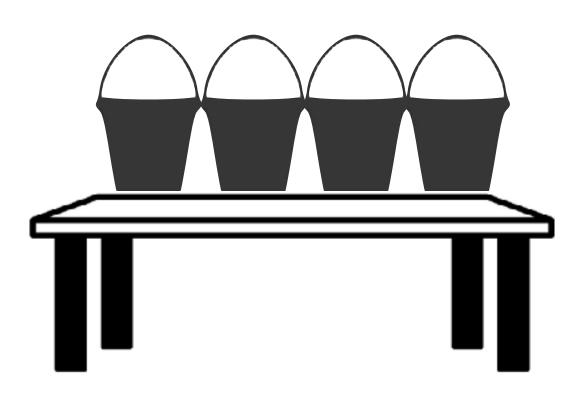
Practical Perfect Hashing

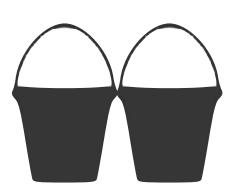
(Minimal & Dynamic)

Niv Dayan - CSC2525 Research Topics in Database Management

Hash Tables



Hash Tables



Resolves collisions

Expected constant time operations

Many DB applications

Hash Join

In-memory index

Key-value Stores

Collision Resolution

Chaining

Collision Resolution relies on storing full keys

Chaining

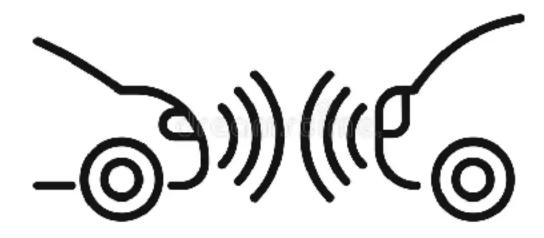
Problems storing full keys

spaceKeys may be large

Requires indirection if keys are var-length

Perfect Hashing

Does not store the keys

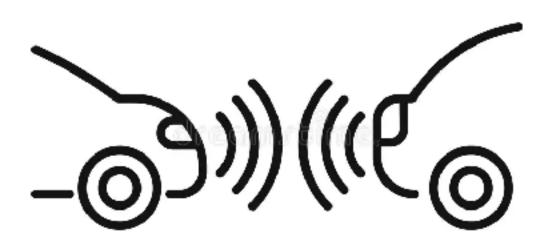


Collision-free queries from key to payload

Higher construction/ insertion overheads to resolve collisions

Perfect Hashing

Does not store the keys

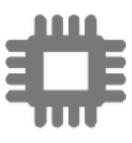


Collision-free queries from key to payload

Higher construction/ insertion overheads to resolve collisions

Only effective when we query existing keys! Why?

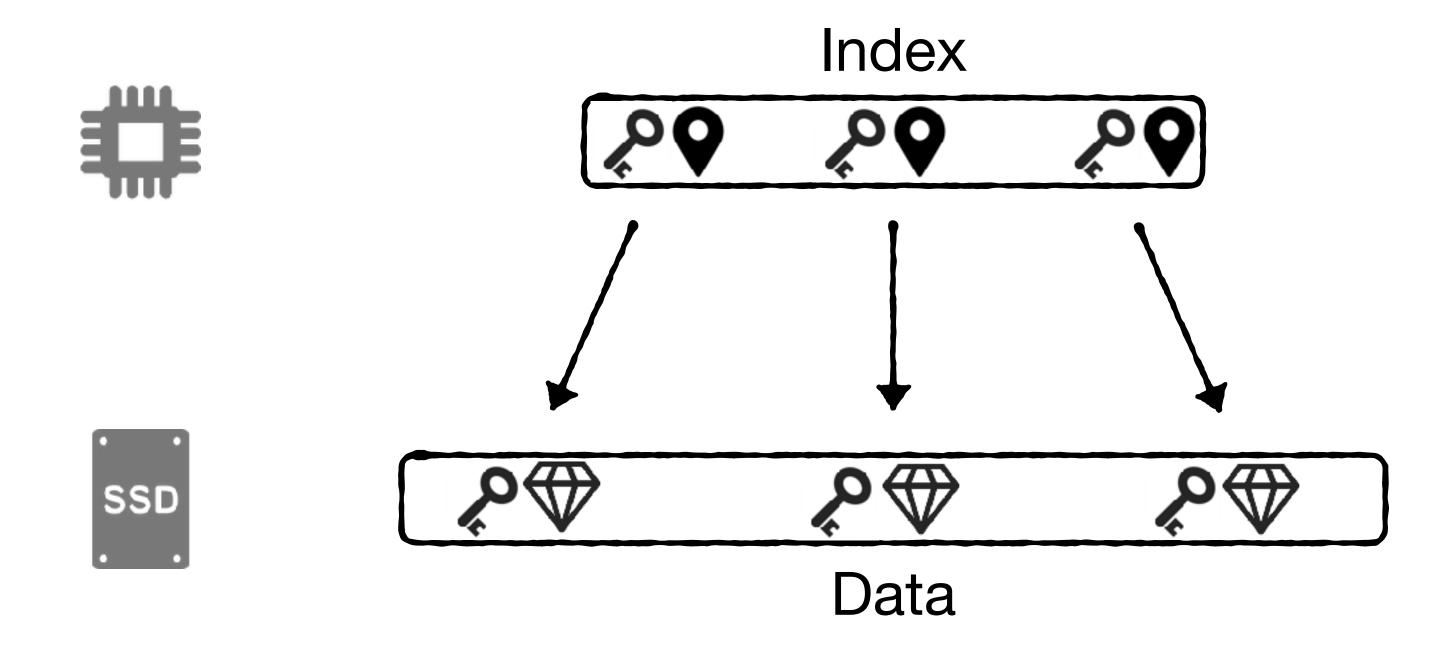
Application Example: Key-value Stores



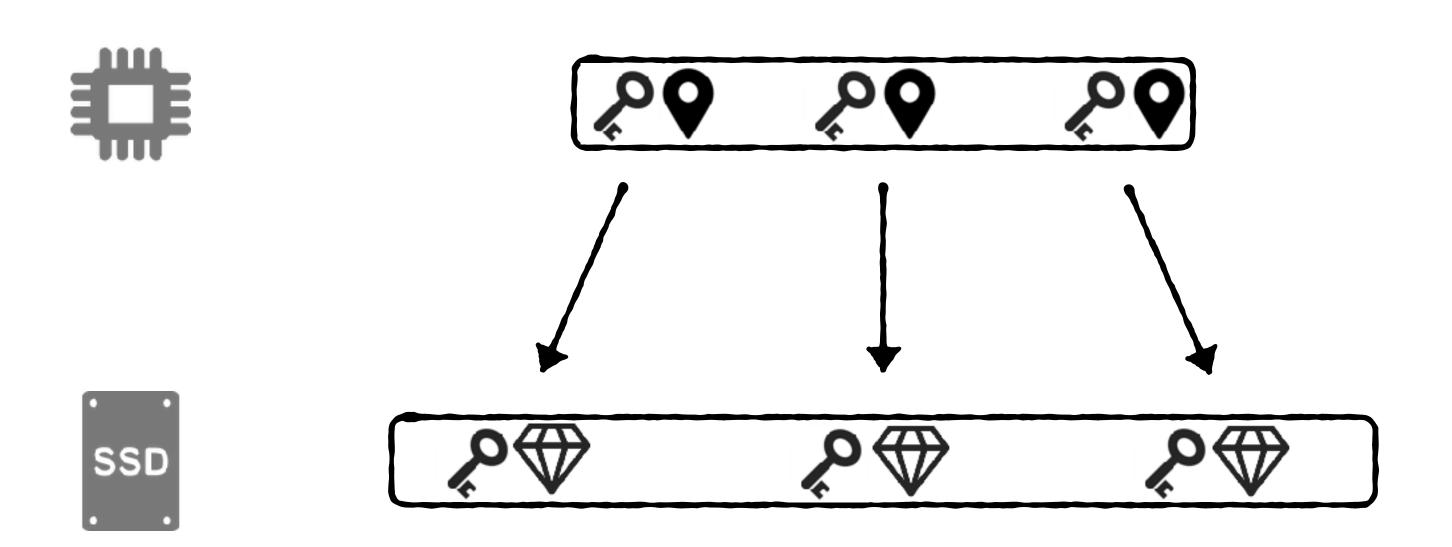
Index

Data

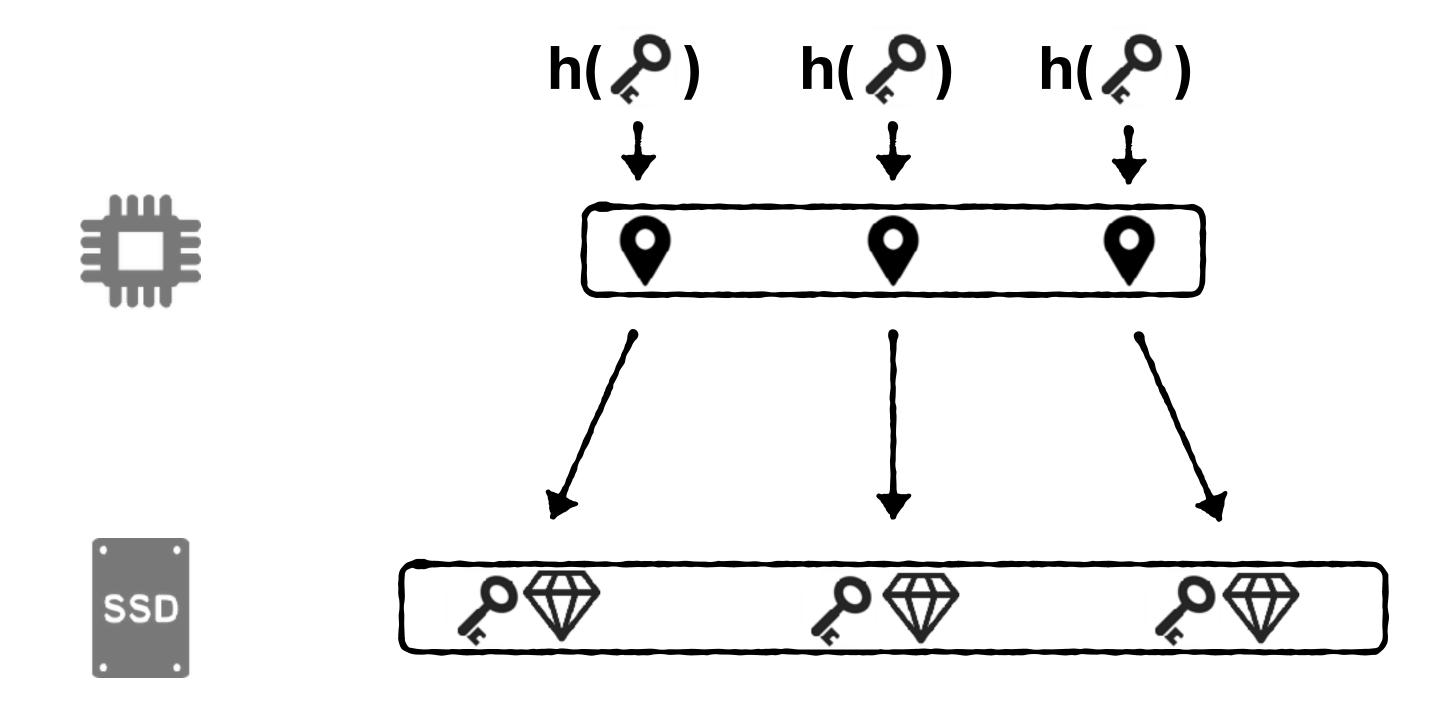
Key-value Stores



Index can be hash table containing keys (e.g., bitcask)

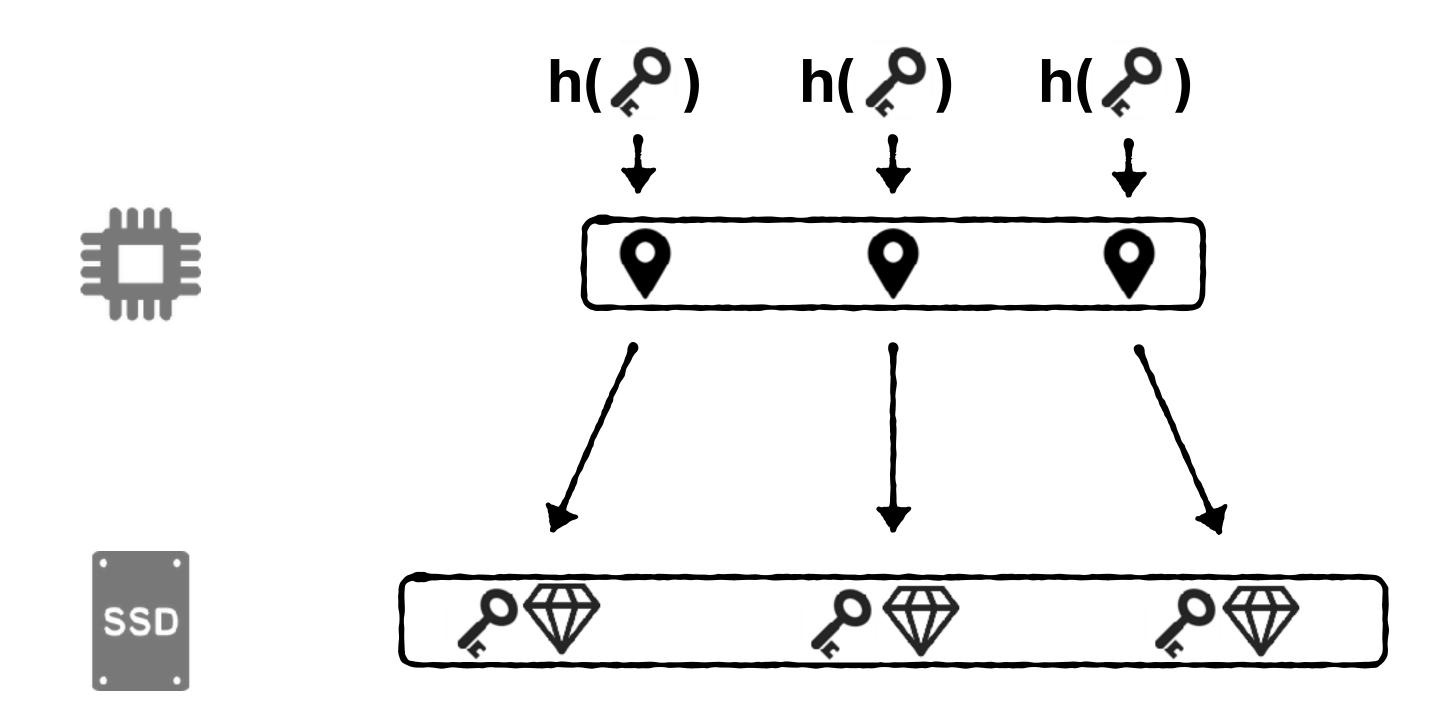


can we get away with not storing keys?

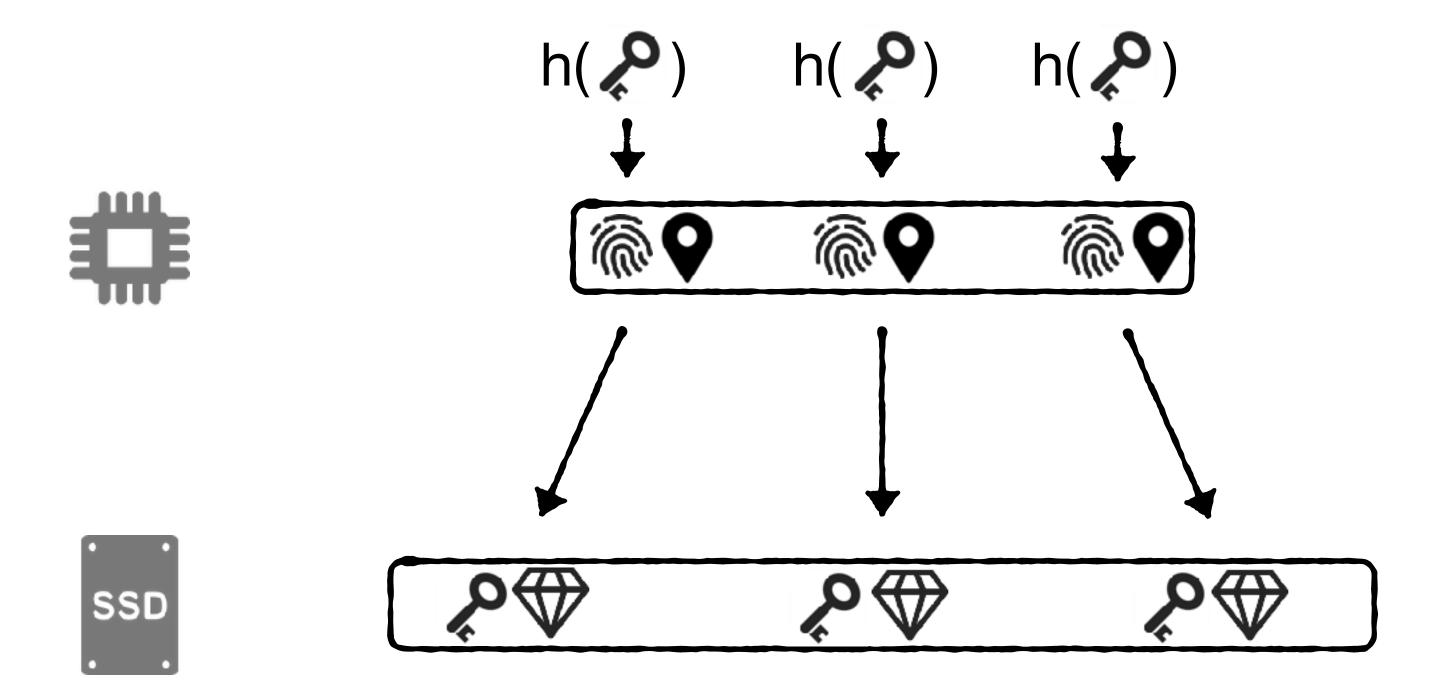


can we get away with not storing keys?

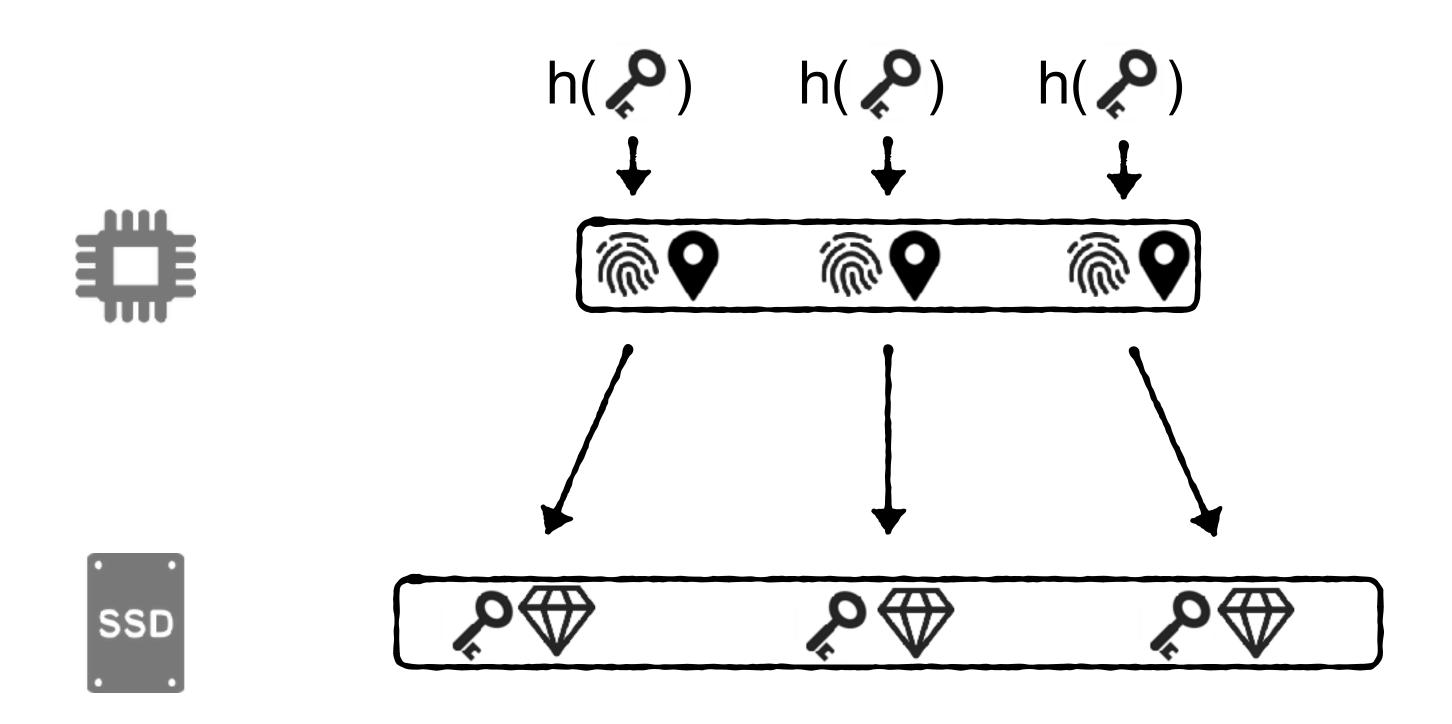
We have seen one solution earlier in the course:)



Use a filter (e.g., quotient filter)

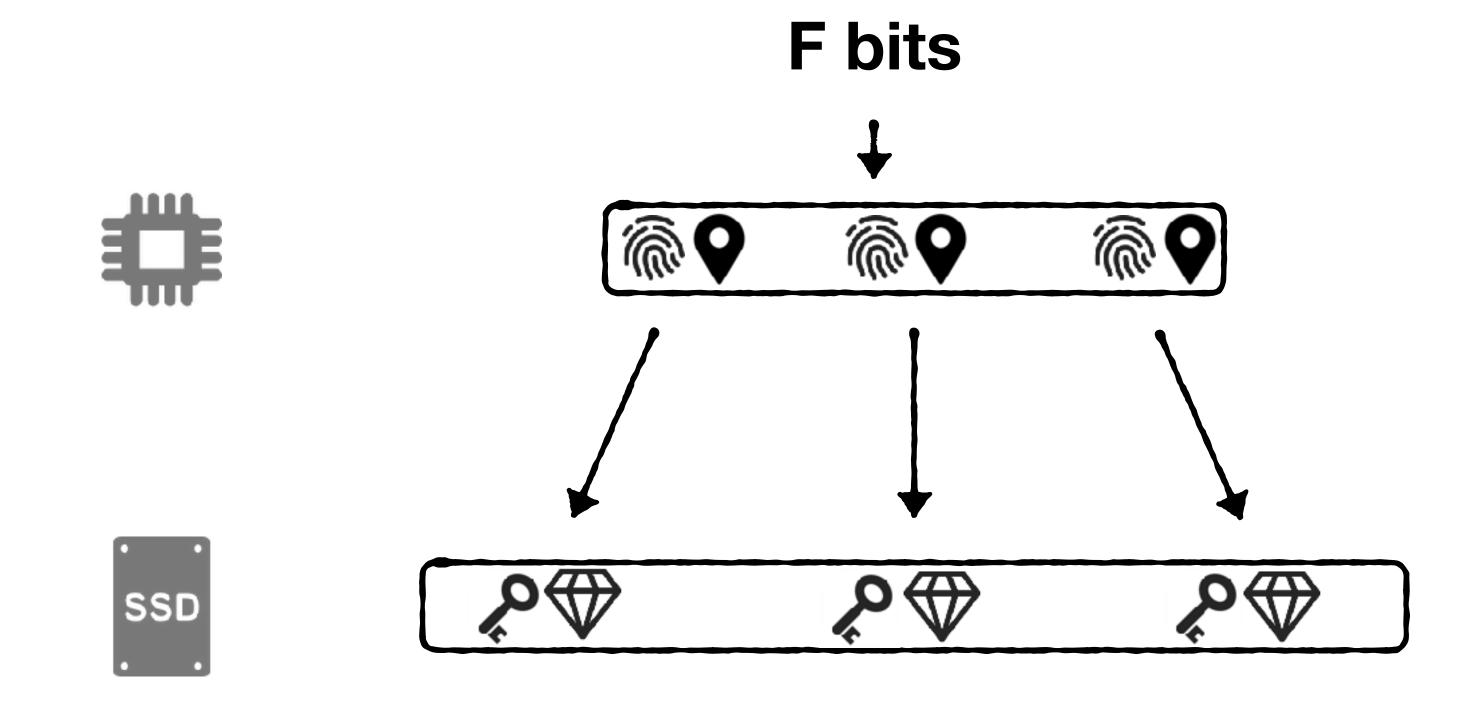


Use a filter (e.g., quotient filter) Replace keys with fingerprints to save space



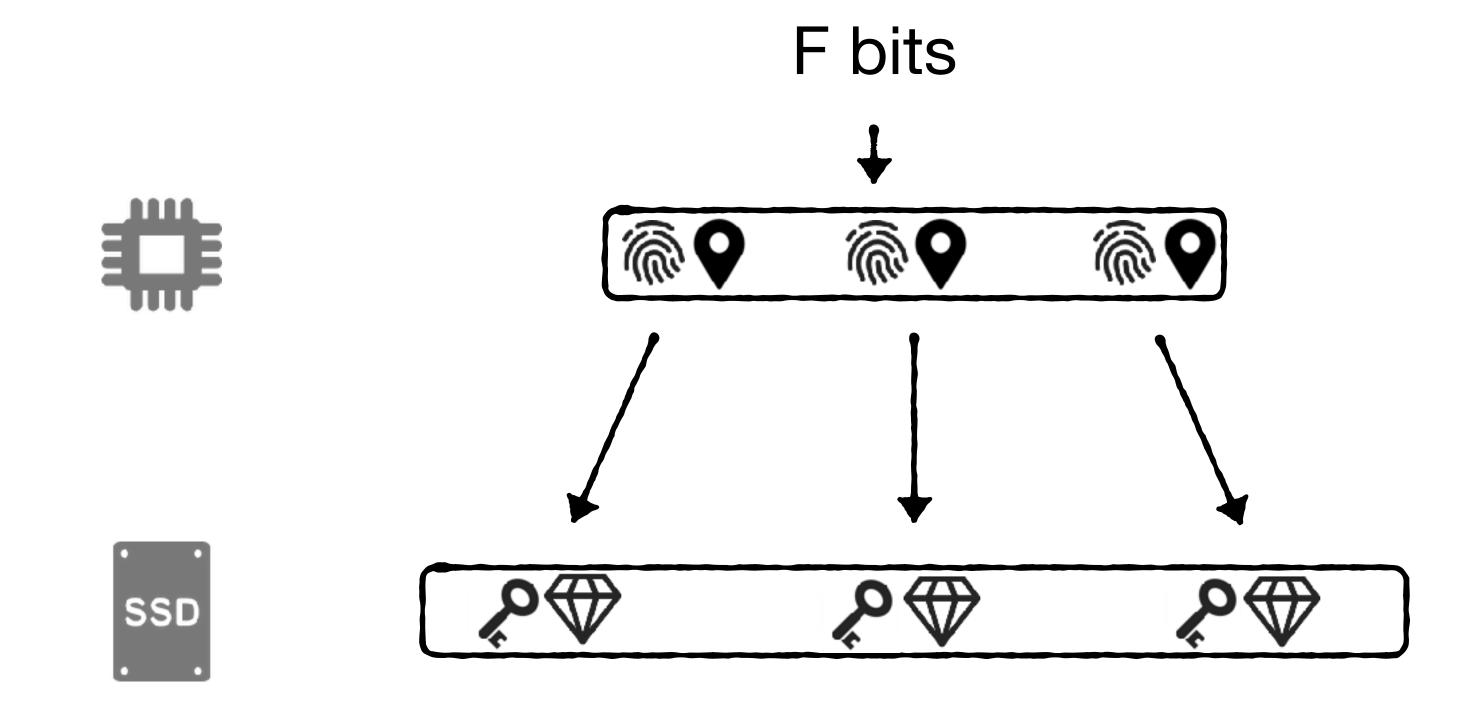
Query I/O costs

non-existing key? existing key?



