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Practical Perfect Hashing
(Minimal & Dynamic)



Hash Tables



Maps keys to 
random buckets Resolves collisions Expected constant 

time operations 

Hash Tables



Many DB applications 

Hash Join In-memory index Key-value Stores



Collision Resolution

Chaining Open addressing  
(Linear probing, etc) Cuckoo hashing



Collision Resolution relies on storing full keys 

Chaining Open addressing 

(Linear probing, etc) Cuckoo hashing



Problems storing full keys

space 
Keys may be large

Requires indirection 
if keys are var-length 



Perfect Hashing 

Does not store 
the keys 

Higher construction/
insertion overheads to 

resolve collisions

Collision-free 
queries from key 

to payload 



Perfect Hashing 

Does not store 
the keys 

Higher construction/
insertion overheads to 

resolve collisions

Collision-free 
queries from key 

to payload 

Only effective when we query existing keys! Why?



Application Example: Key-value Stores

Index

Data



Key-value Stores

Index

Data



Index can be hash table containing keys (e.g., bitcask)



can we get away with not storing keys?

h(     ) h(     ) h(     ) 



We have seen one solution earlier in the course :)

h(     ) h(     ) h(     ) 

can we get away with not storing keys?



Use a filter (e.g., quotient filter )

h(     ) h(     ) h(     ) 



h(     ) h(     ) h(     ) 

Replace keys with fingerprints to save space

Use a filter (e.g., quotient filter )



non-existing key?Query I/O costs

F bits

existing key?



2-Fnon-existing key?Query I/O costs
existing key?

F bits



2-Fnon-existing key?Query I/O costs
existing key? 1+2-F

F bits



2-Fnon-existing key?Query I/O costs
existing key? 1+2-F

(1) more common 
(2) minimize latency for useful work

Let’s focus on queries to existing keys



Query I/O costs existing key? 1+2-F

Due to fingerprint collisions 



Query I/O costs existing key? 1+2-F

Due to fingerprint collisions 
Can we reduce by increasing F



Query I/O costs existing key? 1+2-F

Due to fingerprint collisions 
Can we reduce by increasing F

Is there a better way?



Perfect Hashing

Minimal

space-efficient 
static data

Dynamic

more space

supports updates



Minimal Perfect Hashing 

Array with N slots 



Minimal Perfect Hashing 

Array with N slots 

A B C D E F G H

N keys 



Minimal Perfect Hashing 

Array with N slots 

A B C D E F G H

N keys 

100% load factor! No extra capacity as with normal hash tables 



Array with N slots 

A B C D E F G H

N keys 

Goal: Establish bijection 
(one-to-one mapping)



Array with N slots 

A B C D E F G H

N keys 

Goal: Establish bijection

(one-to-one mapping)

Collision-free



Array with N slots 

A B C D E F G H

N keys 

What’s the probability of general hash function creating bijection? 



A B C D E F G H

What’s the probability of general hash function creating bijection? 

# possible bijections (permutations)? 
# possible assignments?



What’s the probability of general hash function creating bijection? 

A B C D E F G H

# possible bijections (permutations)? 
# possible assignments?

N!



What’s the probability of general hash function creating bijection? 

A B C D E F G H

# possible bijections (permutations)? 
# possible assignments? NN

N!



What’s the probability of general hash function creating bijection? 

A B C D E F G H

NN

N!



What’s the probability of general hash function creating bijection? 

A B C D E F G H

NN

N!
≈ 2 π N · e-N

By Stirling’s approximation



What’s the probability of general hash function creating bijection? 

A B C D E F G H

lim
N ∞ = 0

What can we do instead? 

≈ 2 π N · e-N



A B C D E F G H

Minimal Perfect 
Hash function 



A B C D E F G H

Minimal Perfect 
Hash function 

Small amount of metadata  
(few bits per entry) 



A B C D E F G H

Minimal Perfect 
Hash function 

Small amount of metadata 

(few bits per entry) 

A data structure 
(Fingerprinting)



A B C D E F G H

Minimal Perfect 
Hash function 

Memory 
(Bits / entry) Query cost Construction time

A data structure

(Fingerprinting)



Fingerprinting

Fast and Scalable Minimal Perfect Hashing for Massive Key Sets. SEA 2017. 
Antoine Limasset, Guillaume Rizk, Rayan Chikhi, Pierre Peterlongo.

Retrieval and Perfect Hashing using Fingerprinting. JEA 2014.  
Ingo Müller, Peter Sanders, Robert Schulze & Wei Zhou.

Perfect Hashing for Network Applications. ISIT 2006. 
Yi Lu, Balaji Prabhakar, Flavio Bonomi.

Meraculous: de novo genome assembly with short paired-end reads. PloS one 2011. 
Jarrod A. Chapman ,Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P. Schroth, Daniel S. Rokhsar

Fingerprinting-based Minimal Perfect Hashing Revisited. JEA 2023.  
Piotr Beling.



