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Animal Table

Select * from animals where name = “gorilla”

Horse

gorilla

Cat

Squid

How to find quickly without a full scan?

Indexes
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Indexes

You have learned about

Binary trees Hash tables

Not a good fit for disks or SSDs (from CSC443)



memory SSD diskCPU caches

Slow & cheapExpensive & fast

The memory Hierarchy



Indexes stored hereNot enough space



Indexes

Block-addressable
4-16 KB



Indexes

Goal: minimize block I/Os 

Read I/O

Write I/O



Indexes for Storage  
(in CSC443)

B-Trees Log-Structured 
Merge-Trees

…

…

…

Merge

Circular Log

Index

1970 1996 2000’s



These are not a good fit for disks or SSDs
More memory 

Cheaper writesCheaper queries

B-Trees Log-Structured 
Merge-Trees

…

…

…

Merge

Circular Log

Indexes for Storage  
(in CSC443)

Index







Indexes can fit 
here



Indexes can fit 
here

New Design Goals!



Cache miss 
(≈100 cycles)

CPU register



Cache miss 

(≈100 cycles)

CPU register

Goal 1: Minimize Cache Misses 



Physical DRAM 4KB pages



Physical DRAM 4KB pages

Virtual Memory in 4KB pages



Mapping

Physical DRAM 4KB pages

Virtual Memory in 4KB pages

0 1 2 43 5 6

0 1 2 3 4 5 6



Mapping
Stored in known location in 
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Stored in known location in 
physical DRAM

4 1
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(TLB) in SRAM



Mapping

Stored in known location in 
physical DRAM

Goal 2: Minimize TLB Misses

4 1
…

…

2 3
…

…

miss 
(≈100 cycles)

Translation 
Lookaside Buffer 
(TLB) in SRAM



Design goals 

Minimize Cache 
Misses

Minimize TLB 
Misses



Design goals 

Minimize Cache 
Misses

Minimize TLB 
Misses

Maximize 
Parallelism (SIMD 
& multi-threading)



Design goals 

Minimize Cache 
Misses

Minimize TLB 
Misses

Maximize 
Parallelism

Minimize 
Space overheads



Terms

B: # entries per cache line 

N: # entries in dataset



Terms
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Terms

B: # entries per cache line 

N: # entries in dataset

Assume a cache line is 128B and a key is 4B
B = 32

Block size is far smaller than in disk access model



Improvements Along Two Areas

Better Worst-
Case

Exploiting Data 
Distribution



Exploiting Data 
Distribution

AVL-Tree T-Tree

CSS-Tree CSB-Tree HOT

1962 1985

1998 2000 2018

Interpolation 
search

FITing-Tree

20191959

Better Worst-
Case

B-Tree
1970



AVL-Tree

5

6



AVL-Tree

Self-balance on 
inserts

5

6

7



5

6

7

Requires holding 
multiple latches 

(damages 
concurrency)



5

6

7

Pointers create >3X metadata overhead



5 67

Virtual Memory

Each node may be on a different virtual page



5 67

Each node may be on a different virtual page

Worst case 1 TLB miss and 1 cache miss per node
(≈200 cycles)

Virtual Memory



5 67

2 · log2(N)

Virtual Memory

Cache misses per search 



Better Worst-
Case

AVL-Tree B-Tree CSS-Tree CSB-Tree HOT
1962 1970 1998 2000 2018

T-Tree
1985
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B-Tree

B

B B

Set each node to be the size of a cache line



B-Tree

B

B B

Set each node to be the size of a cache line

We expect O(logB N)



B-Tree

B

B B

Set each node to be the size of a cache line

We expect O(logB N)

Do we get it? Why or why not?



B-trees Page Organization

<Key, Pointer><Key, Pointer> <Key, Pointer><Key, Pointer><               padding                >



<Key, Pointer><Key, Pointer><Key, Pointer><Key, Pointer><               padding                >

Space overheads 



<Key, Pointer><Key, Pointer><Key, Pointer><Key, Pointer><               padding                >

Space overheads 

Real fanout: B/4          (e.g., 8 rather than 32)



<Key, Pointer><Key, Pointer><Key, Pointer><Key, Pointer><               padding                >

Space overheads 

log B/4 (N) cache misses



<Key, Pointer><Key, Pointer><Key, Pointer><Key, Pointer><               padding                >

Space overheads 

log B/4 (N) cache misses

Space overheads also harm scans



Better Worst-
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AVL-Tree B-Tree CSS-Tree CSB-Tree HOT
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1985



T-Tree

A study of index structures for main memory database management systems
Technical Report. 1985 