2-F

existing key?

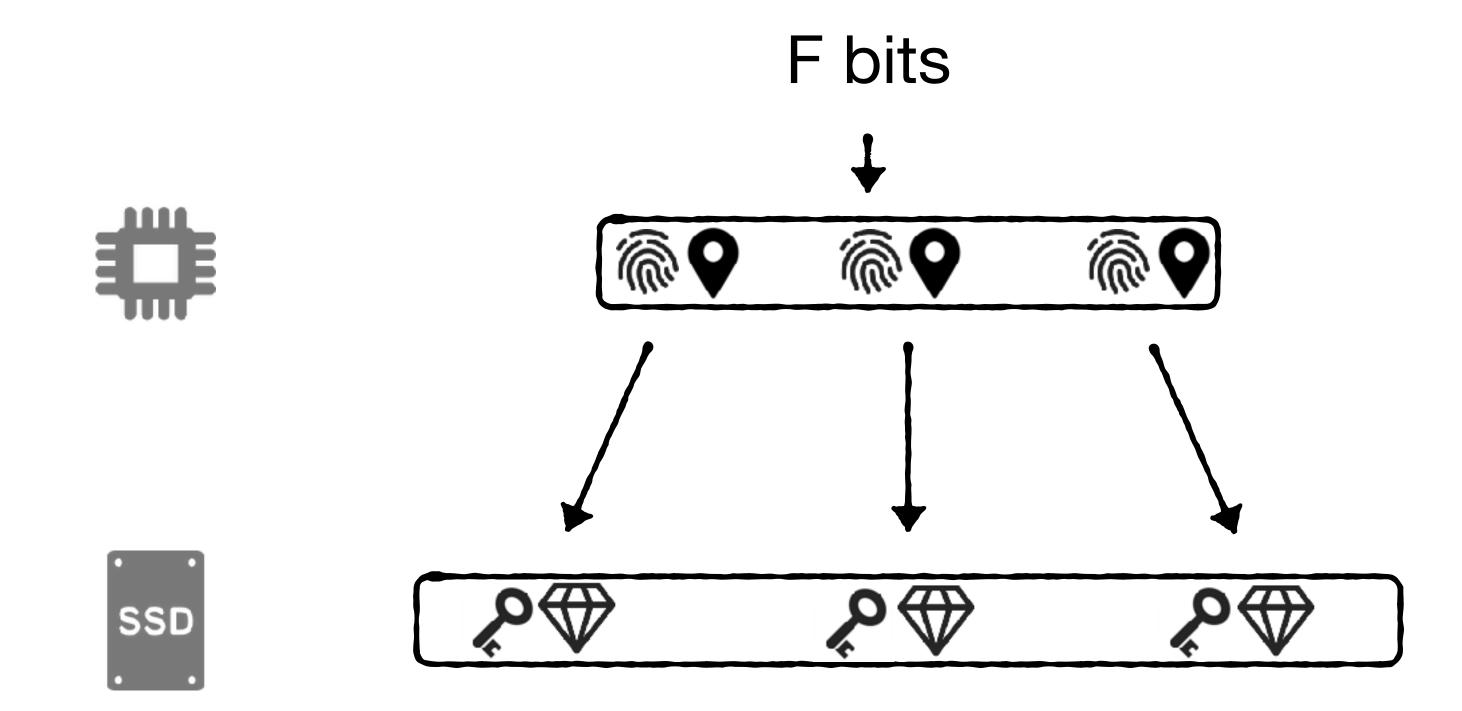


Query I/O costs

non-existing key?
existing key?

2-F

1+2^{-F}



Query I/O costs

non-existing key?

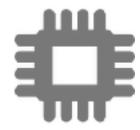
2-F

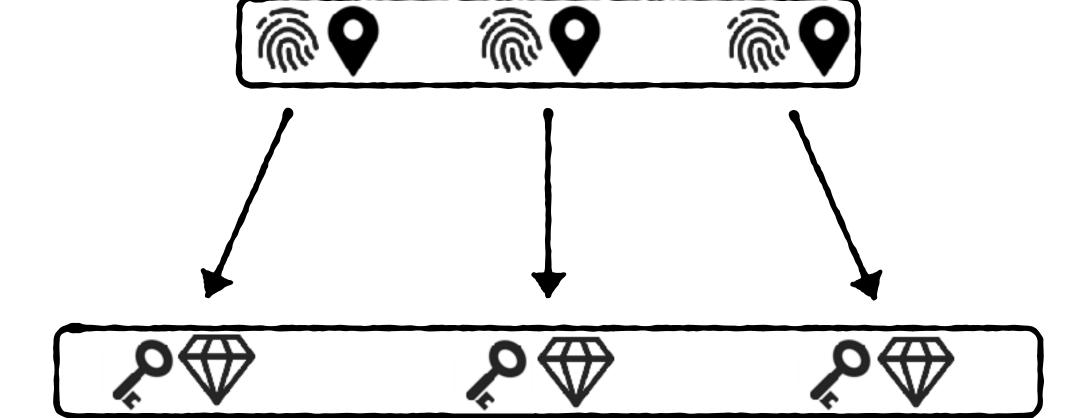
existing key?

1+2-F

Let's focus on queries to existing keys

- (1) more common
- (2) minimize latency for useful work

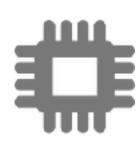


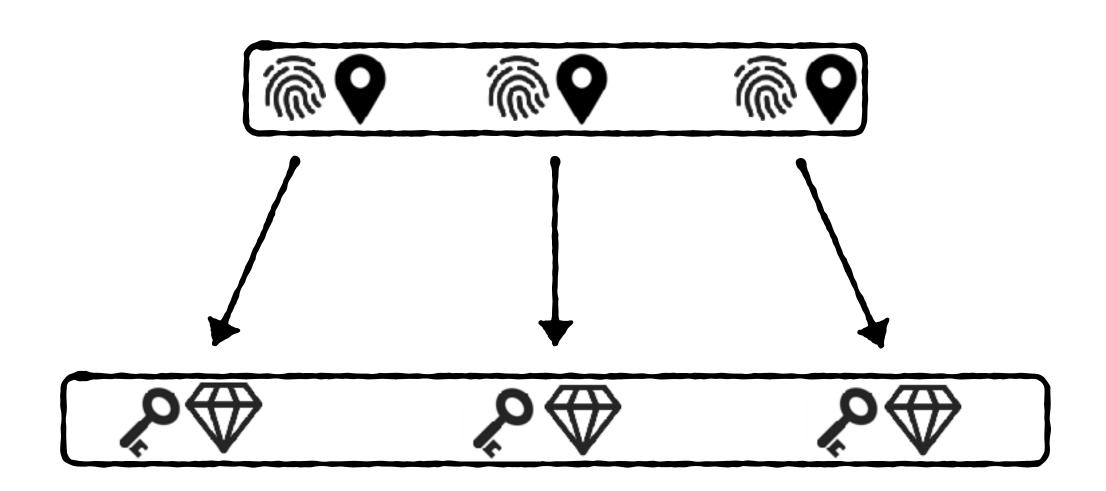


existing key?

1+2-F

Due to fingerprint collisions





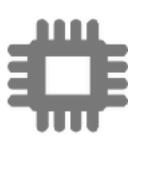
Query I/O costs

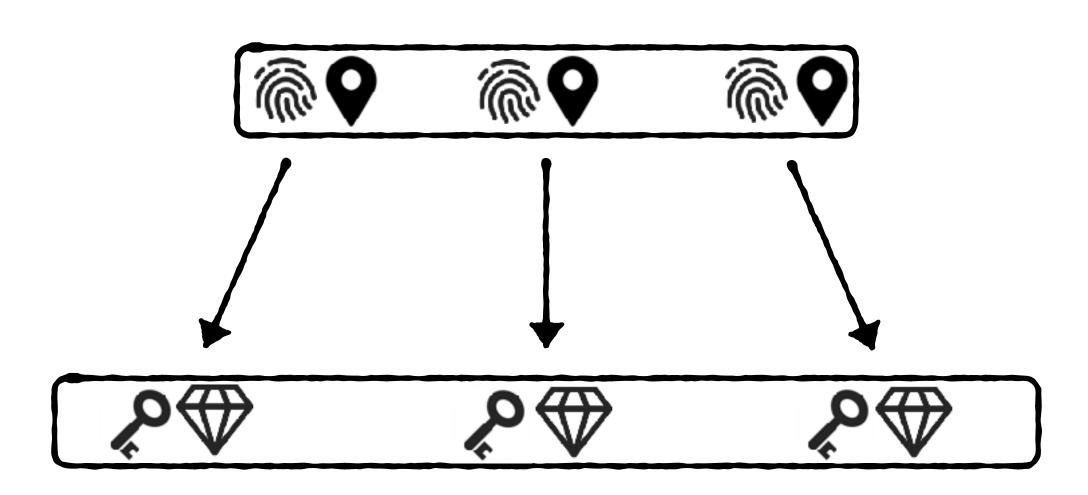
existing key?

1+2-F

Due to fingerprint collisions

Can we reduce by increasing F





Query I/O costs

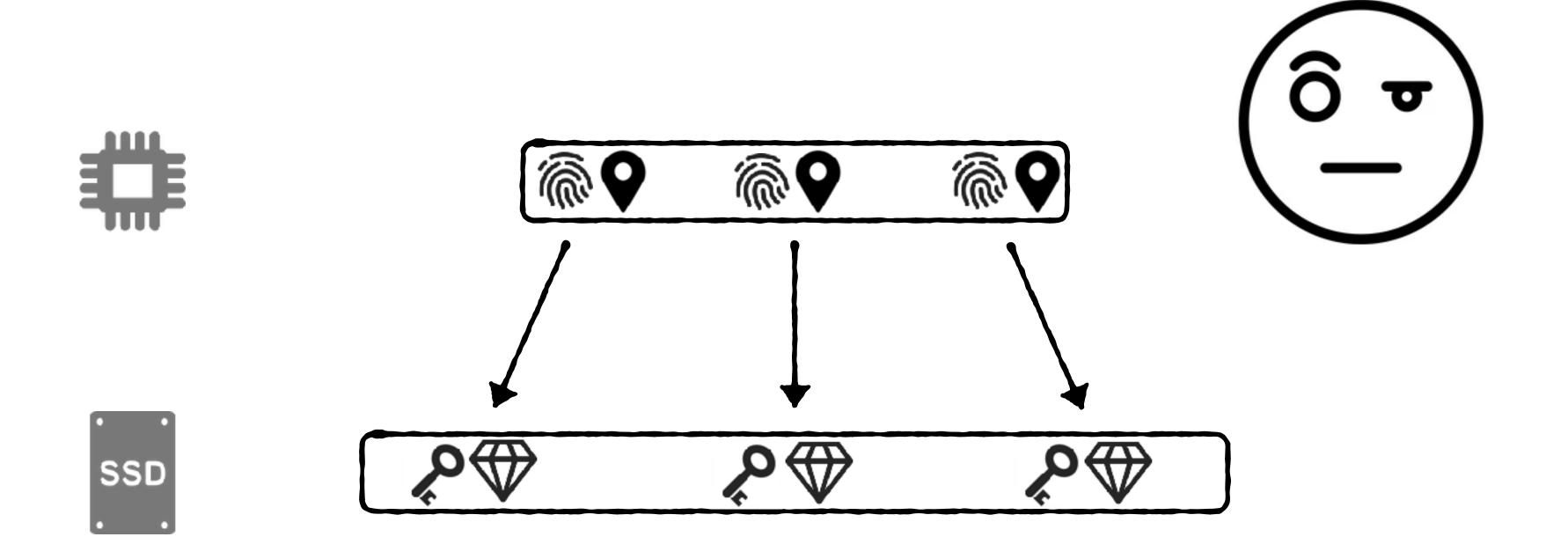
existing key?

1+2-F

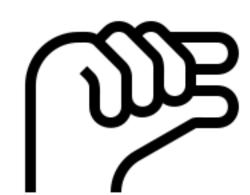
Due to fingerprint collisions

Can we reduce by increasing F

Is there a better way?



Perfect Hashing



Minimal

space-efficient static data

Dynamic

more space supports updates

Minimal Perfect Hashing

Array with N slots

Minimal Perfect Hashing

N keys

A B C D E F G H

Array with N slots

Minimal Perfect Hashing

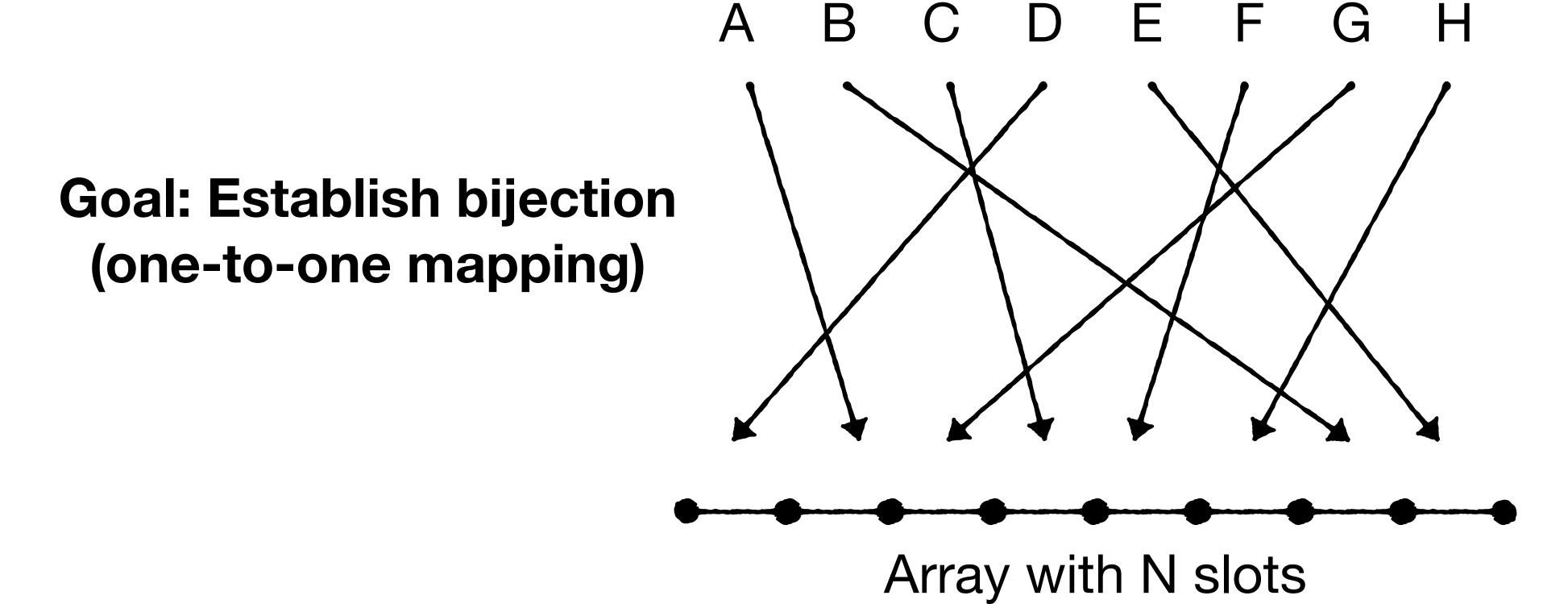
N keys

A B C D E F G H

Array with N slots

100% load factor! No extra capacity as with normal hash tables

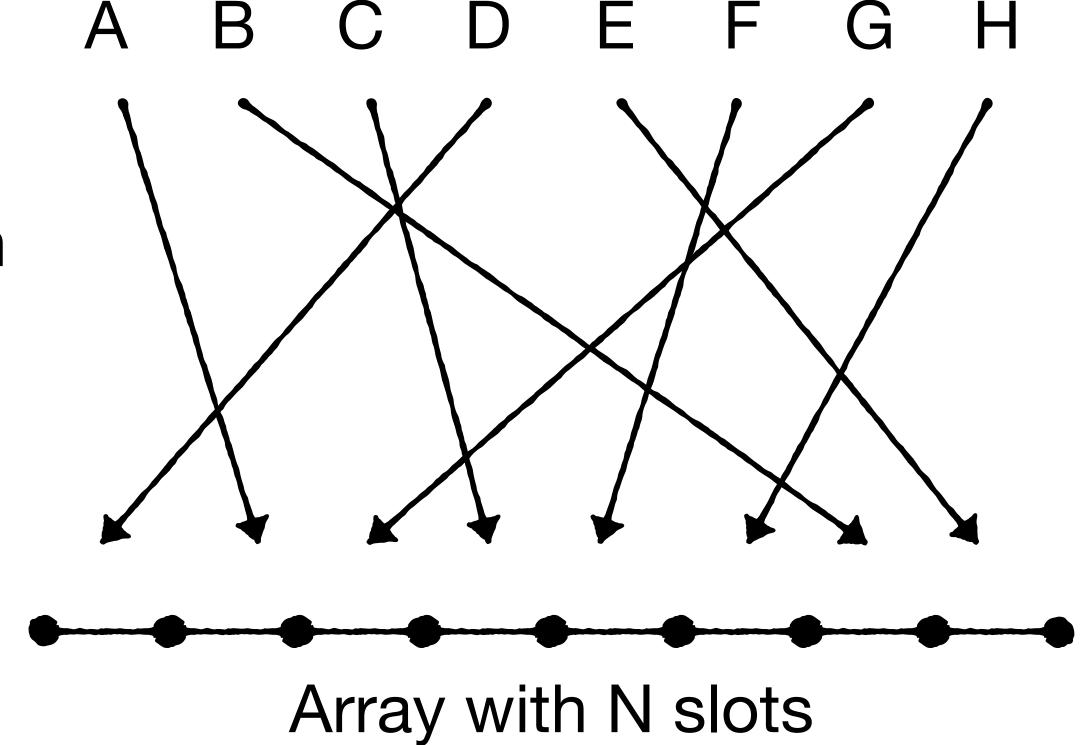
N keys

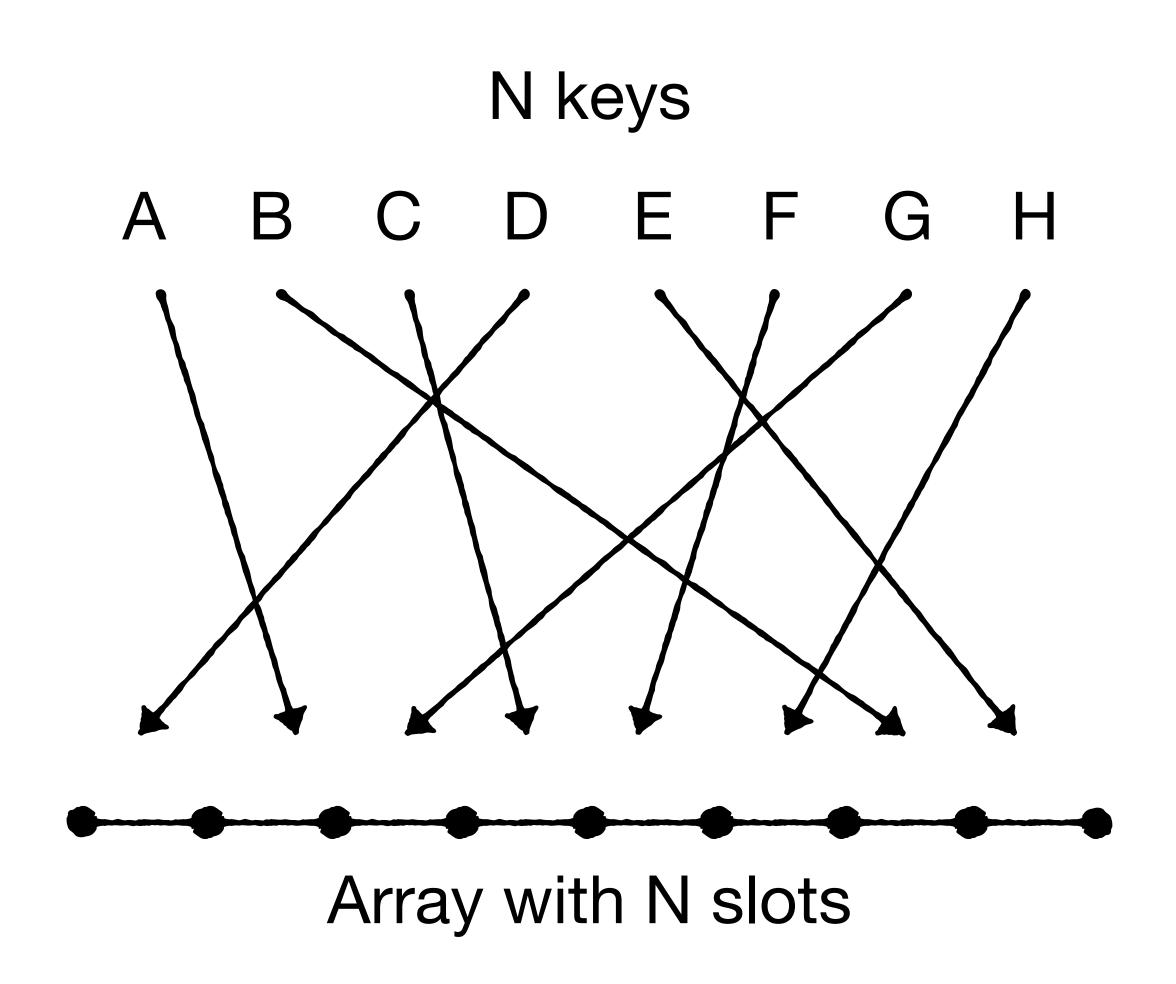


N keys

Goal: Establish bijection (one-to-one mapping)

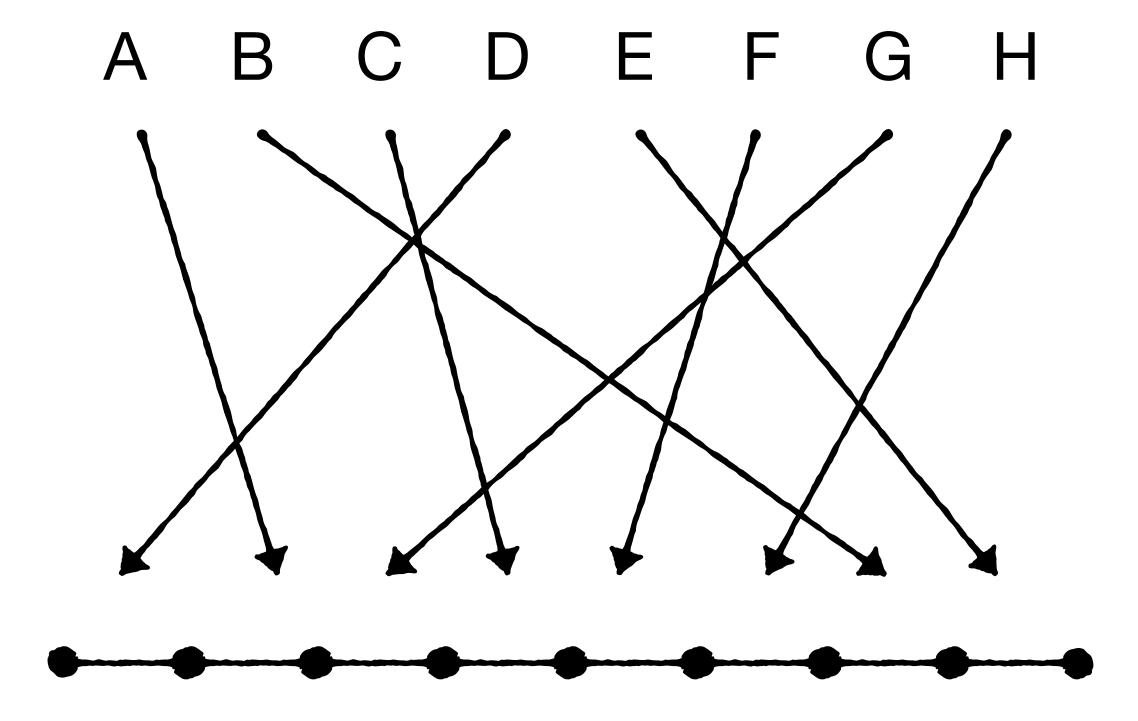
Collision-free





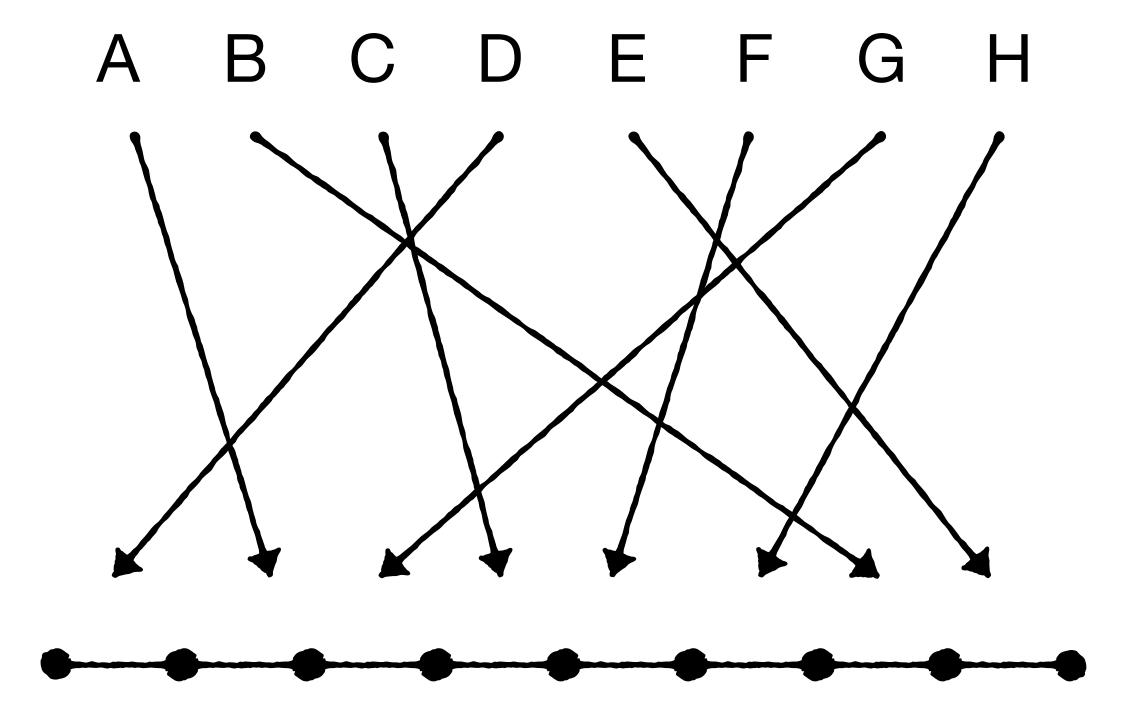
possible bijections (permutations)?

possible assignments?



