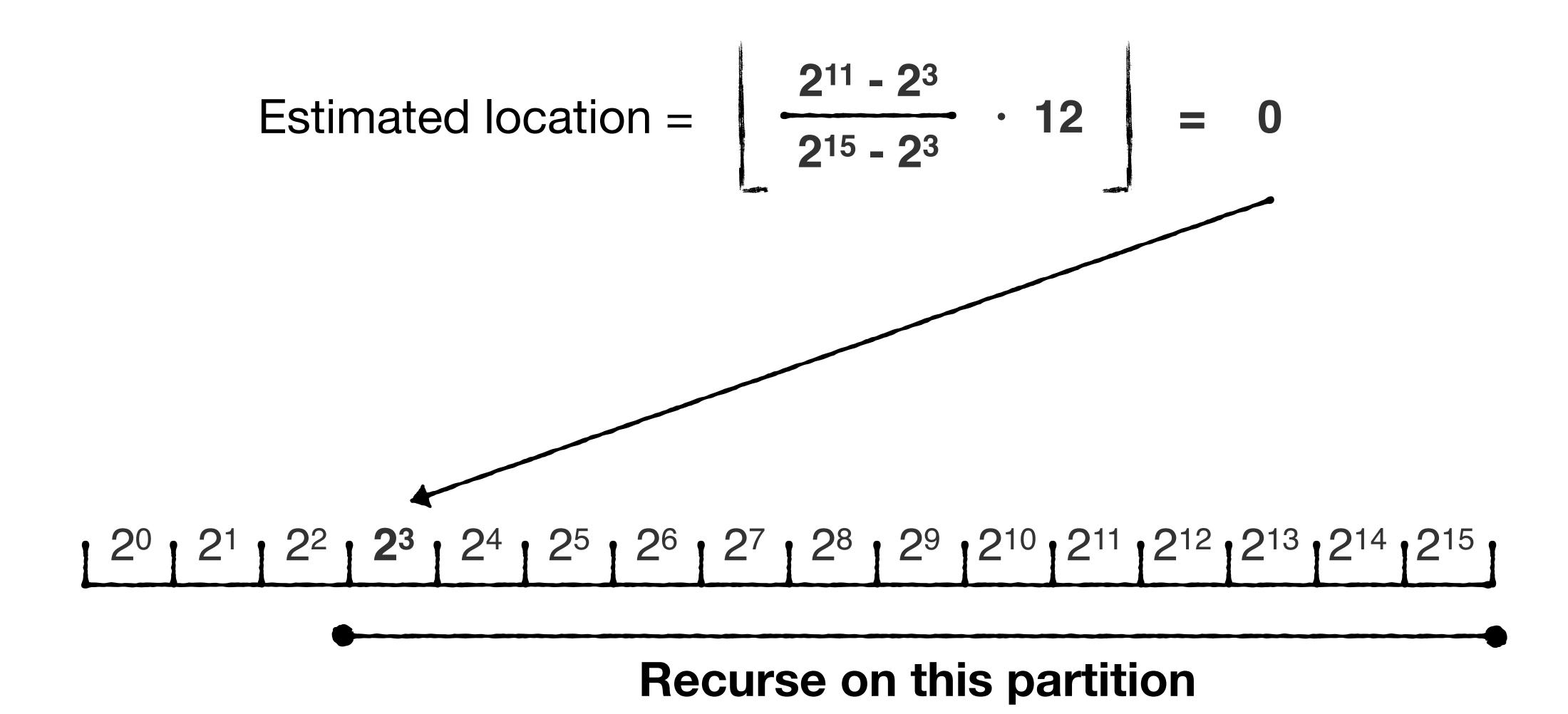


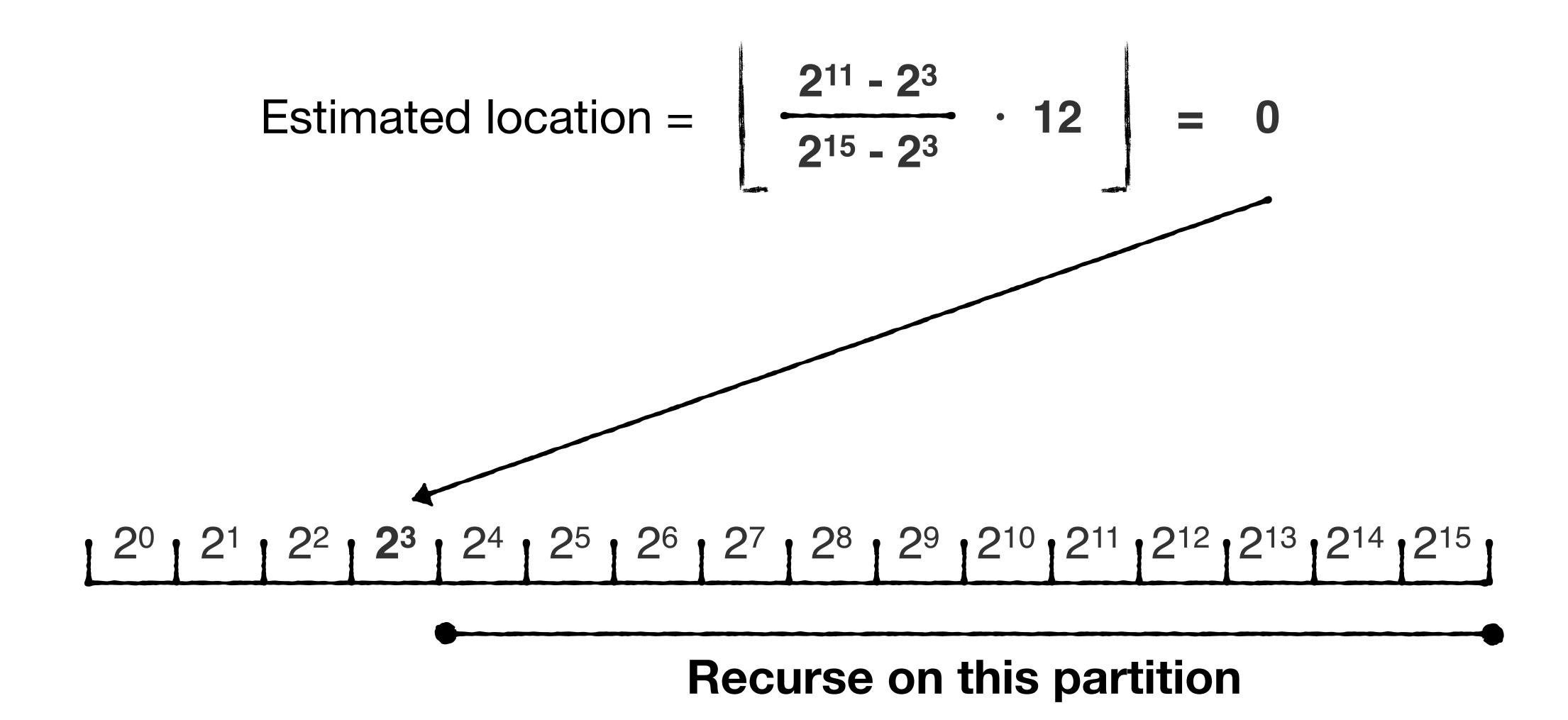






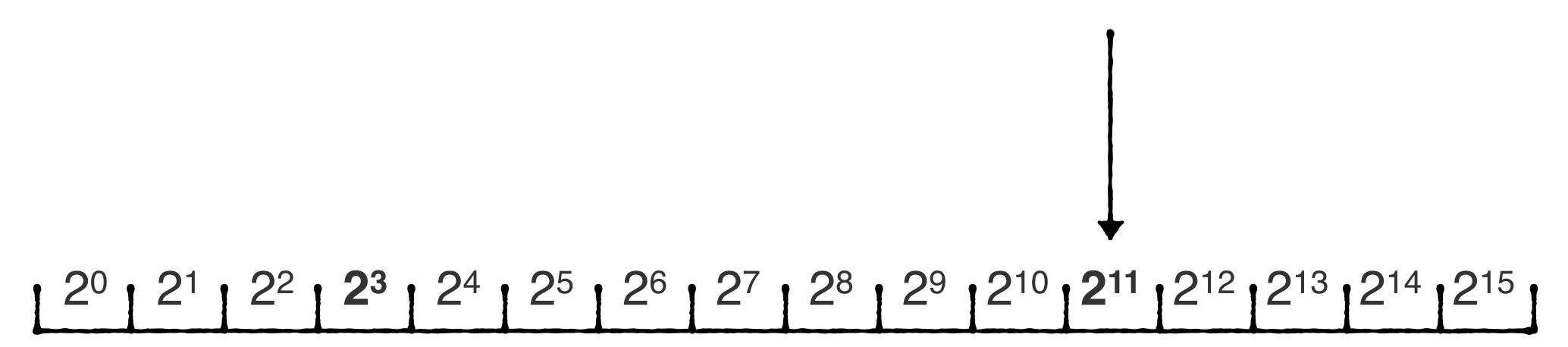






get(2¹¹)

Find target after O(N) iterations



Interpolation search

Uniform

O(log₂ log₂ N)

Worst-case

O(N)

Estimated location =
$$\frac{X - \min}{\max - \min} \cdot (\#slots - 1)$$

Estimated location =
$$\frac{X - \min}{\max - \min}$$
 · (#slots - 1)

- 3 subtractions
- 1 multiplication
- 1 division

Estimated location =
$$\frac{X - \min}{\max - \min} \cdot (\#slots - 1)$$

1 multiplication ≈ 6 cycles

1 division

3 subtractions ≈ 6 cycles each

≈ 30 - 60 cycles

Estimated location =
$$\frac{X - \min}{\max - \min} \cdot (\#slots - 1)$$

3 subtractions ≈ 6 cycles each

1 multiplication ≈ 6 cycles

1 division $\approx 30 - 60$ cycles

For small data, binary search may win as there is no division.

Estimated location =
$$\frac{X - \min}{\max - \min} \cdot (\#slots - 1)$$

3 subtractions ≈ 6 cycles each

1 multiplication ≈ 6 cycles

1 division $\approx 30 - 60$ cycles

For small data, binary search may win as there is no division.

As the data grows, interpolation search is likely faster.

Interpolation search works well for uniform data

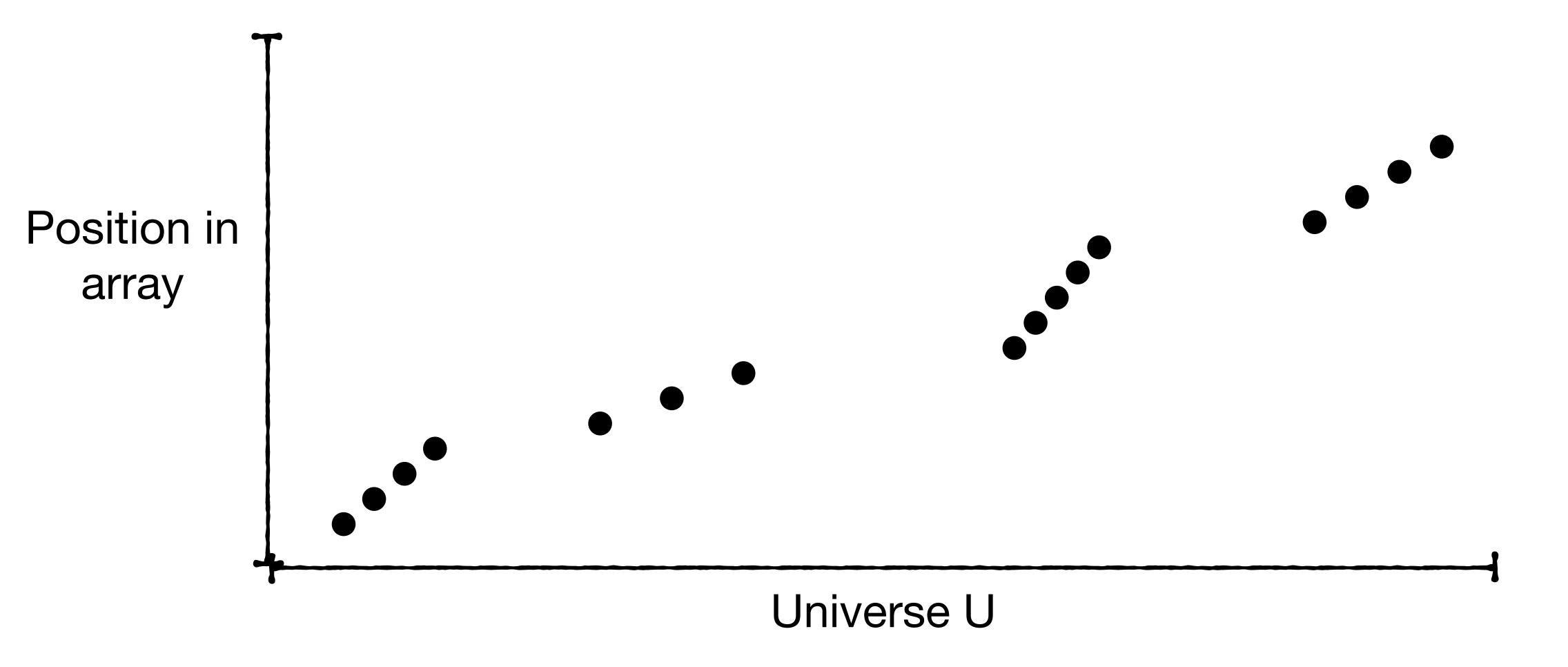


Interpolation search works well for uniform data

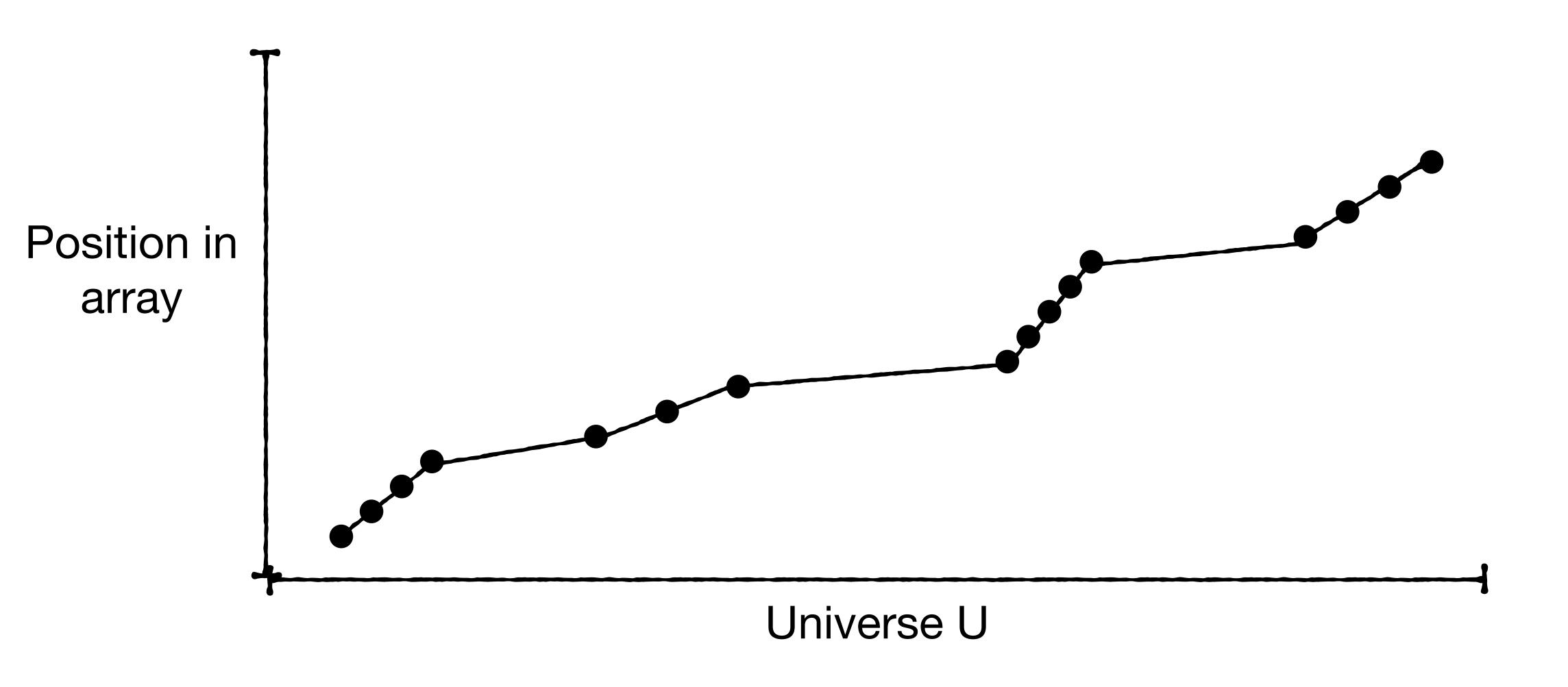
Insight: when data is predictable, we can tailor better access methods