T-Tree: an AVL-Tree with Fat Nodes

3, 5, 6, 8

10, 11, 13, 16

20, 23, 24, 25



T-Tree: an AVL-Tree with Fat Nodes

3, 5, 6, 8

10, 11, 13, 16

20, 23, 24, 25

A node can’t intersect with its sub-trees in key range



Self-Balancing is Identical to AVL-Tree
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Self-Balancing is Identical to AVL-Tree

10, 11, 13, 16

20, 23, 24, 25

26, 28, 30, 33



10, 11, 

20, 23, 

26, 28, 

Pros: (1) Less metadata relative to data



10, 11, 

20, 23, 

26, 28, 

Pros: (1) Less metadata relative to data
(2) Fewer rotations
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1, 2, 3, 4



10, 11, 13, 16
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We only prune the search space by 2x per node 



10, 11, 13, 16

20, 23, 24, 25

26, 28, 30, 33

search cost? (In terms of B and N)

6, 7, 8, 9

1, 2, 3, 4

We only prune the search space by 2x per node 
O(log2(N/B)) cache misses 
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Cache-Sensitive Search-Tree (CSS-Tree)



Cache-Sensitive Search-Tree (CSS-Tree)

Cache conscious indexing for decision-support in main memory  
VLDB 1999.



Cache-Sensitive Search-Tree (CSS-Tree)

Cache conscious indexing for decision-support in main memory 

VLDB 1999.

static data



Cache-Sensitive Search-Tree (CSS-Tree)

static sorted array



Cache-Sensitive Search-Tree (CSS-Tree)

Each node the size 
of a cache line

1

2

3 3…
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3 3…

static sorted array



Cache-Sensitive Search-Tree (CSS-Tree)

1

2

3 3…

… 2

3 3…

static sorted array



CL 1 CL 2 CL 3 CL 4 CL 5 CL 6 CL 7 CL = cache line

1 2 2 3 3 3 3

static sorted array

Stored as dense array in breadth-first order



CL 1 CL 2 CL 3 CL 4 CL 5 CL 6 CL 7 CL = cache line

No padding or pointers among nodes (arithmetic is used to find child)

1 2 2 3 3 3 3

Stored as dense array in breadth-first order



CL 1 CL 2 CL 3 CL 4 CL 5 CL 6 CL 7 CL = cache line

No padding or pointers among nodes (arithmetic is used to find child)

1 2 2 3 3 3 3

LogB N  Cache misses

Stored as dense array in breadth-first order



Requires full reconstruction to handle updates

CL 1 CL 2 CL 3 CL 4 CL 5 CL 6 CL 7

1 2 2 3 3 3 3
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Cache-Sensitive B-Tree (CSB-Tree)

40, 50

10, 30 43, 48 51, 55

35, 37 44, 47 49, 50
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10, 30 43, 48 51, 55
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All children of a node are stored contiguously in “node group” 
Most pointers are eliminated (only one needed per node group)



40, 50

 30 43, 48 51

35,     44, 47 49

All children of a node are stored contiguously in “node group” 

Padding is still needed to absorb insertions 
Most pointers are eliminated (only one needed per node group)



40, 50

 30 43, 48 51

35,     44, 47 49

All children of a node are stored contiguously in “node group” 

Padding is still needed to absorb insertions 
Most pointers are eliminated (only one needed per node group)

B nodes per node group due to fanout of tree 



Fanout is B/2 rather than B/4

40, 50

 30 43, 48 51

35,     44, 47 49



Depth: O(logB/2(N))

40, 50

 30 43, 48 51

35,     44, 47 49

Fanout is B/2 rather than B/4



Write cost?

40, 50

 30 43, 48 51

35,     44, 47 49



Every B/2 insertions, a leaf splits, causing us to rewrite a node group
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Every B/2 insertions, a leaf splits, causing us to rewrite a node group

40, 50

 30 43, 48 51

35,     44, 47 49

Which costs O(B) cache misses
O(logB/2(N) + B / (B/2))

Write cost?



Every B/2 insertions, a leaf splits, causing us to rewrite a node group

40, 50

 30 43, 48 51

35,     44, 47 49

Which costs O(B) cache misses
O(logB/2(N))

Write cost?
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Universe U



Universe U

Binary search

O( log2 N )



Tree search

O( log2 N ) cycles

O( logB N ) I/O

Universe U



These methods’ performance is independent of data distribution 

Universe U

Tree search Binary search



Can we exploit the data distribution to speed up search?

Universe U



Can we exploit the data distribution to speed up search?

Universe U

Fixed intervals



Can we exploit the data distribution to speed up search?

Universe U

Uniform distribution



Can we exploit the data distribution to speed up search?

Universe U

Normal distribution



Can we exploit the data distribution to speed up search?