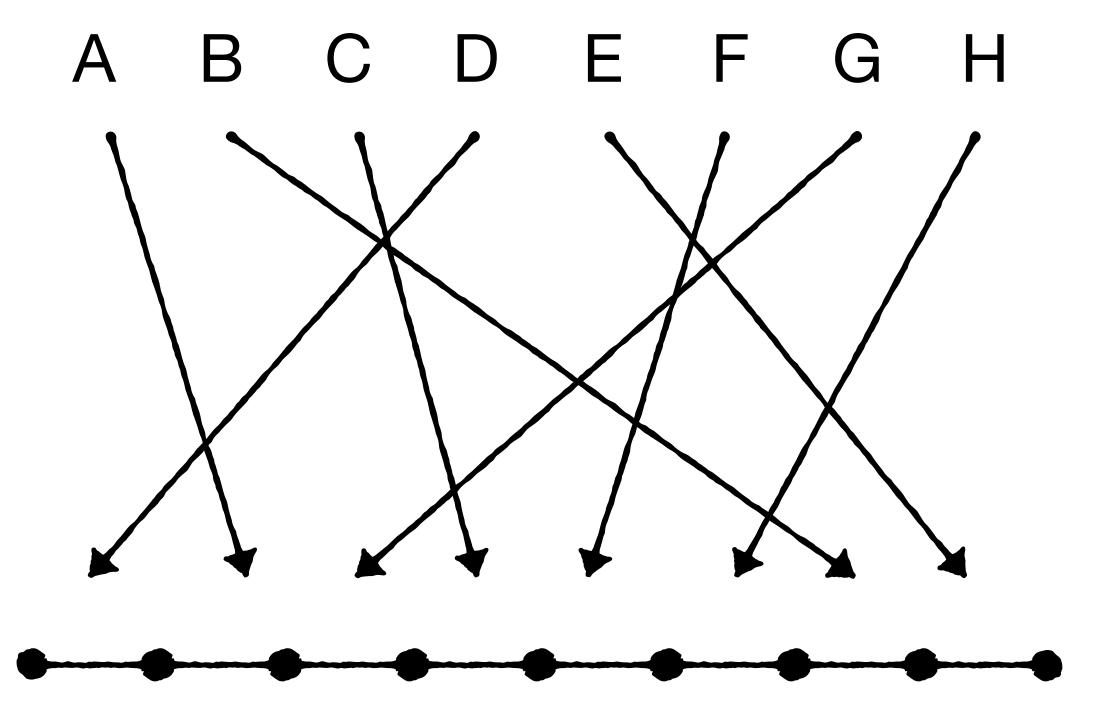
possible bijections (permutations)? N!

possible assignments?

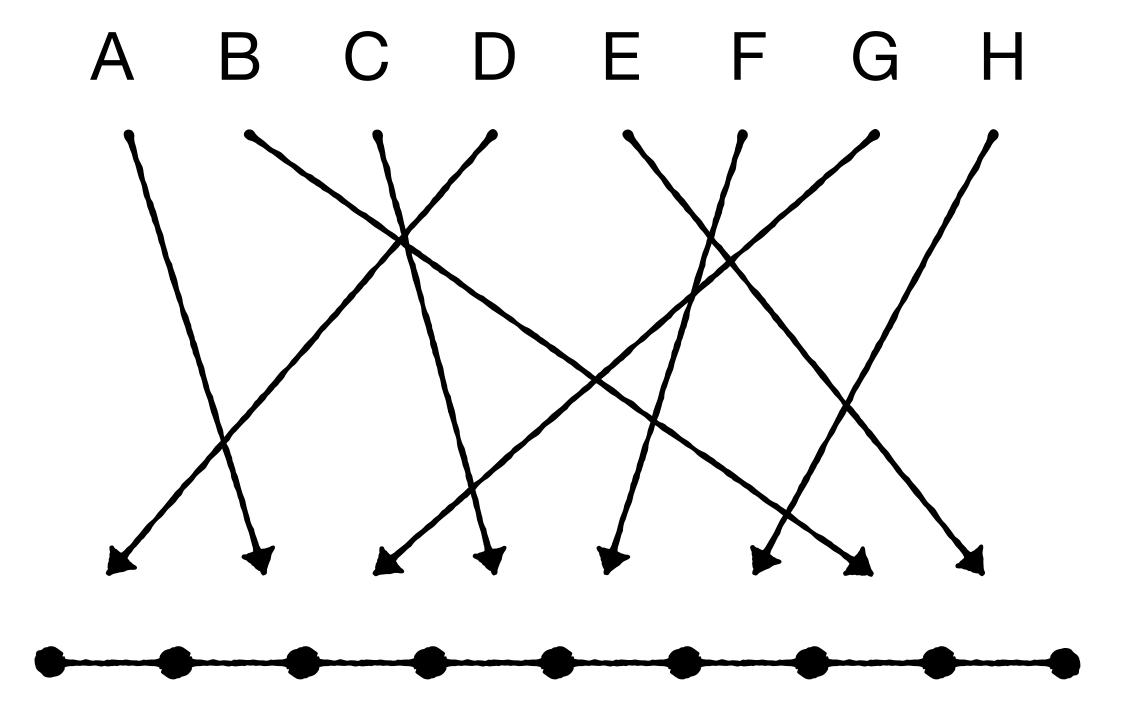


possible bijections (permutations)? N!

possible assignments?

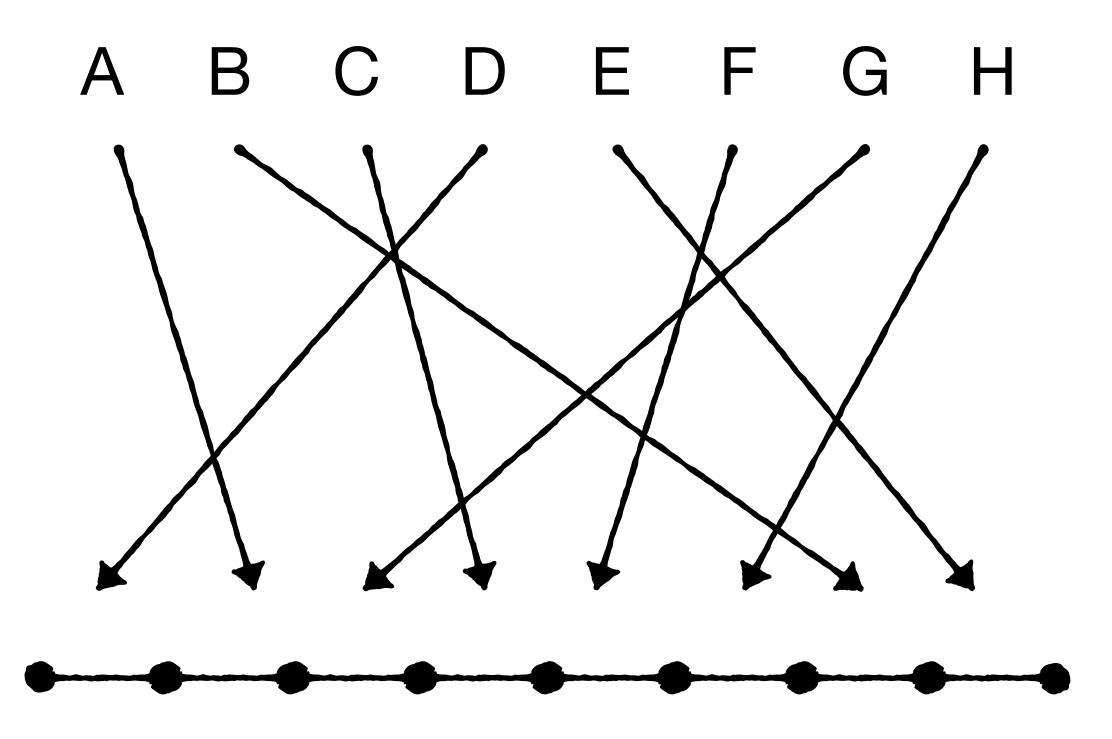


N!
NN



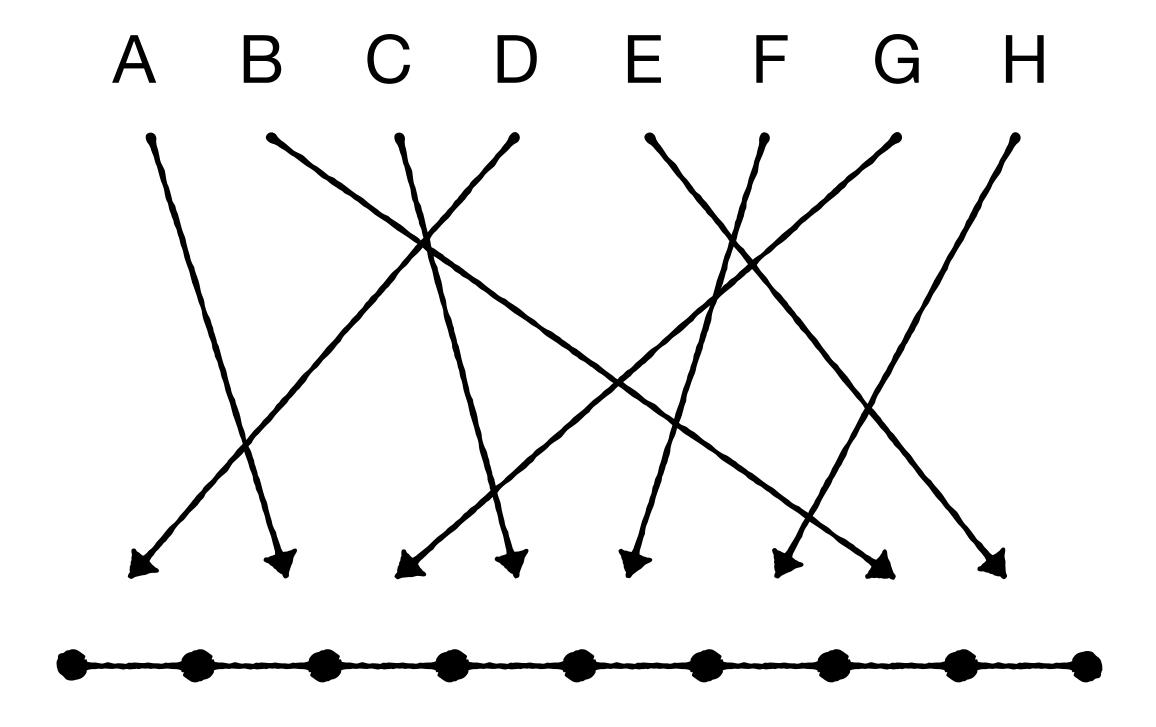
$$\frac{N!}{N^N} \approx \sqrt{2 \pi N} \cdot e^{-N}$$

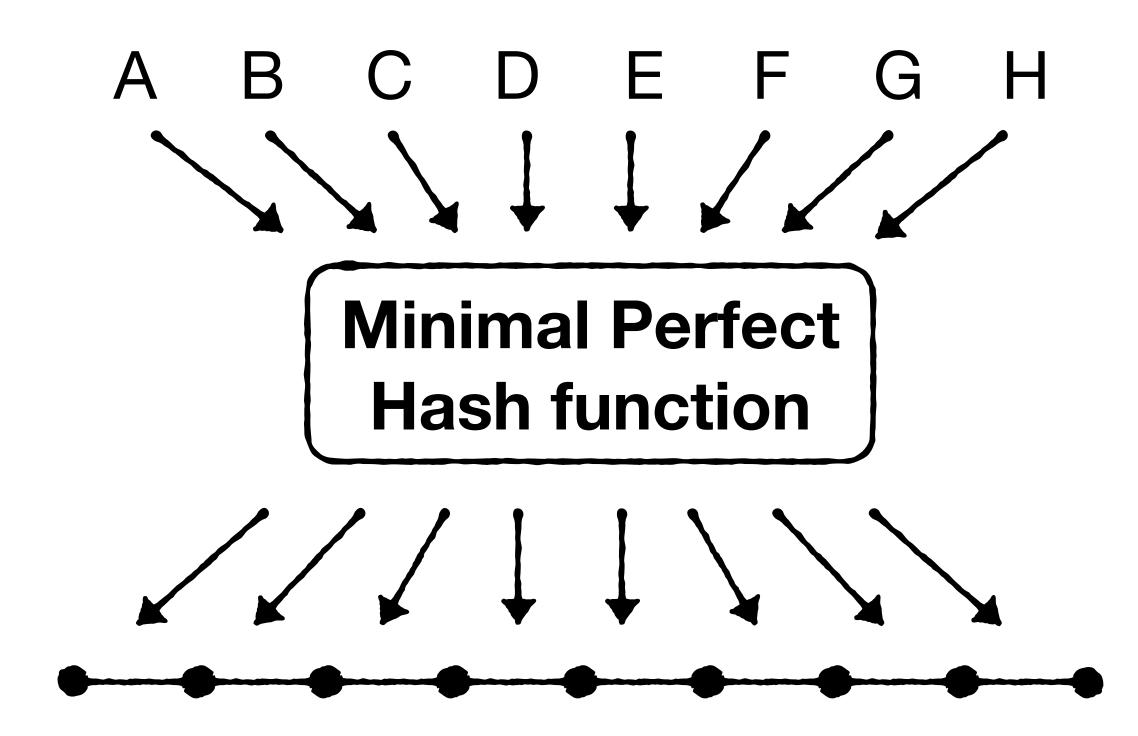
By Stirling's approximation

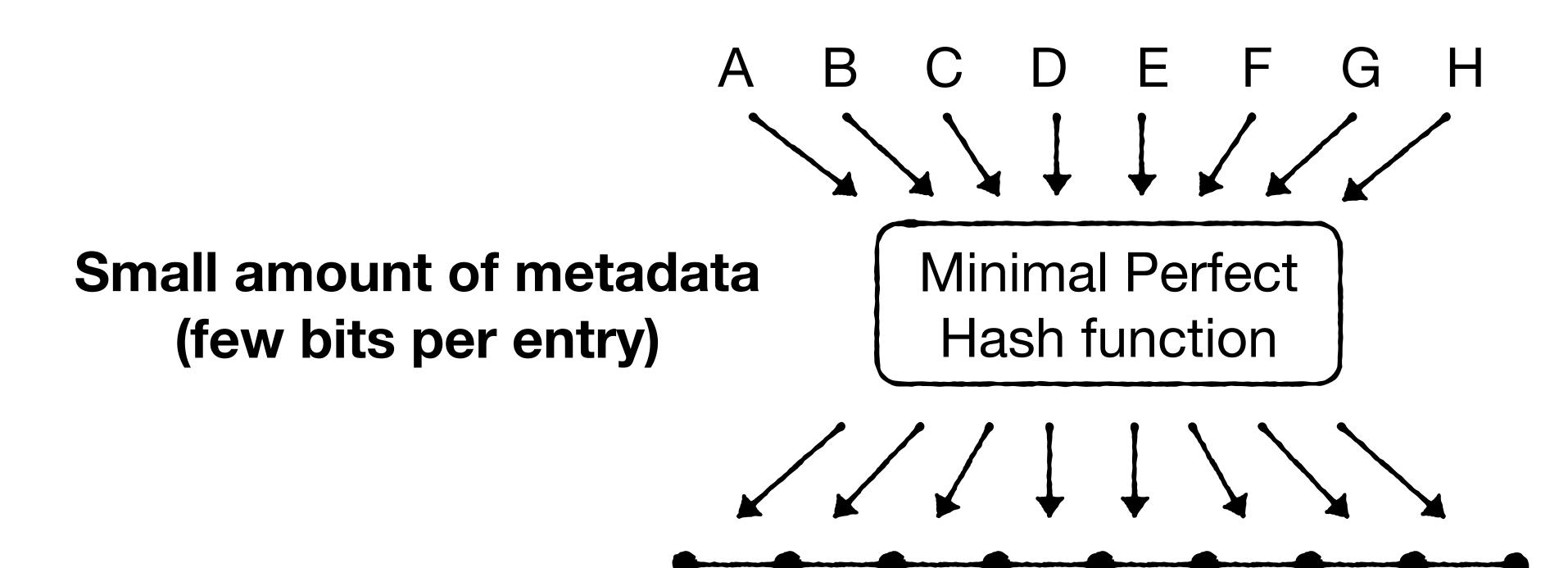


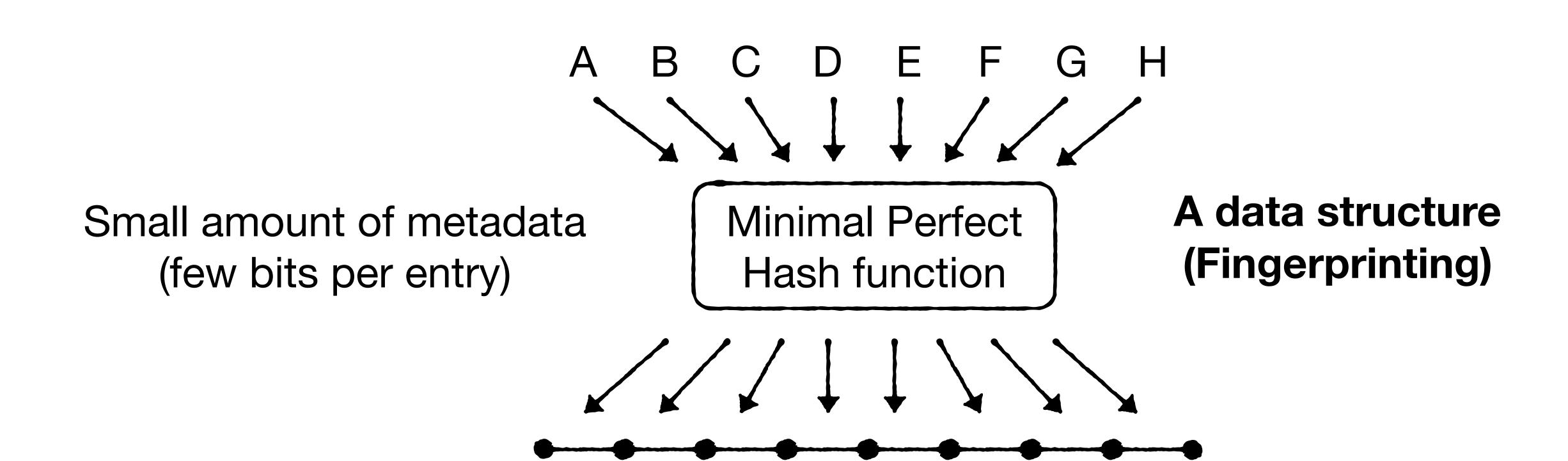
$$\lim_{N \to \infty} \approx \sqrt{2 \pi N} \cdot e^{-N} = 0$$

What can we do instead?



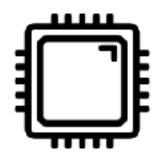


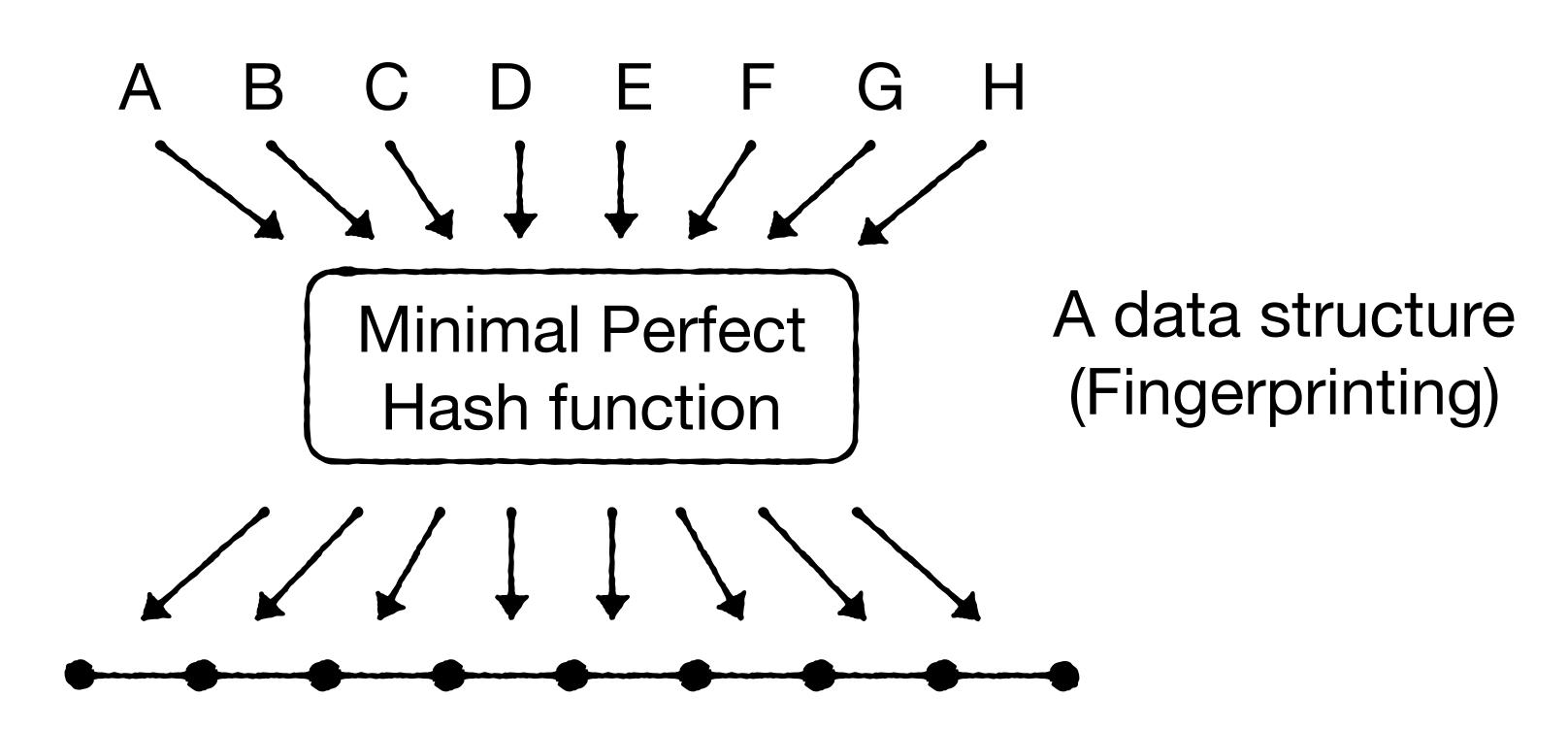




Memory (Bits / entry)

Construction time





Fingerprinting

Fingerprinting-based Minimal Perfect Hashing Revisited. JEA 2023. Piotr Beling.

Retrieval and Perfect Hashing using Fingerprinting. JEA 2014. Ingo Müller, Peter Sanders, Robert Schulze & Wei Zhou.

Fast and Scalable Minimal Perfect Hashing for Massive Key Sets. SEA 2017. Antoine Limasset, Guillaume Rizk, Rayan Chikhi, Pierre Peterlongo.

Meraculous: de novo genome assembly with short paired-end reads. PloS one 2011.

Jarrod A. Chapman ,Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P. Schroth, Daniel S. Rokhsar

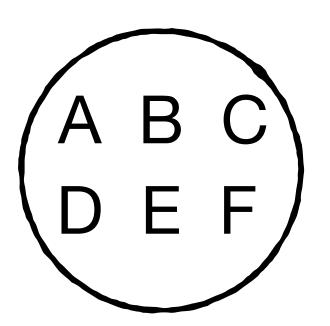
Perfect Hashing for Network Applications. ISIT 2006. Yi Lu, Balaji Prabhakar, Flavio Bonomi.

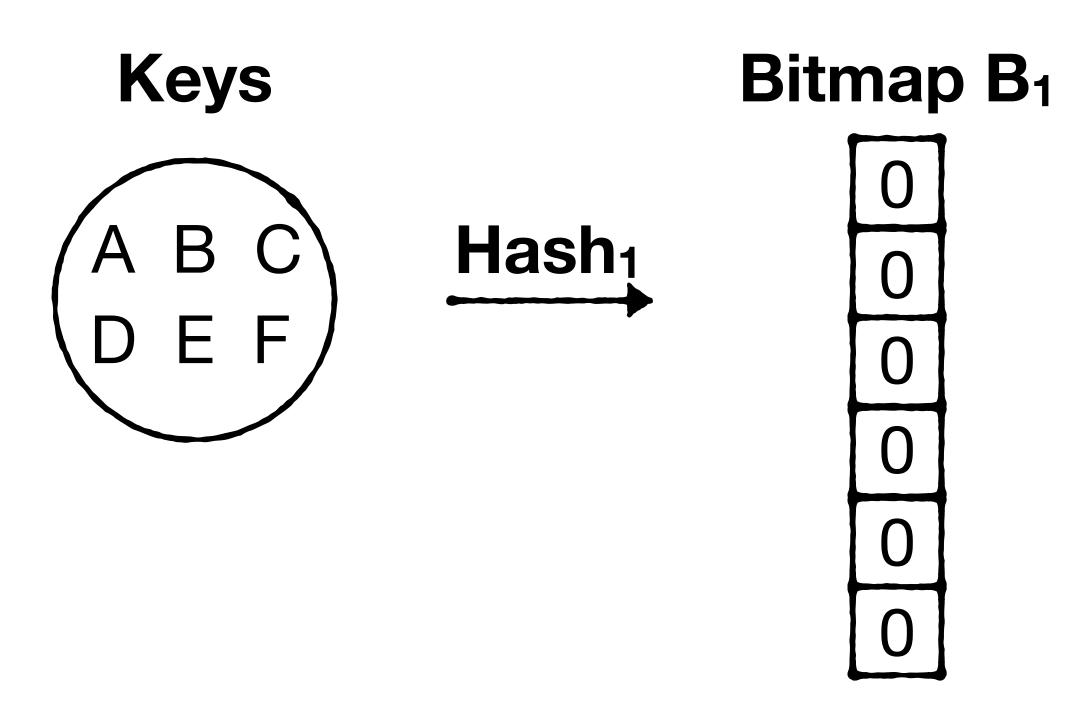
Fingerprinting

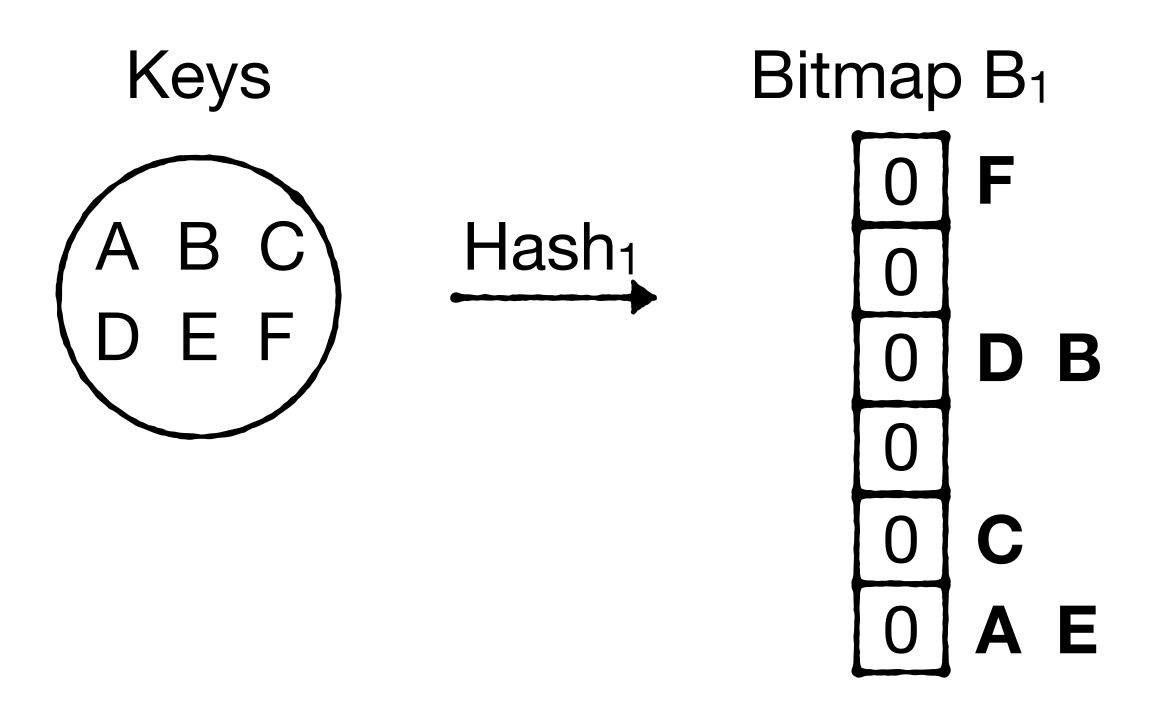
Fast and Scalable Minimal Perfect Hashing for Massive Key Sets. SEA 2017. Antoine Limasset, Guillaume Rizk, Rayan Chikhi, Pierre Peterlongo.