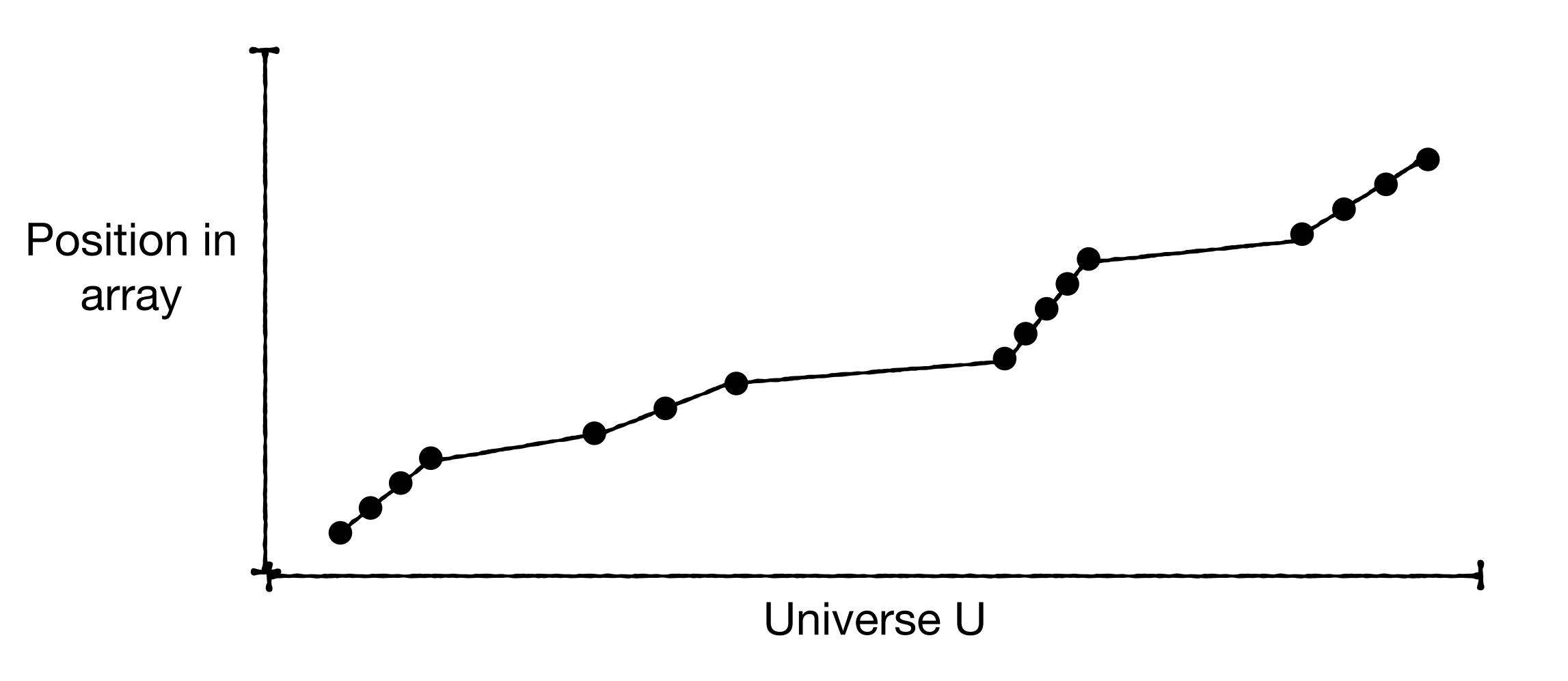
But data often follows idiosyncratic patterns



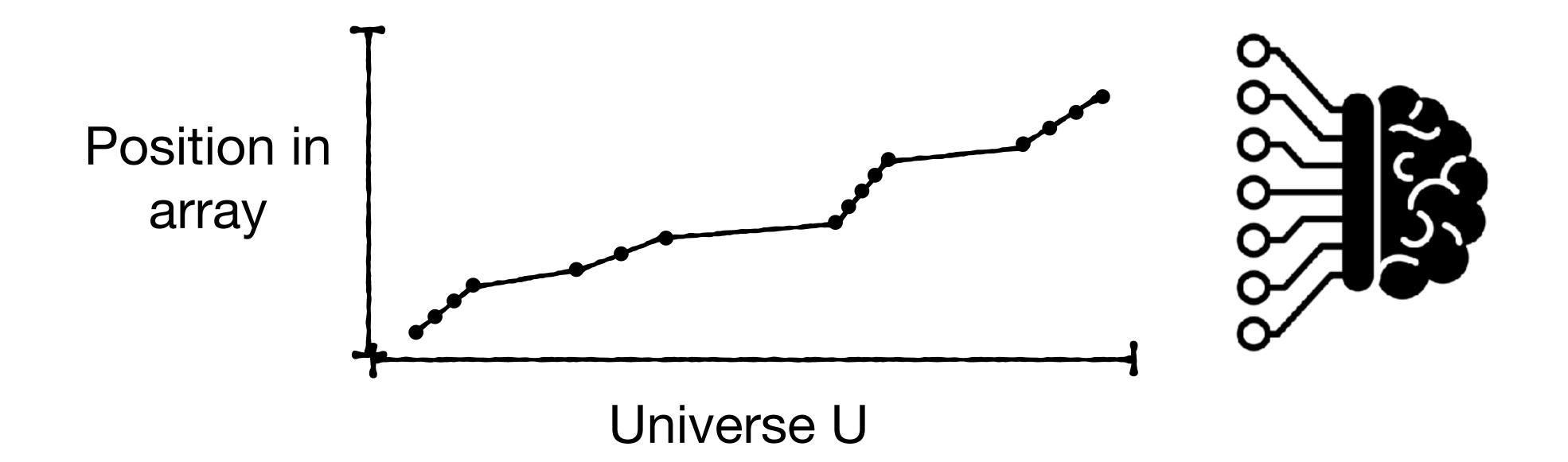
cumulative distribution function (CDF)



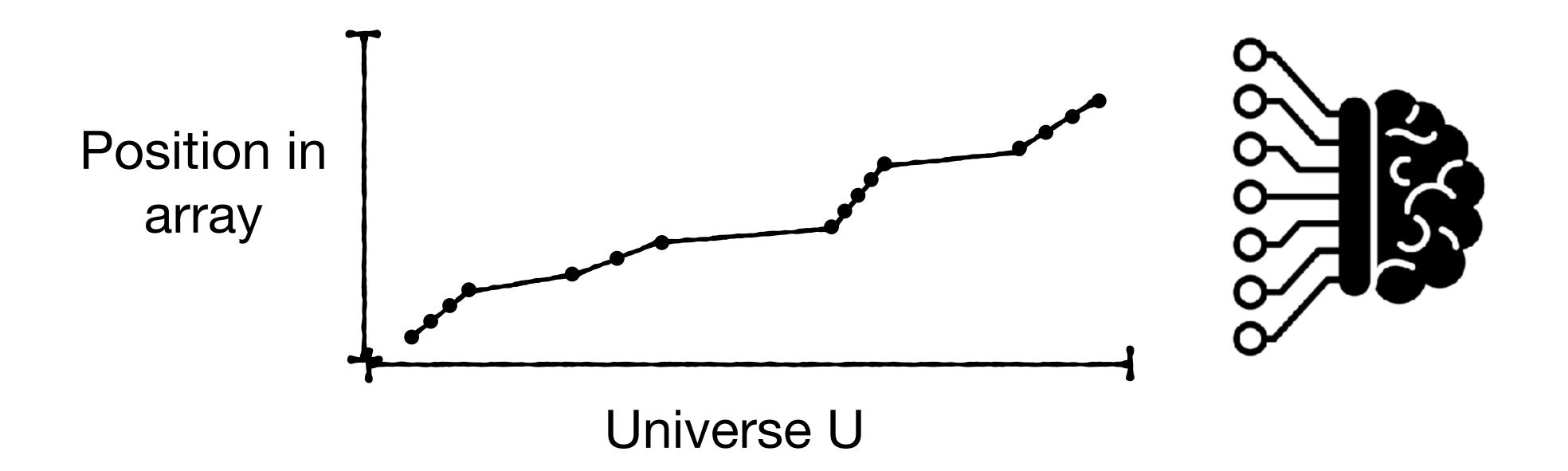
Insight: at each segment, it's easy to predict an entry's position



Learned Indexes: Learn the data distribution to predict an entry's position



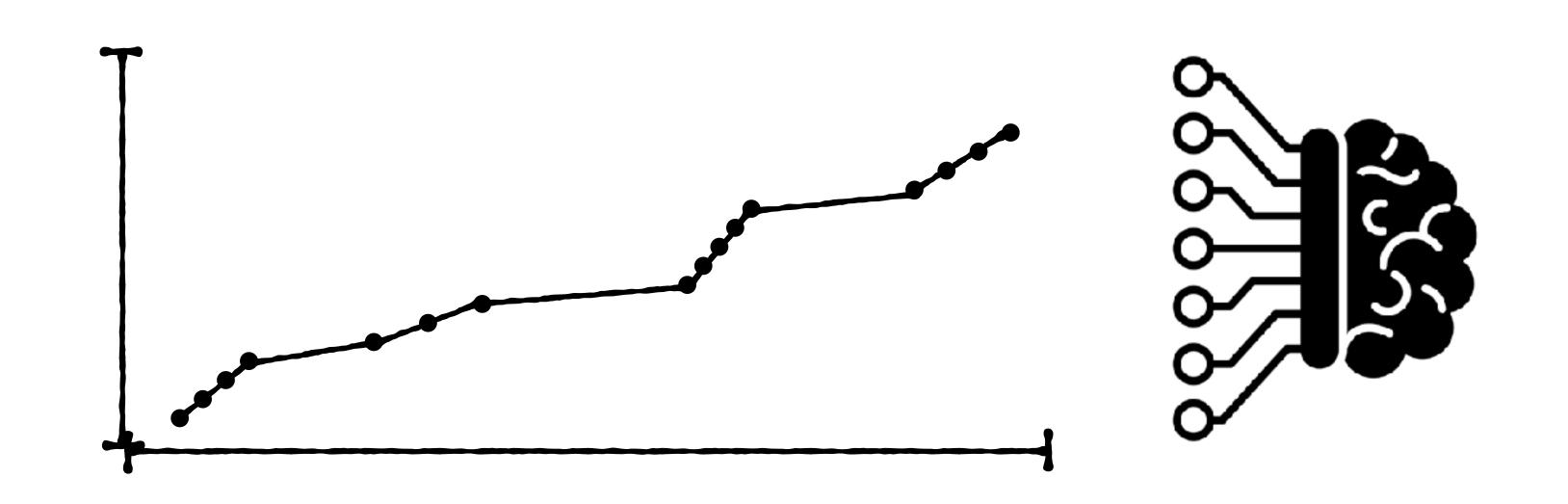
Learned Indexes: Learn the data distribution to predict an entry's position



Partition the data into predictable segments

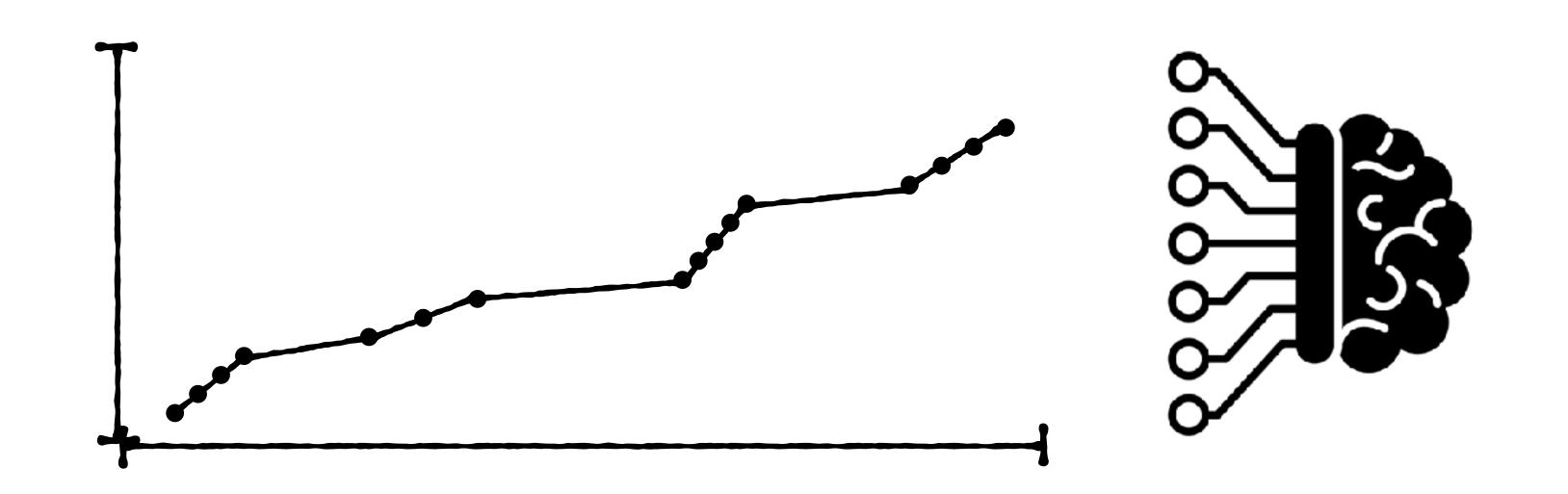
The Case for Learned Index Structures

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis SIGMOD 2018



The Case for Learned Index Structures

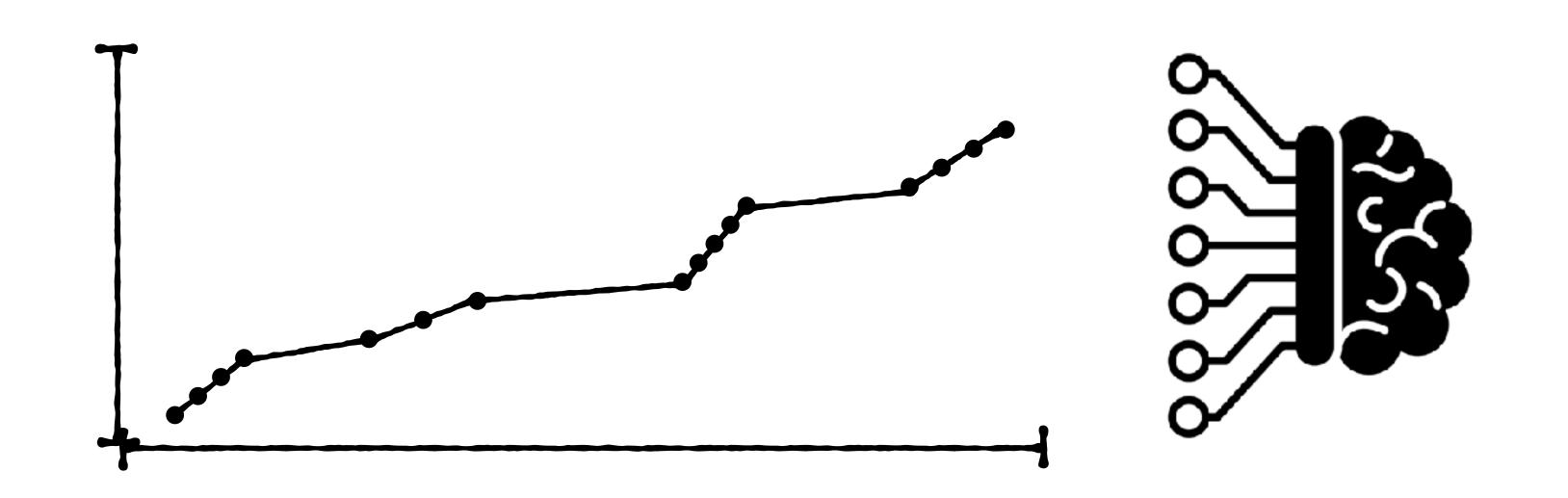
Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis SIGMOD 2018



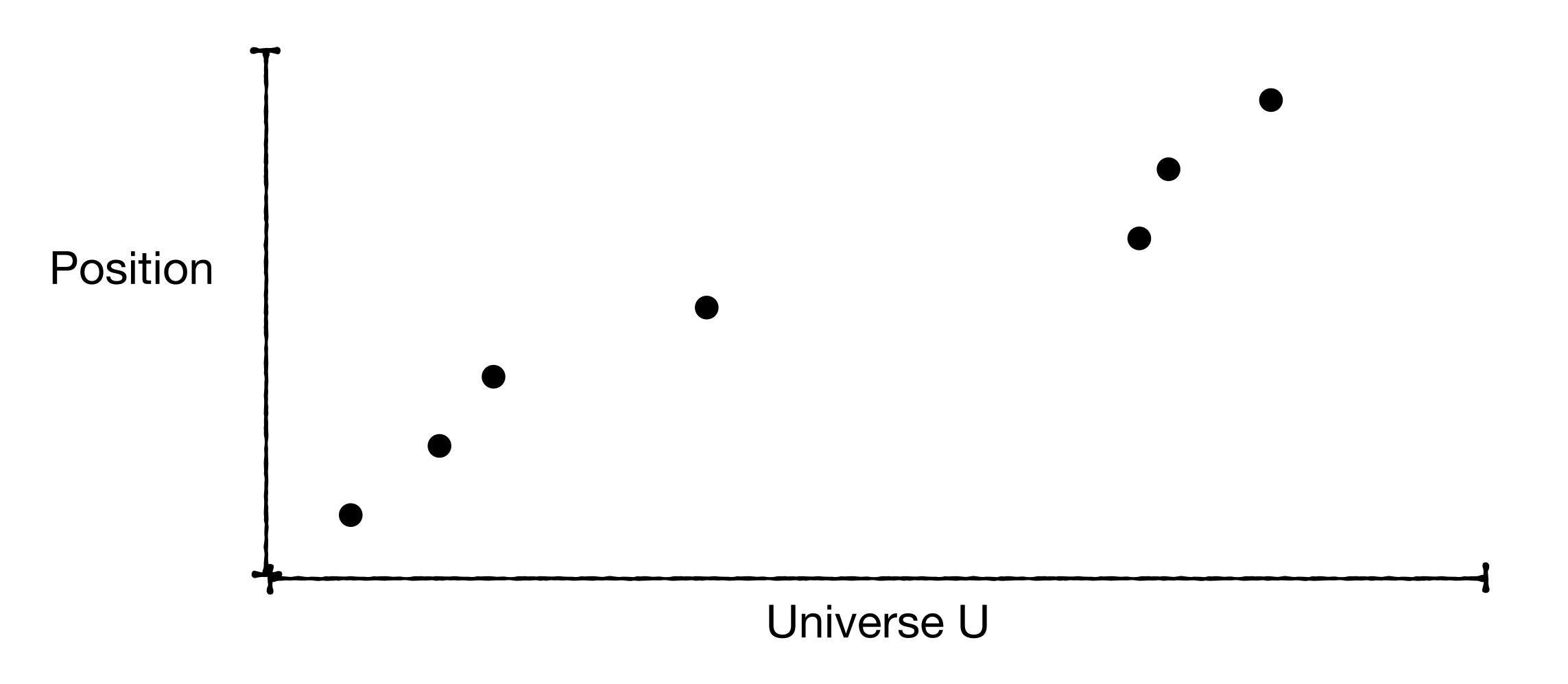
Vision paper, and algorithmic details can be vague

