Y/

In-Memory Inde:;

/7/; \\ \
(PN
nagement

batabase Ma

9

Niv Dayan - CS€2525 Research Topics in
. ,

\

‘¢
\ ¢

Indexes

Animal Table

Horse

Select * from animals where name = “gorilla” Squid

gorilla

How to find quickly without a full scan? Cat

Indexes

You have learned about

Q
0 o
OO0 ii ii

Binary trees Hash tables

Indexes

You have learned about

0
olke) Lk
ojeYele m 0

Binary trees Hash tables

Not a good fit for disks or SSDs (from CSC443)

The memory Hierarchy

¢ o B

CPU caches memory SSD disk

Expensive & fast Slow & cheap

= mm B

Not enough space Indexes stored here

/AN

Indexes

/AN

Block-addressable

4-16 KB E

Read |/O Indexes

/AN

Write 1/O

Goal: minimize block I/0s

B-Trees

1970

Indexes for Storage
(in CSC443)

272 e

)

Log-Structured
Merge-Trees

1996

Index

i

)

Circular Log

2000’s

‘Q A Q‘

B-Trees

4

Cheaper queries

Indexes for Storage
(in CSC443)

272 e

)

Log-Structured
Merge-Trees

Index

i

)

Circular Log

More memory |

Cheaper writes

$/GB

® 3/GB in 2020 Dollars (McCallum) @ $/ GB in 2020 Dollars (Objective Analysis)

$1,000,000,000,000.00

$10,000,000,000.00

$100,000,000.00

$1,000,000.00

$10,000.00

$100.00

1960 1970 1980 1990 2000

2010

& w3

Indexes can fit
here '

/A

New Design Goals!

Indexes can fit
here '

/A

4

Cache miss
(=100 cycles)

CPU register

Goal 1: Minimize Cache Misses

I A
Cache miss
(=100 cycles)

CPU register e &

Physical DRAM 4KB pages [_]

Virtual Memory in 4KB pages

—~

Physical DRAM 4KB pages [_]

Virtual Memory In 4KB pages

Mapping 0 1 2 3 4 5 6

ﬁ 0 1 2 3 4 ., 5 6

Physical DRAM 4KB pages [_]

Mapping

2 — 3 Stored in known location In
/ él ohysical DRAM

4 — 1

Translation

2 — 3 Lookaside Buffer
(TLB) in SRAM
Mapping
Stored in known location In
/ él ohysical DRAM

Translation
Lookaside Buffer
(TLB) in SRAM

I miss
(=100 cycles)
Mapping

ﬁ 4 —> Stored In known location In
physical DRAM

Goal 2: Minimize TLB Misses

Translation
2 — 3 | ookaside Bufiter
(TLB) iIn SRAM

I MisS
(=100 cycles)
Mapping

ﬁ 4 --> 1 Stored Iin known location In
physical DRAM

Design goals

N/

Minimize Cache Minimize TLB
Misses Misses

Design goals

4

Maximize
Parallelism (SIMD
& multi-threading)

N/

Minimize Cache Minimize TLB
Misses Misses

Design goals

Yo 7/

Minimize Cache Minimize TLB Maximize Minimize
Misses Misses Parallelism Space overheads

N/

Terms

N: # entries In dataset

B: # entries per cache line

Terms

N: # entries In dataset

B: # entries per cache line

Assume a cache line is 128B and a key is 4B
B =32

Terms

N: # entries In dataset

B: # entries per cache line

Assume a cache line Is 1288 and a key Is 4B
B =32

Block size is far smaller than In disk access model

Improvements Along Two Areas

Better Worst- Exploiting Data
Case Distribution

Better Worst- Exploiting Data
Case Distribution

AVL-Tree B-Tree T-Tree Interpolation FITing-Tree
search

CSS-Tree CSB-Tree HOT

AVL-Tree

Self-balance on
Inserts

O

N
Requires holding

multiple latches

/\ / O\
O O %3 %3 damages

o

Pointers create >3X metadata overhead

v
O

Each node may be on a different virtual page

OO0 000O0
Virtual Memory E::]

Fach node may be on a different virtual page

Worst case 1 TLB miss and 1 cache miss per node
(=200 cycles)

