
In-Memory Indexing

Niv Dayan - CSC2525 Research Topics in Database Management

Animal Table

Select * from animals where name = “gorilla”

Horse

gorilla

Cat

Squid

How to find quickly without a full scan?

Indexes

Indexes

You have learned about

Binary trees Hash tables

Indexes

You have learned about

Binary trees Hash tables

Not a good fit for disks or SSDs (from CSC443)

memory SSD diskCPU caches

Slow & cheapExpensive & fast

The memory Hierarchy

Indexes stored hereNot enough space

Indexes

Block-addressable
4-16 KB

Indexes

Goal: minimize block I/Os

Read I/O

Write I/O

Indexes for Storage
(in CSC443)

B-Trees Log-Structured
Merge-Trees

…

…

…

Merge

Circular Log

Index

1970 1996 2000’s

These are not a good fit for disks or SSDs
More memory

Cheaper writesCheaper queries

B-Trees Log-Structured
Merge-Trees

…

…

…

Merge

Circular Log

Indexes for Storage
(in CSC443)

Index

Indexes can fit
here

Indexes can fit
here

New Design Goals!

Cache miss
(≈100 cycles)

CPU register

Cache miss

(≈100 cycles)

CPU register

Goal 1: Minimize Cache Misses

Physical DRAM 4KB pages

Physical DRAM 4KB pages

Virtual Memory in 4KB pages

Mapping

Physical DRAM 4KB pages

Virtual Memory in 4KB pages

0 1 2 43 5 6

0 1 2 3 4 5 6

Mapping
Stored in known location in

physical DRAM
2 3

4 1
…

…

…

Mapping
Stored in known location in

physical DRAM

2 3

4 1
…

…

…

…

Translation
Lookaside Buffer

(TLB) in SRAM

Mapping

Stored in known location in
physical DRAM

4 1
…

…

miss
(≈100 cycles)

2 3
…

…

Translation
Lookaside Buffer

(TLB) in SRAM

Mapping

Stored in known location in
physical DRAM

Goal 2: Minimize TLB Misses

4 1
…

…

2 3
…

…

miss
(≈100 cycles)

Translation
Lookaside Buffer
(TLB) in SRAM

Design goals

Minimize Cache
Misses

Minimize TLB
Misses

Design goals

Minimize Cache
Misses

Minimize TLB
Misses

Maximize
Parallelism (SIMD
& multi-threading)

Design goals

Minimize Cache
Misses

Minimize TLB
Misses

Maximize
Parallelism

Minimize
Space overheads

Terms

B: # entries per cache line

N: # entries in dataset

Terms

B: # entries per cache line

N: # entries in dataset

Assume a cache line is 128B and a key is 4B
B = 32

Terms

B: # entries per cache line

N: # entries in dataset

Assume a cache line is 128B and a key is 4B
B = 32

Block size is far smaller than in disk access model

Improvements Along Two Areas

Better Worst-
Case

Exploiting Data
Distribution

Exploiting Data
Distribution

AVL-Tree T-Tree

CSS-Tree CSB-Tree HOT

1962 1985

1998 2000 2018

Interpolation
search

FITing-Tree

20191959

Better Worst-
Case

B-Tree
1970

AVL-Tree

5

6

AVL-Tree

Self-balance on
inserts

5

6

7

5

6

7

Requires holding
multiple latches

(damages
concurrency)

5

6

7

Pointers create >3X metadata overhead

5 67

Virtual Memory

Each node may be on a different virtual page

5 67

Each node may be on a different virtual page

Worst case 1 TLB miss and 1 cache miss per node
(≈200 cycles)

Virtual Memory

5 67

2 · log2(N)

Virtual Memory

Cache misses per search

Better Worst-
Case

AVL-Tree B-Tree CSS-Tree CSB-Tree HOT
1962 1970 1998 2000 2018

T-Tree
1985

B-Tree

B

B B

B-Tree

B

B B

Set each node to be the size of a cache line

B-Tree

B

B B

Set each node to be the size of a cache line

We expect O(logB N)

B-Tree

B

B B

Set each node to be the size of a cache line

We expect O(logB N)

Do we get it? Why or why not?