FITing-Tree: A Data-aware Index Structure

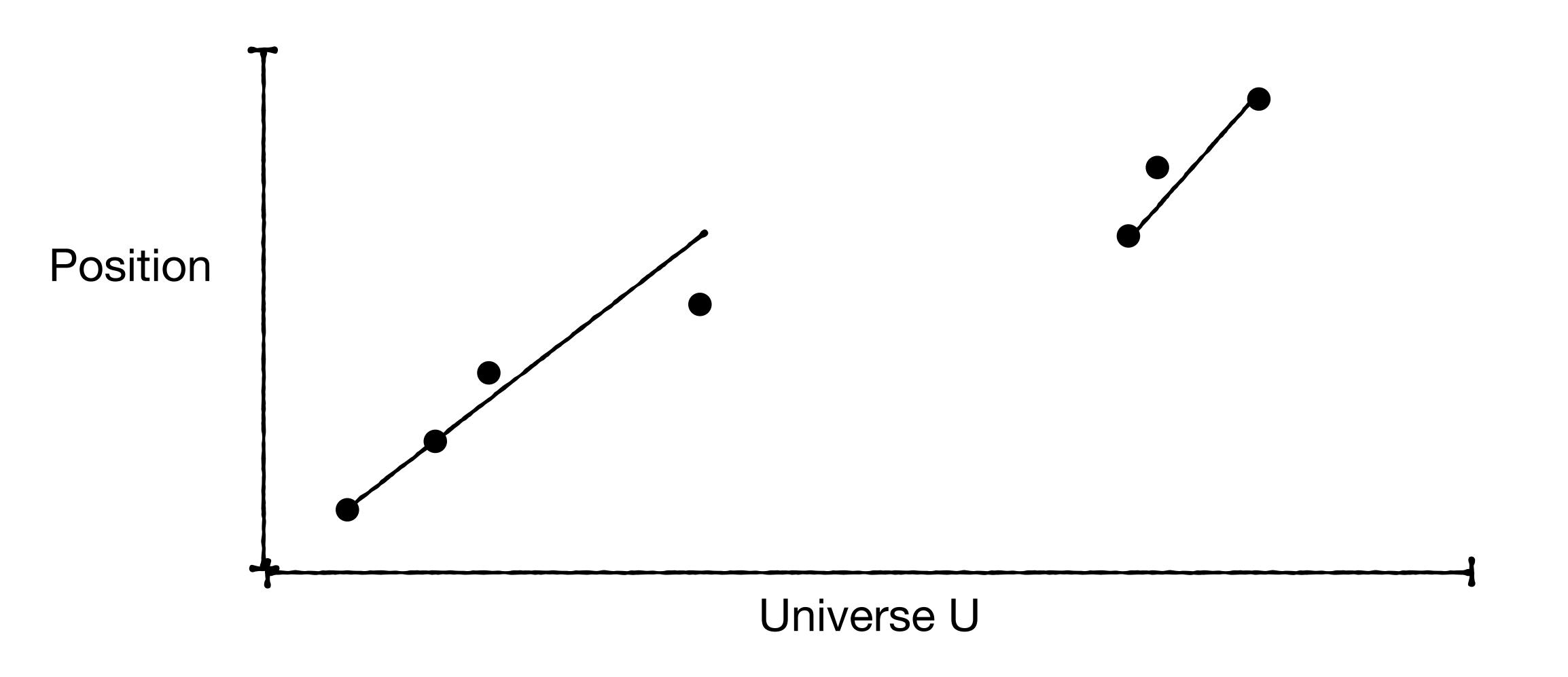
Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, Tim Kraska SIGMOD 2019



FITing-Tree: A Data-aware Index Structure

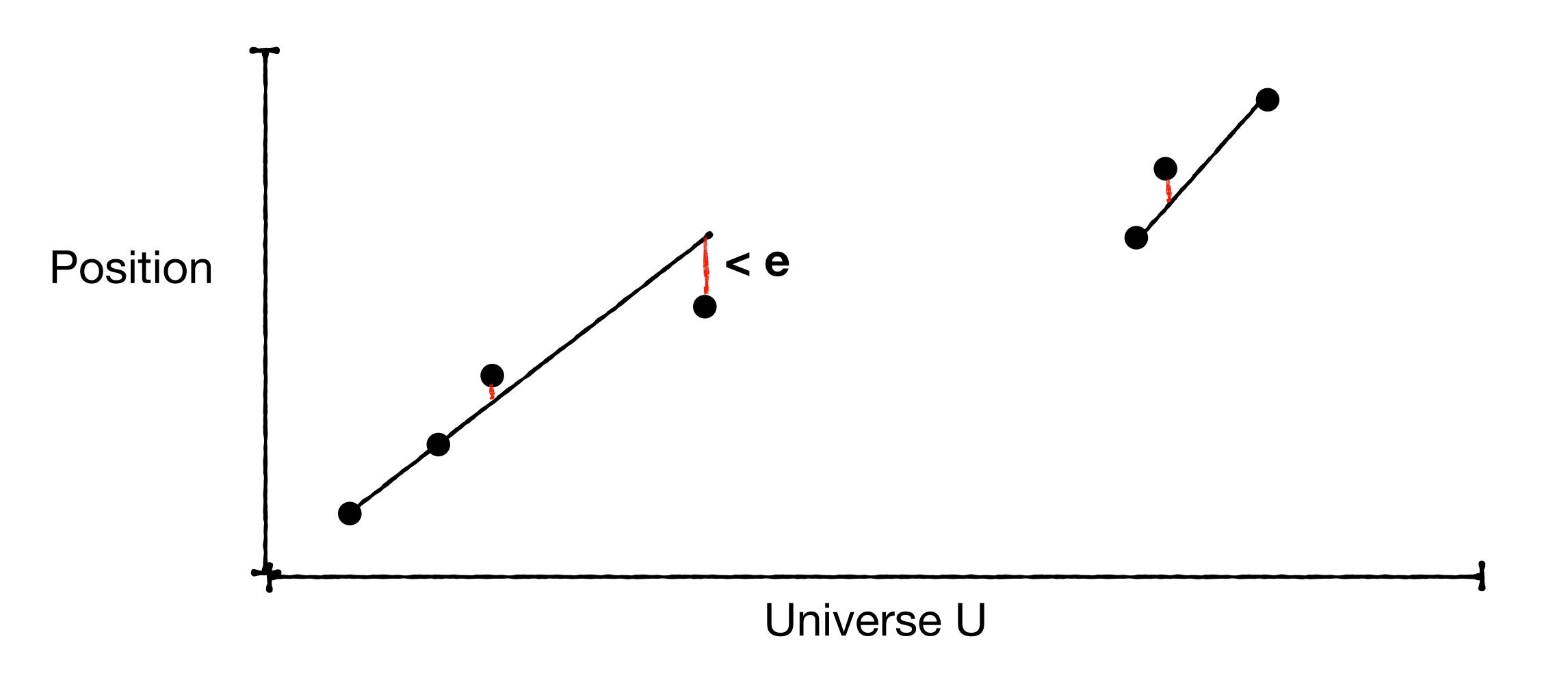


approximate distribution using piecewise linear functions

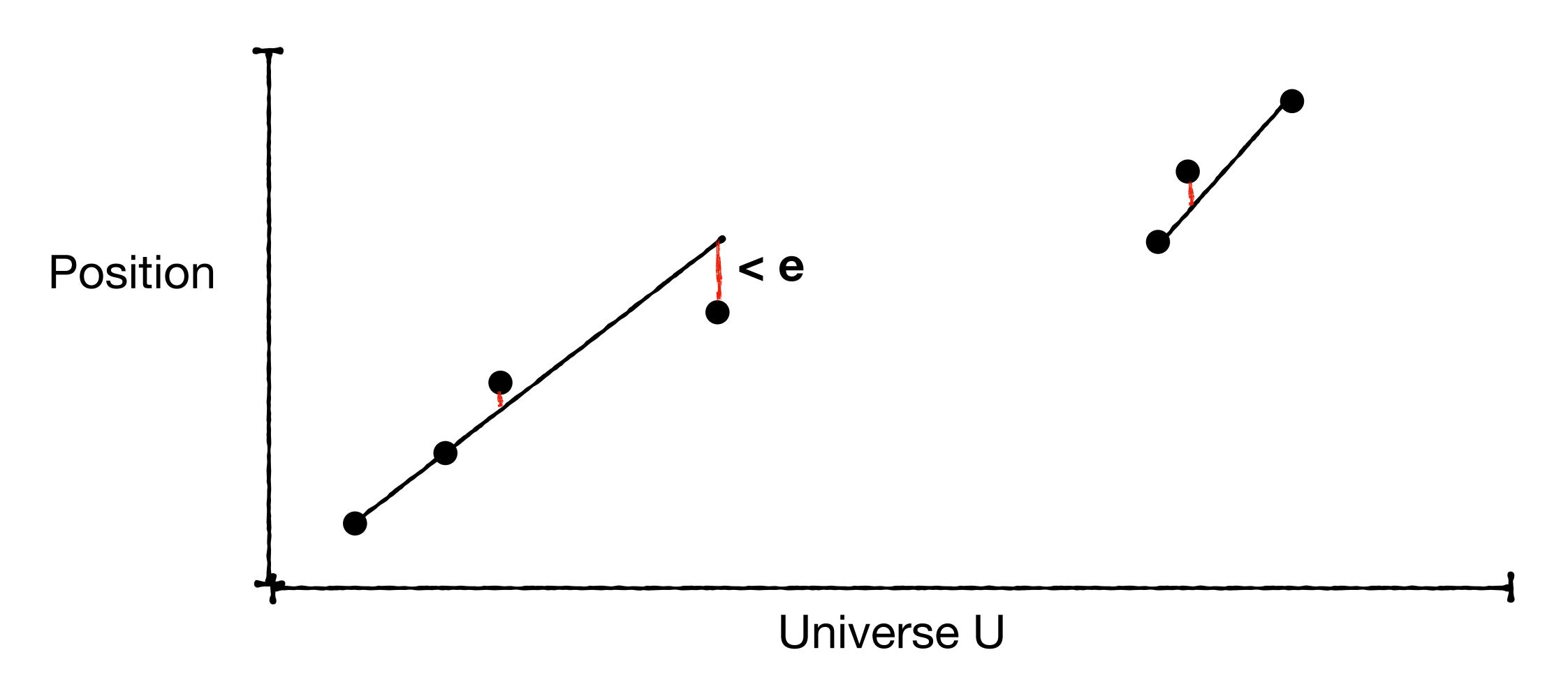


approximate distribution using piecewise linear functions

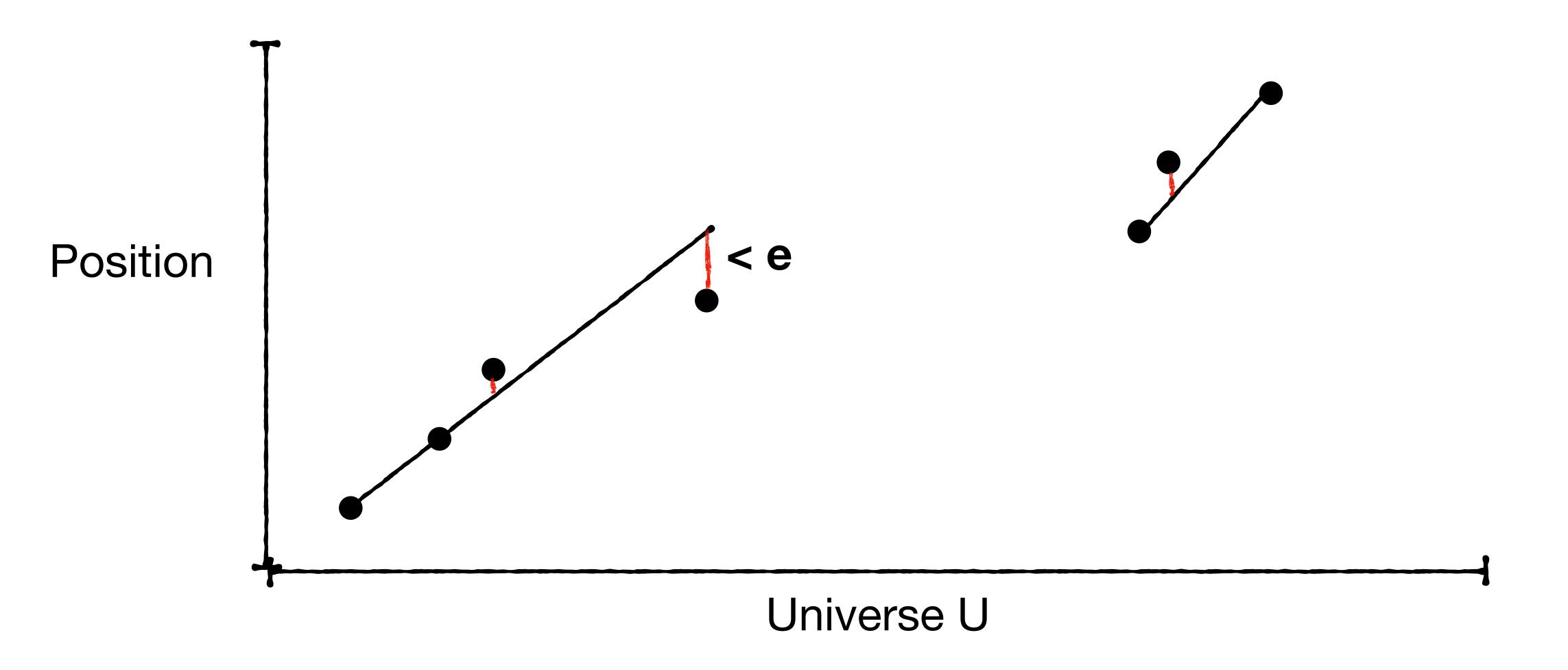
Ensure each point has max distance of e from its function



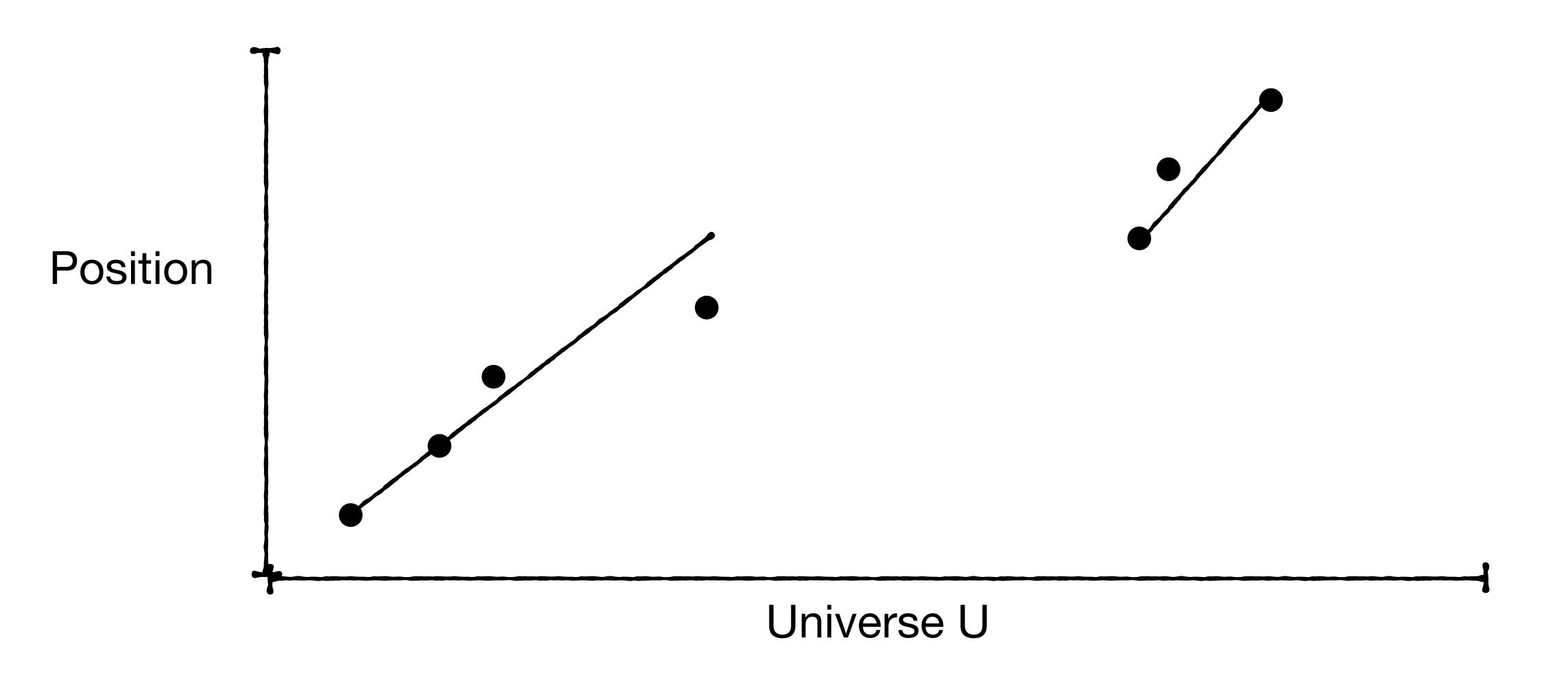
Ensure each point has max distance of e from its function **Why?**