OO0 000O0
Virtual Memory E::]

2 - log2(N) Cache misses per search

OO0 000O0
Virtual Memory E::]

Better Worst-
Case

AVL-Tree B-Tree T-Tree CSS-Tree CSB-Tree HOT

B-Tree

B-Tree

Set each node to be the size of a cache line

B-Tree

-
TN

() s
AN NN
B B

Set each node to be the size of a cache line

We expect O(logs N)

B-Tree

-
TN

() s
AN NN
B B

Set each node to be the size of a cache line
We expect O(logs N)
Do we get it? Why or why not?

B-trees Page Organization

<Key, Pointer><Key, Pointer> <Key, Pointer><Key, Pointer>< padding

Space overheads

<Key, PointerxKey, Pointer><Key, Pointer>x<Key, Pointer>< padding

Space overheads

<Key, PointerxKey, Pointer><Key, Pointer>x<Key, Pointer>< padding

Real fanout: B/4 (e.g., 8 rather than 32)

Space overheads

<Key, PointerxKey, Pointer><Key, Pointer>x<Key, Pointer>< padding

log B/4 (N) cache misses

Space overheads

<Key, PointerxKey, Pointer><Key, Pointer>x<Key, Pointer>< padding

log B/4 (N) cache misses

Space overheads also harm scans

Better Worst-
Case

AVL-Tree B-Tree T-Tree CSS-Tree CSB-Tree HOT

T-Tree

A study of index structures for main memory database management systems
Technical Report. 1985

T-Tree: an AVL-Tree with Fat Nodes

10, 11, 13, 16

3,9, 0, 8 20, 23, 24, 25

T-Tree: an AVL-Tree with Fat Nodes

10, 11, 13, 16

3,9, 0, 8 20, 23, 24, 25

A node can’t intersect with its sub-trees in key range

Self-Balancing is Identical to AVL-Tree

]

W

p
) [orsie
p

20, 23, 24, 25
¢
26, 28, 30, 33

Self-Balancing is Identical to AVL-Tree
W Ny

N

10, 11, 13, 16 26, 28, 30, 33

—
— O C
) O

Pros: (1) Less metadata relative to data

' !
™
Pros: (1) Less metadata relative to data
(2) Fewer rotations

search cost? (In terms of B and N)

4 N
™

search cost? (In terms of B and N)

6,7,8,9
4 p
1,2,3,4 20, 23, 24, 25

'

'
10,11, 13, 16 26, 28, 30, 33

We only prune the search space by 2x per node

search cost? (In terms of B and N)

4 N
™

We only prune the search space by 2x per node

O(log2(N/B)) cache misses

Better Worst-
Case

AVL-Tree B-Tree T-Tree CSS-Tree CSB-Tree HOT

Cache-Sensitive Search-Tree (CSS-Tree)

Cache-Sensitive Search-Tree (CSS-Tree)

Cache conscious indexing for decision-support in main memory
VLDB 1999.

Cache-Sensitive Search-Tree (CSS-Tree)

Cache conscious indexing for decision-support in main memory

VLDB 1999.

static data

Cache-Sensitive Search-Tree (CSS-Tree)

static sorted array

Cache-Sensitive Search-Tree (CSS-Tree)

Each node the size O
/ \

of a cache line

"4 A "4 A
-0O0~0O
Y ¥ Y ¥

static sorted array

Cache-Sensitive Search-Tree (CSS-Tree)

SR
Y v X Y v X
Y + X Y + ¥

static sorted array

Stored as dense array in breadth-first order

D@ORO®O®G

CL1,CL2,CL3,CL4.,CL5.,CL6, CL7

static sorted array

CL = cache line

Stored as dense array in breadth-first order

No padding or pointers among nodes (arithmetic is used to find child)

D@ORO®O®G

, CL1 ,CL2,CL3,CL4,CL5,CL6,CL7., CL = cache line

Stored as dense array in breadth-first order

No padding or pointers among nodes (arithmetic is used to find child)