B-trees Page Organization

<Key, Pointer><Key, Pointer> <Key, Pointer><Key, Pointer>< padding >

<Key, Pointer><Key, Pointer><Key, Pointer><Key, Pointer>< padding >

Space overheads

<Key, Pointer><Key, Pointer><Key, Pointer><Key, Pointer>< padding >

Space overheads

Real fanout: B/4 (e.g., 8 rather than 32)

<Key, Pointer><Key, Pointer><Key, Pointer><Key, Pointer>< padding >

Space overheads

log B/4 (N) cache misses

<Key, Pointer><Key, Pointer><Key, Pointer><Key, Pointer>< padding >

Space overheads

log B/4 (N) cache misses

Space overheads also harm scans

Better Worst-
Case

AVL-Tree B-Tree CSS-Tree CSB-Tree HOT
1962 1970 1998 2000 2018

T-Tree
1985

T-Tree

A study of index structures for main memory database management systems
Technical Report. 1985

T-Tree: an AVL-Tree with Fat Nodes

3, 5, 6, 8

10, 11, 13, 16

20, 23, 24, 25

T-Tree: an AVL-Tree with Fat Nodes

3, 5, 6, 8

10, 11, 13, 16

20, 23, 24, 25

A node can’t intersect with its sub-trees in key range

Self-Balancing is Identical to AVL-Tree

26, 28, 30, 33

10, 11, 13, 16

20, 23, 24, 25

Self-Balancing is Identical to AVL-Tree

10, 11, 13, 16

20, 23, 24, 25

26, 28, 30, 33

10, 11,

20, 23,

26, 28,

Pros: (1) Less metadata relative to data

10, 11,

20, 23,

26, 28,

Pros: (1) Less metadata relative to data
(2) Fewer rotations

10, 11, 13, 16

20, 23, 24, 25

26, 28, 30, 33

search cost? (In terms of B and N)

6, 7, 8, 9

1, 2, 3, 4

10, 11, 13, 16

20, 23, 24, 25

26, 28, 30, 33

search cost? (In terms of B and N)

6, 7, 8, 9

1, 2, 3, 4

We only prune the search space by 2x per node

10, 11, 13, 16

20, 23, 24, 25

26, 28, 30, 33

search cost? (In terms of B and N)

6, 7, 8, 9

1, 2, 3, 4

We only prune the search space by 2x per node
O(log2(N/B)) cache misses

Better Worst-
Case

AVL-Tree B-Tree CSS-Tree CSB-Tree HOT
1962 1970 1998 2000 2018

T-Tree
1985

Cache-Sensitive Search-Tree (CSS-Tree)

Cache-Sensitive Search-Tree (CSS-Tree)

Cache conscious indexing for decision-support in main memory
VLDB 1999.

Cache-Sensitive Search-Tree (CSS-Tree)

Cache conscious indexing for decision-support in main memory

VLDB 1999.

static data

Cache-Sensitive Search-Tree (CSS-Tree)

static sorted array

Cache-Sensitive Search-Tree (CSS-Tree)

Each node the size
of a cache line

1

2

3 3…

… 2

3 3…

static sorted array

Cache-Sensitive Search-Tree (CSS-Tree)

1

2

3 3…

… 2

3 3…

static sorted array

CL 1 CL 2 CL 3 CL 4 CL 5 CL 6 CL 7 CL = cache line

1 2 2 3 3 3 3

static sorted array

Stored as dense array in breadth-first order

CL 1 CL 2 CL 3 CL 4 CL 5 CL 6 CL 7 CL = cache line

No padding or pointers among nodes (arithmetic is used to find child)

1 2 2 3 3 3 3

Stored as dense array in breadth-first order

CL 1 CL 2 CL 3 CL 4 CL 5 CL 6 CL 7 CL = cache line

No padding or pointers among nodes (arithmetic is used to find child)

1 2 2 3 3 3 3

LogB N Cache misses

Stored as dense array in breadth-first order

Requires full reconstruction to handle updates

CL 1 CL 2 CL 3 CL 4 CL 5 CL 6 CL 7

1 2 2 3 3 3 3

Better Worst-
Case

CSS-Tree CSB-Tree HOT
1998 2000 2018

AVL-Tree B-Tree
1962 1970

T-Tree
1985

Cache-Sensitive B-Tree (CSB-Tree)

40, 50

10, 30 43, 48 51, 55

35, 37 44, 47 49, 50

40, 50

10, 30 43, 48 51, 55

35, 37 44, 47 49, 50

All children of a node are stored contiguously in “node group”