Why? To bound the search space size due to an inaccurate prediction

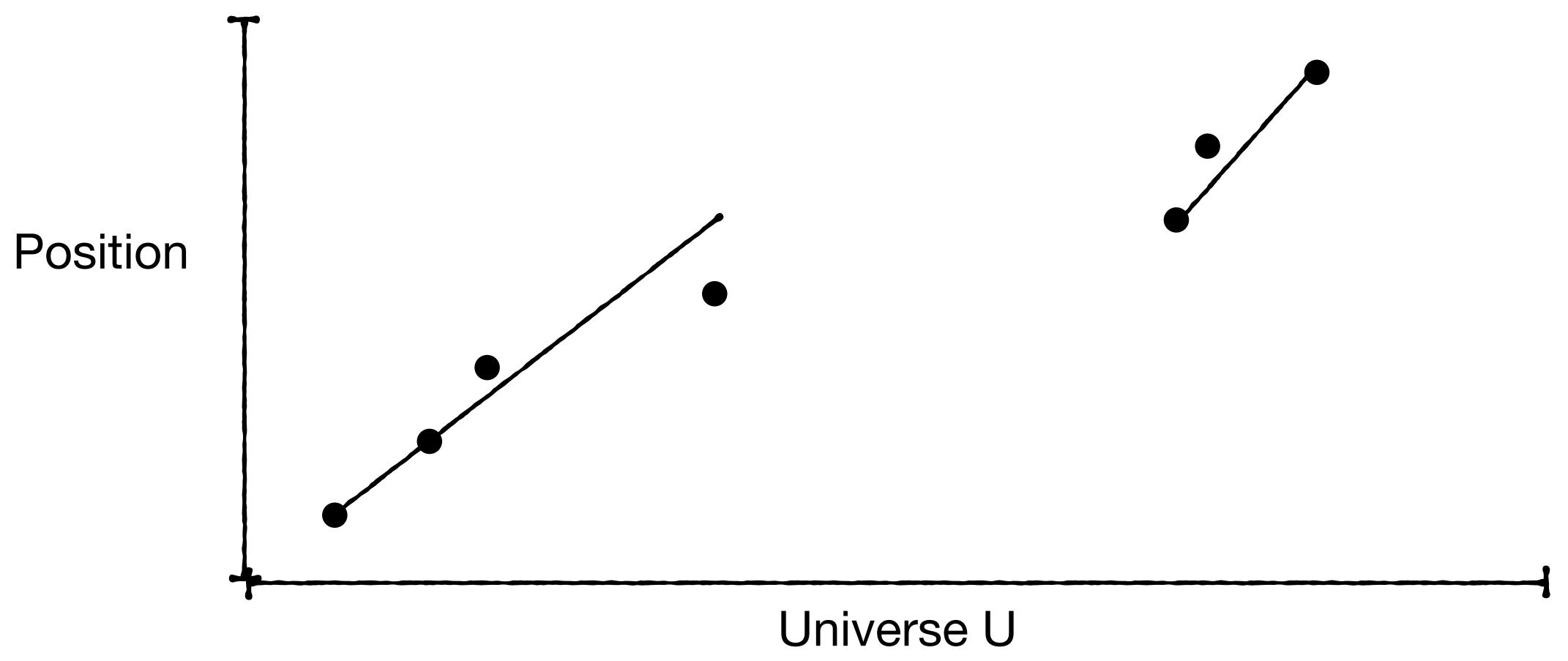


constrained optimization problem



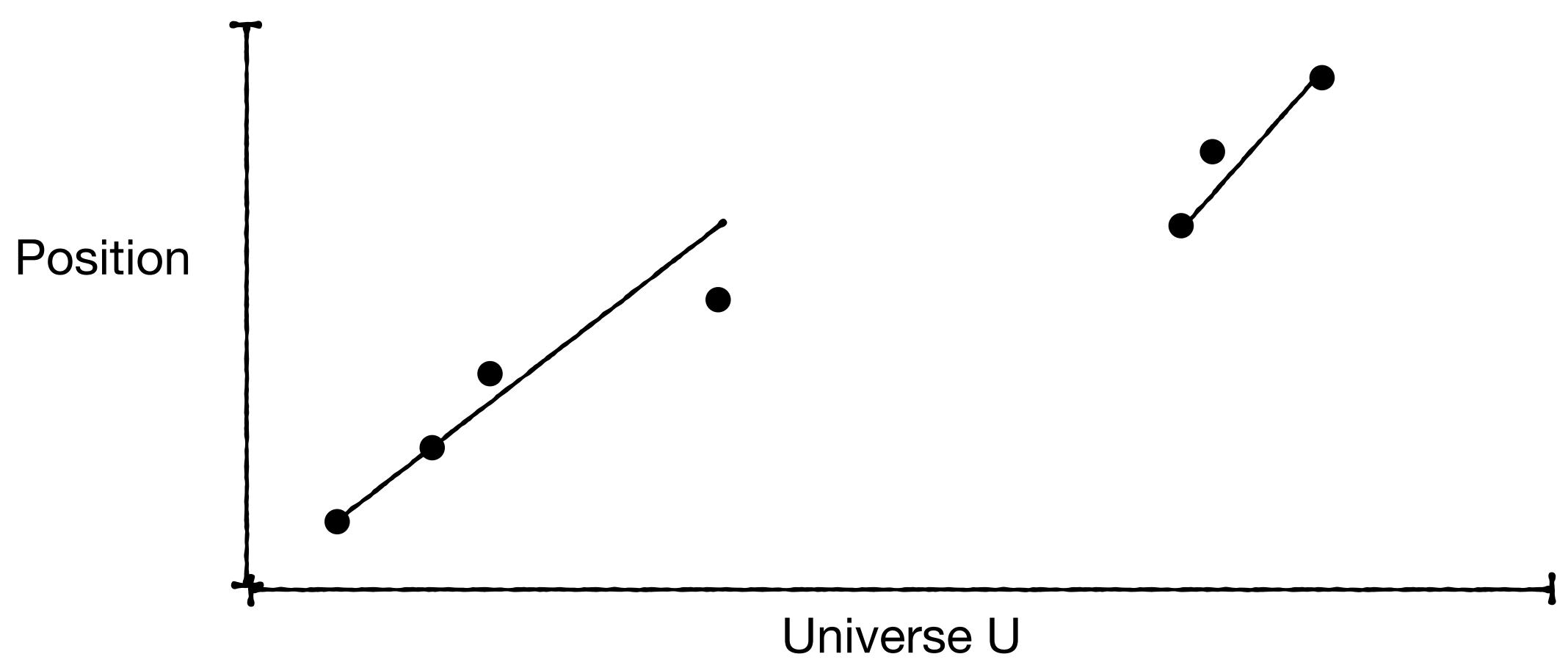
constrained optimization problem:

Model distribution using least number of segments while ensuring all points are within e positions of prediction

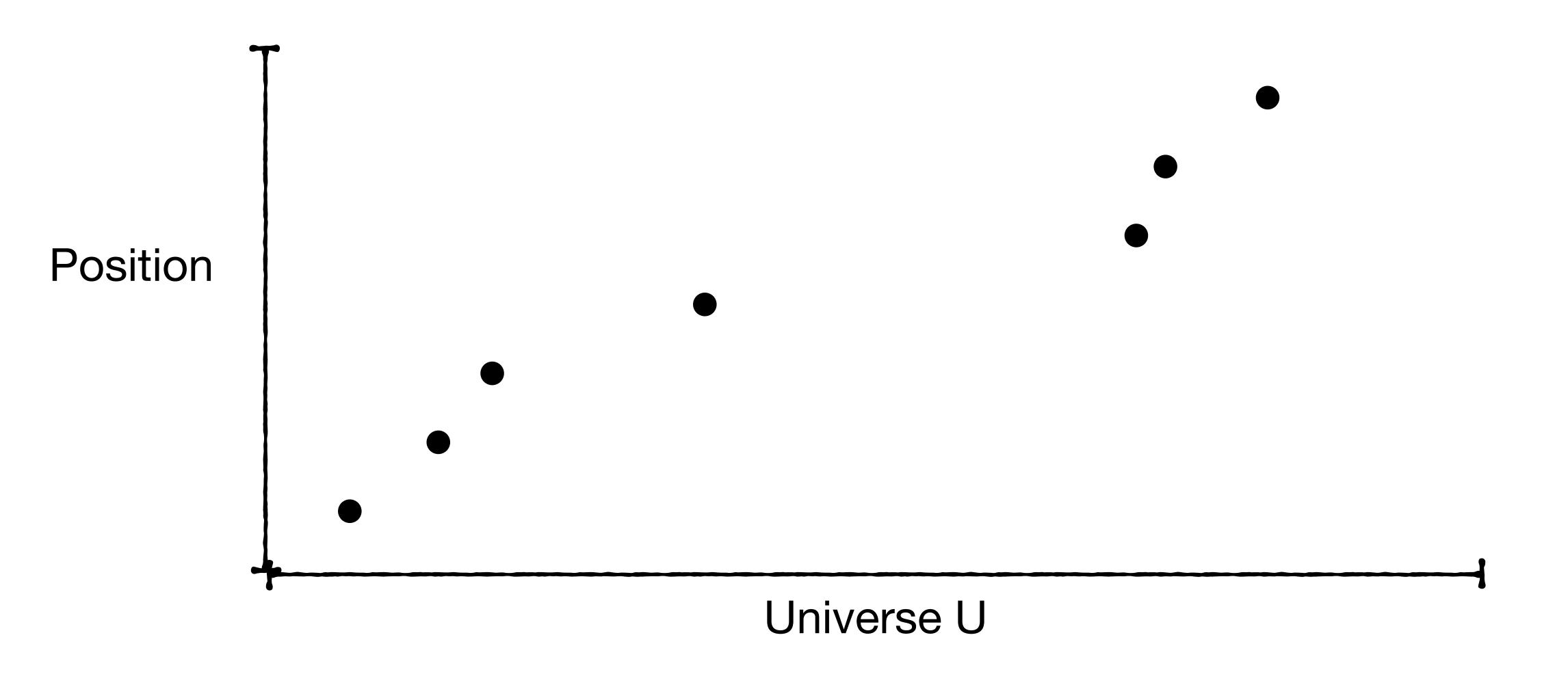


Model distribution using least number of segments while ensuring all points are within e positions of prediction

propose an algorithm for this!