Loge N Cache misses

D@ORO®O®G

, CL1 ,CL2,CL3,CL4,CL5,CL6,CL7., CL = cache line

Requires full reconstruction to handle updates

D@ORO®O®G

CL1,CL2,CL3,CL4.,CL5.,CL6, CL7

Better Worst-
Case

AVL-Tree B-Tree T-Tree CSS-Tree CSB-Tree HOT

Cache-Sensitive B-Tree (CSB-Tree)

All children of a node are stored contiguously in “node group”

All children of a node are stored contiguously in “node group”

Most pointers are eliminated (only one needed per node group)

All children of a node are stored contiguously in “node group”

Most pointers are eliminated (only one needed per node group)

Padding is still needed to absorb insertions

All children of a node are stored contiguously in “node group”

Most pointers are eliminated (only one needed per node group)
Padding Is still needed to absorb insertions

B nodes per node group due to fanout of tree

Fanout is B/2 rather than B/4

Fanout is B/2 rather than B/4
Depth: O(logs/2(N))

Write cost?

Write cost?

Every B/2 insertions, a leaf splits, causing us to rewrite a node group

Write cost?

Every B/2 insertions, a leaf splits, causing us to rewrite a node group

Which costs O(B) cache misses

Write cost?

Every B/2 insertions, a leaf splits, causing us to rewrite a node group

Which costs O(B) cache misses
O(logs/2(N) + B / (B/2))

Write cost?

Every B/2 insertions, a leaf splits, causing us to rewrite a node group

Which costs O(B) cache misses
O(logs/2(N))

Better Worst-
Case

AVL-Tree B-Tree T-Tree CSS-Tree CSB-Tree HOT

Better Worst-
Case

AVL-Tree B-Tree T-Tree CSS-Tree CSB-Tree HOT

T

Pres after

Better Worst- Exploiting Data
Case Distribution

AVL-Tree B-Tree T-Tree Interpolation FITing-Tree
search

CSS-Tree CSB-Tree HOT

S |
Universe U

Binary search

O(logz2 N)

S |
Universe U

Tree search

O(logz2 N) cycles
O(logeN) I/0

S |
Universe U

These methods’ performance is independent of data distribution

Tree search Binary search

s |
Universe U

Can we exploit the data distribution to speed up search?

b
Universe U

Can we exploit the data distribution to speed up search?

Fixed intervals

Universe U

Can we exploit the data distribution to speed up search?

Uniform distribution

s |
Universe U

Can we exploit the data distribution to speed up search?

Normal distribution

s |
Universe U

Can we exploit the data distribution to speed up search?

Bi-modal distribution

Universe U

Interpolation Search

Addressing for Random-Access Storage
IBM Journal of Research and Development. 1959

W. Wesley Peterson

Interpolation Search

Uniform distribution

b
Universe U

Interpolation Search

Uniform distribution - e.g., sorted array of hash values

b
Universe U

Interpolation Search

Oy 14121125136 142143144155162168y 70y 80182194 100

Array

Interpolation Search

get(X)

Oy 14121125136 142143144155162168y 70y 80182194 100

Array

get(X)

_ _ X - min
Estimated location= | ———
max - min

- (#slots - 1)

Oy 14121125136 142143144155162168y 70y 80182194 100

Array

get(42)

| 42-0
100 - 0

Estimated location =

Oy 14121125136 142143144155162168y 70y 80182194100

get(42)

Estimated location =

Oy 14121125136 142143144155162168y 70y 80182194100

get(42)

| 42-0
100 - 0

|
o)

Estimated location =

Oy 14121125136 142143144155162168y 70y 80182194 100

G
Recurse on this partition

get(42)

. 42-0
42 - 0

Estimated location =

Oy 14121125136 142143144155162168y 70y 80182194 100

G
Recurse on this partition

get(42)

e -]

|
&)

Estimated location =

Oy 14121125136 14214314415516268y 70y 80182194100

get(42)

} 2 - 0
e -]

|
&)

Estimated location =

Oy 14121125136 14214314415516268y 70y 80182194100

Found in two steps! As opposed to logz(16) = 4 steps with binary search

For uniformly distributed data:

Interpolation search O(logz21og2 N)

Binary search O(logz N)