40, 50

10, 30 43, 48 51, 55

35, 37 44, 47 49, 50

All children of a node are stored contiguously in “node group”
Most pointers are eliminated (only one needed per node group)

40, 50

 30 43, 48 51

35, 44, 47 49

All children of a node are stored contiguously in “node group”

Padding is still needed to absorb insertions
Most pointers are eliminated (only one needed per node group)

40, 50

 30 43, 48 51

35, 44, 47 49

All children of a node are stored contiguously in “node group”

Padding is still needed to absorb insertions
Most pointers are eliminated (only one needed per node group)

B nodes per node group due to fanout of tree

Fanout is B/2 rather than B/4

40, 50

 30 43, 48 51

35, 44, 47 49

Depth: O(logB/2(N))

40, 50

 30 43, 48 51

35, 44, 47 49

Fanout is B/2 rather than B/4

Write cost?

40, 50

 30 43, 48 51

35, 44, 47 49

Every B/2 insertions, a leaf splits, causing us to rewrite a node group

40, 50

 30 43, 48 51

35, 44, 47 49

Write cost?

Every B/2 insertions, a leaf splits, causing us to rewrite a node group

40, 50

 30 43, 48 51

35, 44, 47 49

Which costs O(B) cache misses

Write cost?

Every B/2 insertions, a leaf splits, causing us to rewrite a node group

40, 50

 30 43, 48 51

35, 44, 47 49

Which costs O(B) cache misses
O(logB/2(N) + B / (B/2))

Write cost?

Every B/2 insertions, a leaf splits, causing us to rewrite a node group

40, 50

 30 43, 48 51

35, 44, 47 49

Which costs O(B) cache misses
O(logB/2(N))

Write cost?

Better Worst-
Case

AVL-Tree B-Tree CSS-Tree CSB-Tree HOT
1962 1970 1998 2000 2018

T-Tree
1985

Better Worst-
Case

AVL-Tree B-Tree CSS-Tree CSB-Tree HOT
1962 1970 1998 2000 2018

T-Tree
1985

Pres after

Exploiting Data
Distribution

AVL-Tree T-Tree

CSS-Tree CSB-Tree HOT

1962 1985

1998 2000 2018

Interpolation
search

FITing-Tree

20191959

Better Worst-
Case

B-Tree
1970

Universe U

Universe U

Binary search

O(log2 N)

Tree search

O(log2 N) cycles

O(logB N) I/O

Universe U

These methods’ performance is independent of data distribution

Universe U

Tree search Binary search

Can we exploit the data distribution to speed up search?

Universe U

Can we exploit the data distribution to speed up search?

Universe U

Fixed intervals

Can we exploit the data distribution to speed up search?

Universe U

Uniform distribution

Can we exploit the data distribution to speed up search?

Universe U

Normal distribution

Can we exploit the data distribution to speed up search?

Universe U

Bi-modal distribution

Interpolation Search

W. Wesley Peterson

Addressing for Random-Access Storage
IBM Journal of Research and Development. 1959

Interpolation Search

Universe U

Uniform distribution

Interpolation Search

Universe U

Uniform distribution - e.g., sorted array of hash values

Interpolation Search

Array

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation Search

Array

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(X)

Array

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(X)

Estimated location =
max - min

· (#slots - 1)
X - min

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =
100 - 0

· 15
42 - 0

=

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =
100 - 0

· 15
42 - 0

= 6

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =
100 - 0

· 15
42 - 0

= 6

Recurse on this partition

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =
42 - 0

· 5
42 - 0

Recurse on this partition

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =
42 - 0

· 5
42 - 0

= 5

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

get(42)

Estimated location =
42 - 0

· 5
42 - 0

= 5

Found in two steps! As opposed to log2(16) = 4 steps with binary search

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

For uniformly distributed data:

Binary search

Interpolation search O(log2 log2 N)

O(log2 N)

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log2 log2 N)

Intuition: each iteration prunes the search space by √N

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log2 log2 N)

Intuition: each iteration prunes the search space by √N

T(n) < C + T(√N)

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log2 log2 N)

Intuition: each iteration prunes the search space by √N

T(n) < C · log2 log2 N

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log2 log2 N)

Intuition: each iteration prunes the search space by √N

T(n) < C · log2 log2 N

≈ 2

0 1 21 25 36 42 43 44 55 62 68 70 80 82 94 100

Interpolation search O(log2 log2 N)

Intuition: each iteration prunes the search space by √N

T(n) < C · log2 log2 N

≈ 2

For details, check our reading for this week.