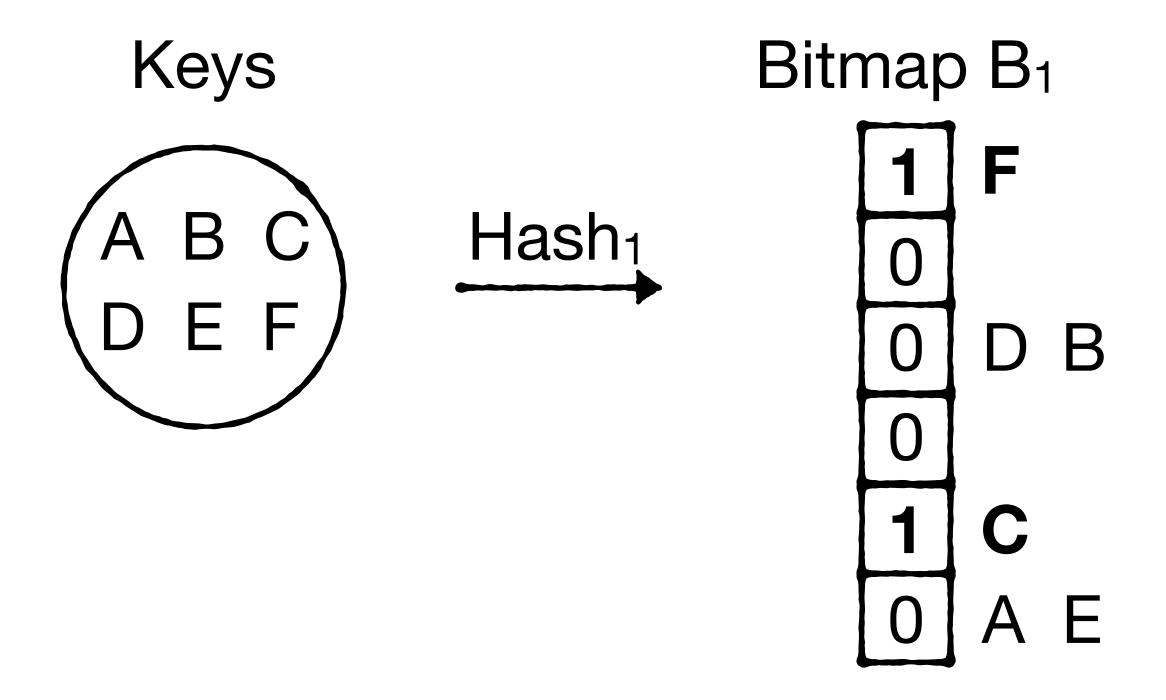
Accessible & Experimental

Keys

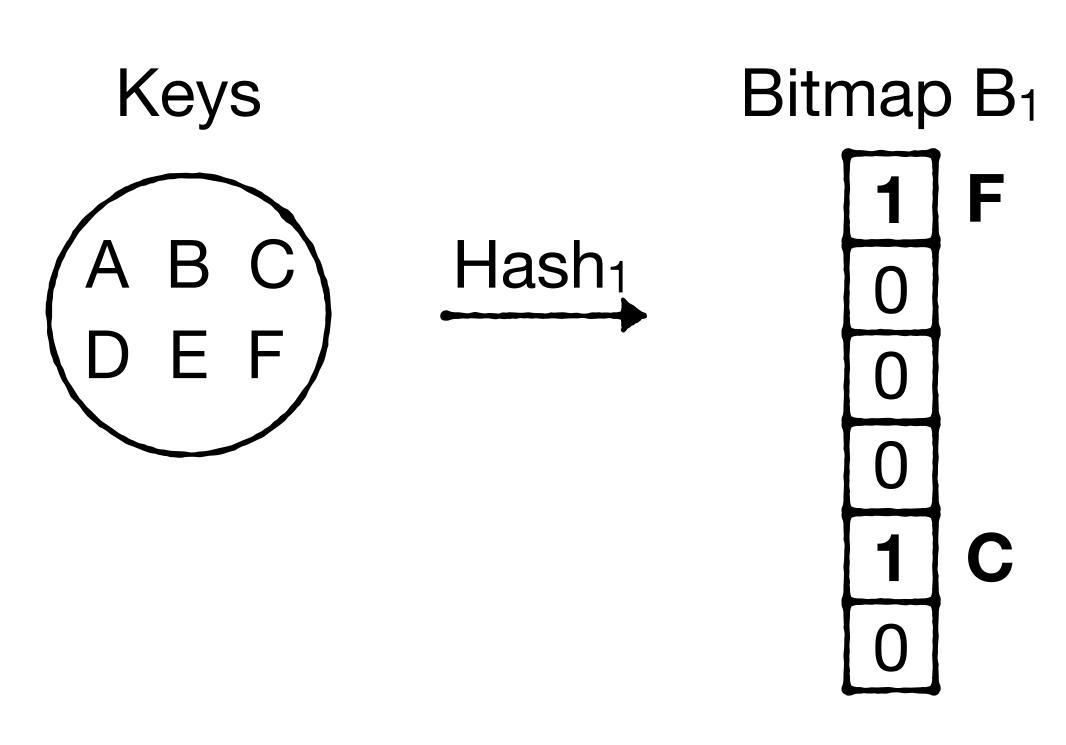




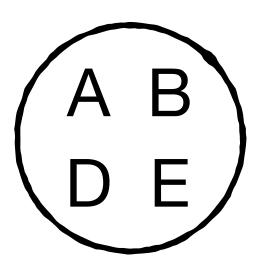


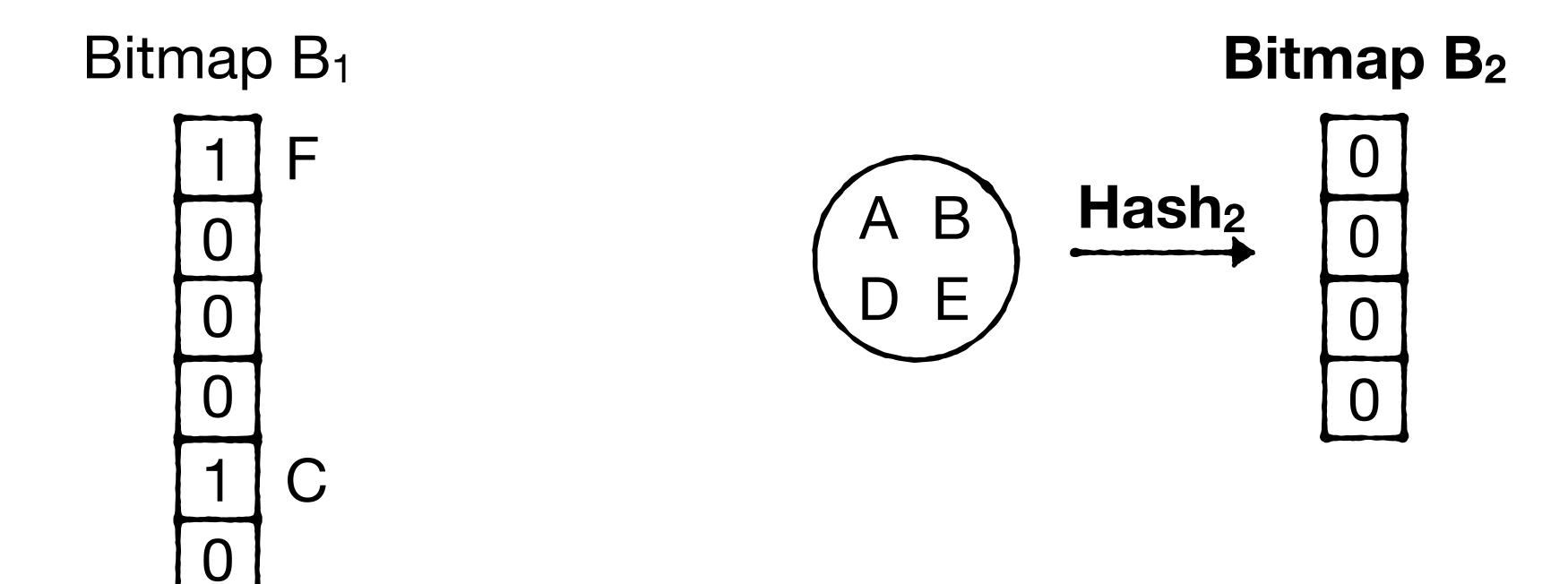


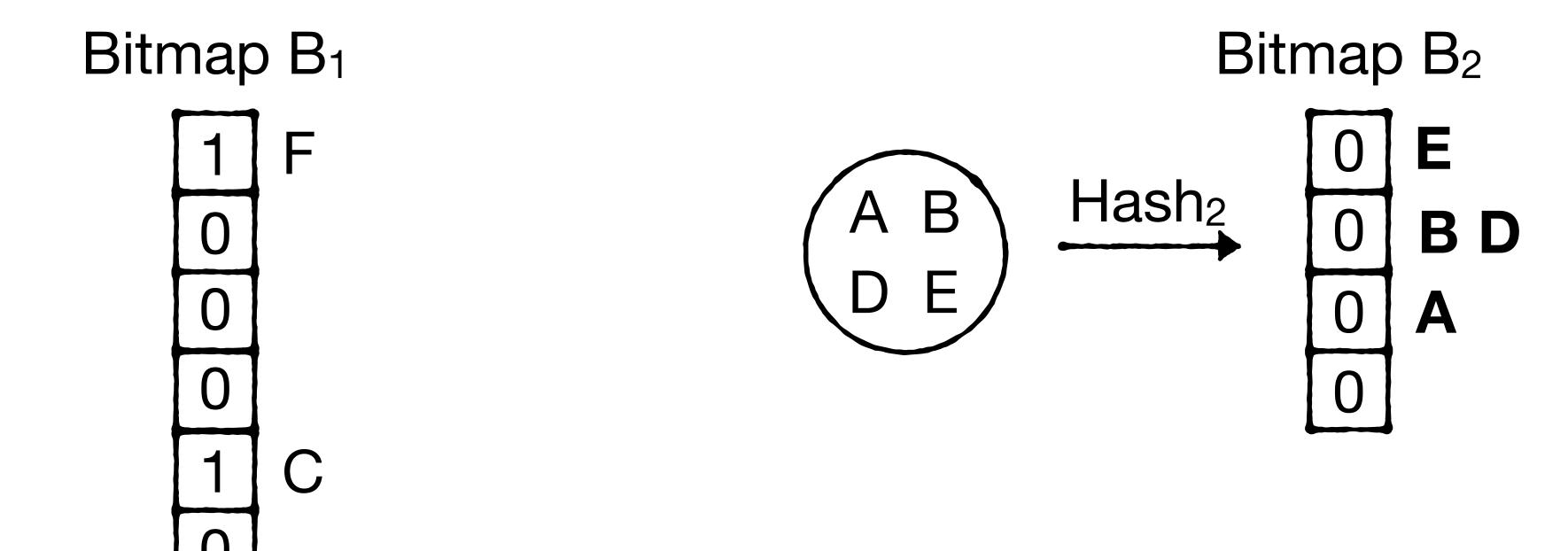
Set to 1 only if one entry mapped to this bit