0y 14121125136 142143144¢1551621 68y 70y 80182194 100

Interpolation search O(logz logz N)

Intuition: each iteration prunes the search space by N

0y 14121125136 142143144¢1551621 68y 70y 80182194 100

Interpolation search O(logz logz N)

Intuition: each iteration prunes the search space by /N

T(n) < C + T(yN)

0y 14121125136 142143144¢1551621 68y 70y 80182194 100

Interpolation search O(logz logz N)

Intuition: each iteration prunes the search space by /N

T(n) < C - logzlogz2 N

0y 14121125136 142143144¢1551621 68y 70y 80182194 100

Interpolation search O(logz logz N)

Intuition: each iteration prunes the search space by /N

T(n) < C - logzlog2 N

I

~ 2

0y 14121125136 142143144¢1551621 68y 70y 80182194 100

Interpolation search O(logz logz N)

Intuition: each iteration prunes the search space by /N

T(n) < C - logzlog2 N

I

~ 2

0y 14121125136 142143144¢1551621 68y 70y 80182194 100

For details, check our reading for this week.

Now suppose the data is geometrically increasing

D0 ¢ D1 4 D2 ¢ D3 D4 4 DO g D6 ¢ D7 4y D8 4 D9 D104 D11 D12 4913 4 D14 4 D15

Now suppose the data is geometrically increasing

.] X - min
Estimated location= | —
| max - min

I

- (#slots - 1)

D0 ¢ D1 4 D2 ¢ D3 D4 4 DO g D6 ¢ D7 4y D8 4 D9 D104 D11 D12 4913 4 D14 4 D15

get(211)

.] X - min
Estimated location= | —
| max - min

I

- (#slots - 1)

D0 ¢ D1 4 D2 ¢ D3 D4 4 DO g D6 ¢ D7 4y D8 4 D9 D104 D11 D12 4913 4 D14 4 D15

get(2')

| 211. 20
215 . 90

|
o

Estimated location =

20 ¢ D1 y D2 4y D3 4y D4 4 D5 ¢ D6 4 D7 4 D8 4y D9 D10 4911 D12 D13 D14 D15

get(2')

| 211 .20
215 - 90

|
o

Estimated location =

D0 ¢ D1 4 D2 ¢ D3 D4 4 DO g D6 ¢ D7 4y D8 4 D9 D104 D11 D12 4913 4 D14 4 D15

 r-—
Recurse on this partition

get(2')

| 211 21
215 . D1

|
o

Estimated location =

D0 ¢ 91 ¢ D2 4y D3 4y D4 4 D5 4 D6 4 D7 4 D8 4y D9 D10 4911 D12 D13 D14 4 D15

 r-—
Recurse on this partition

get(2')

| 211 21
215 . D1

|
o

Estimated location =

D0 ¢ D1 4 D2 ¢ D3 D4 4 DO g D6 ¢ D7 4y D8 4 D9 D104 D11 D12 4913 4 D14 4 D15

 r— - 9
Recurse on this partition

get(2')

| 211 .92
215 . 92

|
o

Estimated location =

D0 ¢ D1 4 922 4 D3 4y D4y D5 4 D6 4 D7 4 D8 4y D9 D10 4911 D12 D13 D14 4 D15

 r— - 9
Recurse on this partition

get(2')

| 211 .92
215 . 92

|
o

Estimated location =

D0 ¢ D1 4 922 4 D3 4y D4y D5 4 D6 4 D7 4 D8 4y D9 D10 4911 D12 D13 D14 4 D15

 r—ee-e- =
Recurse on this partition

get(2')

| 211.923
215 . 93

|
o

Estimated location =

D0 ¢ D1 ¢ D2 4 93 4 D4 4 D5y D6 4 D7 4 D8 4y D9 D10 4911 D12 D13 D14 D15

 r—-oooonmoomouonuoomnonnononnnrmm—— ——
Recurse on this partition

get(2')

| 211.923
215 . 93

|
o

Estimated location =

D0 ¢ D1 ¢ D2 4 93 4 D4 4 D5y D6 4 D7 4 D8 4y D9 D10 4911 D12 D13 D14 D15

Recurse on this partition

get(2')

Find target after O(N) iterations

D0 ¢ D1 ¢ D2 4 923 4 D4 4 D5y D6 4 D7 4 D8 4y D9 D10 ,211 D12 D13 D14 4 D15

Interpolation search

Lij I
Uniform Worst-case

O(log2log2 N) O(N)

CPU overheads?