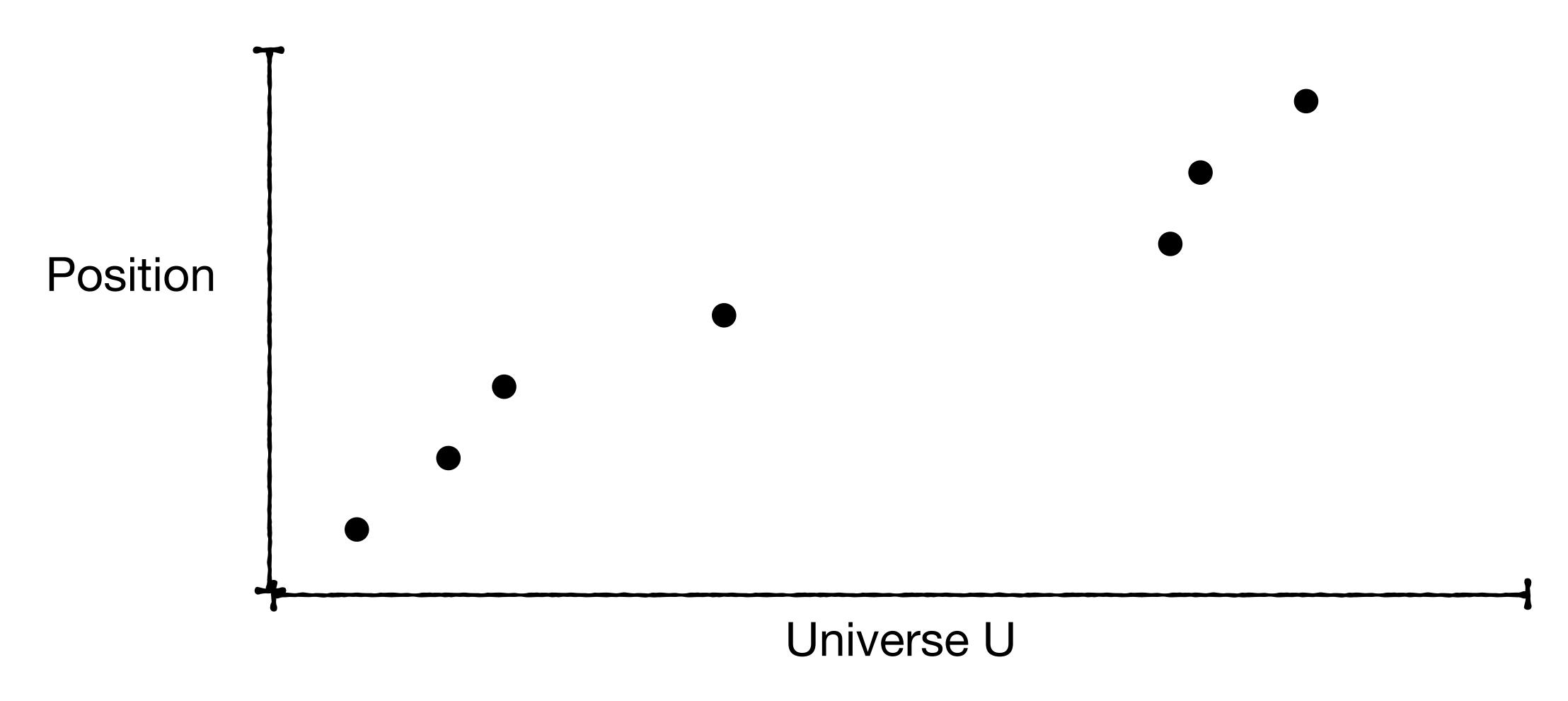


There is a O(N²) optimal algorithm - too expensive

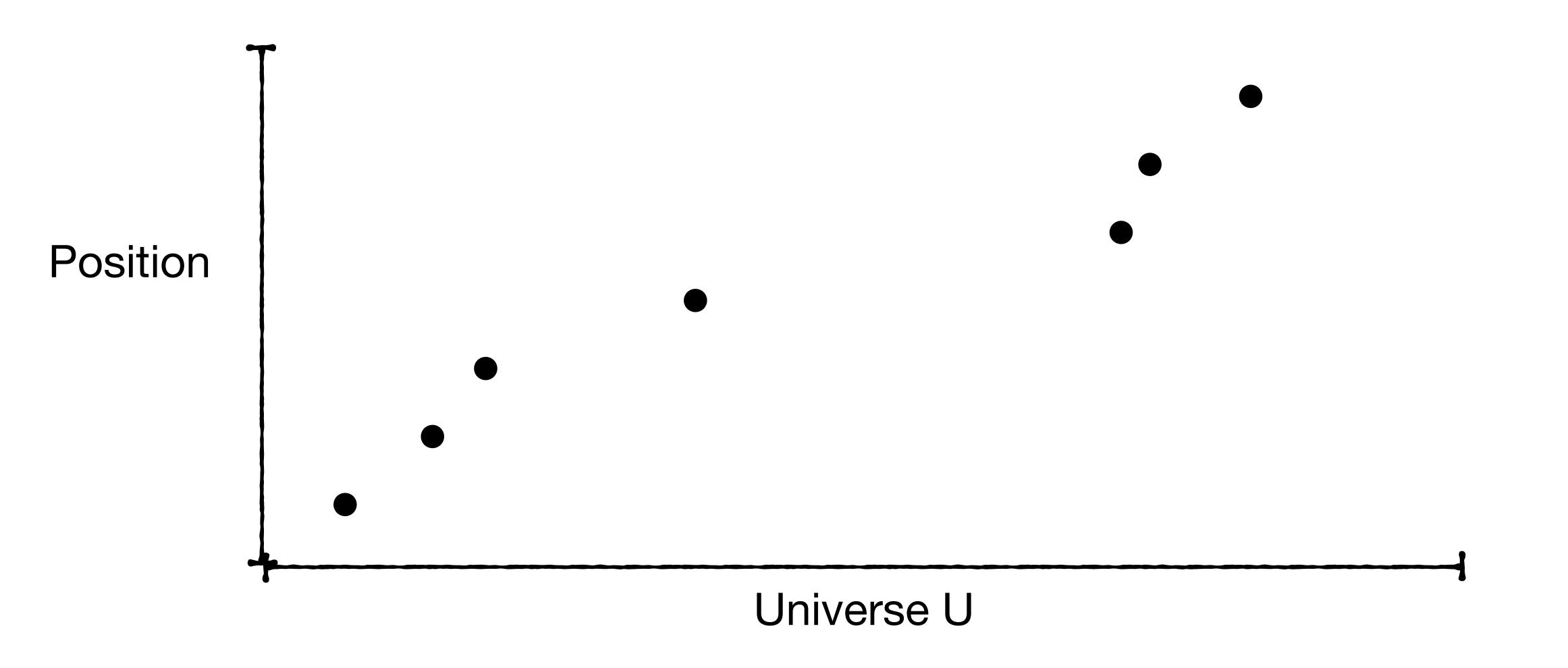


There is a O(N²) optimal algorithm - too expensive

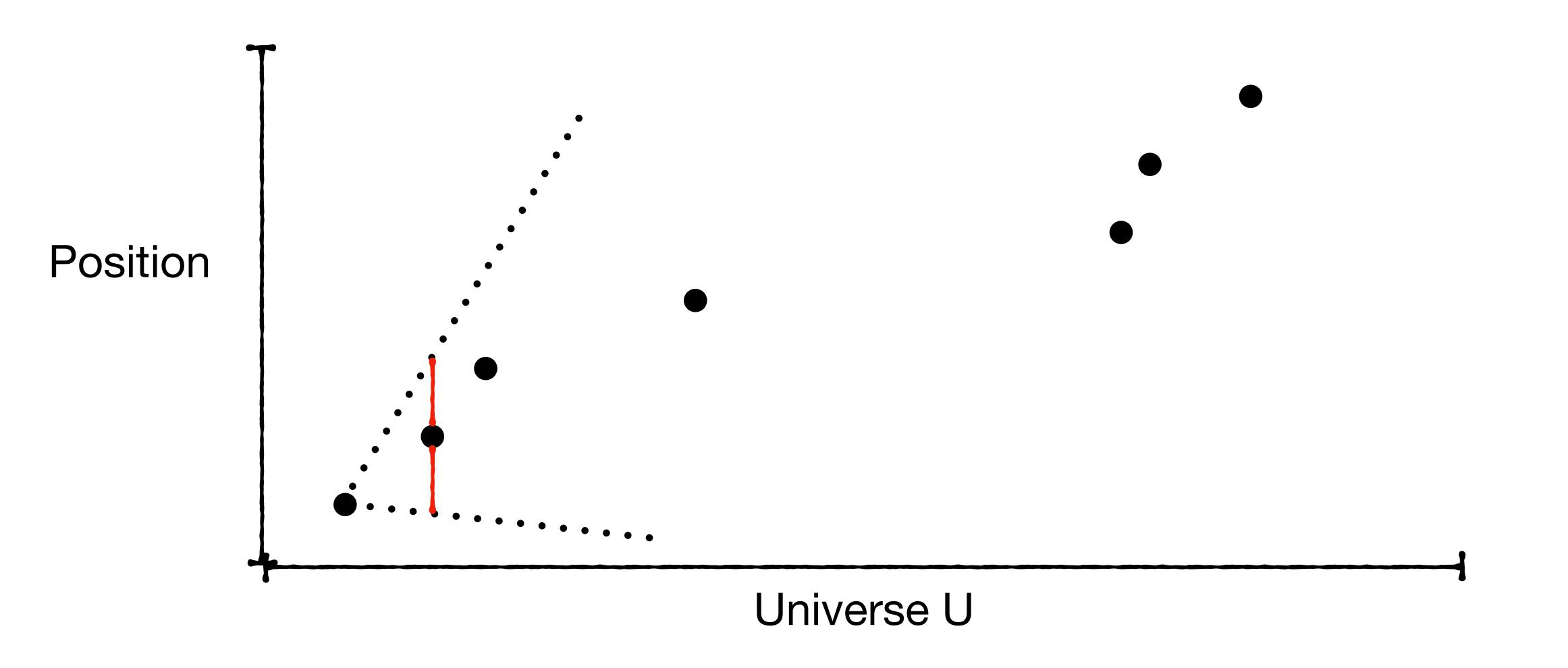
How about a O(N) approximate algorithm?

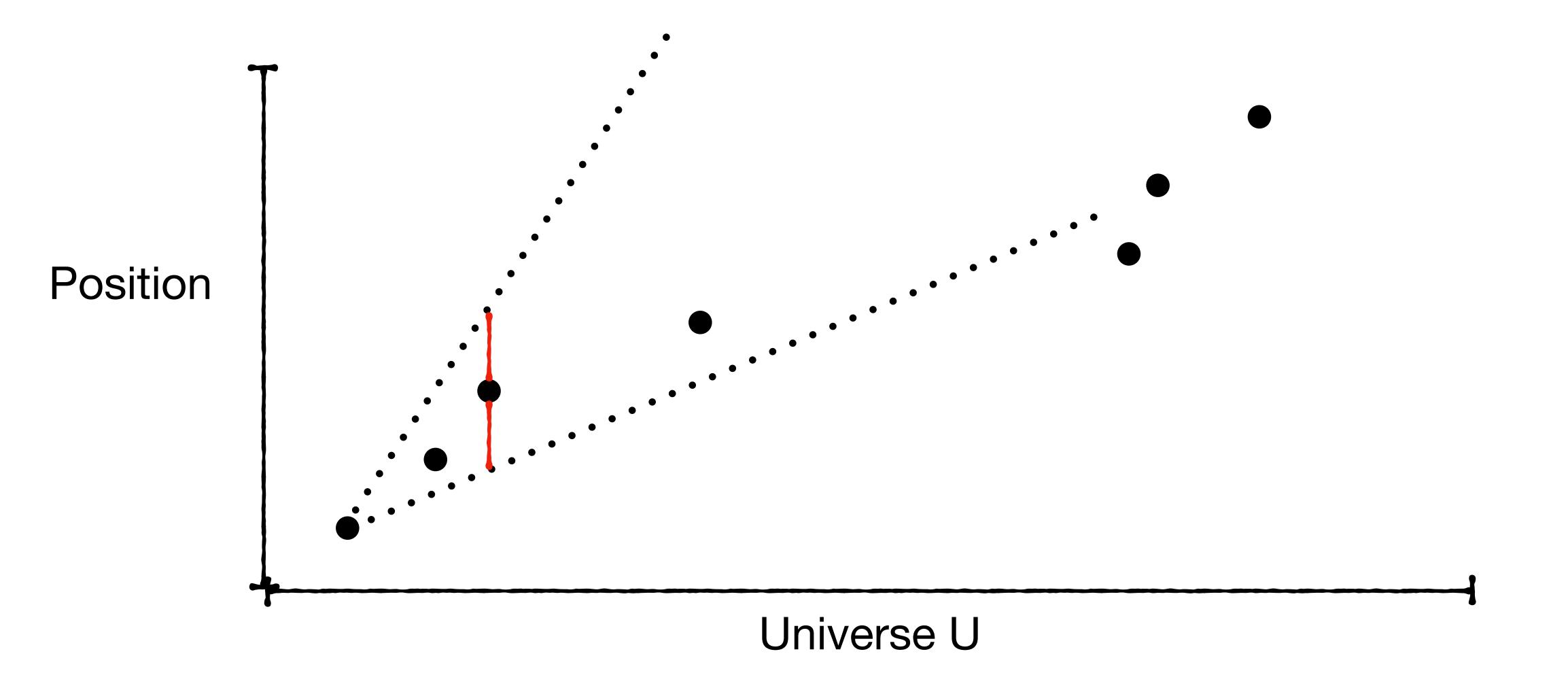


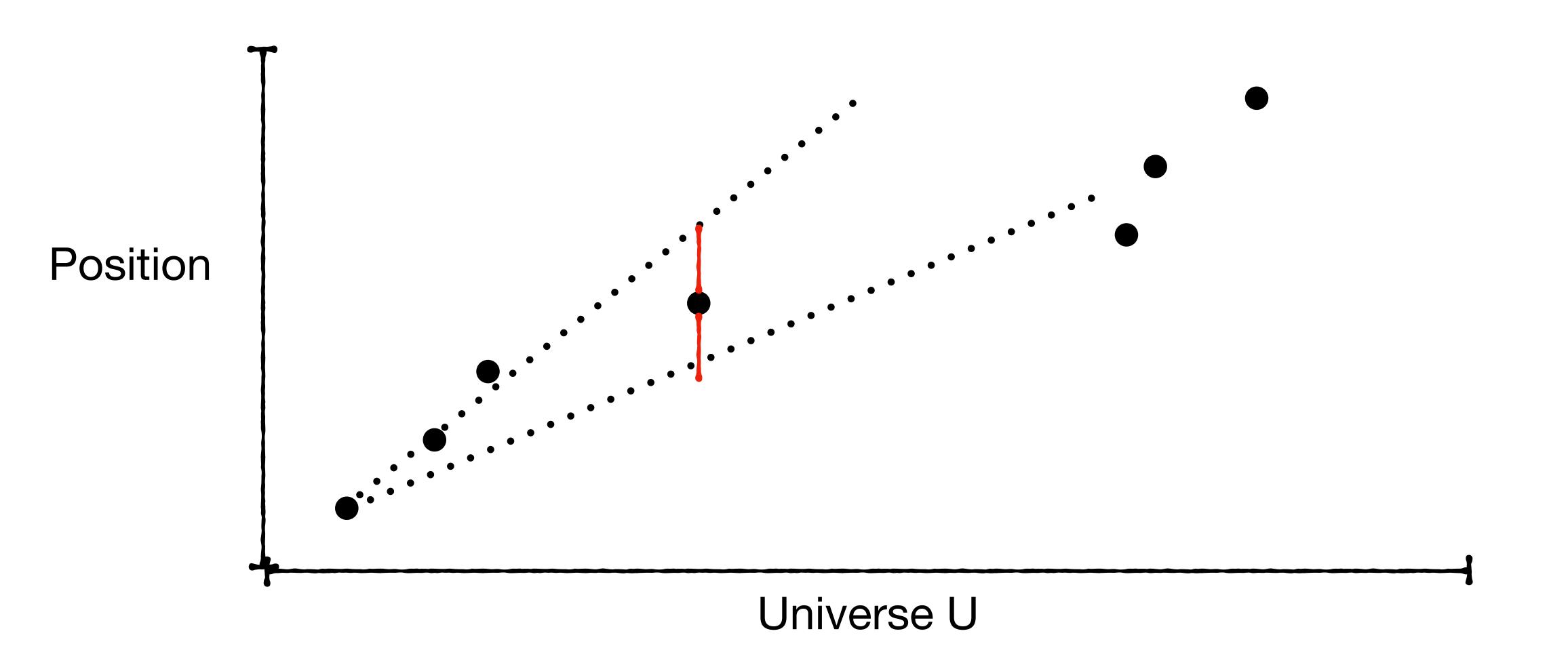
Add first two points into segment while maintaining "maximal cone"

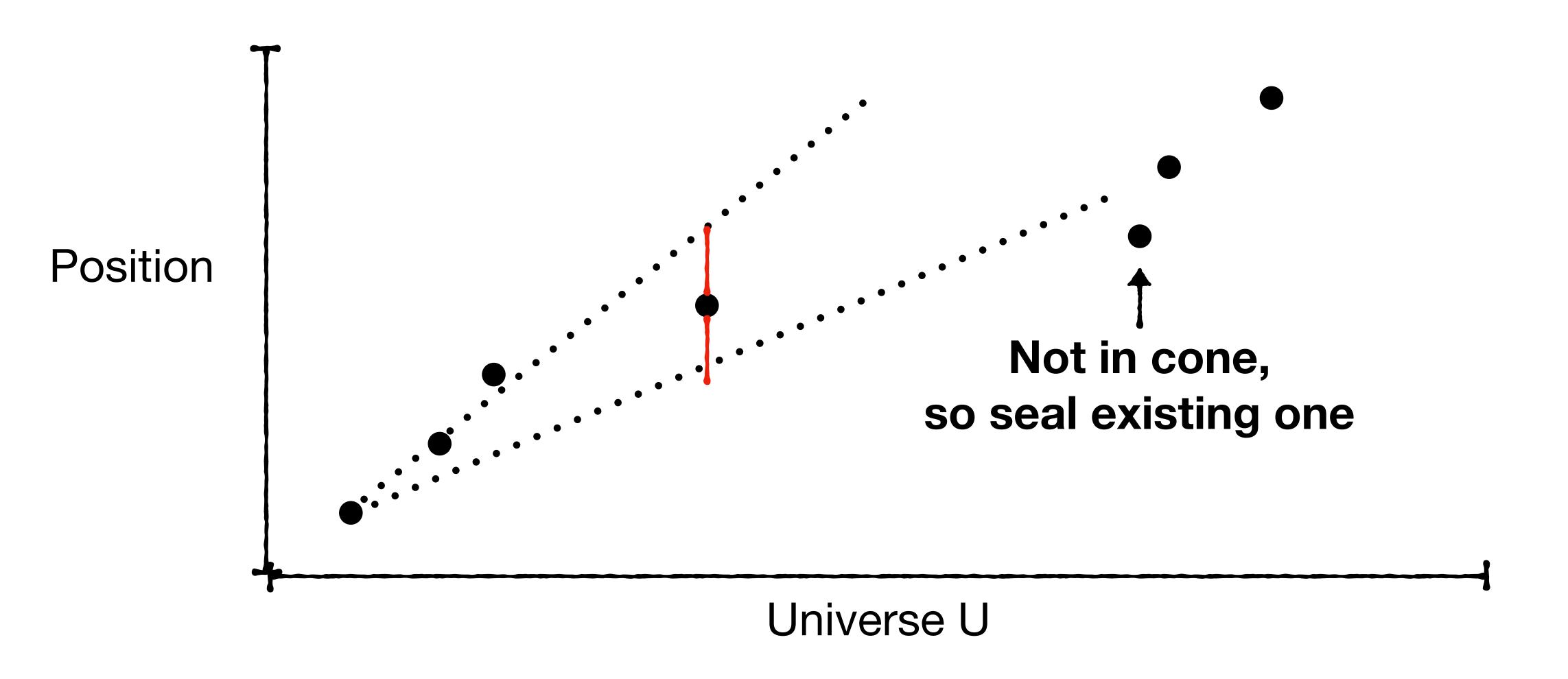


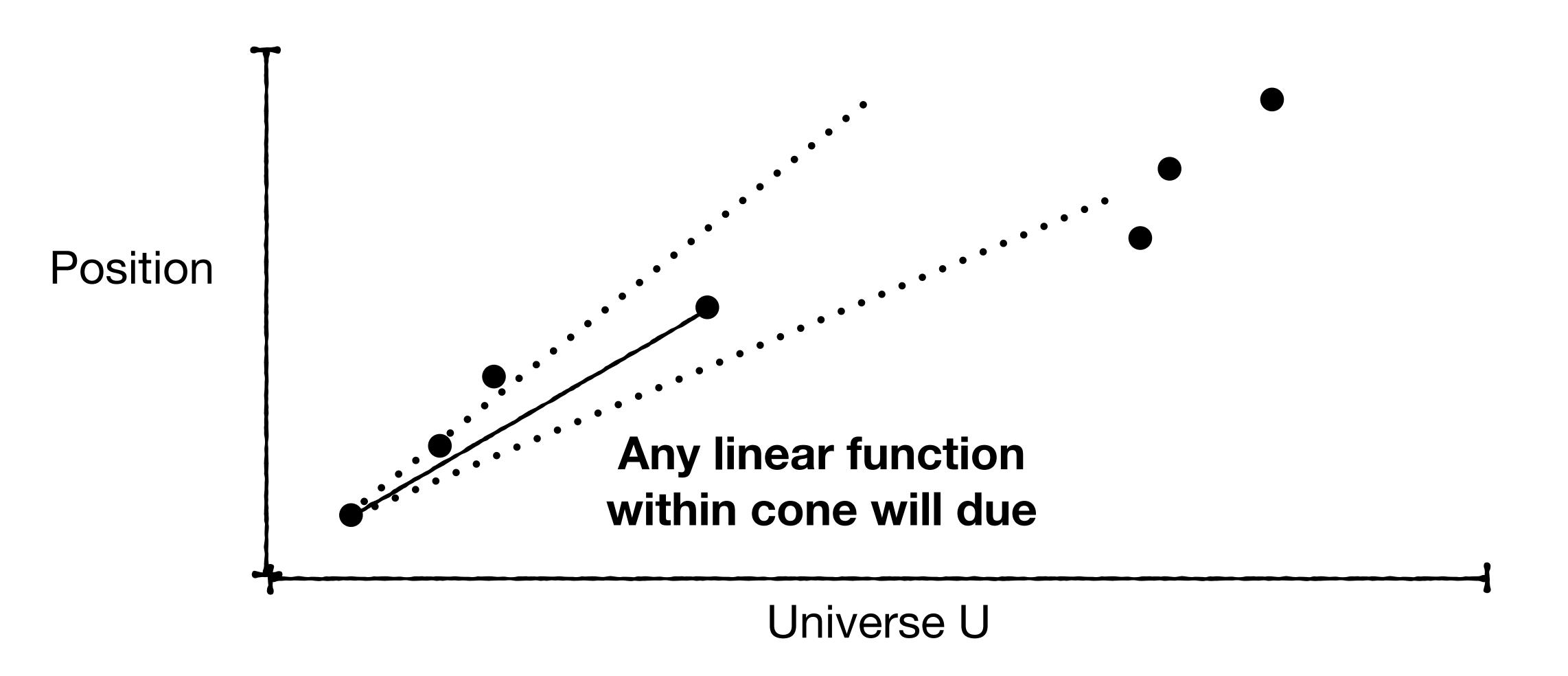
Add first two points into segment while maintaining "maximal cone"