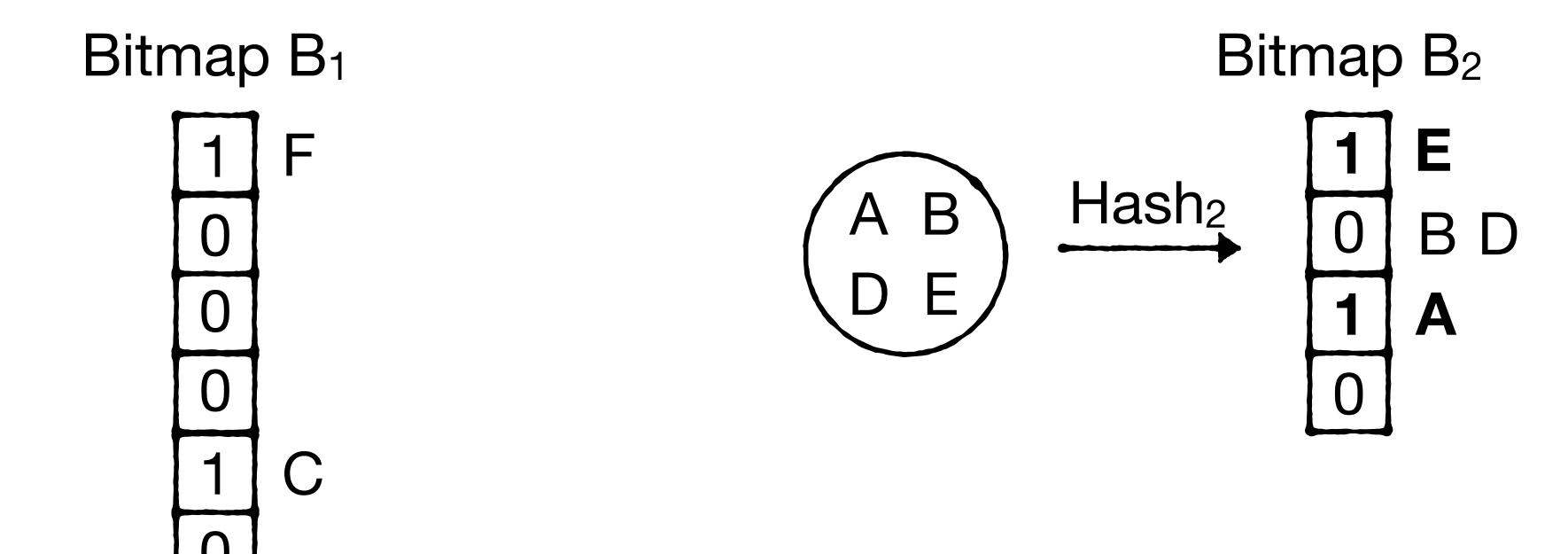


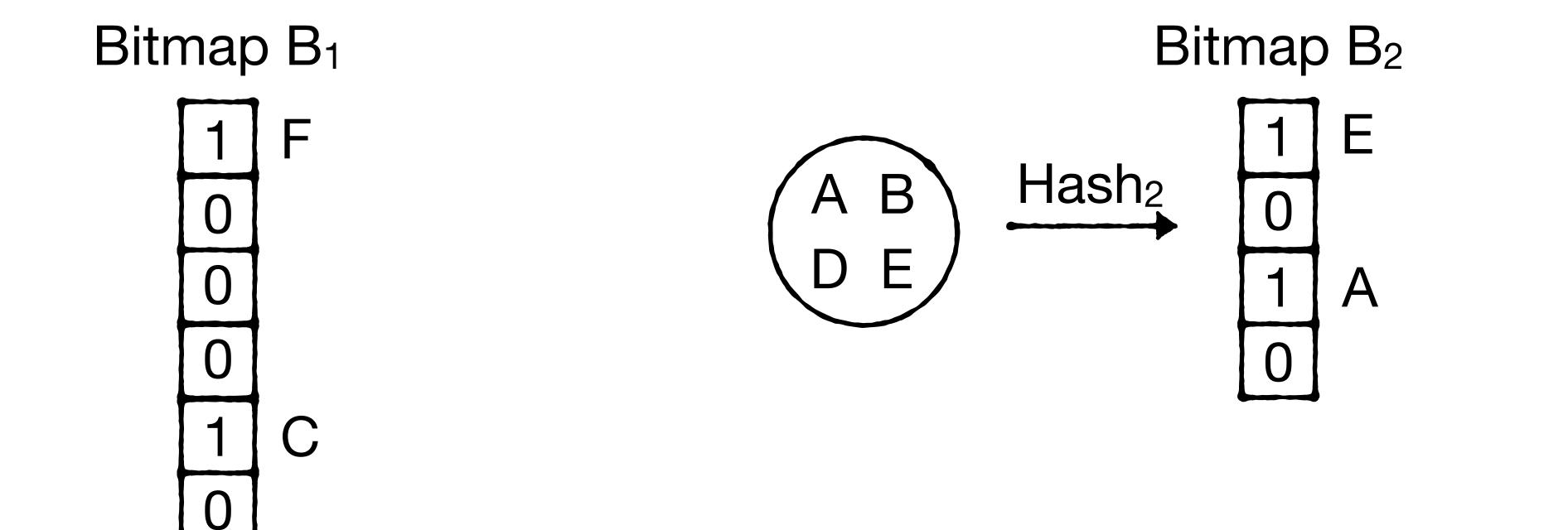
Continue recursively



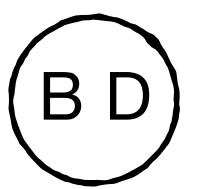


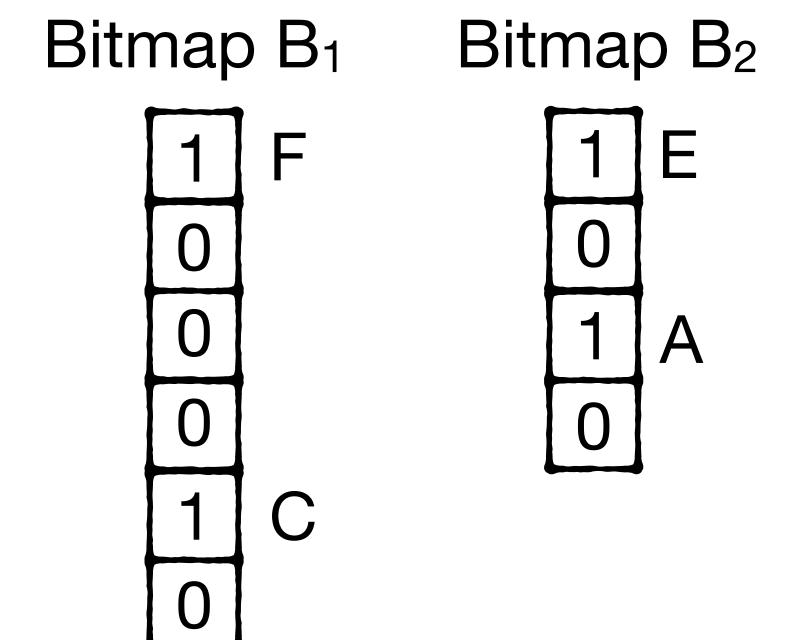




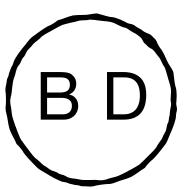


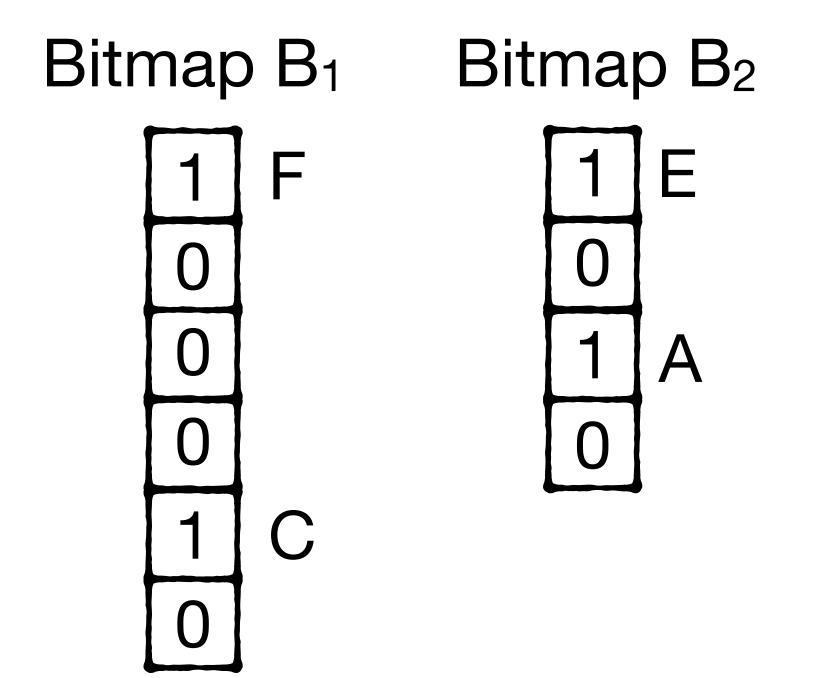
Continue

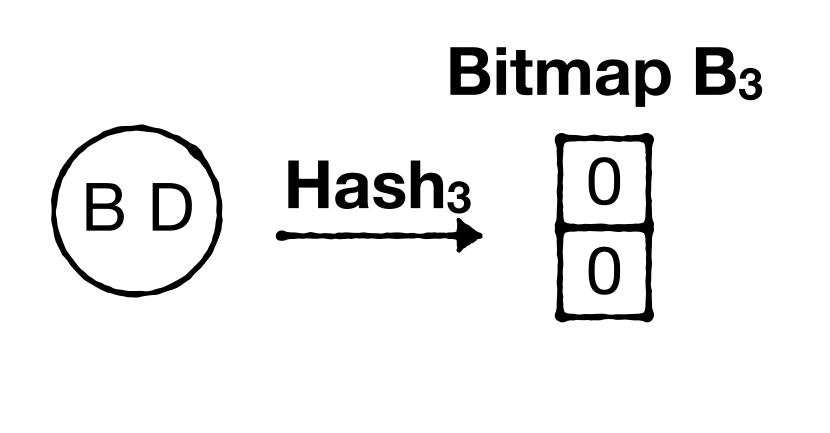


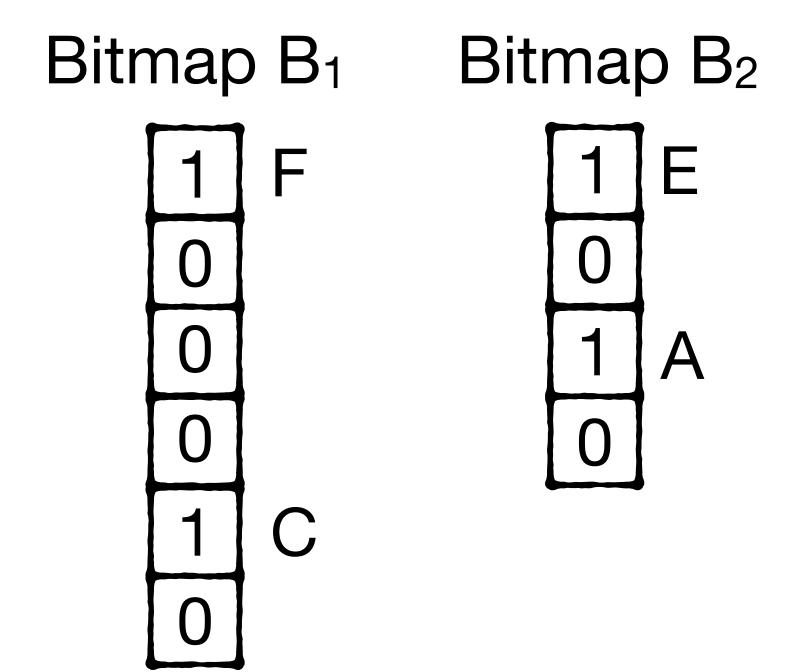


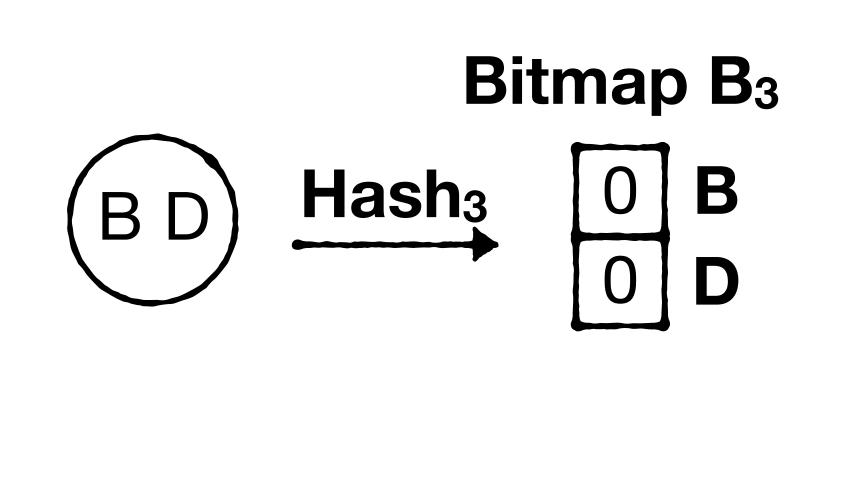
Continue

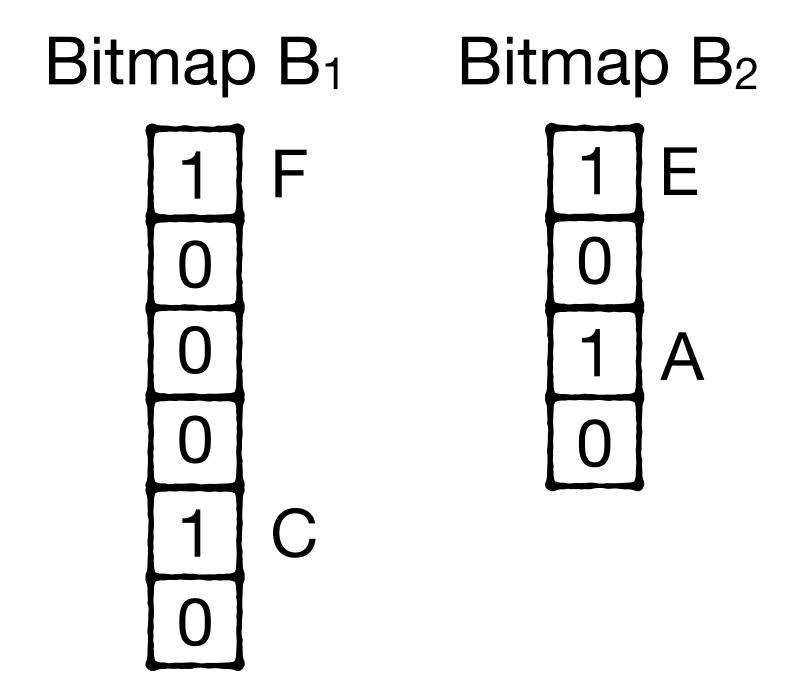


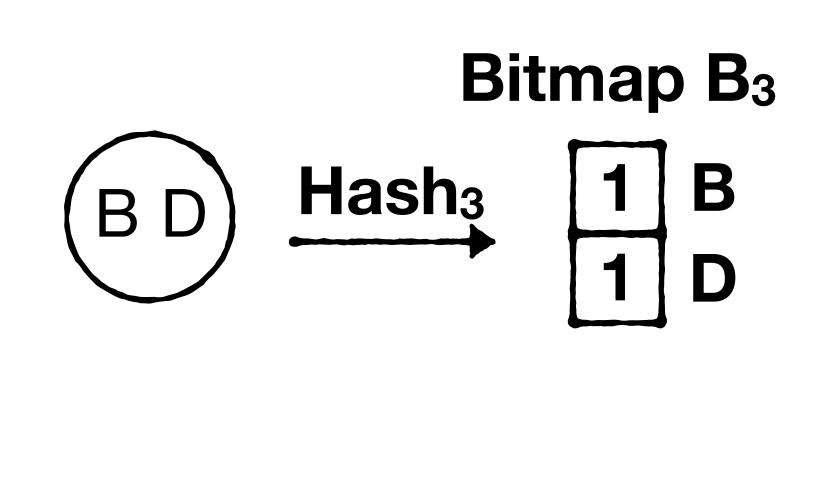


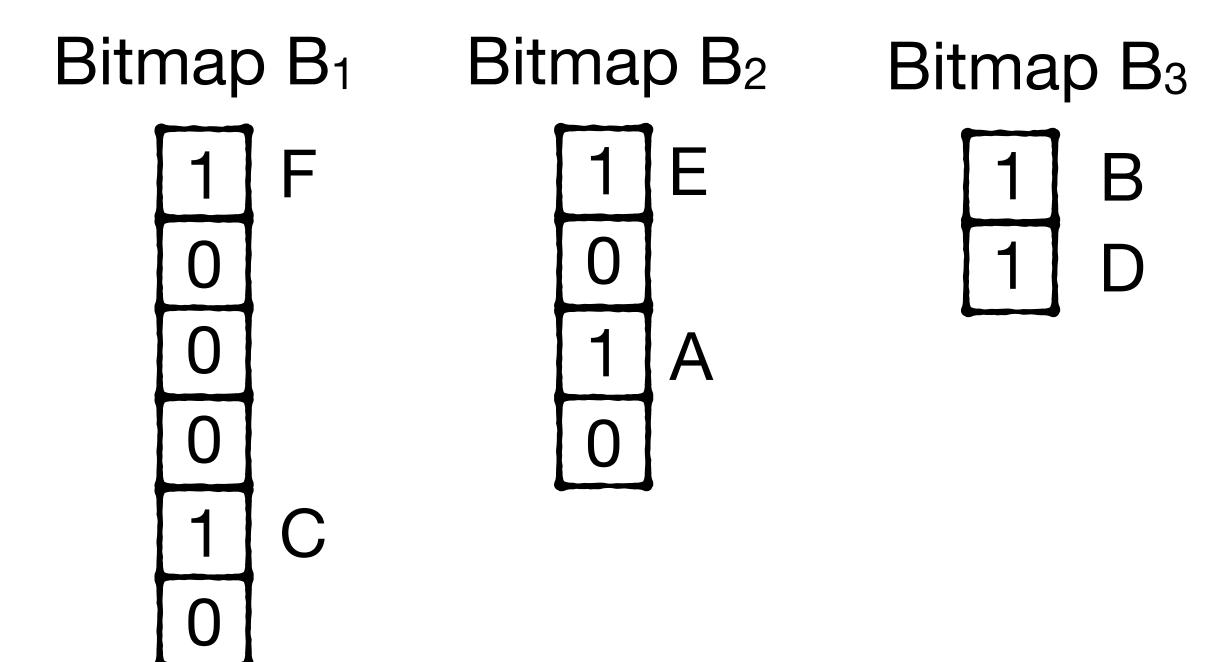




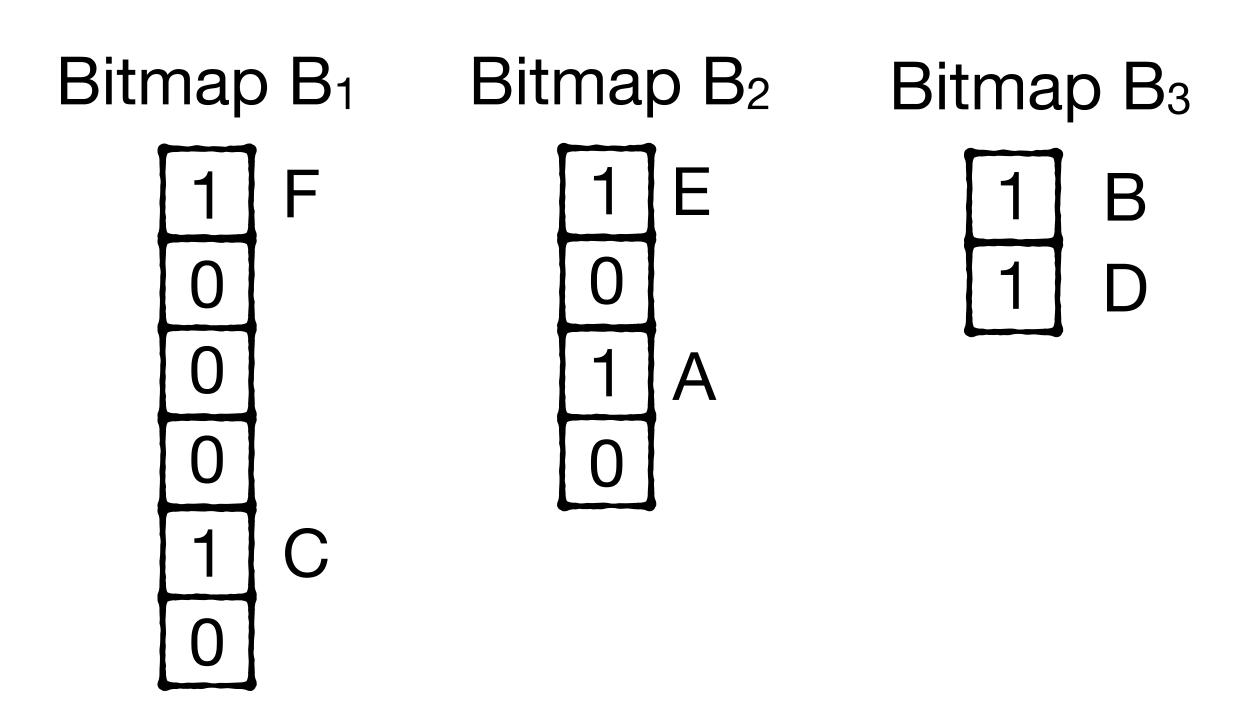




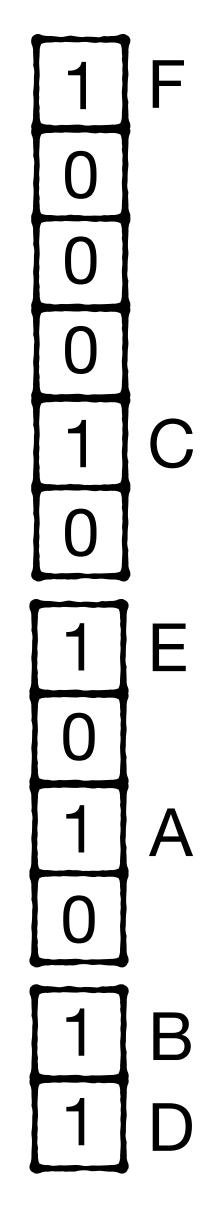




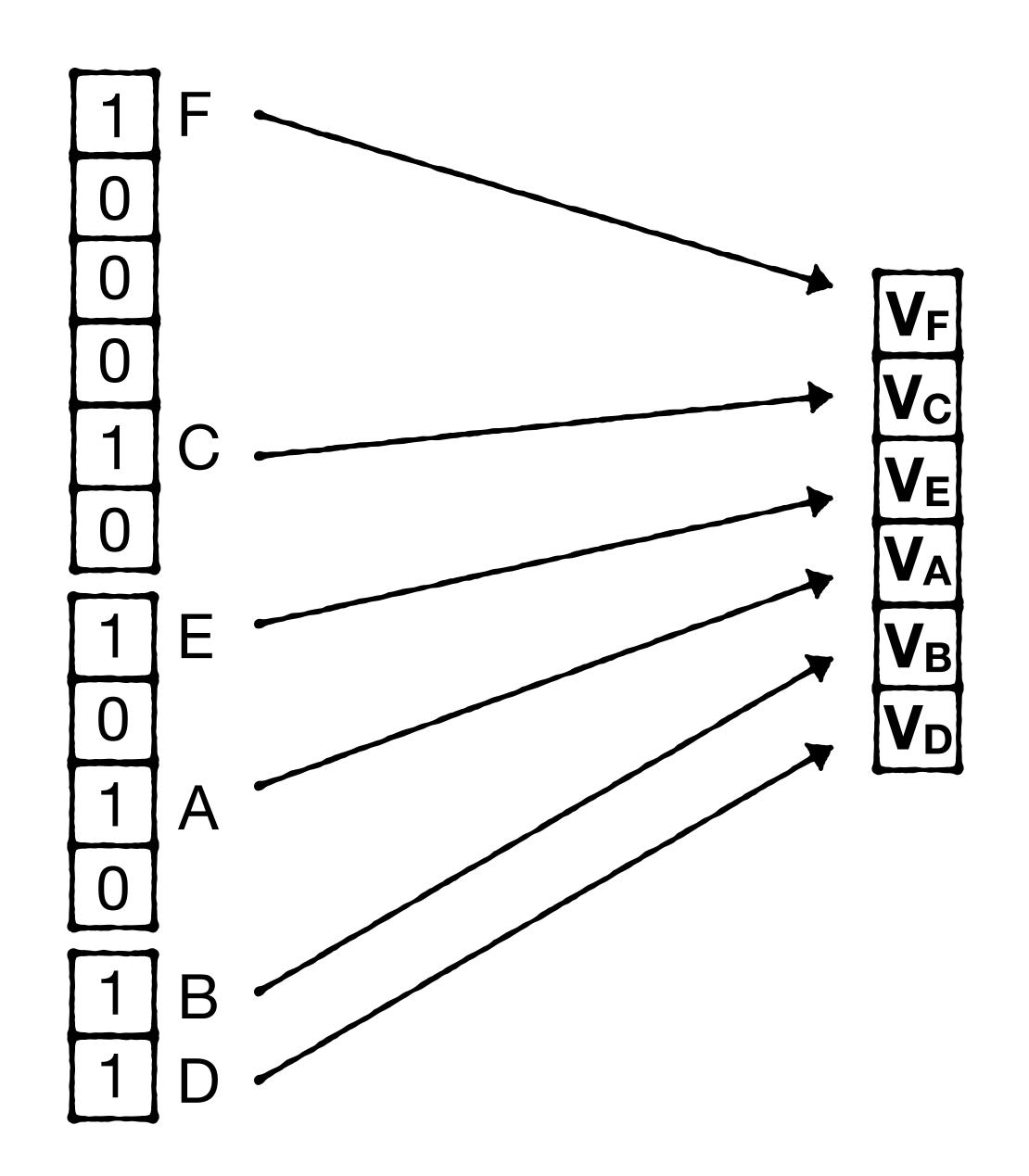
Concatenate bitmaps



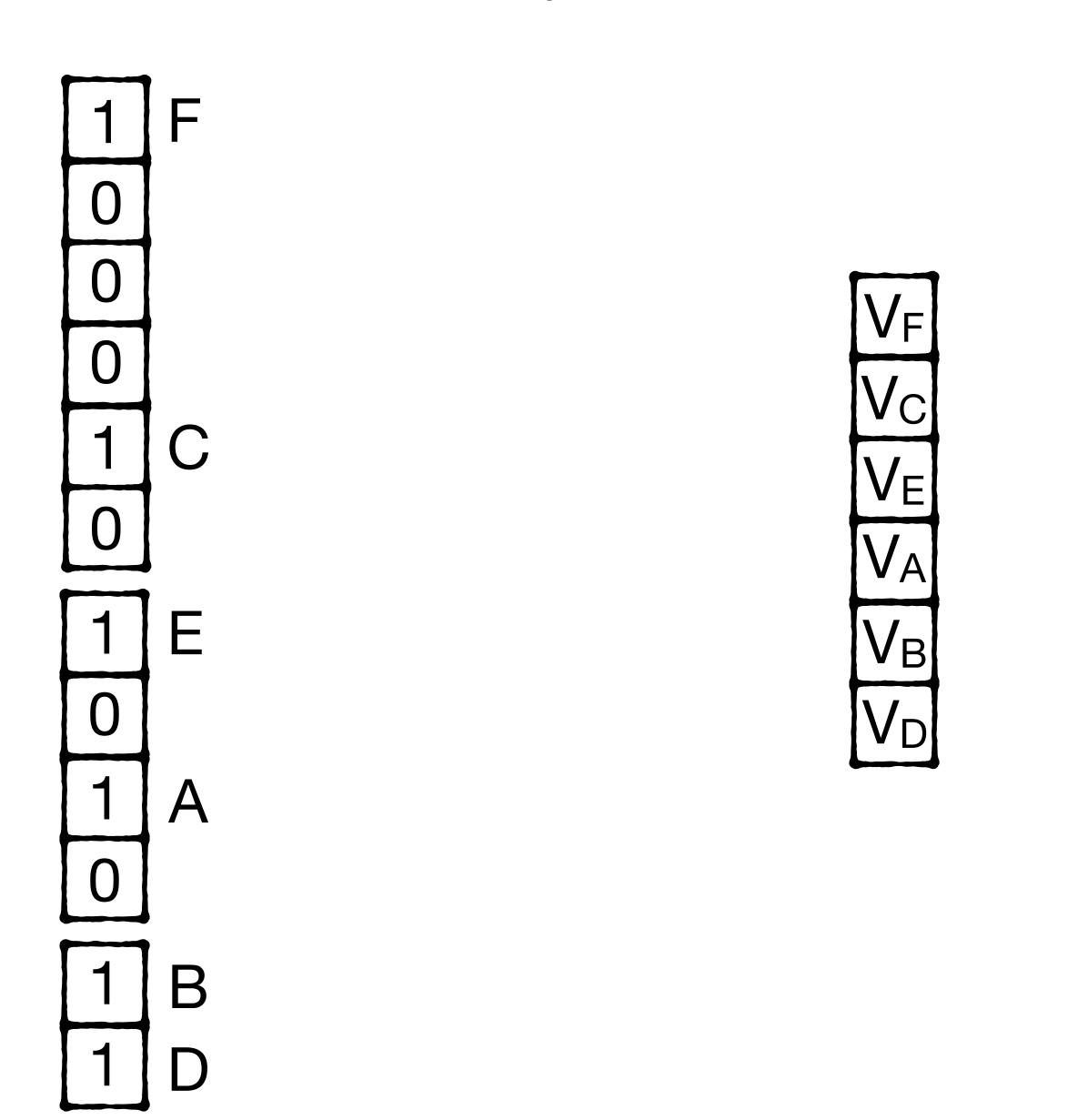
Concatenate bitmaps



Bijection is now established:)

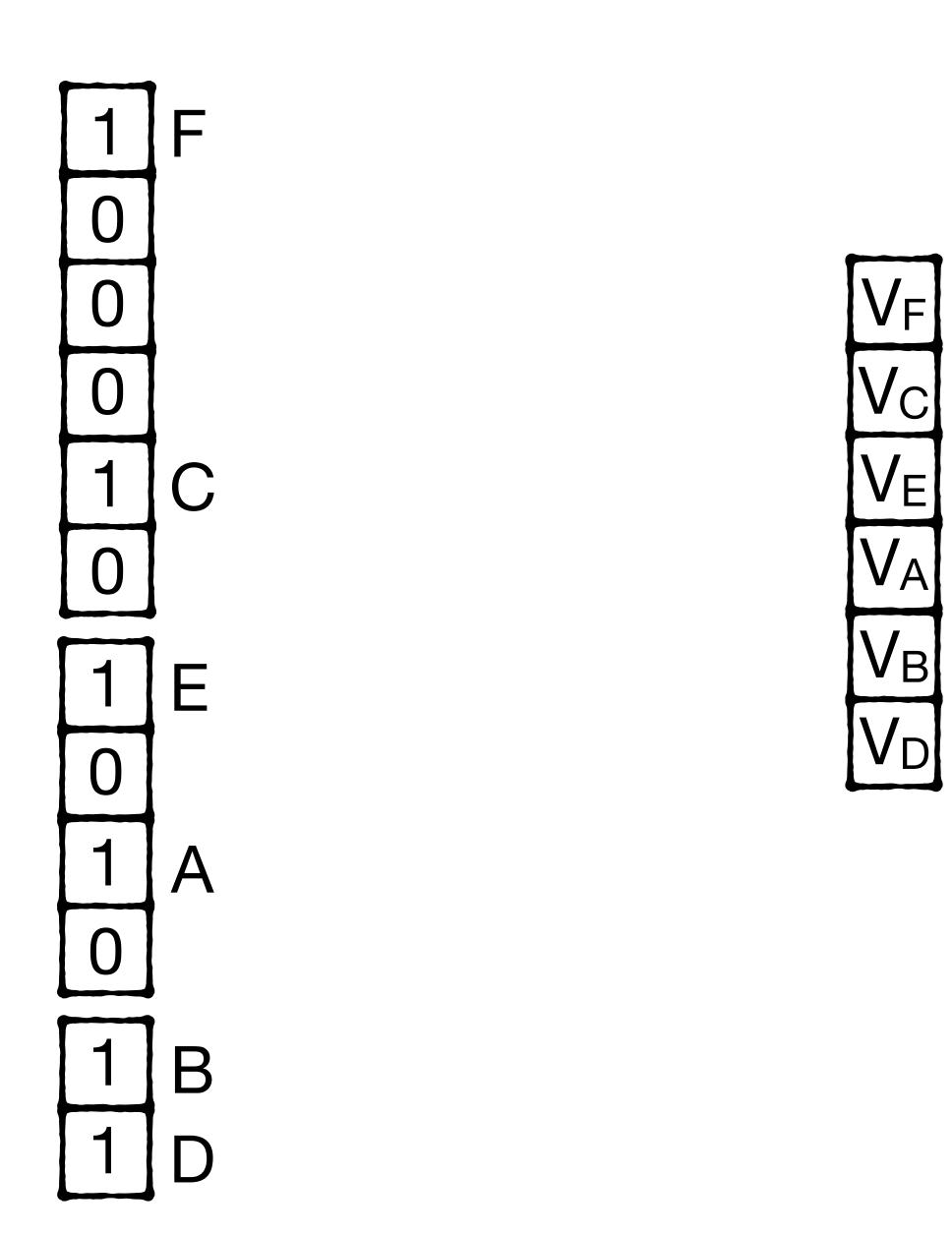


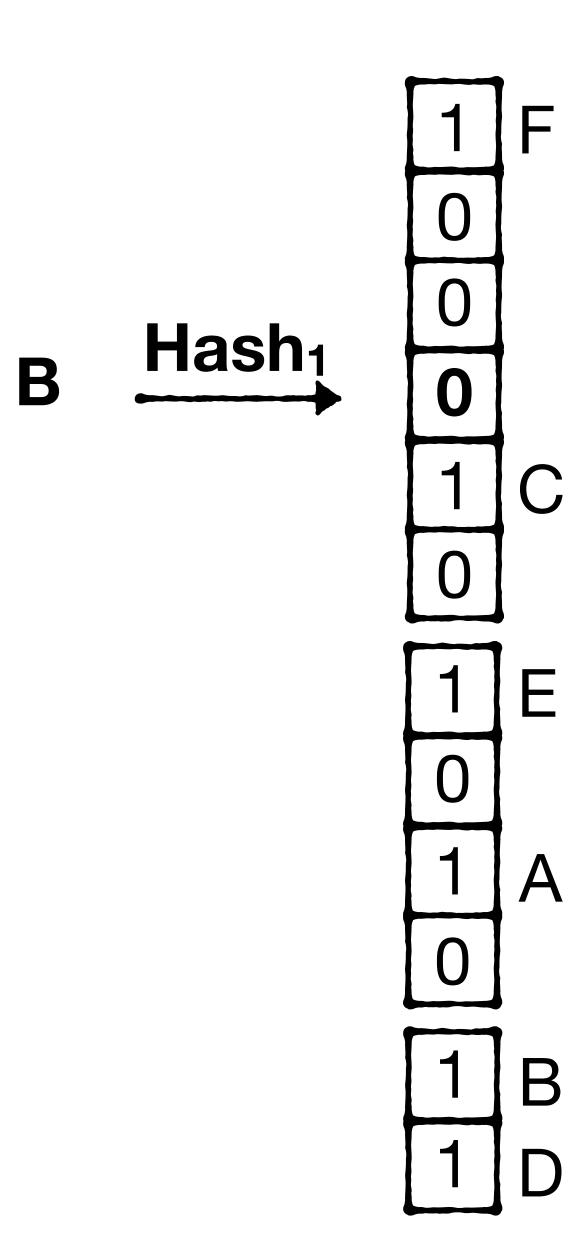
Bijection is now established:)

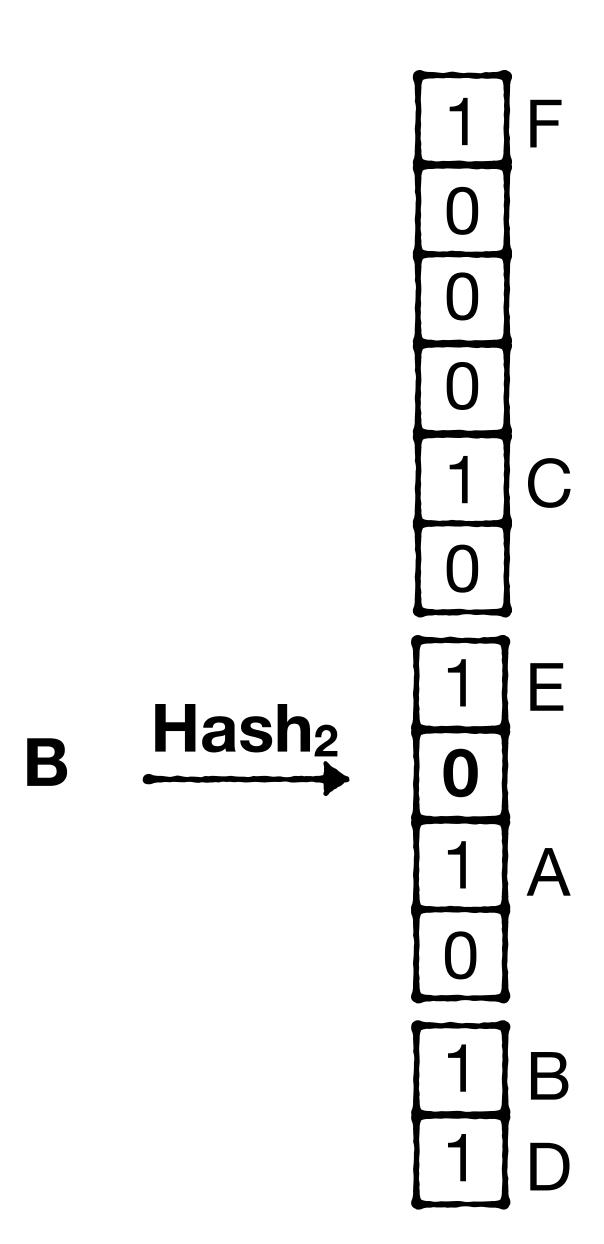


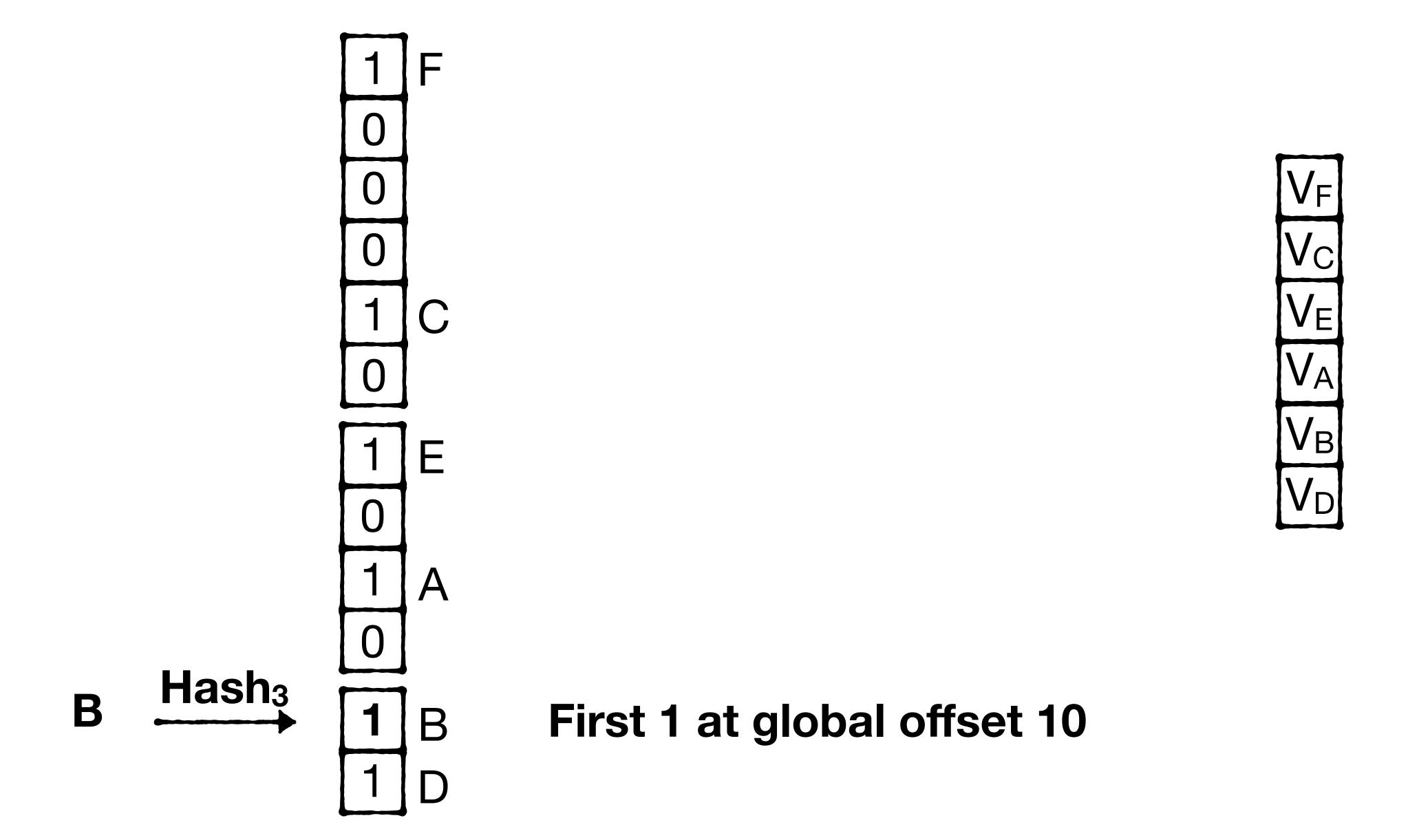
Array stores a value/pointer associated with each key

How to query?