CPU overheads

.] X - min
Estimated location= | ——
| max - min

Al

. (#slots - 1)

CPU overheads

. | X - min
Estimated location =

| ——— - (#slots-1) |
I max - min *

Al

3 subtractions
1 multiplication
1 division

CPU overheads

| | L X - min |
Estimated location= | = - (#slots-1) |
| max - min |
3 subtractions ~ 6 cycles each
1 multiplication ~ 6 cycles

1 division ~ 30 - 60 cycles

CPU overheads

| | L X - min |
Estimated location= | = - (#slots-1) |
max - min |
3 subtractions ~ 6 cycles each
1 multiplication ~ 0 cycles
1 division ~ 30 - 60 cycles

For small data, binary search may win as there is no division.

CPU overheads

| | L X - min |
Estimated location= | = - (#slots-1) |
max - min |
3 subtractions ~ 6 cycles each
1 multiplication ~ 0 cycles
1 division ~ 30 - 60 cycles

For small data, binary search may win as there is no division.

As the data grows, interpolation search is likely faster.

Interpolation search works well for uniform data

Universe U

Interpolation search works well for uniform data

Insight: when data is predictable, we can tailor better access methods

Universe U

But data often follows idiosyncratic patterns

T |
Universe U

Position In
array

Universe U

cumulative distribution function (CDF)

Position In
array

Universe U

Insight: at each segment, it’s easy to predict an entry’s position

Position In
array

Universe U

Learned Indexes: Learn the data distribution to predict an entry’s position

Position In
array

Universe U

Learned Indexes: Learn the data distribution to predict an entry’s position

Position In
array

Universe U

Partition the data into predictable segments

The Case for Learned Index Structures
Tim Kraska , Alex Beutel , Ed H. Chi , Jeffrey Dean , Neoklis Polyzotis
SIGMOD 2018

The Case for Learned Index Structures
Tim Kraska , Alex Beutel , Ed H. Chi , Jeffrey Dean , Neoklis Polyzotis
SIGMOD 2018

Vision paper, and algorithmic details can be vague

FITing-Tree: A Data-aware Index Structure
Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, Tim Kraska

SIGMOD 2019

FITing-Tree: A Data-aware Index Structure

Position

Universe U

approximate distribution using piecewise linear functions

Position

Universe U

approximate distribution using piecewise linear functions

Ensure each point has max distance of e from its function

Position <e

Universe U

Ensure each point has max distance of e from its function
Why?

Position <e

Universe U

Why? To bound the search space size due to an inaccurate prediction

v

Position

Universe U

constrained optimization problem

Position

Universe U

constrained optimization problem:

Model distribution using least number of segments while ensuring all points
are within e positions of prediction

Position

Universe U

Model distribution using least number of segments while ensuring all points
are within e positions of prediction

propose an algorithm for this!

Position

Universe U

There is a O(N?) optimal algorithm - too expensive

Position

Universe U

There is a O(N?) optimal algorithm - too expensive

How about a O(N) approximate algorithm?

Position

Universe U

Add first two points into segment while maintaining “maximal cone”

Position

Universe U

Add first two points into segment while maintaining “maximal cone”

Position

Universe U

Add first two points into segment while maintaining “maximal cone”

If next point is within cone, add it to segment & narrow cone accordingly

Position

Universe U

Add first two points into segment while maintaining “maximal cone”

If next point is within cone, add it to segment & narrow cone accordingly

Position

Universe U

Add first two points into segment while maintaining “maximal cone”

If next point is within cone, add it to segment & narrow cone accordingly

°
°
iy o ..,o * ®
Position e T
. Not in cone,

so seal existing one

Universe U

Add first two points into segment while maintaining “maximal cone”

If next point is within cone, add it to segment & narrow cone accordingly

Position

| Any linear function
within cone will due

Universe U

Add first two points into segment while maintaining “maximal cone”