Accessible & Experimental

Fast and Scalable Minimal Perfect Hashing for Massive Key Sets. SEA 2017. 
Antoine Limasset, Guillaume Rizk, Rayan Chikhi, Pierre Peterlongo.

Fingerprinting
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Hash3

Check bitmaps until finding 1

First 1 at global offset 10
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# trials across all entries until success

Also our construction time :)
# times each entry is hashed 
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Worst Case Query cost?
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Worst Case Query cost?
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Worst Case Query cost?

1

1

0
0
0

0

= log       (N)1.58

1
0
1
0
1
1



Worst Case Query cost?
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Is it really so bad?
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Is it really so bad?

Only for very few entries we must go to end

1
0
1
0
1
1



1

1

0
0
0

0

expected worst-case query cost?

1
0
1
0
1
1



1

1

0
0
0

0

expected worst-case query cost?

1 access to first bit map

1
0
1
0
1
1



1

1

0
0
0

0

expected worst-case query cost?

1 access to first bit map

(1 - e-1) chance to access second 
1
0
1
0
1
1



1

1

0
0
0

0

expected worst-case query cost?

1 access to first bit map

(1 - e-1) chance to access second 
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Construction 

O(1)

O(log N)
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Memory (bits)

Is this the best we can do? 



Lower Bound for Minimal Perfect Hashing 



Lower Bound for Minimal Perfect Hashing 

Analyze with respect 
to specification

Assume nothing 
about implementation 



Lower Bound for Minimal Perfect Hashing 

Analyze with respect 
to specification

Assume nothing 
about implementation 

N - # entries
Bijective (one-to-one)



|MPH|  +  ???  ≥  |Permutation|

Lower Bound for Minimal Perfect Hashing (MPH)



|MPH|  +  ???  ≥  |Permutation|

Lower Bound for Minimal Perfect Hashing (MPH)

What data must we add to transform MPH into permutation? :)



|MPH|  +  ???  ≥  |Permutation|

Lower Bound for Minimal Perfect Hashing (MPH)

What data must we add to transform MPH into permutation? :)

The data itself!    N · log2(N)



|MPH|  +  N · log2(N)  ≥  |Permutation|

Lower Bound for Minimal Perfect Hashing (MPH)



|MPH|  +  N · log2(N)  ≥  |Permutation|

Lower Bound for Minimal Perfect Hashing (MPH)

How big is this?



|MPH|  +  N · log2(N)  ≥  log2(N!)

Lower Bound for Minimal Perfect Hashing (MPH)

How big is this?



|MPH|  +  N · log2(N)  ≥  N · log2(N) + N · log2(e)

Lower Bound for Minimal Perfect Hashing (MPH)

By Stirling’s approximation



|MPH|  ≥  N log2(e)

Lower Bound for Minimal Perfect Hashing (MPH)

We’re done :)



N · log2(e)

Lower Bound Fingerprinting

N · e



N · log2(e)

Not far off, but also not there… 

Lower Bound Fingerprinting

N · e



N · log2(e)

Not far off, but also not there… 

Lower Bound Fingerprinting

N · e

Other methods push memory footprint lower :)



Perfect Hashing

Minimal

space-efficient 
static data

Dynamic

more space

supports updates



Dynamic Perfect Hashing

A B C D E F

N keys 

more than N slots 



Dynamic Perfect Hashing

Some slots can stay free

A BCD EF



Dynamic Perfect Hashing

Some slots can stay free

A BCD EF

More flexibility :)



Dynamic Perfect Hashing

A B C D E F

Perfect Hash 
function 



Dynamic Perfect Hashing

A B C D E F

Perfect Hash 
function 

Just a data structure to 
ensure no collisions :)



Dynamic Perfect Hashing
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Perfect Hash 
function 

Just a data structure to 
ensure no collisions :)

Can handle insertions!



Dynamic Perfect Hashing

A B C D E F

Perfect Hash 
function 

Just a data structure to 
ensure no collisions :)

Can handle insertions!

G



Dynamic Perfect Hashing

A B C D E F

Perfect Hash 
function 

Just a data structure to 
ensure no collisions :)

Can handle insertions!