20

Now suppose the data is geometrically increasing

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Now suppose the data is geometrically increasing

Estimated location =
max - min

· (#slots - 1)
X - min

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

get(211)

Estimated location =
max - min

· (#slots - 1)
X - min

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =
215 - 20

· 15
211 - 20

get(211)

= 0

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =
215 - 20

· 15
211 - 20

get(211)

= 0

Recurse on this partition

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =
215 - 21

· 14
211 - 21

get(211)

= 0

Recurse on this partition

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =
215 - 21

· 14
211 - 21

get(211)

= 0

Recurse on this partition

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =
215 - 22

· 13
211 - 22

get(211)

= 0

Recurse on this partition

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =
215 - 22

· 13
211 - 22

get(211)

= 0

Recurse on this partition

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =
215 - 23

· 12
211 - 23

get(211)

= 0

Recurse on this partition

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Estimated location =
215 - 23

· 12
211 - 23

get(211)

= 0

Recurse on this partition

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

get(211)

Find target after O(N) iterations

Interpolation search

Worst-caseUniform

O(log2 log2 N) O(N)

CPU overheads?

CPU overheads

Estimated location =
max - min

· (#slots - 1)
X - min

3 subtractions
1 multiplication
1 division

CPU overheads

Estimated location =
max - min

· (#slots - 1)
X - min

3 subtractions

1 multiplication

1 division

≈ 6 cycles each
≈ 6 cycles
≈ 30 - 60 cycles

CPU overheads

Estimated location =
max - min

· (#slots - 1)
X - min

3 subtractions

1 multiplication

1 division

≈ 6 cycles each

≈ 6 cycles

≈ 30 - 60 cycles

For small data, binary search may win as there is no division.

CPU overheads

Estimated location =
max - min

· (#slots - 1)
X - min

3 subtractions

1 multiplication

1 division

≈ 6 cycles each

≈ 6 cycles

≈ 30 - 60 cycles

As the data grows, interpolation search is likely faster.

For small data, binary search may win as there is no division.

CPU overheads

Estimated location =
max - min

· (#slots - 1)
X - min

Interpolation search works well for uniform data

Universe U

Interpolation search works well for uniform data

Universe U

Insight: when data is predictable, we can tailor better access methods

Universe U

But data often follows idiosyncratic patterns

Universe U

Position in
array

Universe U

Position in
array

cumulative distribution function (CDF)

Universe U

Position in
array

Insight: at each segment, it’s easy to predict an entry’s position

Universe U

Position in
array

Learned Indexes: Learn the data distribution to predict an entry’s position

Universe U

Position in
array

Learned Indexes: Learn the data distribution to predict an entry’s position

Partition the data into predictable segments

The Case for Learned Index Structures

SIGMOD 2018
Tim Kraska , Alex Beutel , Ed H. Chi , Jeffrey Dean , Neoklis Polyzotis

The Case for Learned Index Structures

SIGMOD 2018
Tim Kraska , Alex Beutel , Ed H. Chi , Jeffrey Dean , Neoklis Polyzotis

Vision paper, and algorithmic details can be vague

FITing-Tree: A Data-aware Index Structure

SIGMOD 2019
Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, Tim Kraska

Universe U

Position

FITing-Tree: A Data-aware Index Structure

Universe U

Position

approximate distribution using piecewise linear functions

Universe U

Position

approximate distribution using piecewise linear functions
Ensure each point has max distance of e from its function

< e

Universe U

Position

Ensure each point has max distance of e from its function

< e

Why?

Universe U

Position < e

Why? To bound the search space size due to an inaccurate prediction

Universe U

Position

constrained optimization problem

Universe U

Position

constrained optimization problem:
Model distribution using least number of segments while ensuring all points

are within e positions of prediction

Universe U

Position

Model distribution using least number of segments while ensuring all points
are within e positions of prediction

propose an algorithm for this!

Universe U

Position

There is a O(N2) optimal algorithm - too expensive

Universe U

Position

There is a O(N2) optimal algorithm - too expensive
How about a O(N) approximate algorithm?