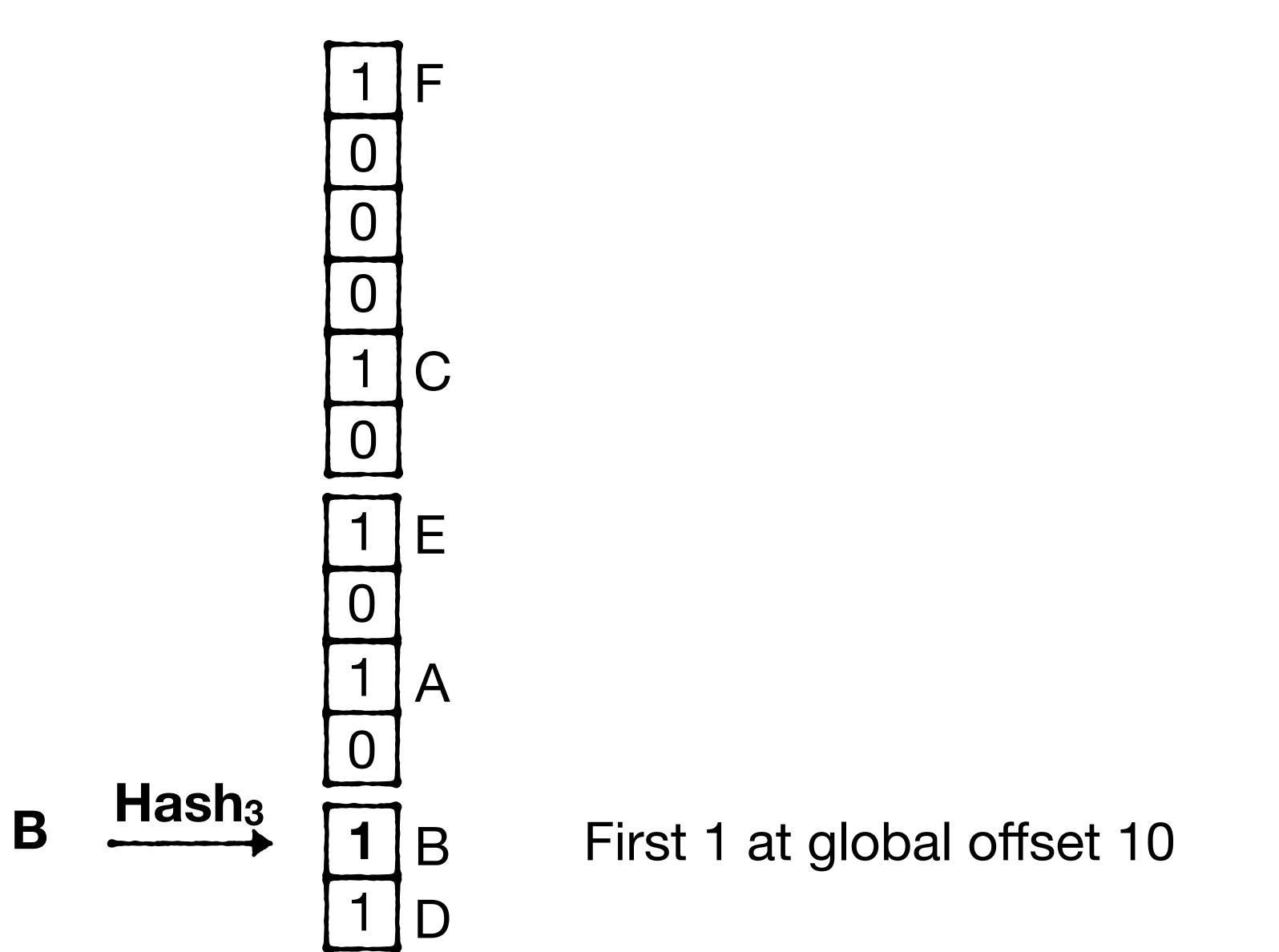




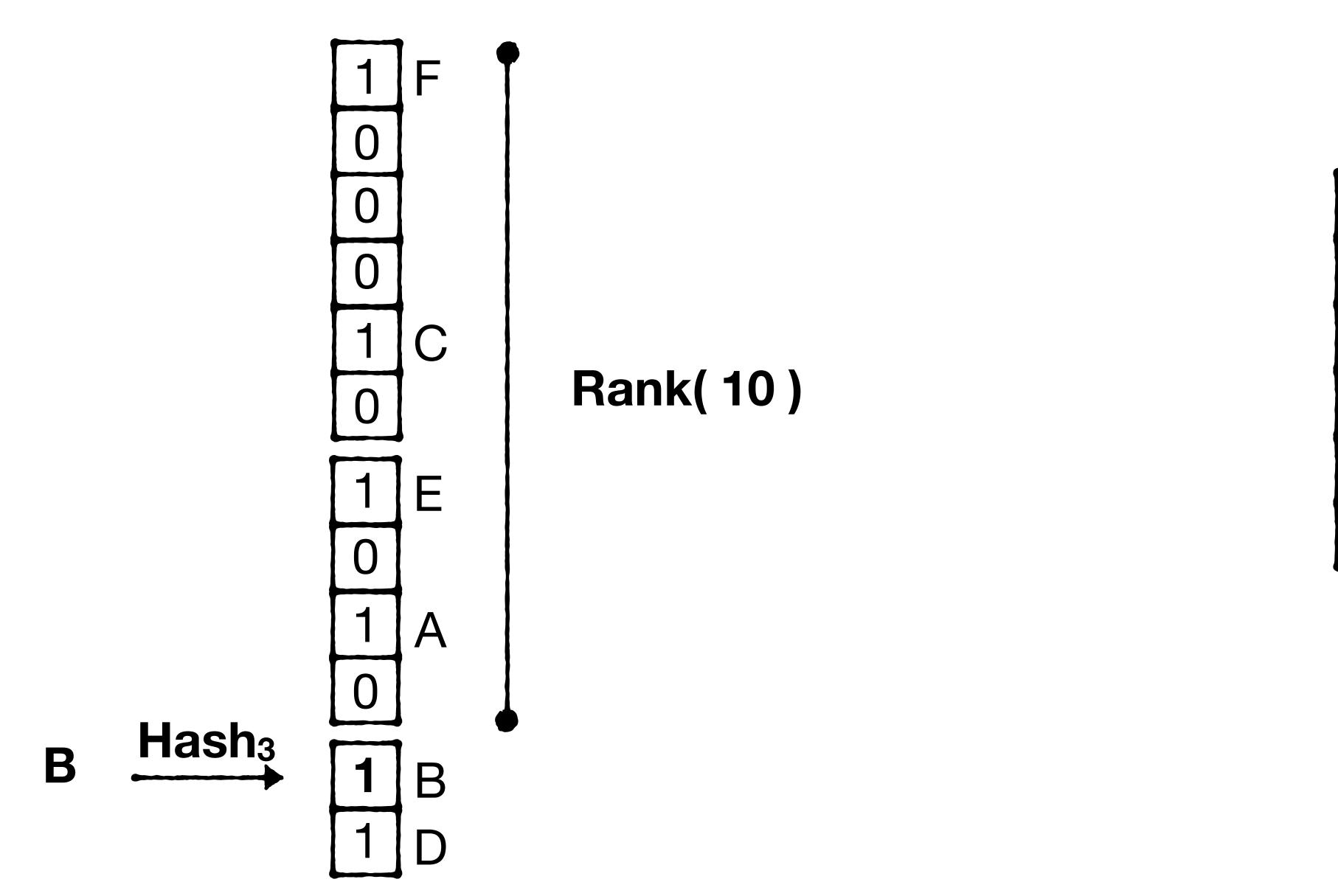


How to query? Check bitmaps until finding 1 Next?:) Hash₃ First 1 at global offset 10

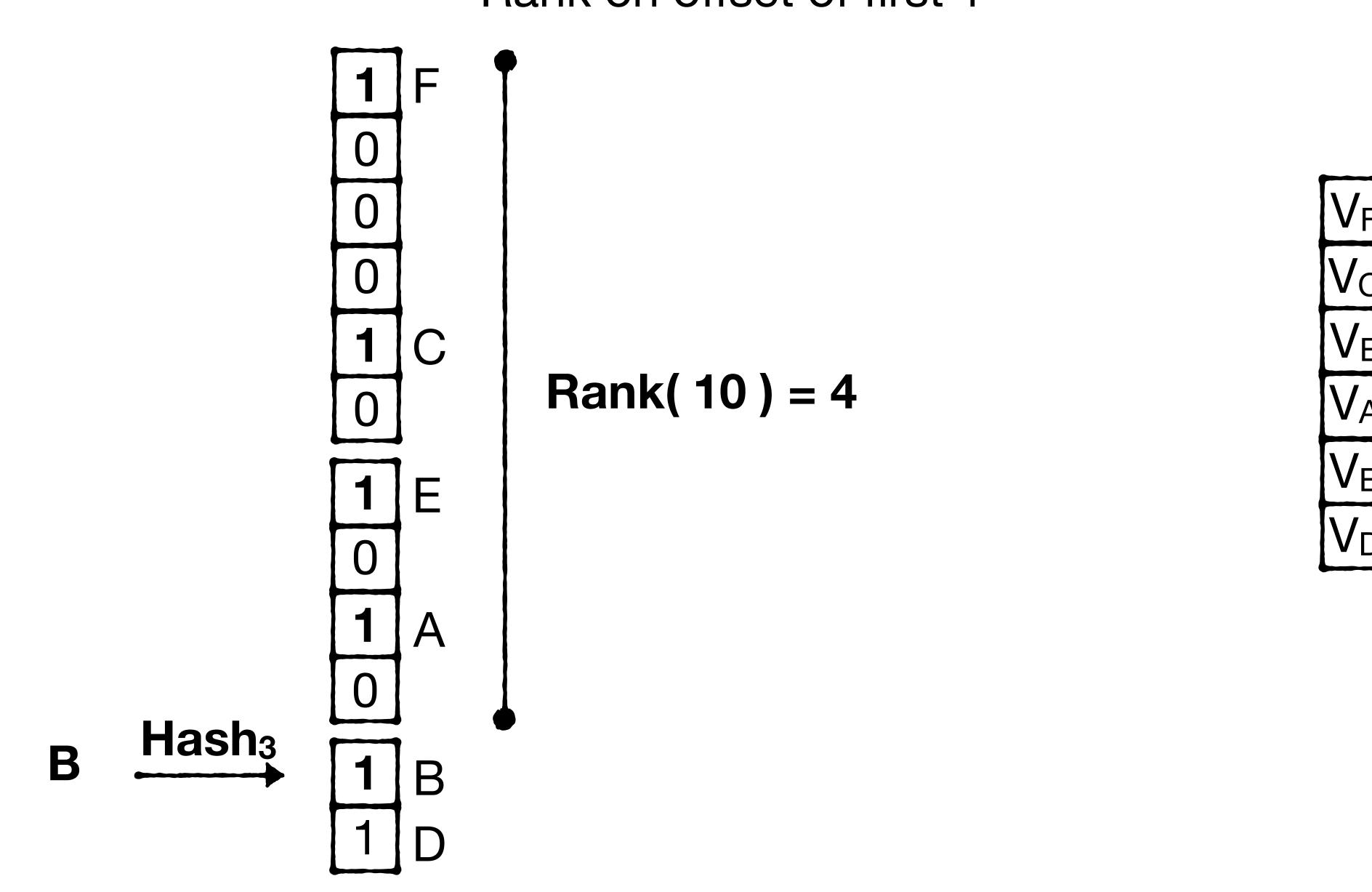
Rank on offset of first 1



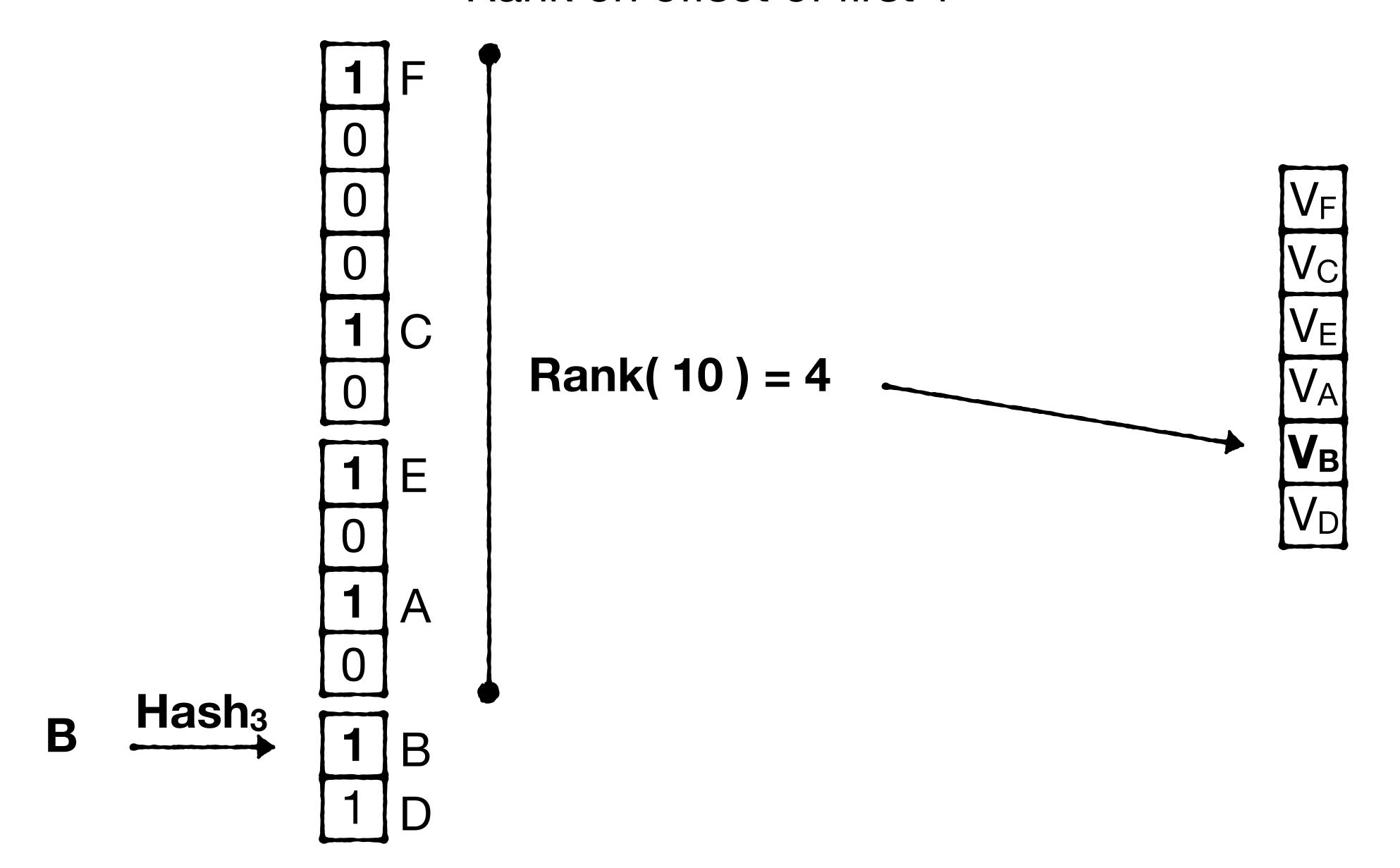
Rank on offset of first 1



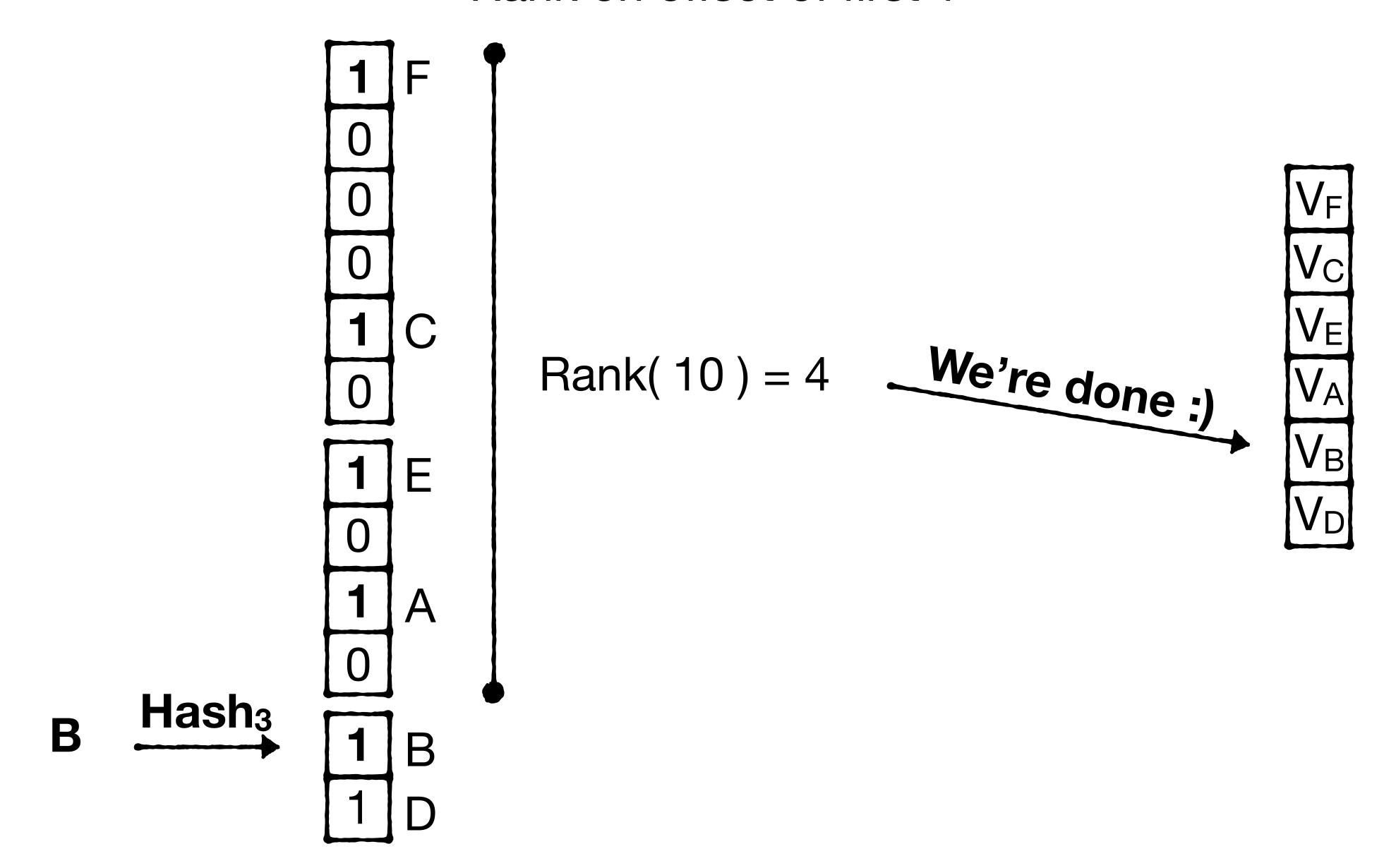
How to query? Check bitmaps until finding 1
Rank on offset of first 1

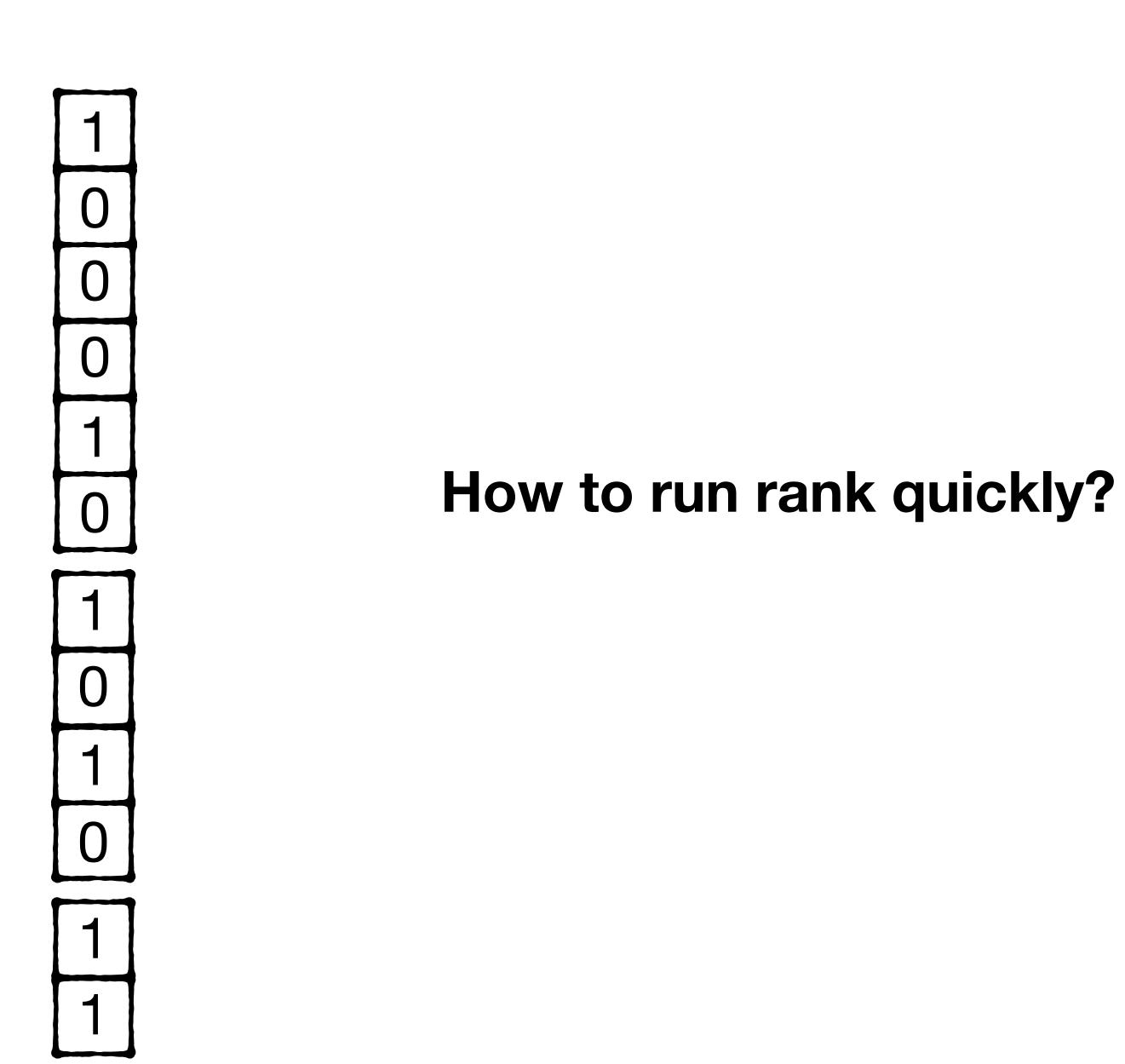


How to query? Check bitmaps until finding 1
Rank on offset of first 1



How to query? Check bitmaps until finding 1
Rank on offset of first 1





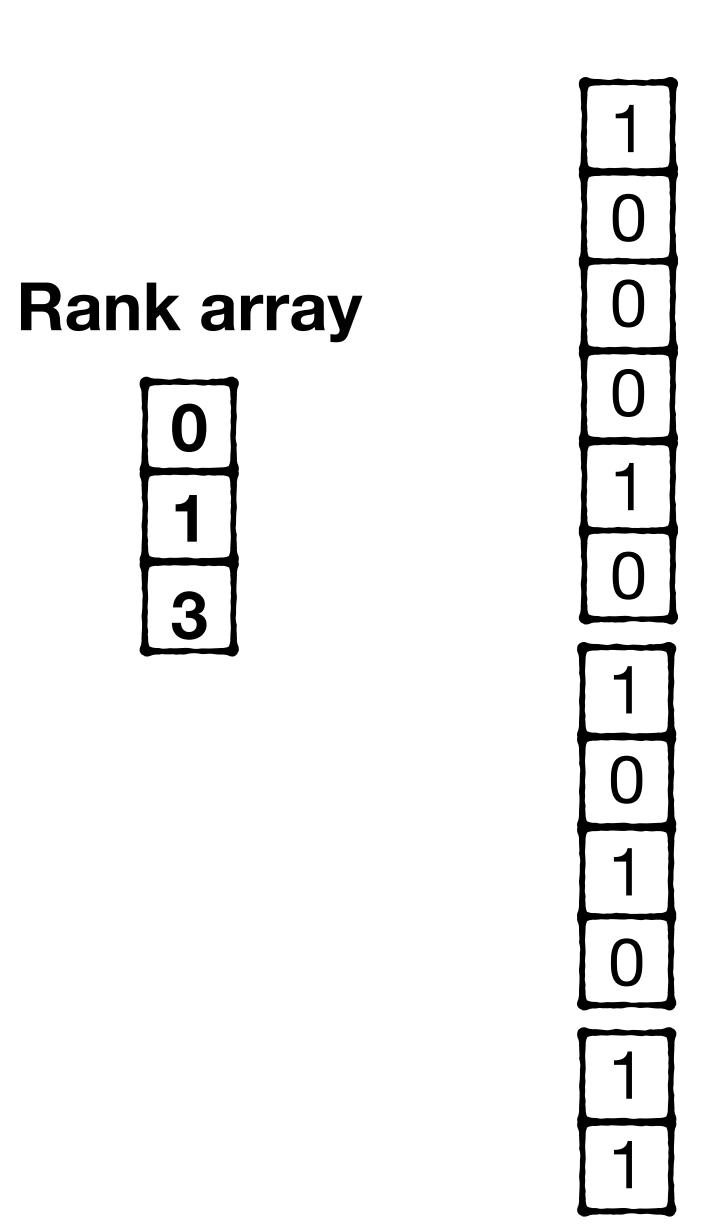
$$Rank(0) = 0$$

Rank(4) = 1

Rank(8) = 3

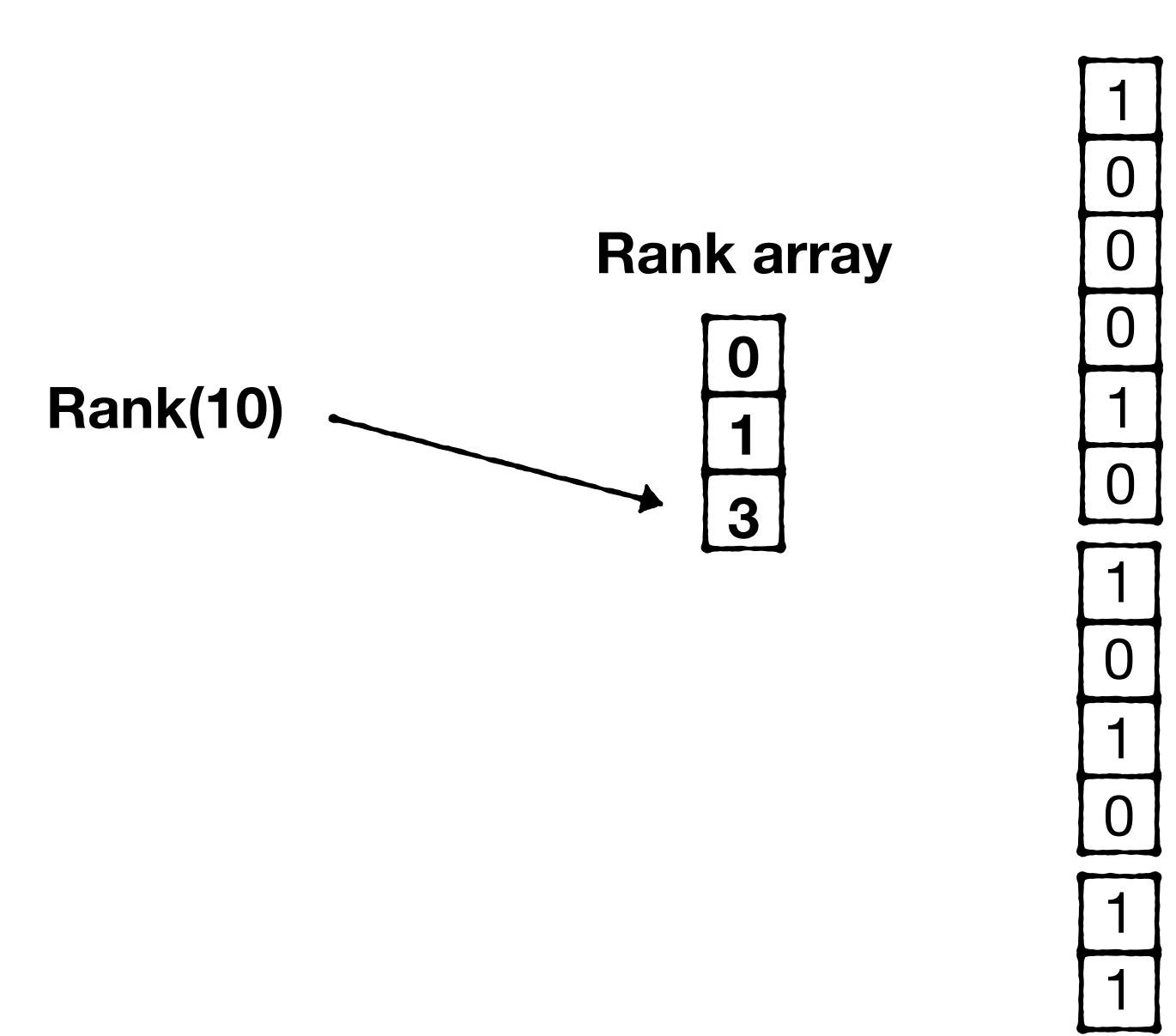
How to run rank quickly?