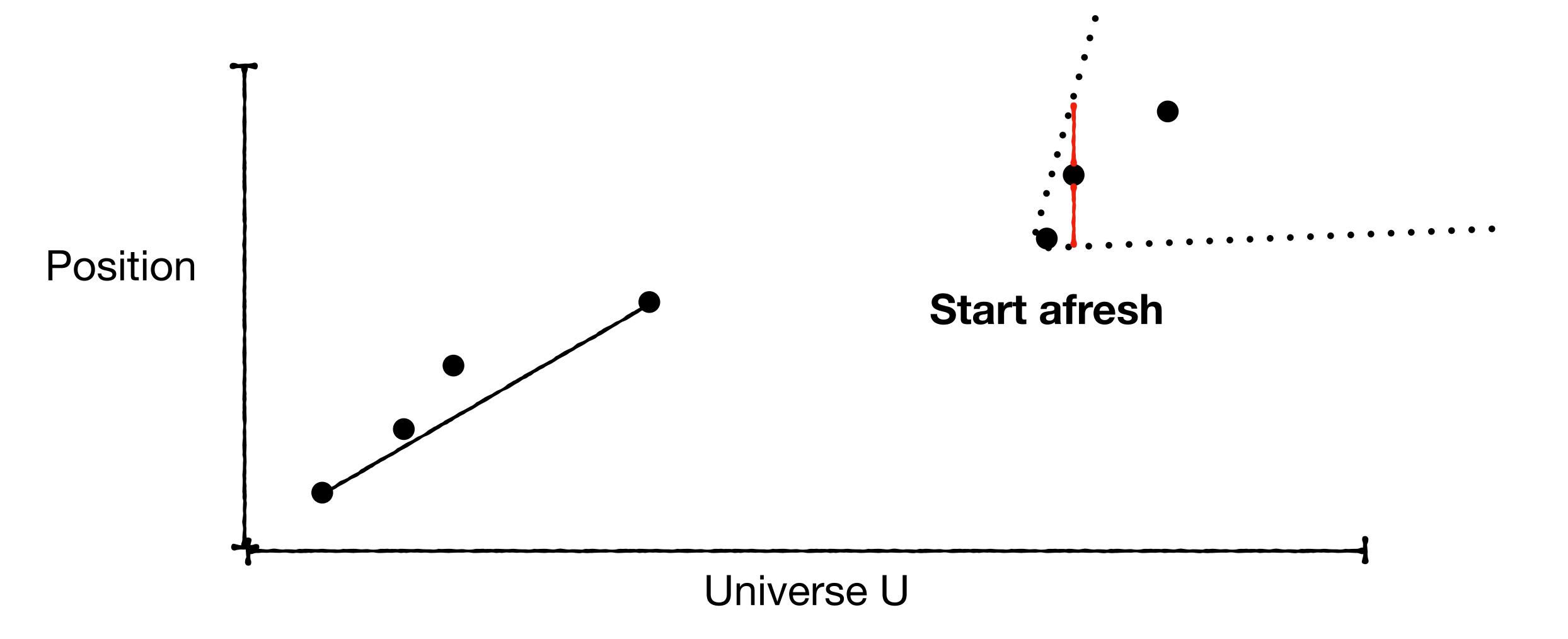


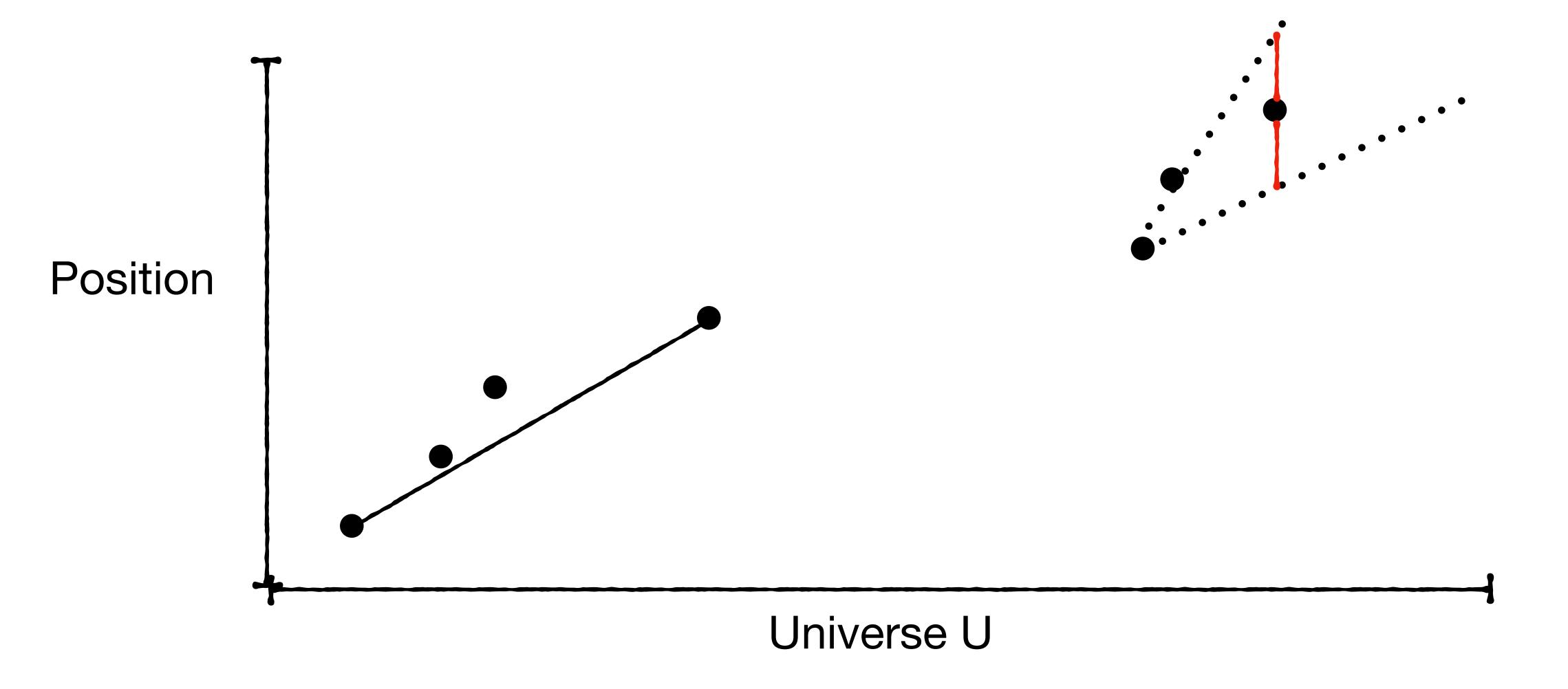


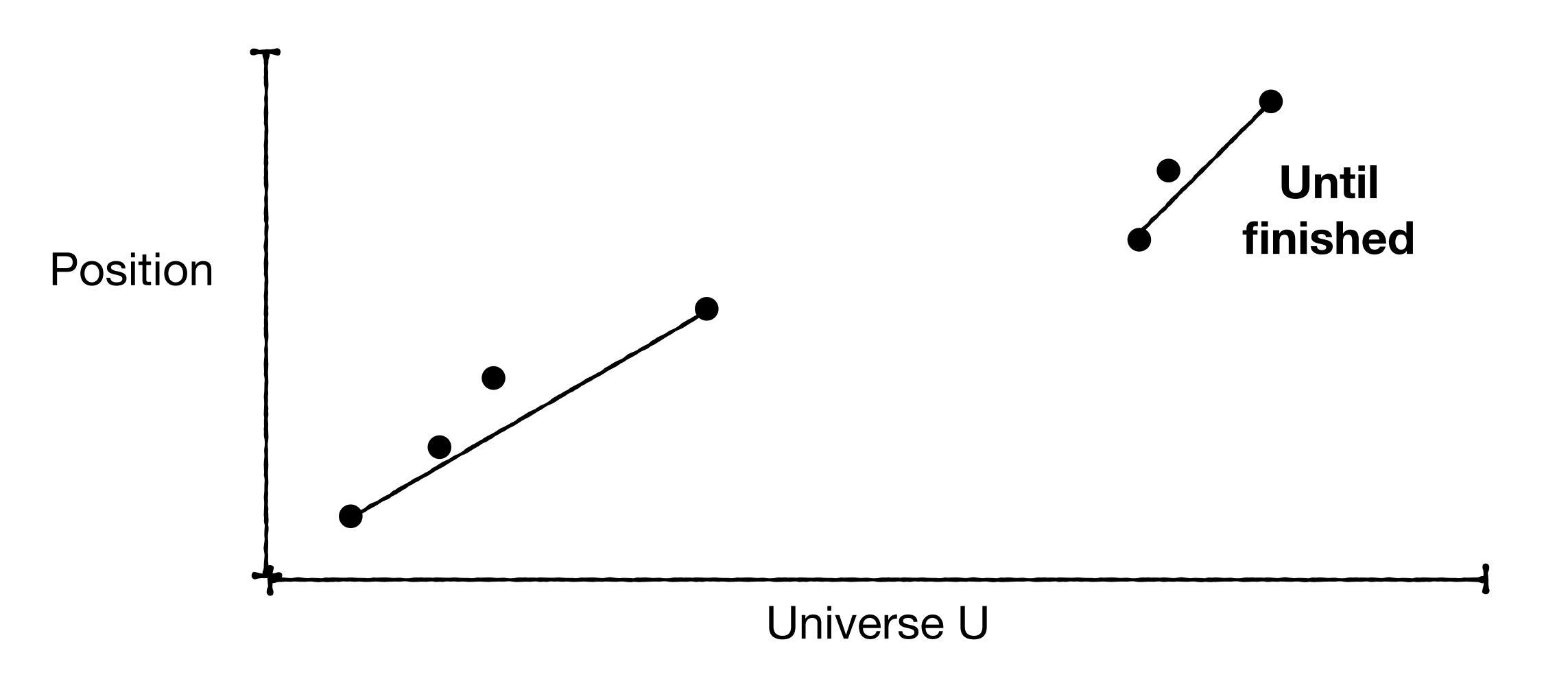




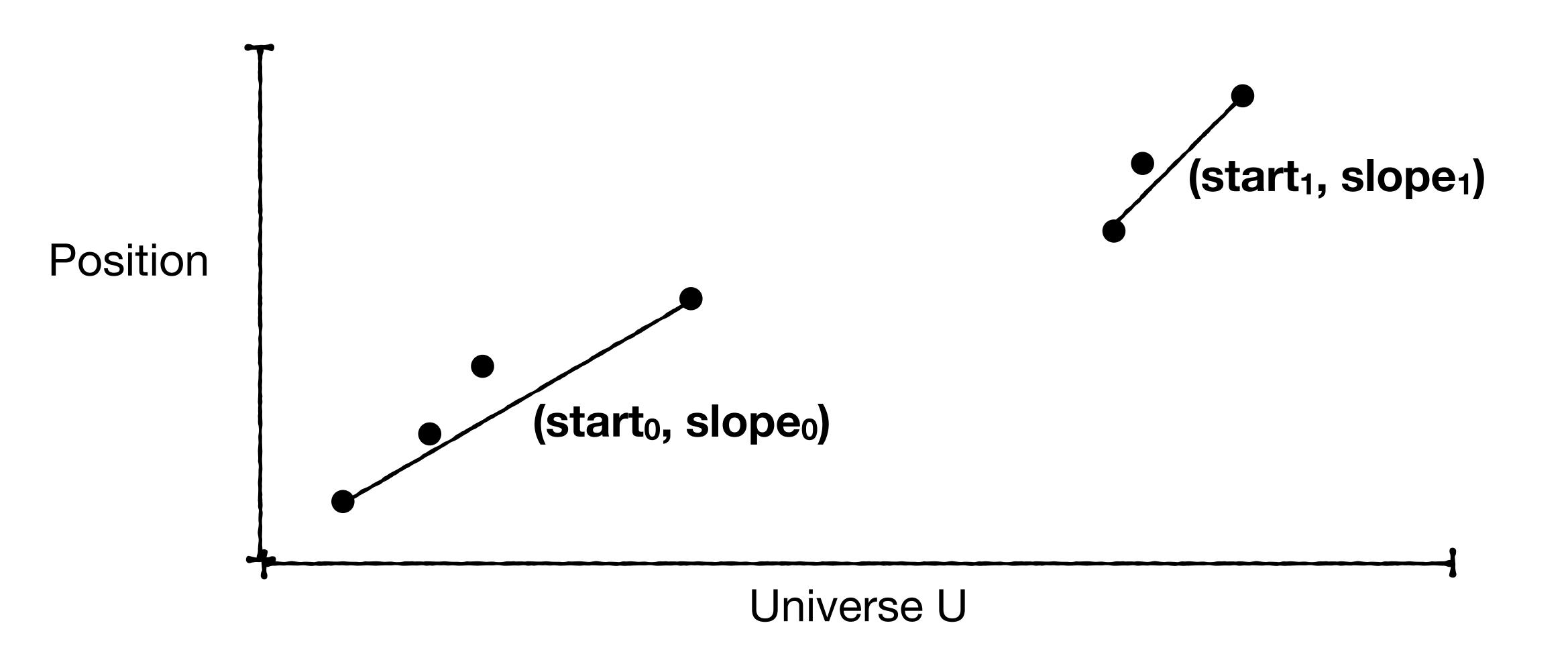








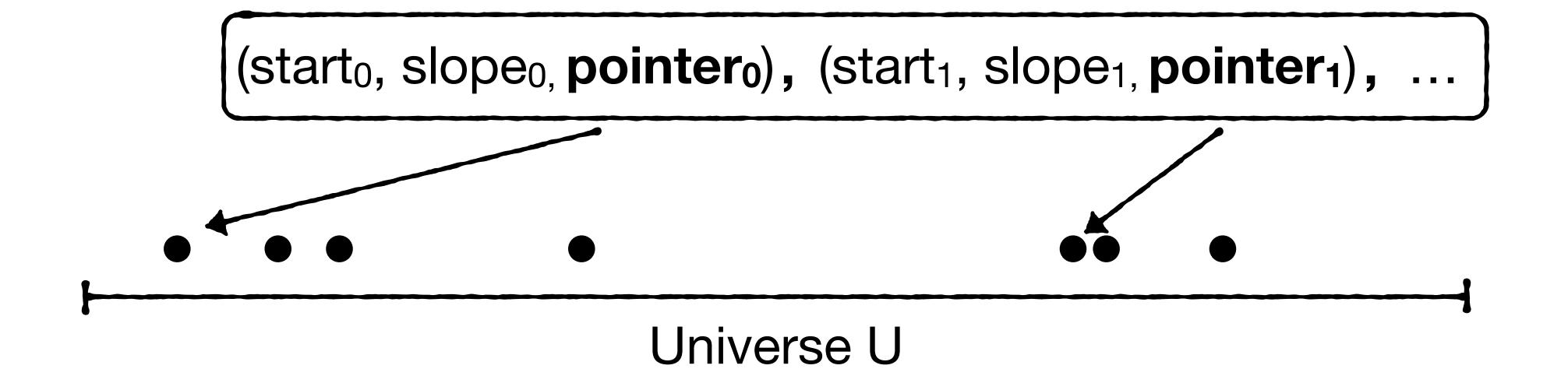
Each segment is characterized by starting point and slope



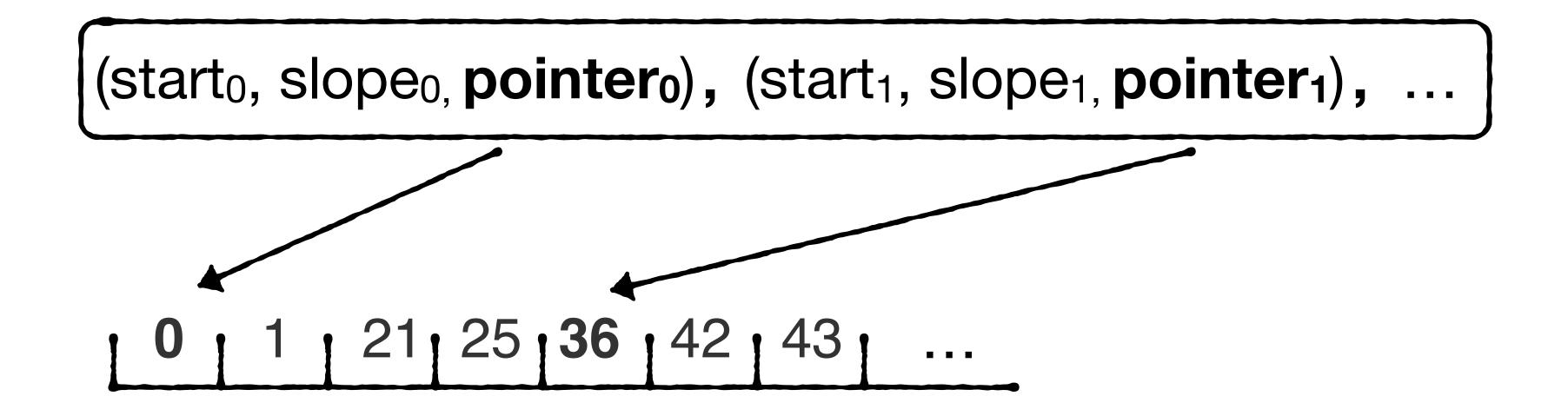
Place in B-tree node, sorted by starting point

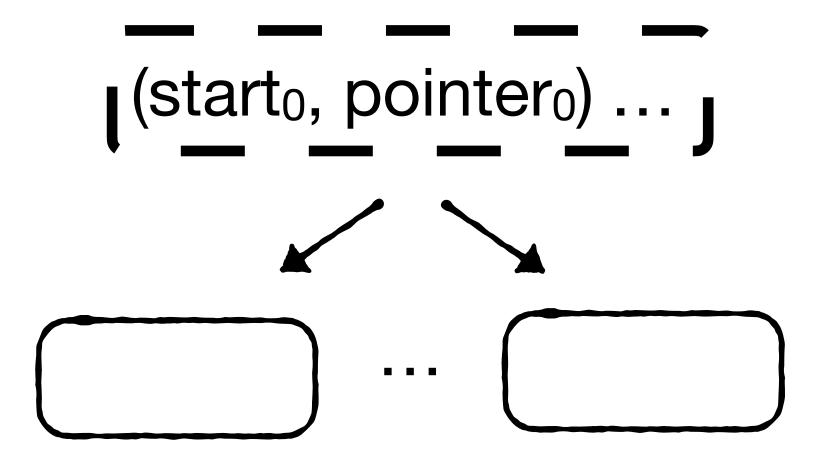
(start₀, slope₀, **pointer₀**), (start₁, slope₁, **pointer₁**), ...