Universe U

Position

Add first two points into segment while maintaining “maximal cone”

Universe U

Position

Add first two points into segment while maintaining “maximal cone”

Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Not in cone,
so seal existing one

Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Any linear function
within cone will due

Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Start afresh

Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Universe U

Position

Add first two points into segment while maintaining “maximal cone”
If next point is within cone, add it to segment & narrow cone accordingly

Until
finished

Universe U

Position

Each segment is characterized by starting point and slope

(start0, slope0)

(start1, slope1)

Place in B-tree node, sorted by starting point

(start0, slope0, pointer0) ,

Universe U

(start1, slope1, pointer1) , …

Place in B-tree node, sorted by starting point

(start0, slope0, pointer0) ,

Universe U

(start1, slope1, pointer1) , …

Place in B-tree node, sorted by starting point

(start0, slope0, pointer0) , (start1, slope1, pointer1) , …

0 1 21 25 36 42 43 …

…

(start0, pointer0) …

Store as a B-tree

Store as a B-tree

… …

Store as a B-tree

… …

Root

Leaves

Internal
nodes

Store as a B-tree

… …

Array

Root

Leaves

Internal
nodes

How to query this tree?

… …

Array

Root

Leaves

Internal

nodes

e.g., get(15)

How to query this tree? (1) traverse B-tree

How to query this tree? (1) traverse B-tree
(2) Find starting segment

(starti, slopei, pointeri)… …

How to query this tree?
(2) Find starting segment
(3) interpolate using slope

(1) traverse B-tree

(start1, slope1, pointer1)…

Position prediction = start + (key - start) / slope

…

How to query this tree?
(2) Find starting segment
(3) interpolate using slope

(1) traverse B-tree

(4) add prediction to pointer and access array

Array

(start1, slope1, pointer1)… …

pointer1 + prediction

How to query this tree?
(2) Find starting segment
(3) interpolate using slope

(1) traverse B-tree

(4) add prediction to pointer and access array

Array

(5) binary search within max error bounds

+e-e

How to query this tree?
(2) Find starting segment
(3) interpolate using slope

(1) traverse B-tree

(4) add prediction to pointer and access array

Array

(5) binary search within max error bounds

+e-e

Query cost?

How to query this tree?
(2) Find starting segment
(3) interpolate using slope

(1) traverse B-tree

(4) add prediction to pointer and access array

Array

(5) binary search within max error bounds

+e-e

Query cost? O(log(#segments) + log(e))

Array

+e-e

Query cost? O(log(#segments) + log(e))

The more predictable the data is, the more the cost drops

How to handle updates?

… …

…

How to handle updates?

… …

(1) separate segments into contiguous chunks

…

… … … …

How to handle updates?
(2) employ sorted insert buffer for each segment
(1) separate segments into contiguous chunks

Sorted

Buffer

Sorted

Segment

Inserts

How to handle updates?
(2) employ sorted insert buffer for each segment
(1) separate segments into contiguous chunks

(3) merge buffer into segment at threshold size

Sorted

Buffer

Sorted

Segment

Merge-sort

How to handle updates?
(2) employ sorted insert buffer for each segment
(1) separate segments into contiguous chunks

(3) merge buffer into segment at threshold size

Sorted

Segment

(4) rerun segmentation (cone) algorithm

How to handle updates?
(2) employ sorted insert buffer for each segment
(1) separate segments into contiguous chunks

(3) merge buffer into segment at threshold size

Sorted

Segment

(4) rerun segmentation (cone) algorithm
(5) if segment splits, update parent/s

How to handle updates?
(2) employ sorted insert buffer for each segment
(1) separate segments into contiguous chunks

(3) merge buffer into segment at threshold size

Sorted

Segment

(4) rerun segmentation (cone) algorithm
(5) if segment splits, update parent/s

Thus, FITing tree depends heavily on insertion order

Thus, FITing tree depends heavily on insertion orderFlaw 1:

Flaw 2: Worst-case query cost depends on O(log(#segments))

Predictable Unpredictable

Universe

Exploiting Data
Distribution

AVL-Tree T-Tree

CSS-Tree CSB-Tree HOT

1962 1985

1998 2000 2018

Interpolation
search

FITing-Tree

20191959

Better Worst-
Case

B-Tree
1970