Rank array as we saw 2 weeks ago

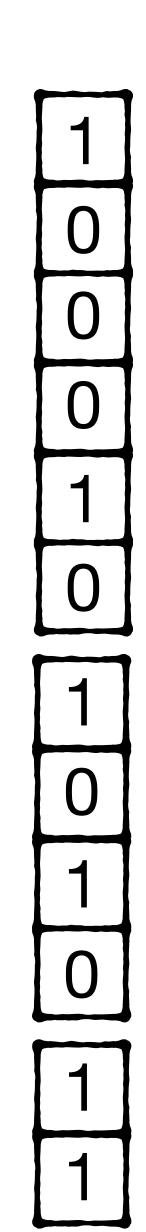


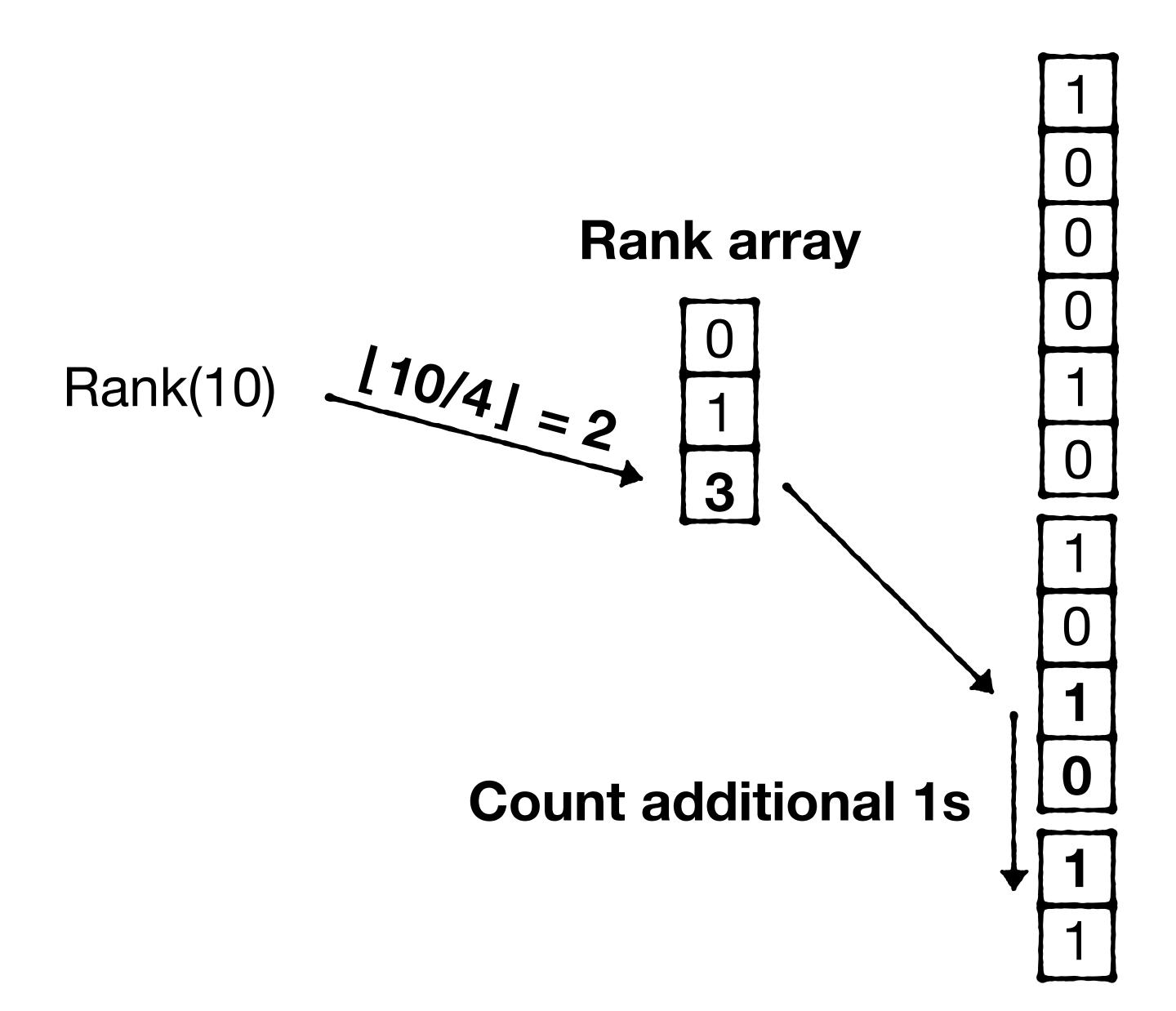
How to run rank quickly?

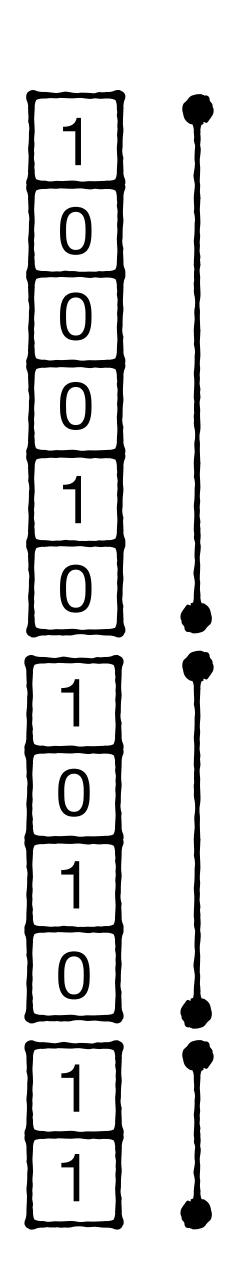
Rank array as we saw 2 weeks ago

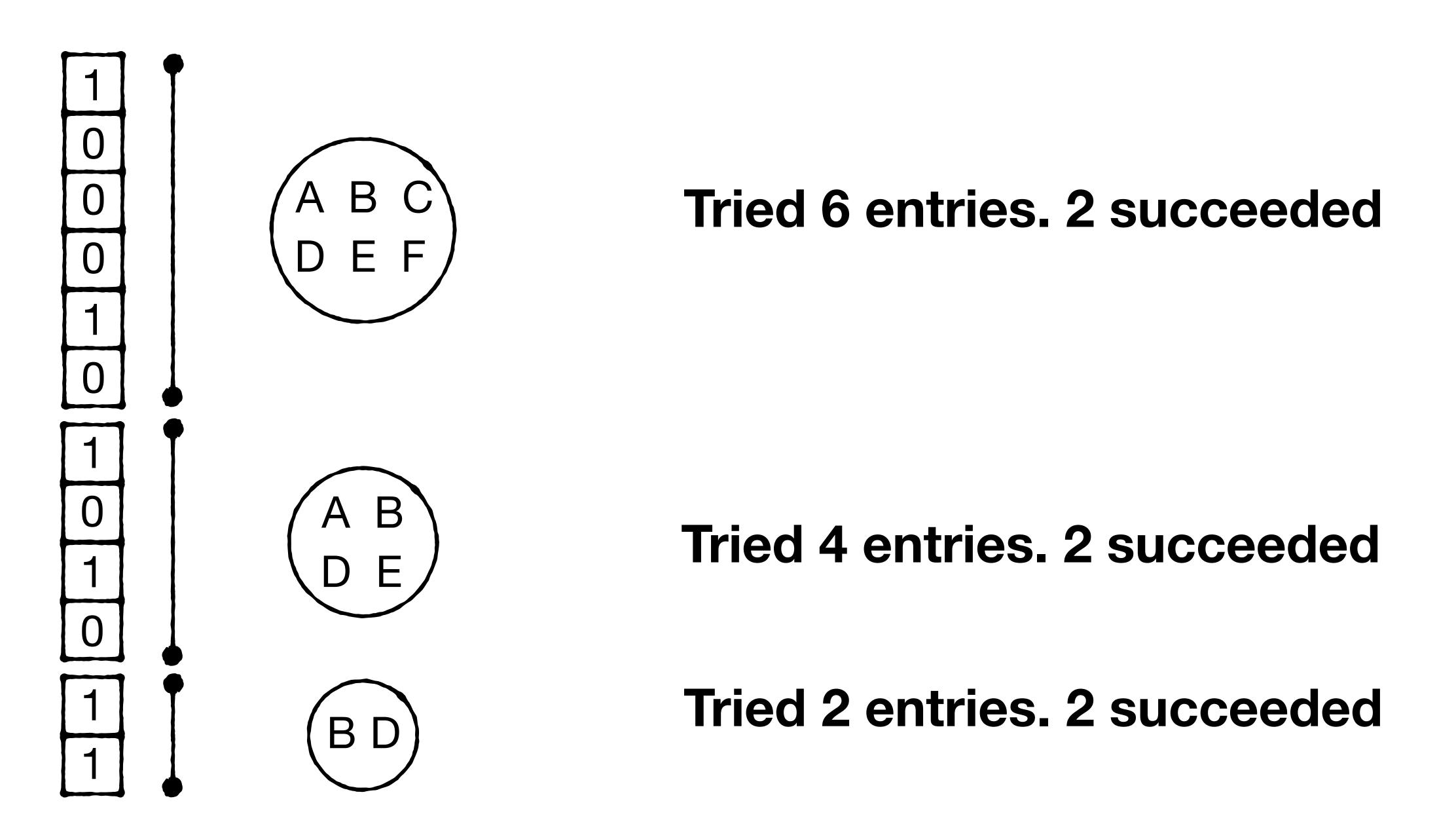


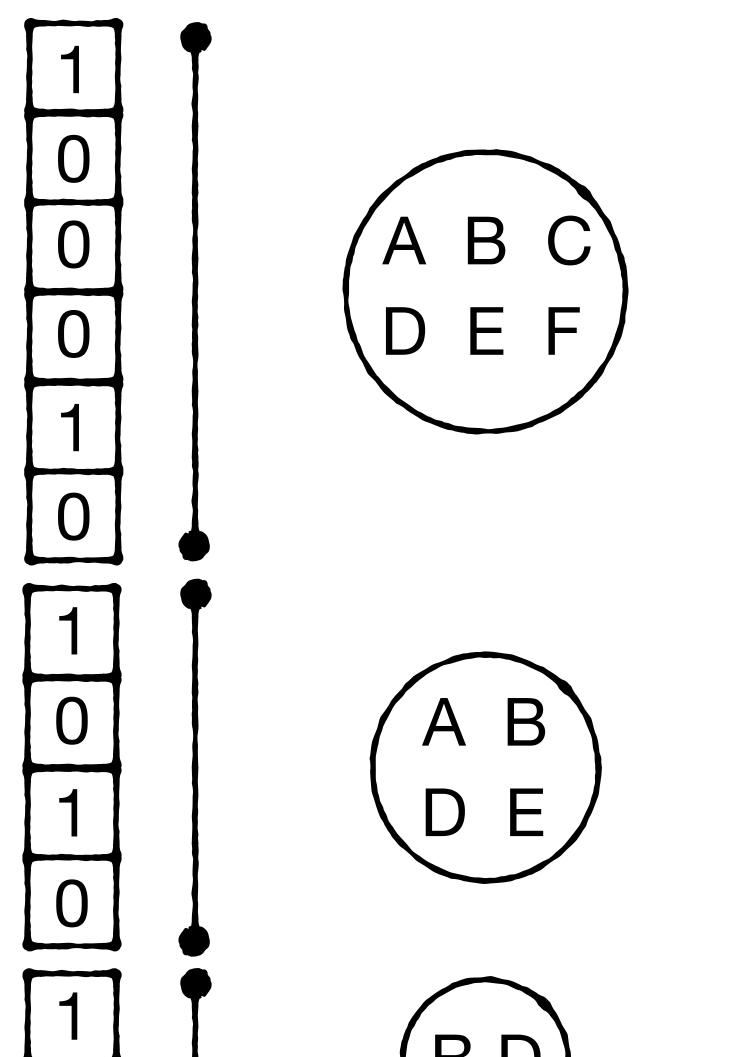
Rank(10)
$$\frac{10}{4} = 2$$
 $\frac{0}{3}$











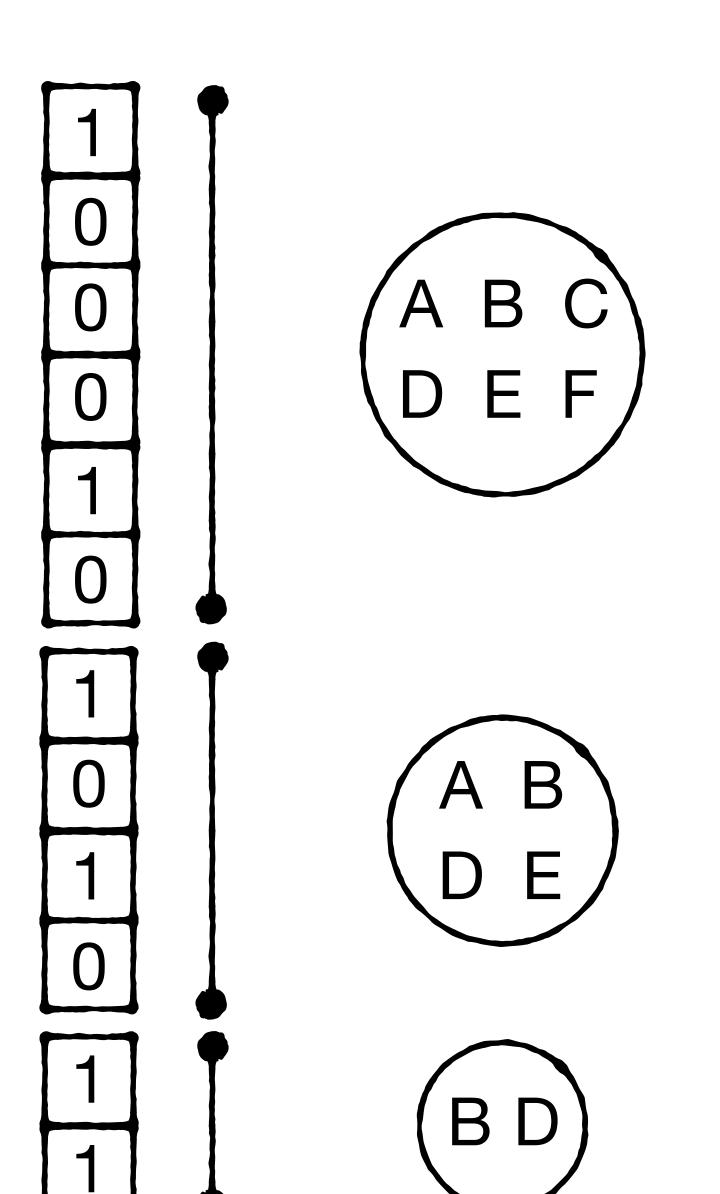
Tried 6 entries. 2 succeeded

Tried 4 entries. 2 succeeded

Tried 2 entries. 2 succeeded

trials across all entries until success

P[entry succeeds in given iteration]?

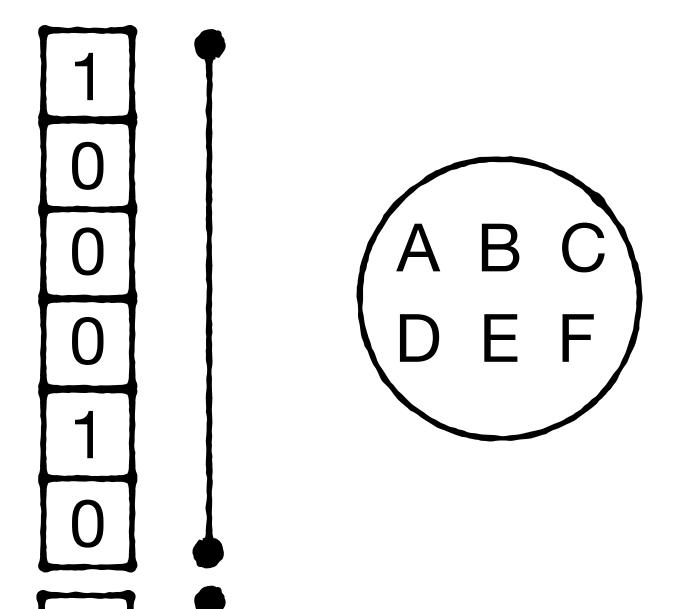


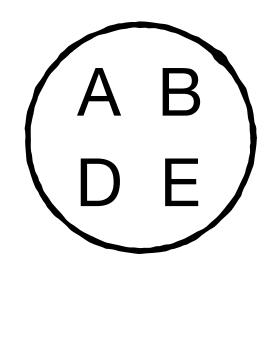
trials across all entries until success

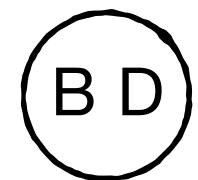
P[entry succeeds in given iteration]

Poisson(λ, 1)

 $\lambda = 1$



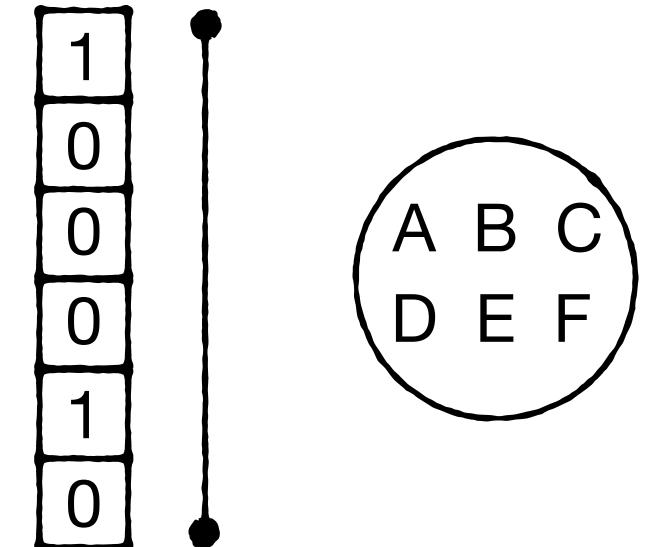


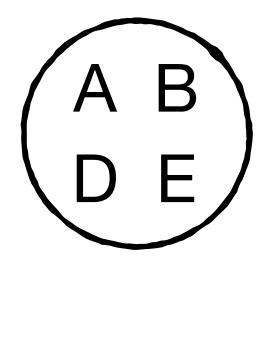


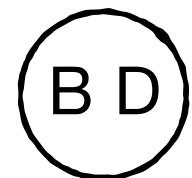
trials across all entries until success

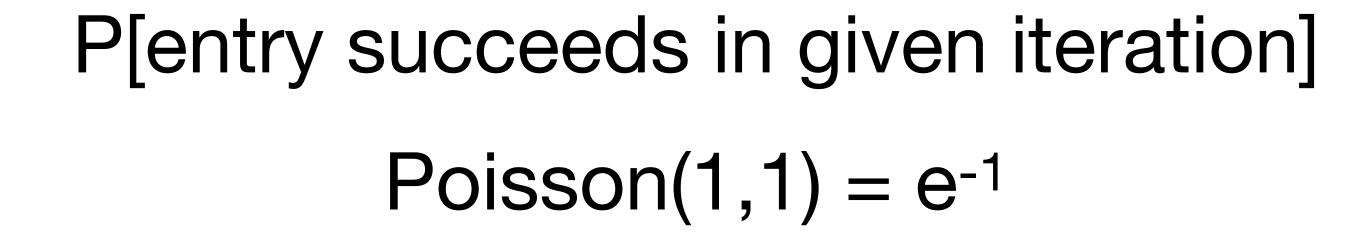
P[entry succeeds in given iteration]

Poisson(1,1) = e^{-1}

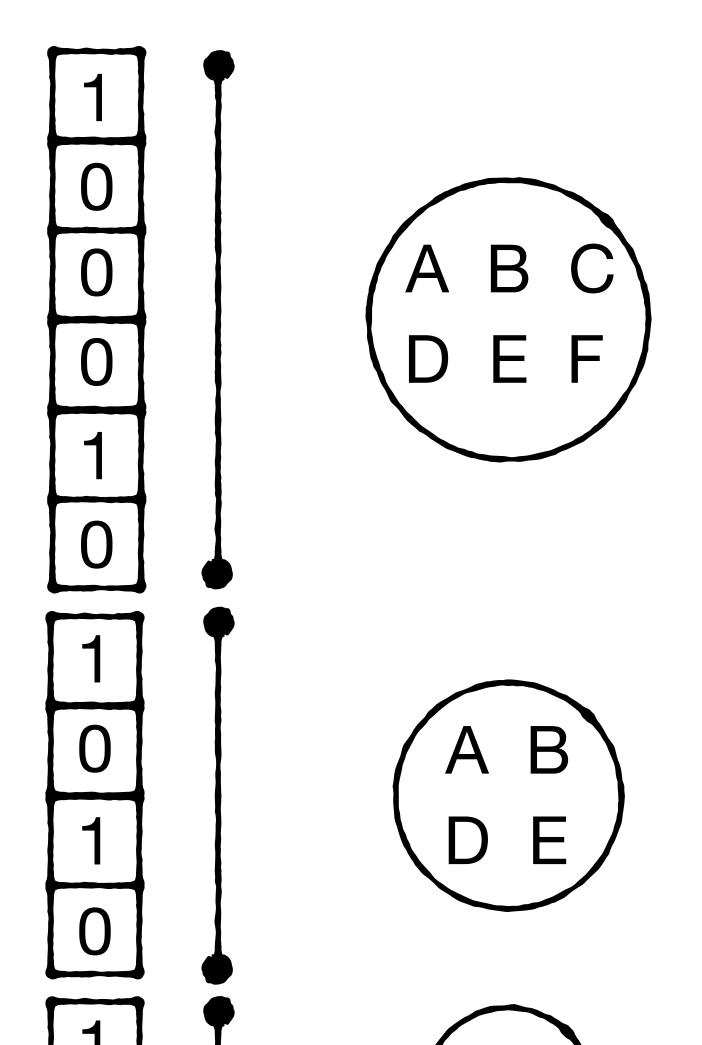




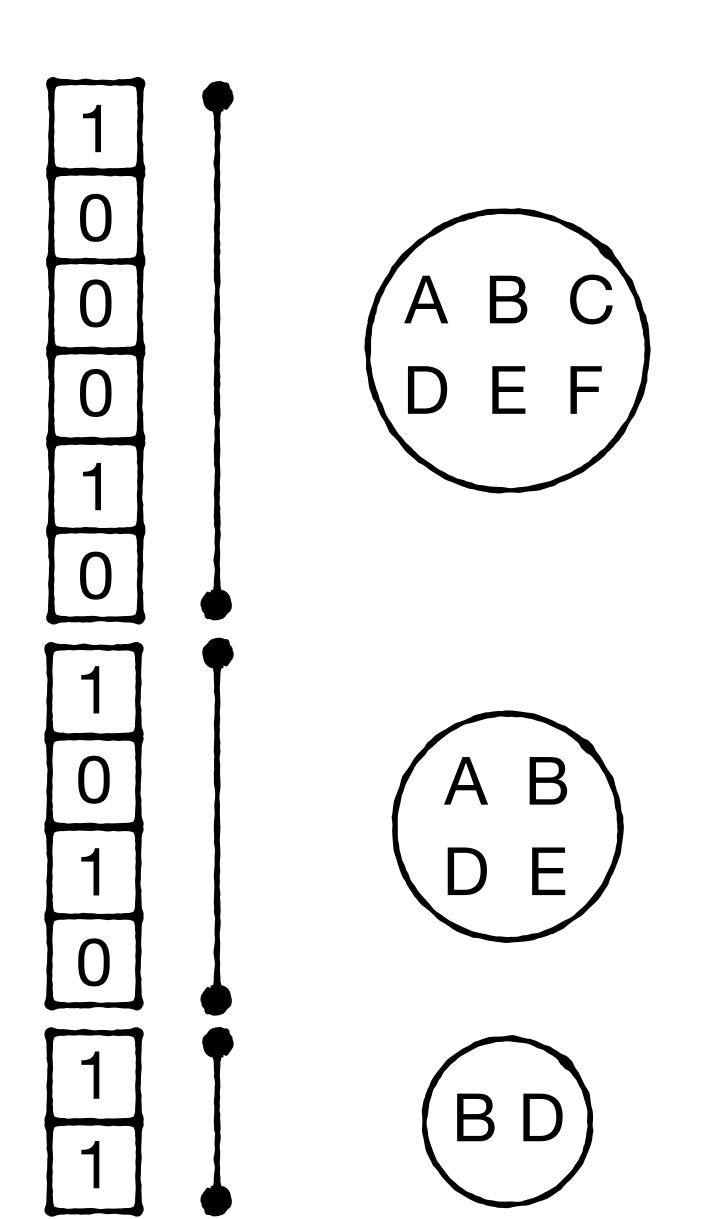




E[# iterations until succeeding]?