Universe U

Bi-modal distribution



Interpolation Search

W. Wesley Peterson

Addressing for Random-Access Storage
IBM Journal of Research and Development. 1959 



Interpolation Search

Universe U

Uniform distribution



Interpolation Search

Universe U

Uniform distribution - e.g., sorted array of hash values



Interpolation Search

Array

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100



Interpolation Search

Array

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(X)



Array

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(X)

Estimated location =  
max - min

·  (#slots - 1)
X - min



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =  
100 - 0

·  15
42 - 0

=
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get(42)

Estimated location =  
100 - 0

·  15
42 - 0

= 6



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =  
100 - 0

·  15
42 - 0

= 6

Recurse on this partition



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =  
42 - 0

·  5
42 - 0

Recurse on this partition



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =  
42 - 0

·  5
42 - 0

=    5



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =  
42 - 0

·  5
42 - 0

=    5

Found in two steps! As opposed to log2(16) = 4 steps with binary search



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

For uniformly distributed data:

Binary search

Interpolation search O(log2 log2 N)

O(log2 N)



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log2 log2 N)

Intuition: each iteration prunes the search space by √N 



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log2 log2 N)

Intuition: each iteration prunes the search space by √N 

T(n) < C + T(√N)



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log2 log2 N)

Intuition: each iteration prunes the search space by √N 

T(n) < C · log2 log2 N 



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log2 log2 N)

Intuition: each iteration prunes the search space by √N 

T(n) < C · log2 log2 N 

≈ 2



0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log2 log2 N)

Intuition: each iteration prunes the search space by √N 

T(n) < C · log2 log2 N 

≈ 2

For details, check our reading for this week. 
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Now suppose the data is geometrically increasing
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20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Now suppose the data is geometrically increasing

Estimated location =  
max - min

·  (#slots - 1)
X - min



20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

get(211)

Estimated location =  
max - min

·  (#slots - 1)
X - min



20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =  
215 - 20

·  15
211 - 20

get(211)

= 0



20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =  
215 - 20

·  15
211 - 20

get(211)

= 0

Recurse on this partition
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Estimated location =  
215 - 21

·  14
211 - 21

get(211)

= 0

Recurse on this partition



20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =  
215 - 21

·  14
211 - 21

get(211)

= 0

Recurse on this partition
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Estimated location =  
215 - 22

·  13
211 - 22

get(211)

= 0

Recurse on this partition



20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =  
215 - 22

·  13
211 - 22

get(211)

= 0

Recurse on this partition



20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =  
215 - 23

·  12
211 - 23

get(211)

= 0

Recurse on this partition



20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =  
215 - 23

·  12
211 - 23

get(211)

= 0

Recurse on this partition



20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

get(211)

Find target after O(N) iterations 



Interpolation search

Worst-caseUniform

O(log2 log2 N) O(N)



CPU overheads?



CPU overheads

Estimated location =  
max - min

·  (#slots - 1)
X - min



3 subtractions 
1 multiplication 
1 division

CPU overheads

Estimated location =  
max - min

·  (#slots - 1)
X - min



3 subtractions

1 multiplication

1 division

≈ 6 cycles each 
≈ 6 cycles 
≈ 30 - 60 cycles

CPU overheads

Estimated location =  
max - min

·  (#slots - 1)
X - min



3 subtractions

1 multiplication

1 division

≈ 6 cycles each

≈ 6 cycles

≈ 30 - 60 cycles

For small data, binary search may win as there is no division.

CPU overheads

Estimated location =  
max - min

·  (#slots - 1)
X - min



3 subtractions

1 multiplication

1 division

≈ 6 cycles each

≈ 6 cycles

≈ 30 - 60 cycles

As the data grows, interpolation search is likely faster.

For small data, binary search may win as there is no division.

CPU overheads

Estimated location =  
max - min

·  (#slots - 1)
X - min



Interpolation search works well for uniform data

Universe U



Interpolation search works well for uniform data

Universe U

Insight: when data is predictable, we can tailor better access methods



Universe U

But data often follows idiosyncratic patterns



Universe U

Position in 
array



Universe U

Position in 
array

cumulative distribution function (CDF)



Universe U

Position in 
array

Insight: at each segment, it’s easy to predict an entry’s position



Universe U

Position in 
array

Learned Indexes: Learn the data distribution to predict an entry’s position



Universe U

Position in 
array

Learned Indexes: Learn the data distribution to predict an entry’s position

Partition the data into predictable segments



The Case for Learned Index Structures

SIGMOD 2018
Tim Kraska , Alex Beutel , Ed H. Chi , Jeffrey Dean , Neoklis Polyzotis



The Case for Learned Index Structures

SIGMOD 2018
Tim Kraska , Alex Beutel , Ed H. Chi , Jeffrey Dean , Neoklis Polyzotis

Vision paper, and algorithmic details can be vague



FITing-Tree: A Data-aware Index Structure

SIGMOD 2019
Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, Tim Kraska



Universe U

Position

FITing-Tree: A Data-aware Index Structure



Universe U

Position

approximate distribution using piecewise linear functions



Universe U

Position

approximate distribution using piecewise linear functions
Ensure each point has max distance of e from its function

< e



Universe U

Position

Ensure each point has max distance of e from its function

< e

Why?