Place in B-tree node, sorted by starting point

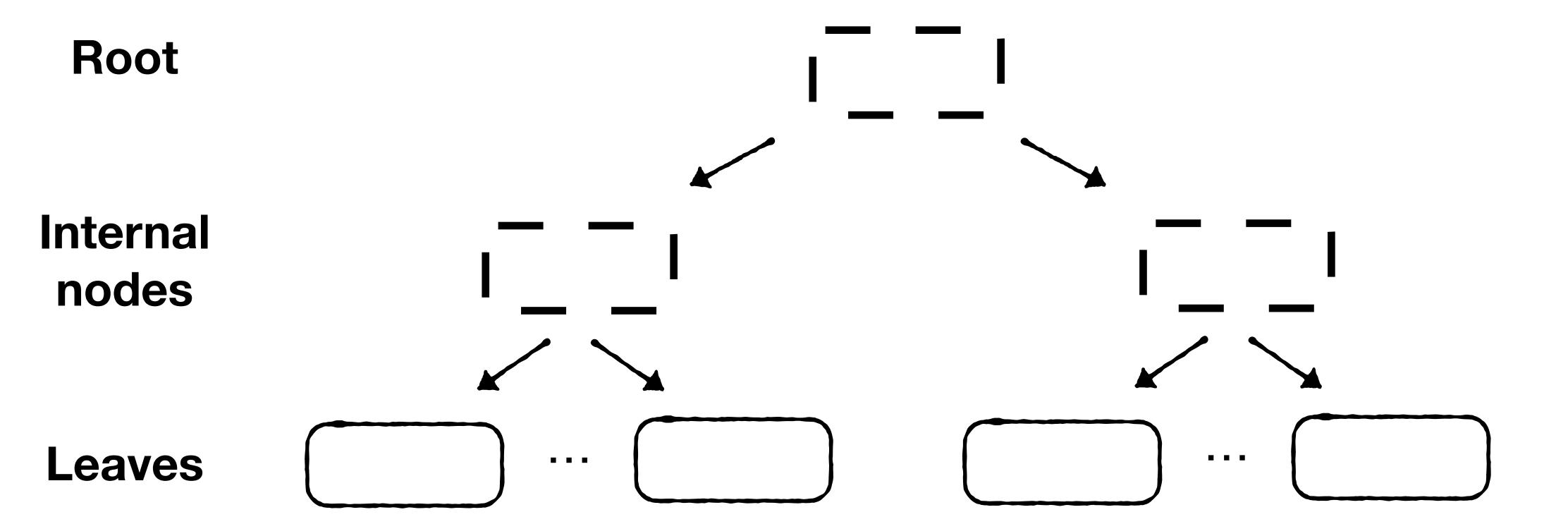


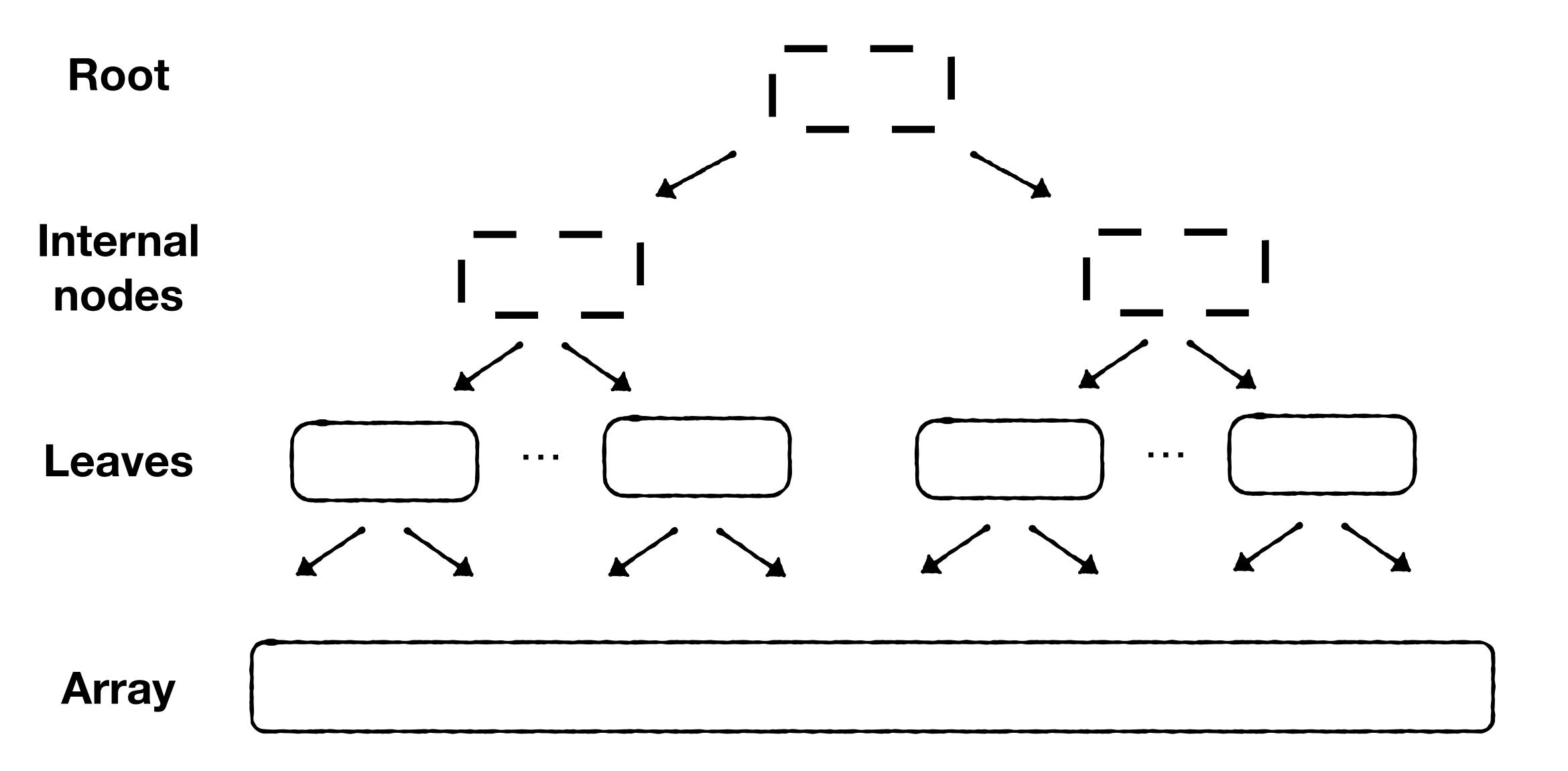
Place in B-tree node, sorted by starting point



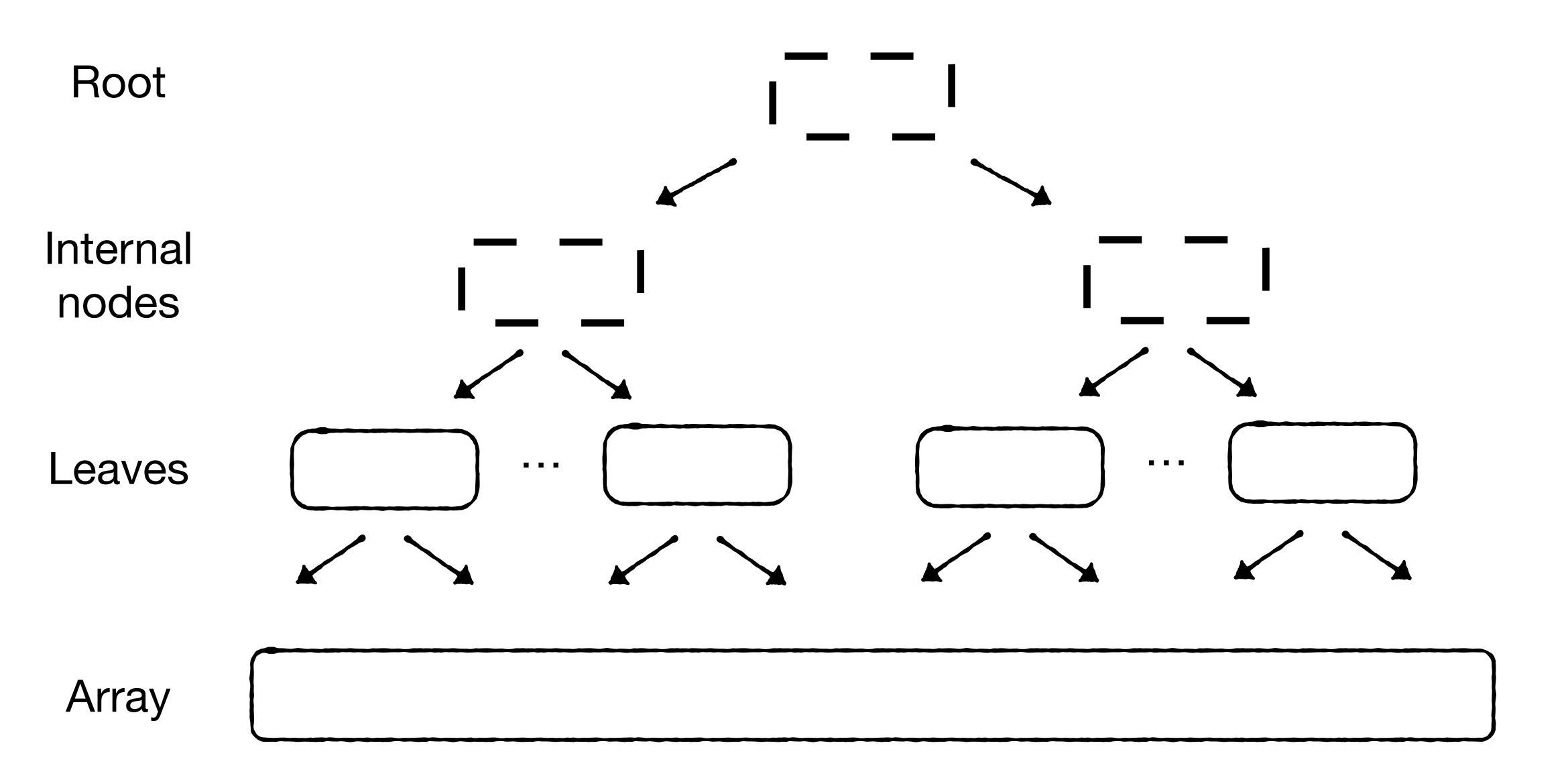




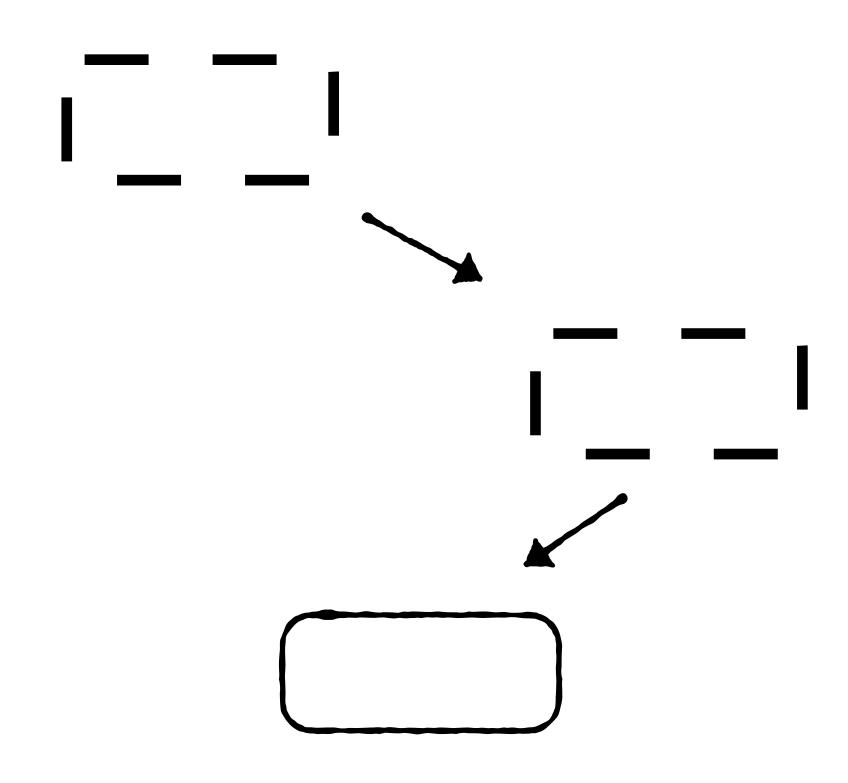




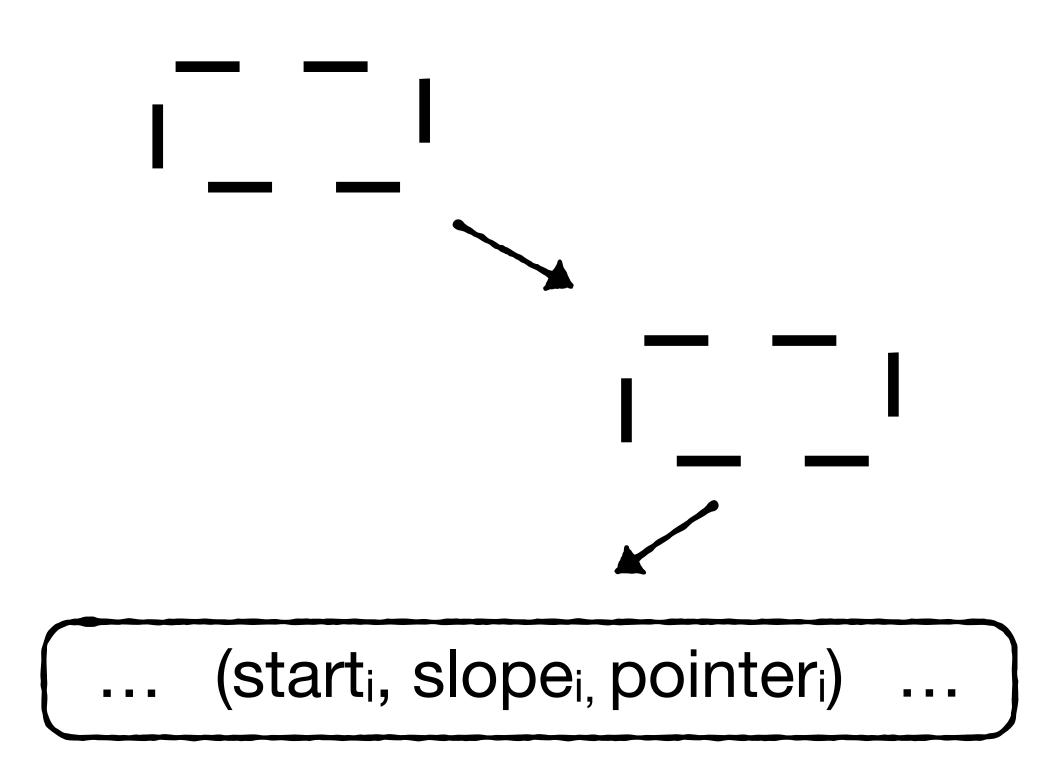
How to query this tree? e.g., get(15)



How to query this tree? (1) traverse B-tree



- (1) traverse B-tree
- (2) Find starting segment



- (1) traverse B-tree
- (2) Find starting segment
- (3) interpolate using slope

Position prediction = start + (key - start) / slope

... (start₁, slope₁, pointer₁) ...