If next point is within cone, add it to segment & narrow cone accordingly

Position
Start afresh

Universe U

Add first two points into segment while maintaining “maximal cone”

If next point is within cone, add it to segment & narrow cone accordingly

Position

Universe U

Add first two points into segment while maintaining “maximal cone”

If next point is within cone, add it to segment & narrow cone accordingly

® Until

- finished
Position

Universe U

Each segment is characterized by starting point and slope

®/(start1, slope)

Position

° (starto, slopeo)

Universe U

Place in B-tree node, sorted by starting point

(starto, slopeo, pointero), (starty, slope1, pointery), ...

Universe U

Place in B-tree node, sorted by starting point

(starto, slopeo, pointero), (starty, slope1, pointery), ...

—

Universe U

Place in B-tree node, sorted by starting point

| 0 l 1 1211251361421431

Store as a B-tree

l(starto, pointero) ... J

N

Store as a B-tree

Store as a B-tree

Root | |

Internal —_— - i
| | |
nodes

" "

Root

Internal
nodes

Store as a B-tree

How to query this tree? e.g., get(15)

Root | |

Internal -— = | S — |
nodes |

AN N

N R N R

How to query this tree?

(1) traverse B-tree

How to query this tree? (1) traverse B-tree
(2) Find starting segment

How to query this tree? (1) traverse B-tree

(2) Find starting segment
(3) interpolate using slope

Position prediction = start + (key - start) / slope

How to query this tree?

(1) traverse B-tree

(2) Find starting segment

(3) interpolate using slope

(4) add prediction to pointer and access array

. (start1, slope1, pointery) ...

1) traverse B-tree

How to query this tree? (1)

(2) Find starting segment
(3)

(

3) interpolate using slope
4) add prediction to pointer and access array
(5) binary search within max error bounds

- (\{\ / +e

1) traverse B-tree

(
(2) Find starting segment
(

How to query this tree?)
)

3) interpolate using slope
)
)

4) add prediction to pointer and access array
5) binary search within max error bounds

(
(
Query cost?

- (\{\ / +e

1) traverse B-tree

(
(2) Find starting segment
(

How to query this tree?)
)

3) interpolate using slope
)
)

4) add prediction to pointer and access array
5) binary search within max error bounds

(
(
Query cost? O(log(#segments) + log(e))

- (\{\ / +e

Query cost? O(log(#segments) + log(e))

1 1

The more predictable the data is, the more the cost drops

-6 N\ \ / +e

How to handle updates?

How to handle updates? (1) separate segments into contiguous chunks

How to handle updates? (1) separate segments into contiguous chunks
(2) employ sorted insert buffer for each segment

Inseﬂs

. D Sorted
Segment

Sorted
Buffer

How to handle updates? (1) separate segments into contiguous chunks
(2) employ sorted insert buffer for each segment
(3) merge buffer into segment at threshold size

Merge -sort

Sorted ' D Sorted
Buffer Segment

How to handle updates? (1) separate segments into contiguous chunks
(2) employ sorted insert buffer for each segment
(3) merge buffer into segment at threshold size
(4) rerun segmentation (cone) algorithm

" Sorted
. Segment

How to handle updates? 1) separate segments into contiguous chunks
2) employ sorted insert buffer for each segment
3) merge buffer into segment at threshold size
4) rerun segmentation (cone) algorithm

(
(
(
(

(5) if segment splits, update parent/s

8
/\
U scomen

How to handle updates? (1) separate segments into contiguous chunks
(2) employ sorted insert buffer for each segment
(3) merge buffer into segment at threshold size
(4) rerun segmentation (cone) algorithm

(9)

5) if segment splits, update parent/s

Thus, FITing tree depends heavily on insertion order

8
/\
U scomen

Flaw 1: Thus, FITing tree depends heavily on insertion order

Flaw 2: Worst-case query cost depends on O(log(#segments))

Predictable Unpredictable

T — S —
Universe

Better Worst- Exploiting Data
Case Distribution

AVL-Tree B-Tree T-Tree Interpolation FITing-Tree
search

CSS-Tree CSB-Tree HOT