Universe U

Position < e

Why? To bound the search space size due to an inaccurate prediction



Universe U

Position

constrained optimization problem



Universe U

Position

constrained optimization problem:
Model distribution using least number of segments while ensuring all points 

are within e positions of prediction



Universe U

Position

Model distribution using least number of segments while ensuring all points 
are within e positions of prediction

propose an algorithm for this!



Universe U

Position

There is a O(N2) optimal algorithm - too expensive



Universe U

Position

There is a O(N2) optimal algorithm - too expensive
How about a O(N) approximate algorithm? 



Universe U

Position

Add first two points into segment while maintaining “maximal cone”



Universe U

Position

Add first two points into segment while maintaining “maximal cone”



Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly
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Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Not in cone,  
so seal existing one



Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Any linear function 
within cone will due



Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Start afresh



Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly



Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Until 
finished



Universe U

Position

Each segment is characterized by starting point and slope

(start0, slope0)

(start1, slope1)



Place in B-tree node, sorted by starting point

(start0, slope0, pointer0) ,

Universe U

(start1, slope1, pointer1) , …



Place in B-tree node, sorted by starting point

(start0, slope0, pointer0) ,

Universe U

(start1, slope1, pointer1) , …



Place in B-tree node, sorted by starting point

(start0, slope0, pointer0) , (start1, slope1, pointer1) , …

0 1 21 25 36 42 43 …



…

(start0, pointer0) …

Store as a B-tree



Store as a B-tree

… …



Store as a B-tree

… …

Root

Leaves

Internal  
nodes



Store as a B-tree

… …

Array

Root

Leaves

Internal  
nodes



How to query this tree?

… …

Array

Root

Leaves

Internal 

nodes

e.g., get(15)



How to query this tree? (1) traverse B-tree



How to query this tree? (1) traverse B-tree
(2) Find starting segment

(starti, slopei, pointeri)… …



How to query this tree?
(2) Find starting segment
(3) interpolate using slope

(1) traverse B-tree

(start1, slope1, pointer1)…

Position prediction = start + (key - start) / slope 

…



How to query this tree?
(2) Find starting segment
(3) interpolate using slope

(1) traverse B-tree

(4) add prediction to pointer and access array 

Array

(start1, slope1, pointer1)… …

pointer1 + prediction



How to query this tree?
(2) Find starting segment
(3) interpolate using slope

(1) traverse B-tree

(4) add prediction to pointer and access array 

Array

(5) binary search within max error bounds

+e-e



How to query this tree?
(2) Find starting segment
(3) interpolate using slope

(1) traverse B-tree

(4) add prediction to pointer and access array 

Array

(5) binary search within max error bounds

+e-e

Query cost?



How to query this tree?
(2) Find starting segment
(3) interpolate using slope

(1) traverse B-tree

(4) add prediction to pointer and access array 

Array

(5) binary search within max error bounds

+e-e

Query cost? O( log(#segments) + log(e)) 



Array

+e-e

Query cost? O( log(#segments) + log(e)) 

The more predictable the data is, the more the cost drops



How to handle updates?

… …

…



How to handle updates?

… …

(1) separate segments into contiguous chunks

…

… … … …



How to handle updates?
(2) employ sorted insert buffer for each segment
(1) separate segments into contiguous chunks

Sorted 

Buffer

Sorted 

Segment

Inserts



How to handle updates?
(2) employ sorted insert buffer for each segment
(1) separate segments into contiguous chunks

(3) merge buffer into segment at threshold size

Sorted 

Buffer

Sorted 

Segment

Merge-sort



How to handle updates?
(2) employ sorted insert buffer for each segment
(1) separate segments into contiguous chunks

(3) merge buffer into segment at threshold size

Sorted 

Segment

(4) rerun segmentation (cone) algorithm



How to handle updates?
(2) employ sorted insert buffer for each segment
(1) separate segments into contiguous chunks

(3) merge buffer into segment at threshold size

Sorted 

Segment

(4) rerun segmentation (cone) algorithm
(5) if segment splits, update parent/s



How to handle updates?
(2) employ sorted insert buffer for each segment
(1) separate segments into contiguous chunks

(3) merge buffer into segment at threshold size

Sorted 

Segment

(4) rerun segmentation (cone) algorithm
(5) if segment splits, update parent/s

Thus, FITing tree depends heavily on insertion order



Thus, FITing tree depends heavily on insertion orderFlaw 1:

Flaw 2: Worst-case query cost depends on O( log(#segments))

Predictable Unpredictable

Universe
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