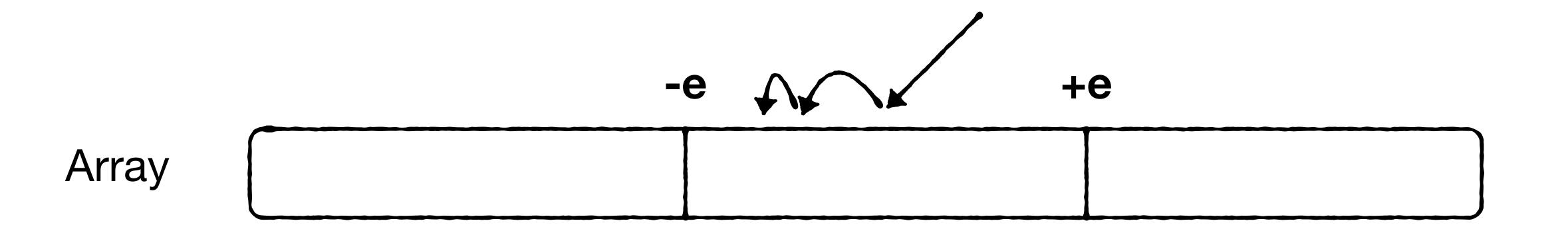
- (1) traverse B-tree
- (2) Find starting segment
- (3) interpolate using slope
- (4) add prediction to pointer and access array

... (start₁, slope₁, pointer₁) ...

pointer₁ + prediction

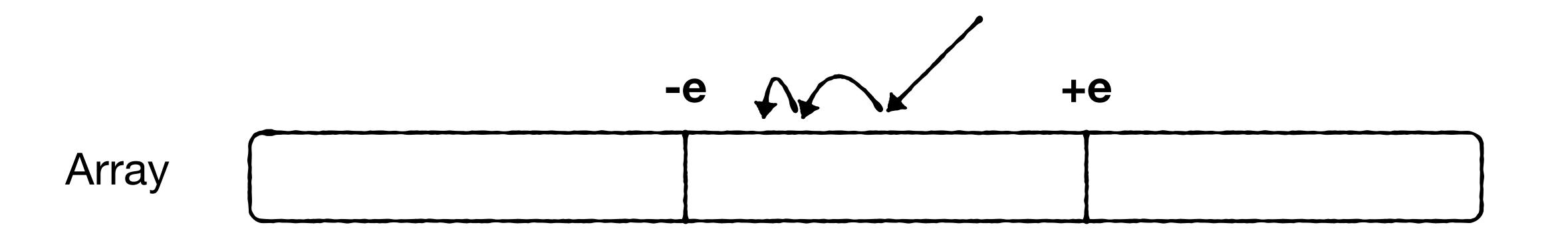
Array

- (1) traverse B-tree
- (2) Find starting segment
- (3) interpolate using slope
- (4) add prediction to pointer and access array
- (5) binary search within max error bounds



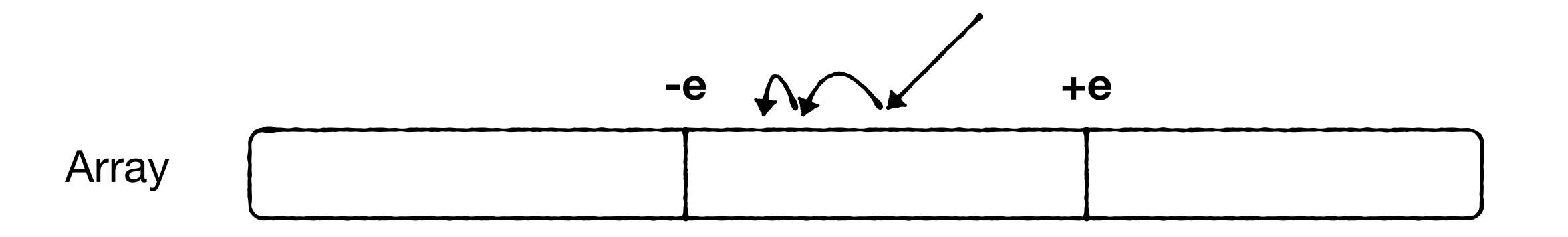
- (1) traverse B-tree
- (2) Find starting segment
- (3) interpolate using slope
- (4) add prediction to pointer and access array
- (5) binary search within max error bounds

Query cost?

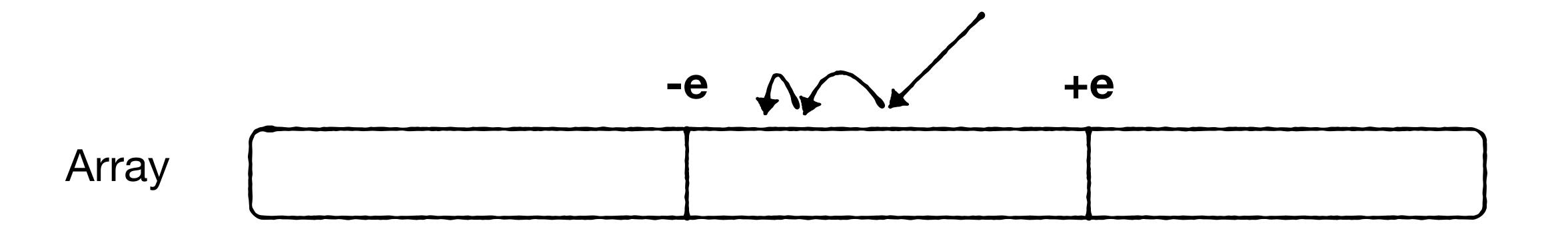


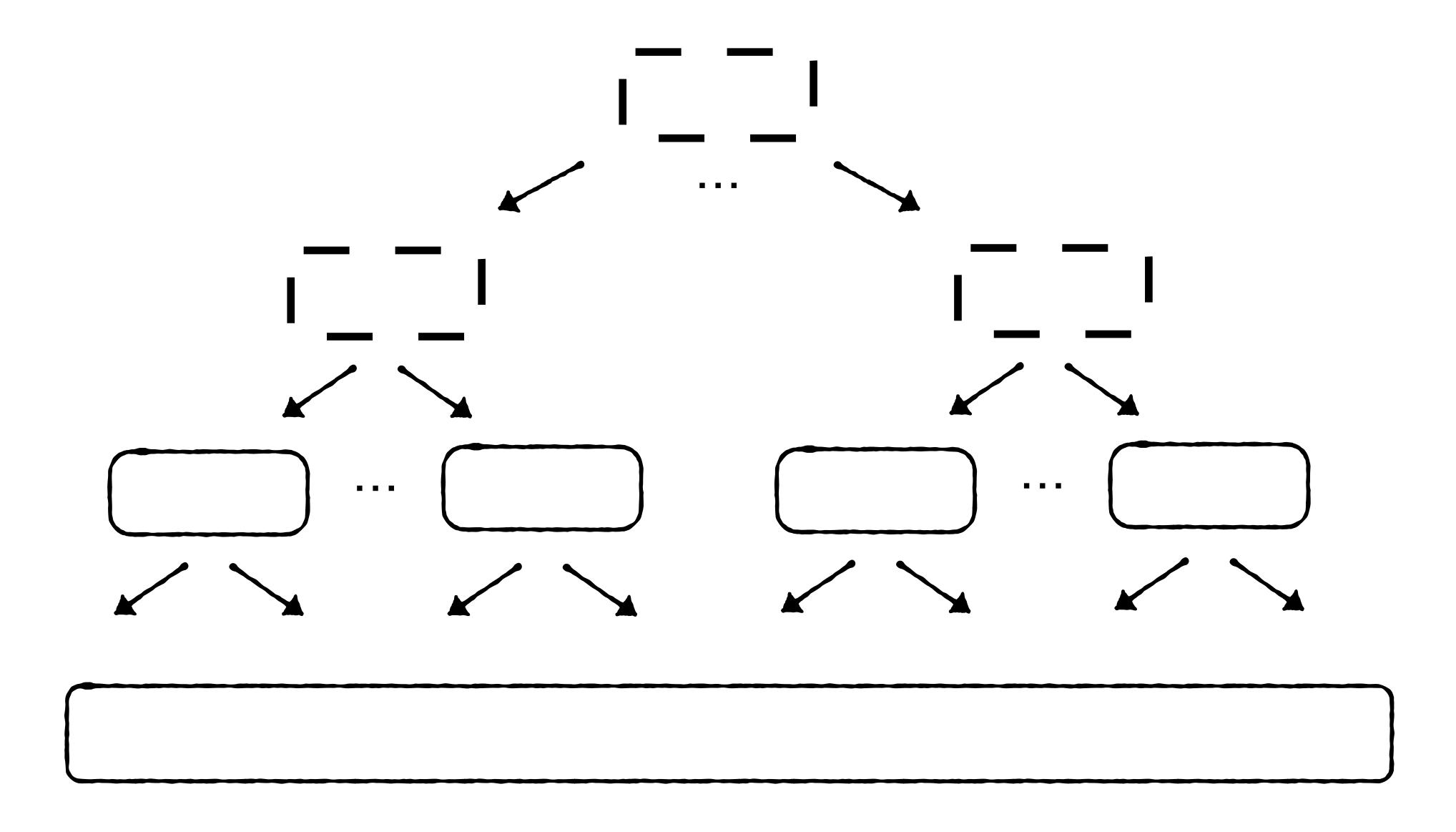
- (1) traverse B-tree
- (2) Find starting segment
- (3) interpolate using slope
- (4) add prediction to pointer and access array
- (5) binary search within max error bounds

Query cost? O(log(#segments) + log(e))

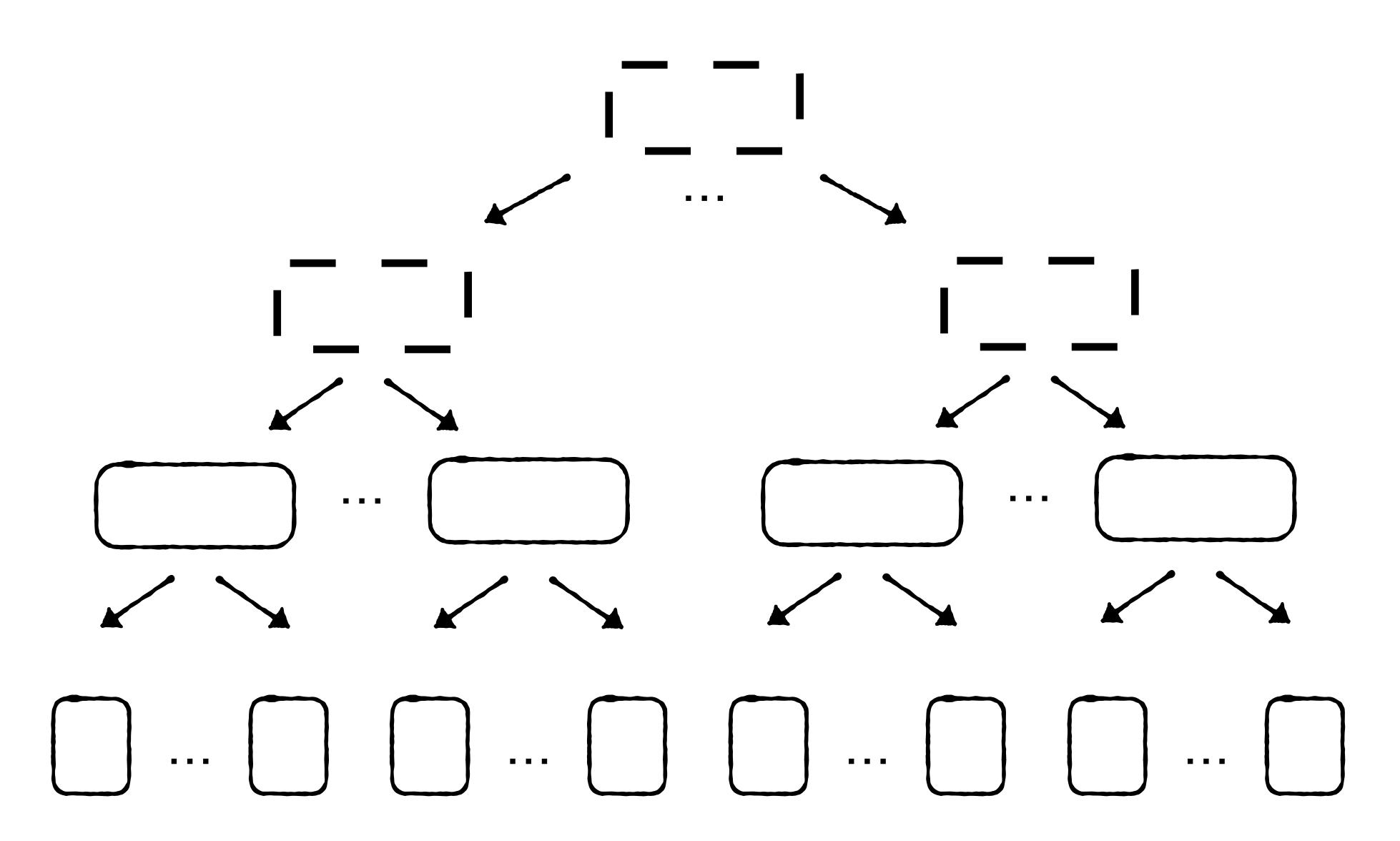


The more predictable the data is, the more the cost drops

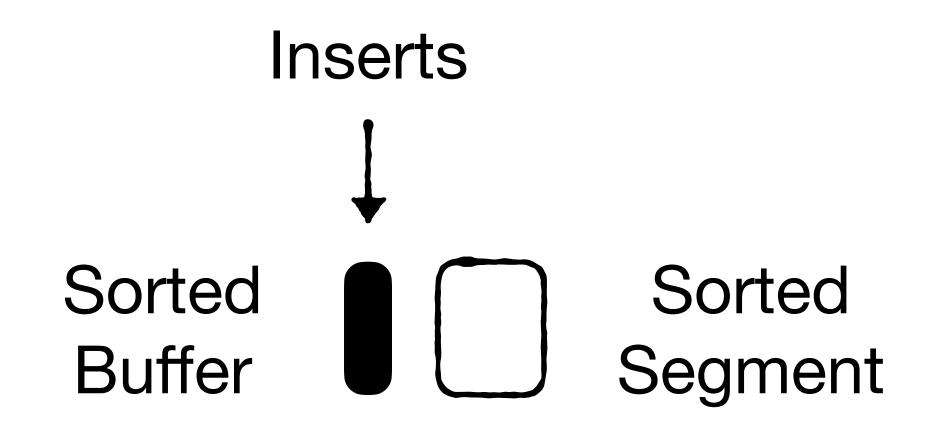




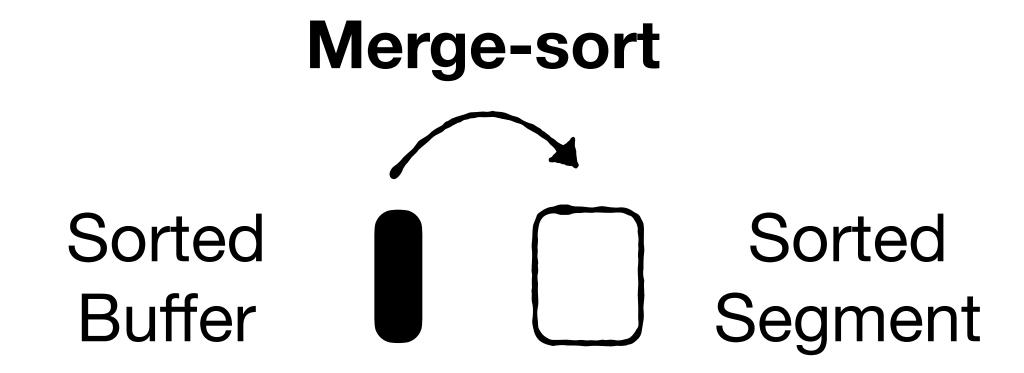
How to handle updates? (1) separate segments into contiguous chunks



- (1) separate segments into contiguous chunks
- (2) employ sorted insert buffer for each segment

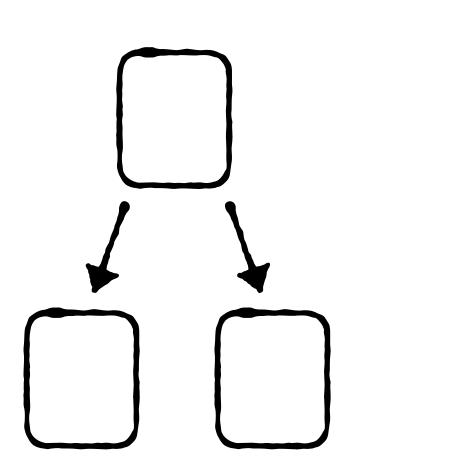


- (1) separate segments into contiguous chunks
- (2) employ sorted insert buffer for each segment
- (3) merge buffer into segment at threshold size



- (1) separate segments into contiguous chunks
- (2) employ sorted insert buffer for each segment
- (3) merge buffer into segment at threshold size
- (4) rerun segmentation (cone) algorithm

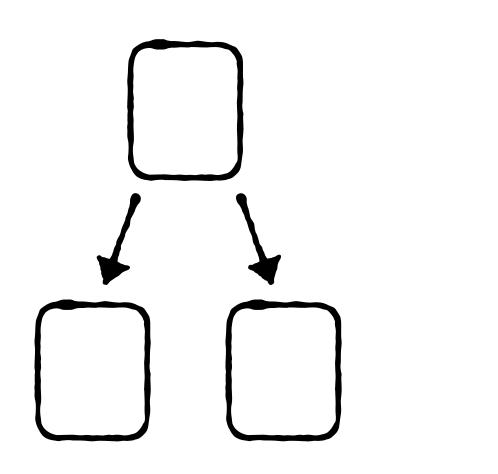
- (1) separate segments into contiguous chunks
- (2) employ sorted insert buffer for each segment
- (3) merge buffer into segment at threshold size
- (4) rerun segmentation (cone) algorithm
- (5) if segment splits, update parent/s



Sorted Segment

- (1) separate segments into contiguous chunks
- (2) employ sorted insert buffer for each segment
- (3) merge buffer into segment at threshold size
- (4) rerun segmentation (cone) algorithm
- (5) if segment splits, update parent/s

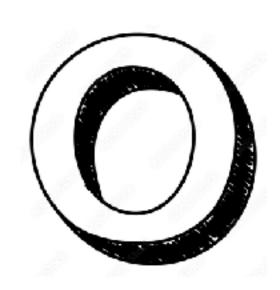
Thus, FITing tree depends heavily on insertion order



Sorted Segment Flaw 1: Thus, FITing tree depends heavily on insertion order

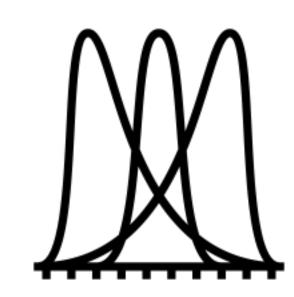
Flaw 2: Worst-case query cost depends on O(log(#segments))

Better Worst-Case



AVL-Tree	B-Tree	T-Tree
1962	1970	1985
CSS-Tree	CSB-Tree	НОТ
1998	2000	2018

Exploiting Data Distribution



Interpolation search	FITing-Tree
1959	2019