G

By adapting hash function



Dynamic Perfect Hashing

The End of Moore's Law and the Rise of the Data Processor. VLDB 2021.  
Niv Dayan, Moshe Twitto, Yuval Rochman, Uri Beitler, Itai Ben Zion, Edward Bortnikov, 
Shmuel Dashevsky, Ofer Frishman, Evgeni Ginzburg, Igal Maly, Avraham Meir, Mark 
Mokryn, Iddo Naiss, Noam Rabinovich

Storing a Sparse Table with 0(1) Worst Case Access Time. JACM 1984.  
ML Fredman, J Komlós, E Szemerédi

Many more… 



Dynamic Perfect Hashing

The End of Moore's Law and the Rise of the Data Processor. VLDB 2021.  
Niv Dayan, Moshe Twitto, Yuval Rochman, Uri Beitler, Itai Ben Zion, Edward Bortnikov, 
Shmuel Dashevsky, Ofer Frishman, Evgeni Ginzburg, Igal Maly, Avraham Meir, Mark 
Mokryn, Iddo Naiss, Noam Rabinovich

space-efficient, used in practice



Delta Hash Table

hash(X) = 0 1 0 1 0 0 1 1 0

hash(Y) =

1 0 1 1 0 0

0 1 0 1 0 0 1 1 0 1 0 1 1 0 1

…

…



Delta Hash Table

Same slot

hash(X) = 0 1 0 1 0 0 1 1 0

hash(Y) = 0 1 0 1 0 0 1 1 0

1 0 1 1 0 0

1 0 1 1 0 1

…

…



Delta Hash Table

1 0 1 1 0 0

1 0 1 1 0 1

…

…

hash(X) =

hash(Y) =



Build Trie capturing index of first different bit
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Build Trie capturing index of first different bit
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Build Trie capturing index of first different bit
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Build Trie capturing index of first different bit
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Build Trie capturing index of first different bit
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Build Trie capturing index of first different bit
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Build Trie capturing index of first different bit
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Place pointer/payload in leafs
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Existing keys are fully differentiated
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Existing keys are fully differentiated
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A query to an existing key always 
finds correct payload



How about a query to non-existing key?
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Since this encoding is var-length, 
how do we store it in the hash table? 

Note: all fields are self-delimiting 

Indices



# entries Topology
0 0 0 1111011 01 00

Pointers
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Variable-length slot

Indices
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Fixed-sized block 
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Multiple Variable-length slots

blocks

…

hash(        ) = 0 1 0 1 0 0 1 1 0X 1 0 1 1 0 0 …

Block ID Slot ID Fingerprint 



X Hash entry to some slot in 
some block



X

Scan from 
start of block

Hash entry to some slot in 
some block



X

insertion pushes all 
other slots to right

Hash entry to some slot in 
some block



Overflow 



extension block



extension block

With more slots per block…

(1) (2)



extension block

With more slots per block…

(1) Less size variability 
-> fewer overflows 

(2) More to traverse 
for queries/inserts 



extension block

The structure is not expandable and tuned 
to support on avg. 1 entry per slot

e.g., 64 slots per block



extension block

How large is each slot?



How large is each slot?

Topology Indices#entries Pointers



#entries

Slot size X Encoding #Bits



0

Slot size X

0

Encoding #Bits

1

#entries



0

Slot size X

0

Encoding #Bits

1

1 10 2

#entries



0

Slot size X

0

Encoding #Bits

1

1 10 2

2 110 3

1

YX

0

#entries



0

Slot size X

0

Encoding #Bits

1

1 10 2

2 110 3

3 1110 4

10

Z
1

YX

0

#entries



0

Slot size X

0

Encoding #Bits

1

1 10 2

2 110 3

3 1110 4

4 11110 5

10

1

YX

01

QZ

0

#entries



0

Slot size X

0

Encoding #Bits

1

1 10 2

2

3

4

5

110

1110

11110

111110

3

4

5

6

10

1

YX

0

1

QZ

0

1

W

0

#entries



How large is each slot?
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How large is each slot?

Topology Indices#entries Pointers
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hash(X) = 0 1 0 1 0 …

diff with prob 0.5
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Avg. of geometric dist. with prob 0.5

First diff bit occurs after 
2 bits in expectation 
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Topology Indices#entries

How large is each slot?



Average

Topology(i) Indices(i)#entries(i) + +( )



Average

Topology(i) Indices(i)#entries(i) + +( )Poisson(1, i) ·∑
i=0

∞



Average

Topology(i) Indices(i)#entries(i) + +( )Poisson(1, i) ·∑
i=0

∞
≈ 3 bits



extension block

# bits in block containing X slots should be at least

X · (3 + pointer_size)



extension block

# bits in block containing X slots should be at least

X · (3 + pointer_size + 1)

Reduce overflows



# bits in block containing X slots should be at least

X · (3 + pointer_size + 1)

Reduce overflows



Summary

Fingerprinting Delta Hash 
Table

Memory

Avg. query

Insertions

≈ e · N ≈ 4 · N

O(1) O(1)

Load factor 100% ≈ 90%

N/A O(1)



Fingerprinting Delta Hash 
Table

Memory

Avg. query

Insertions

≈ e · N ≈ 4 · N

O(1) O(1)

Load factor 100% ≈ 90%

N/A O(1)

Construction O(N) O(N)



And now, a student 
presentation