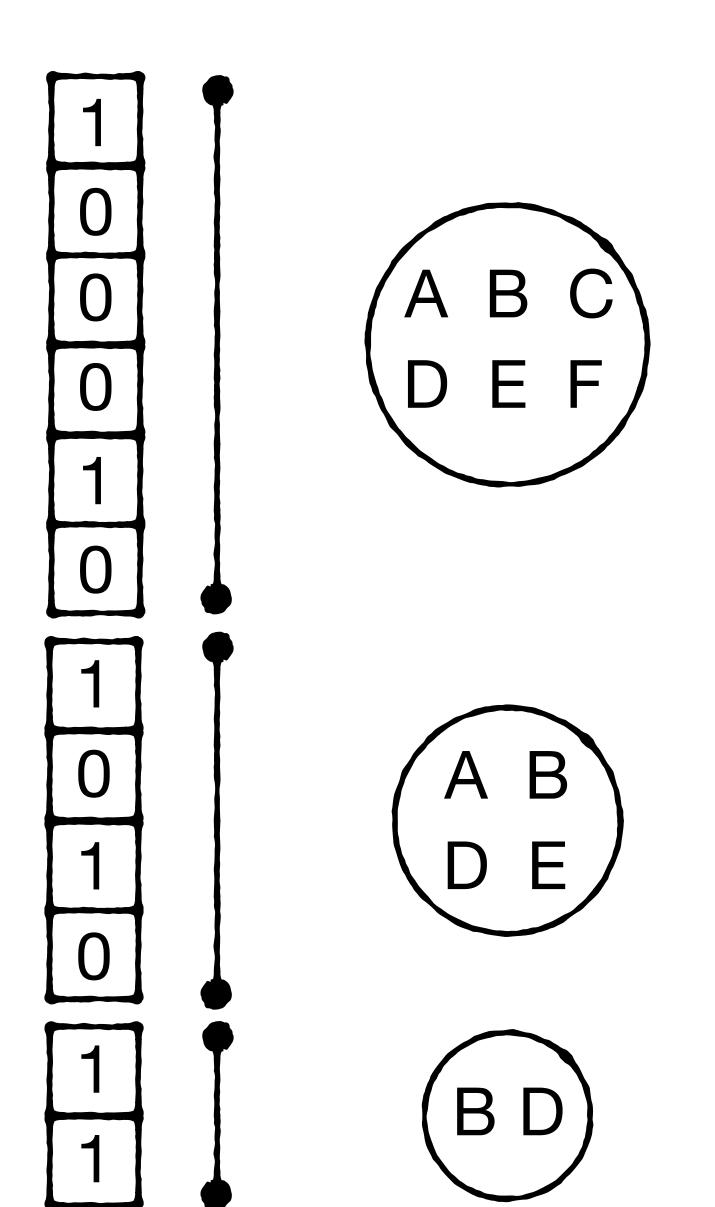


trials across all entries until success



E[# iterations until succeeding]?

trials across all entries until success

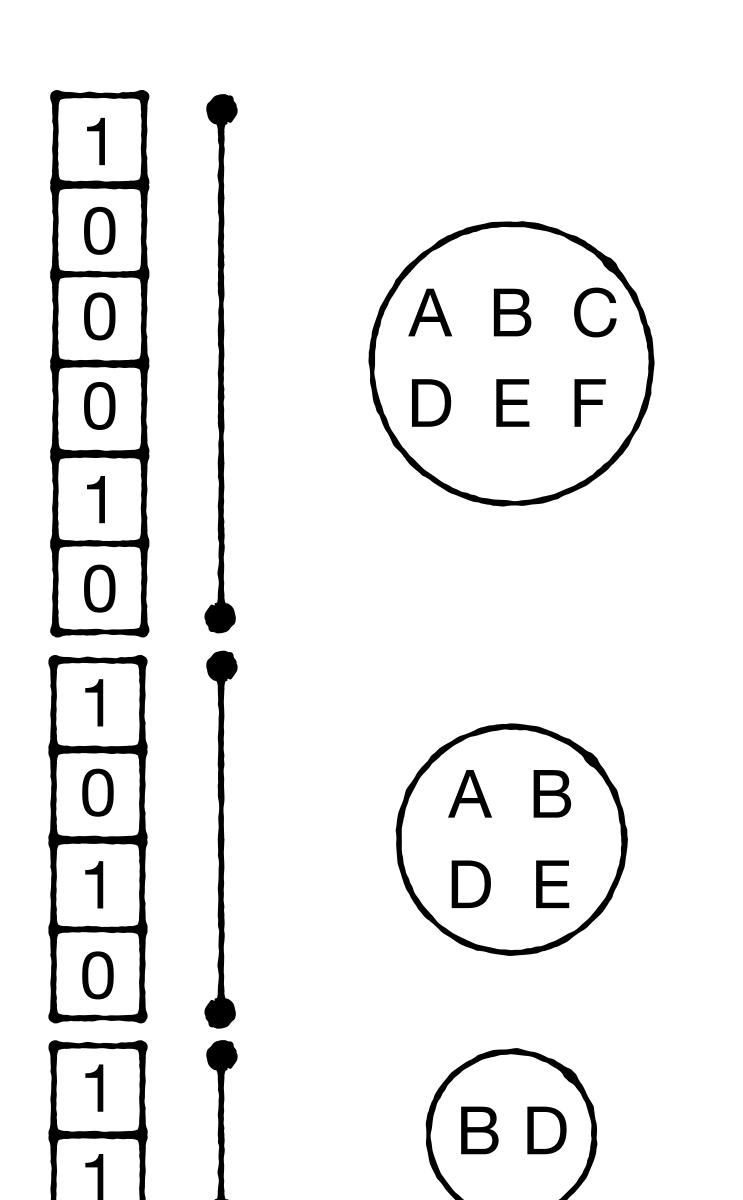


E[# iterations until succeeding]?

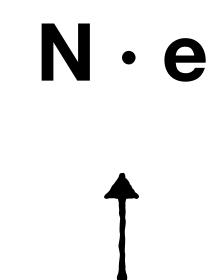
e

trials across all entries until success

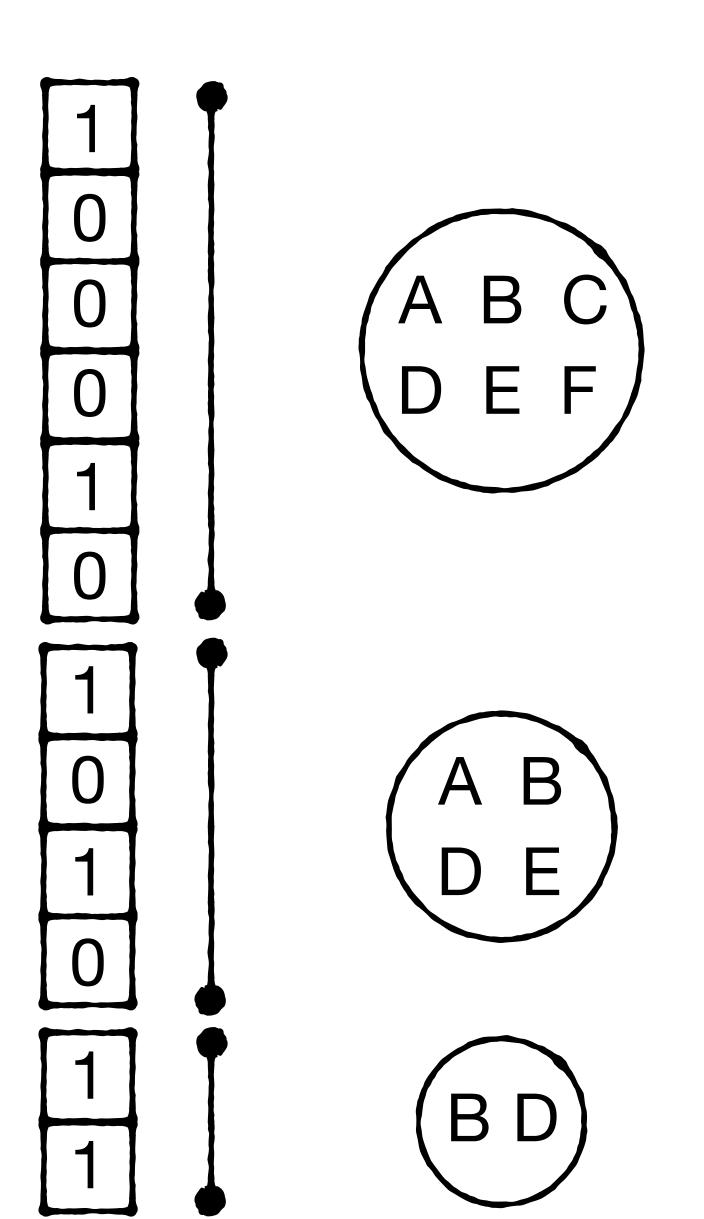
N·e bits



trials across all entries until success



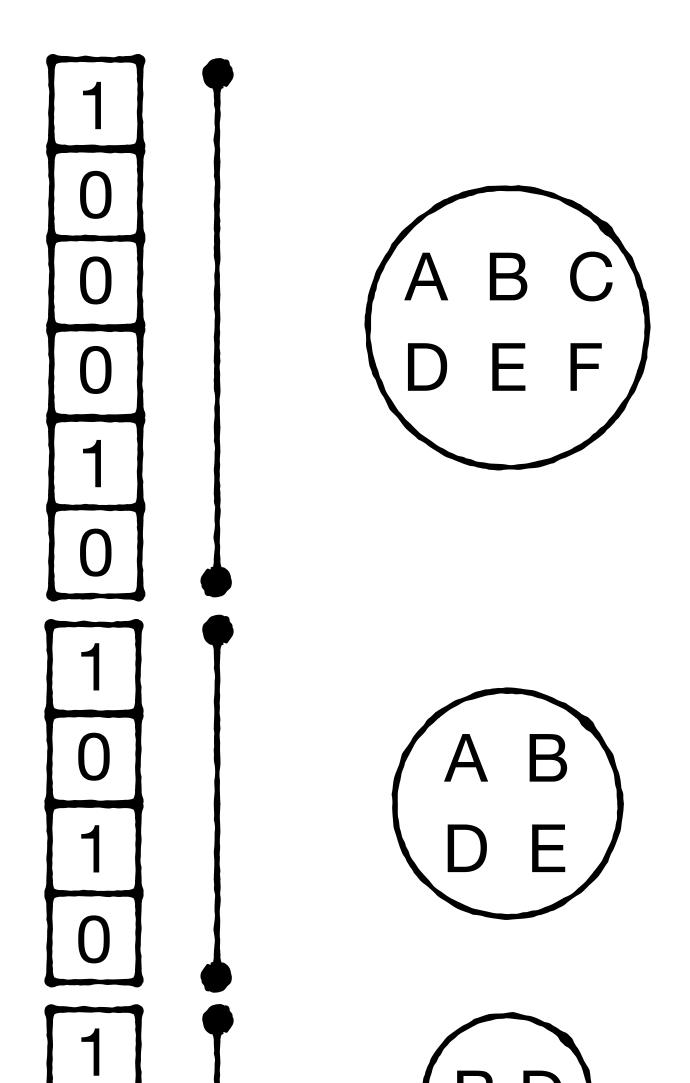
Also our construction time:)

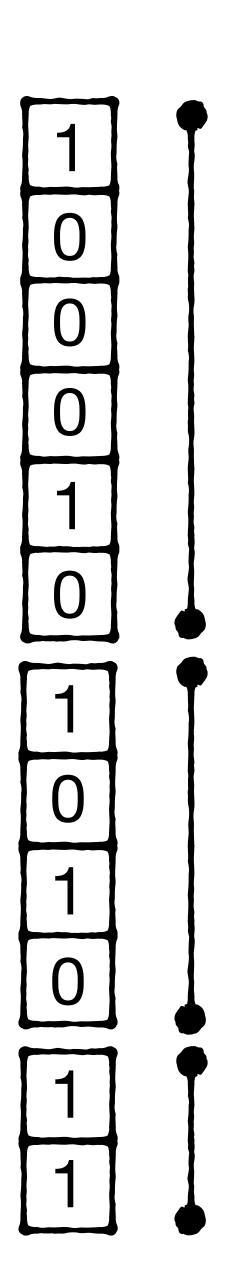


trials across all entries until success

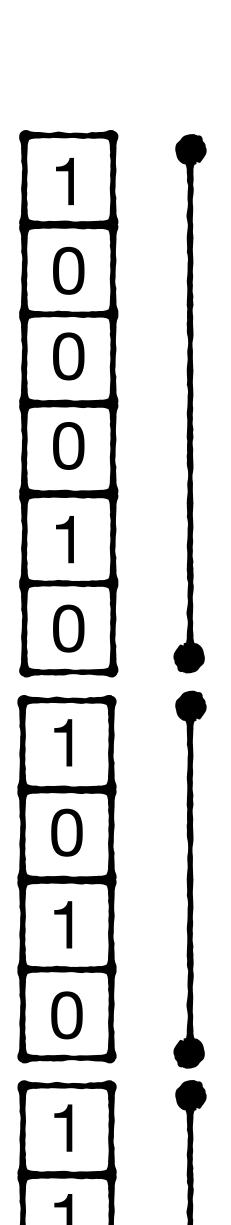
Also our construction time:)

times each entry is hashed

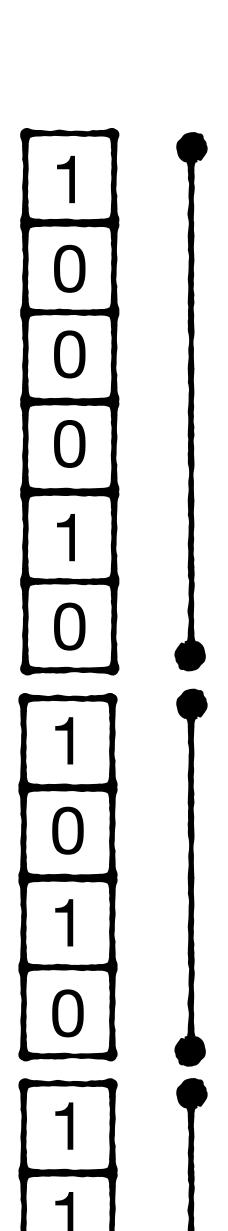




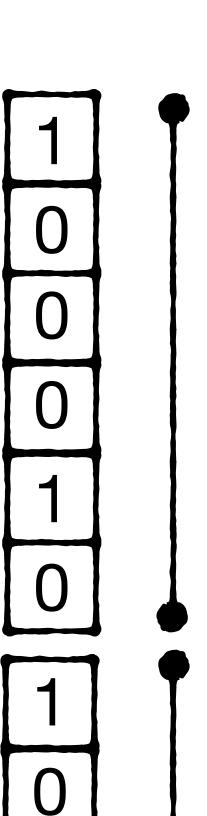
= # bitmaps to traverse



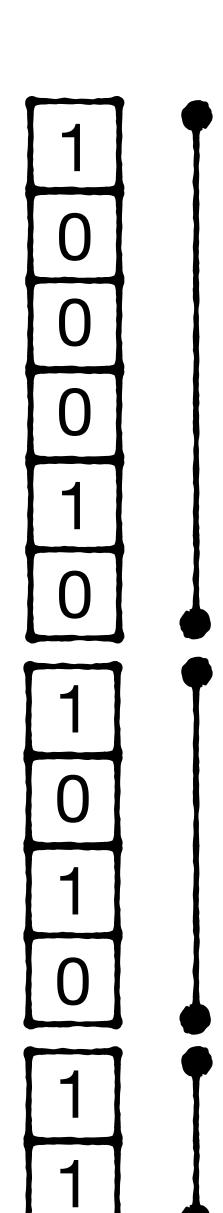
= log base (N)



= # bitmaps to traverse

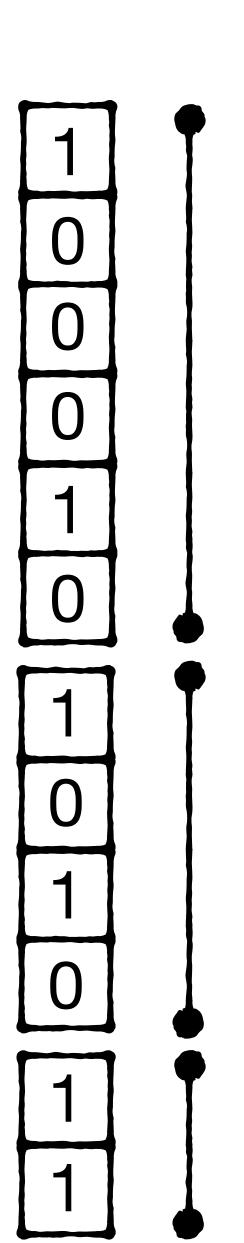


Fraction of entries failing each iteration

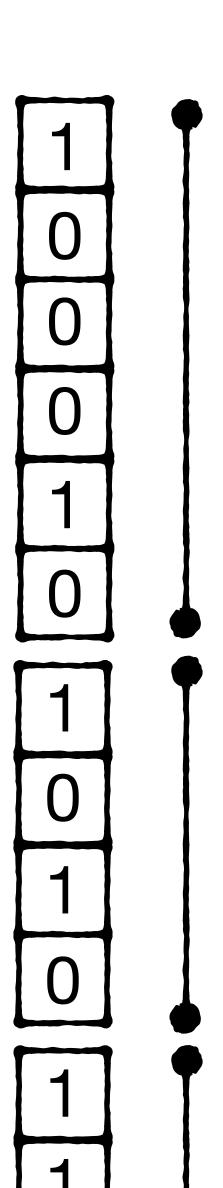


= # bitmaps to traverse

1.58

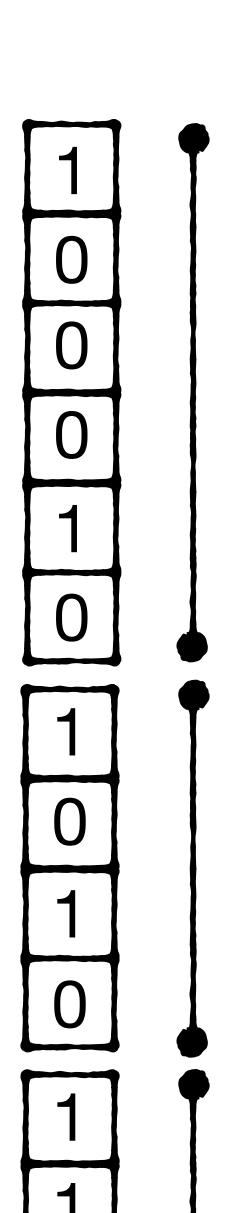


= log 1.58 (N)

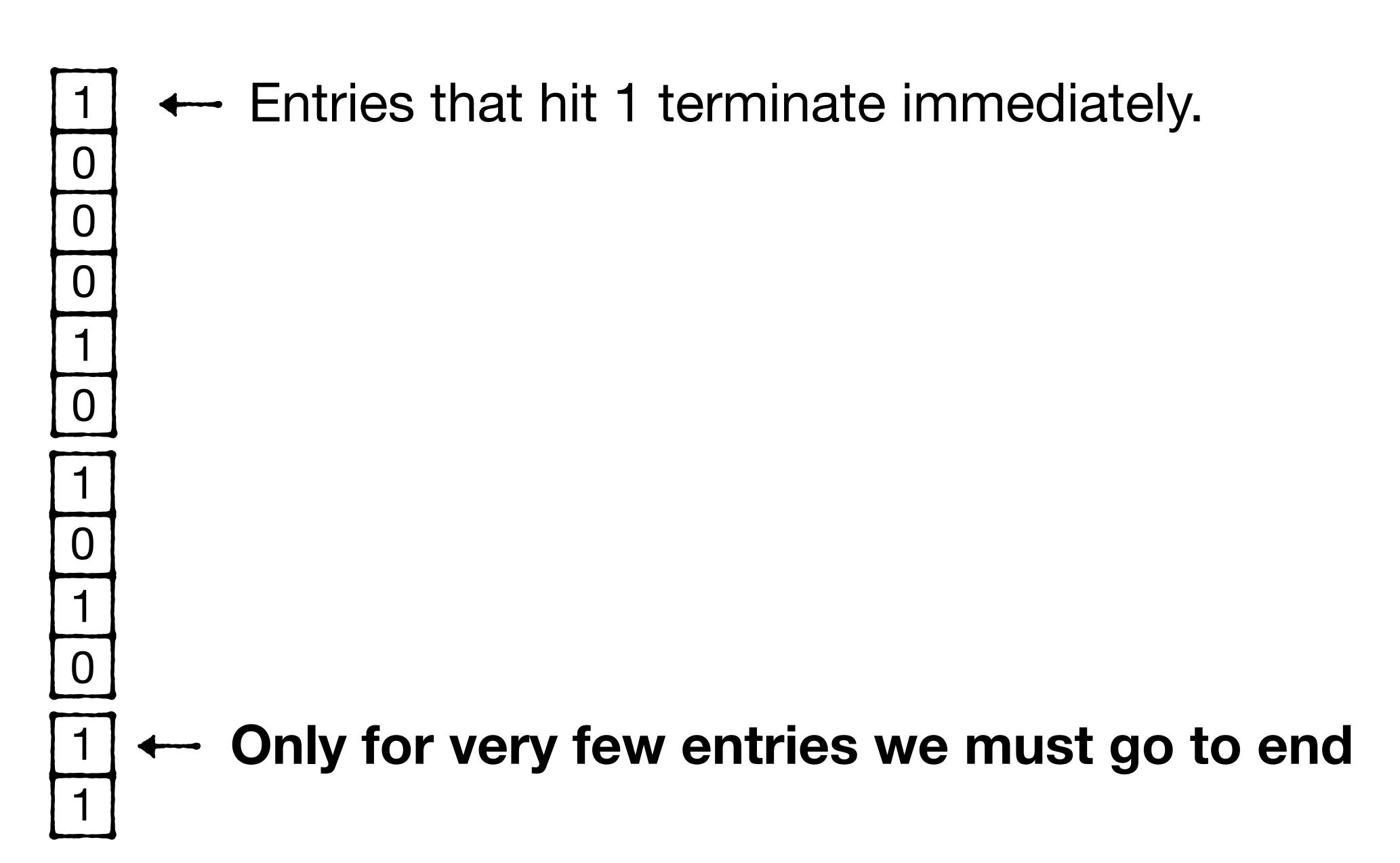


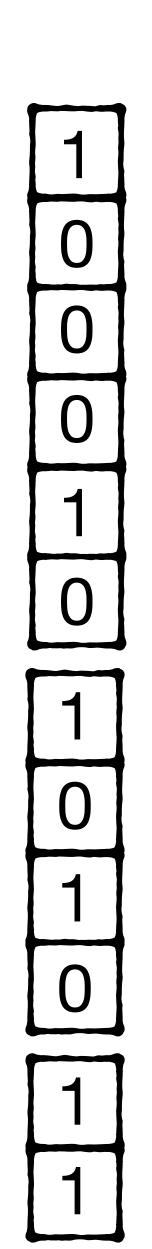
= log 1.58 (N)

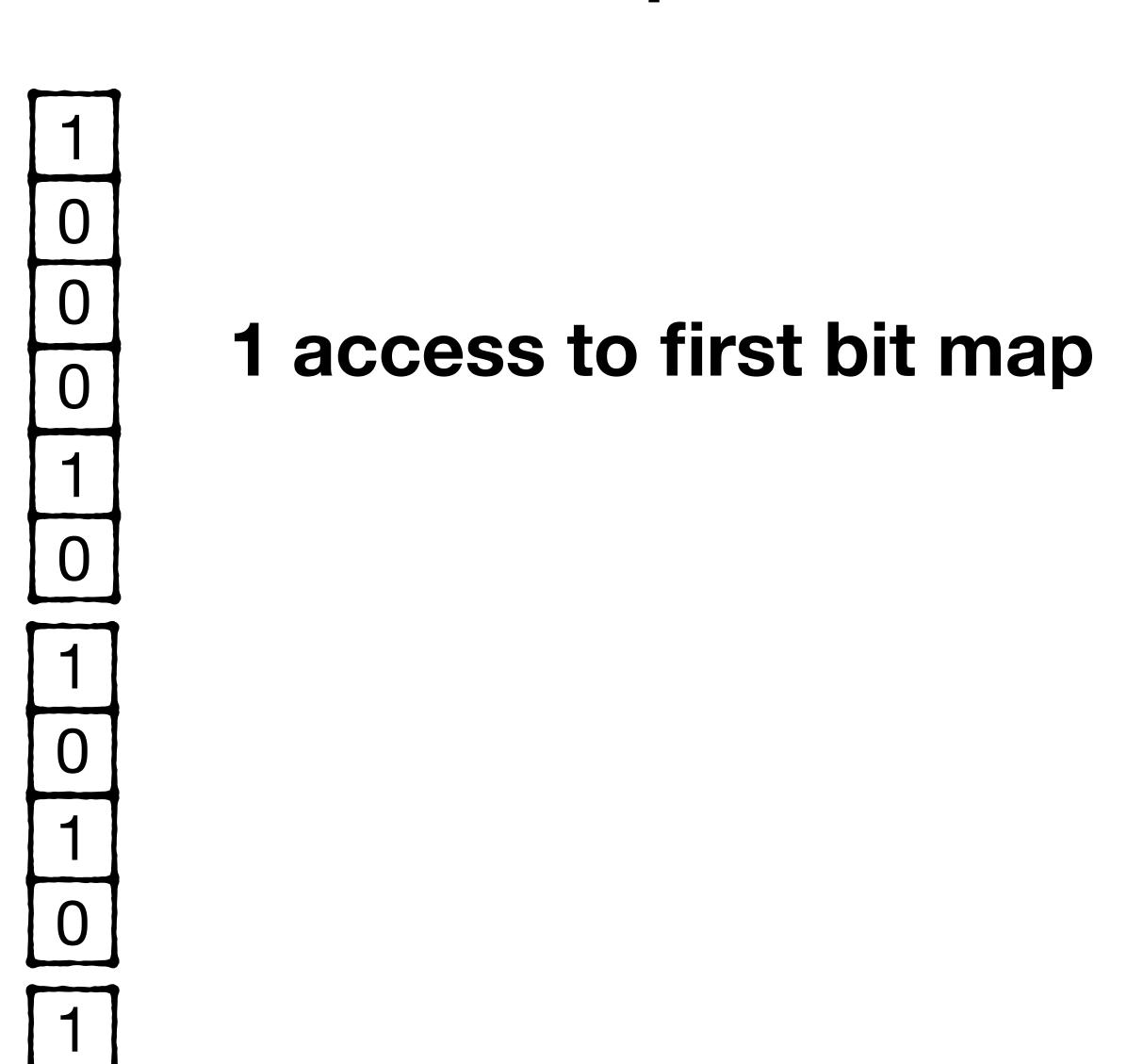
Is it really so bad?

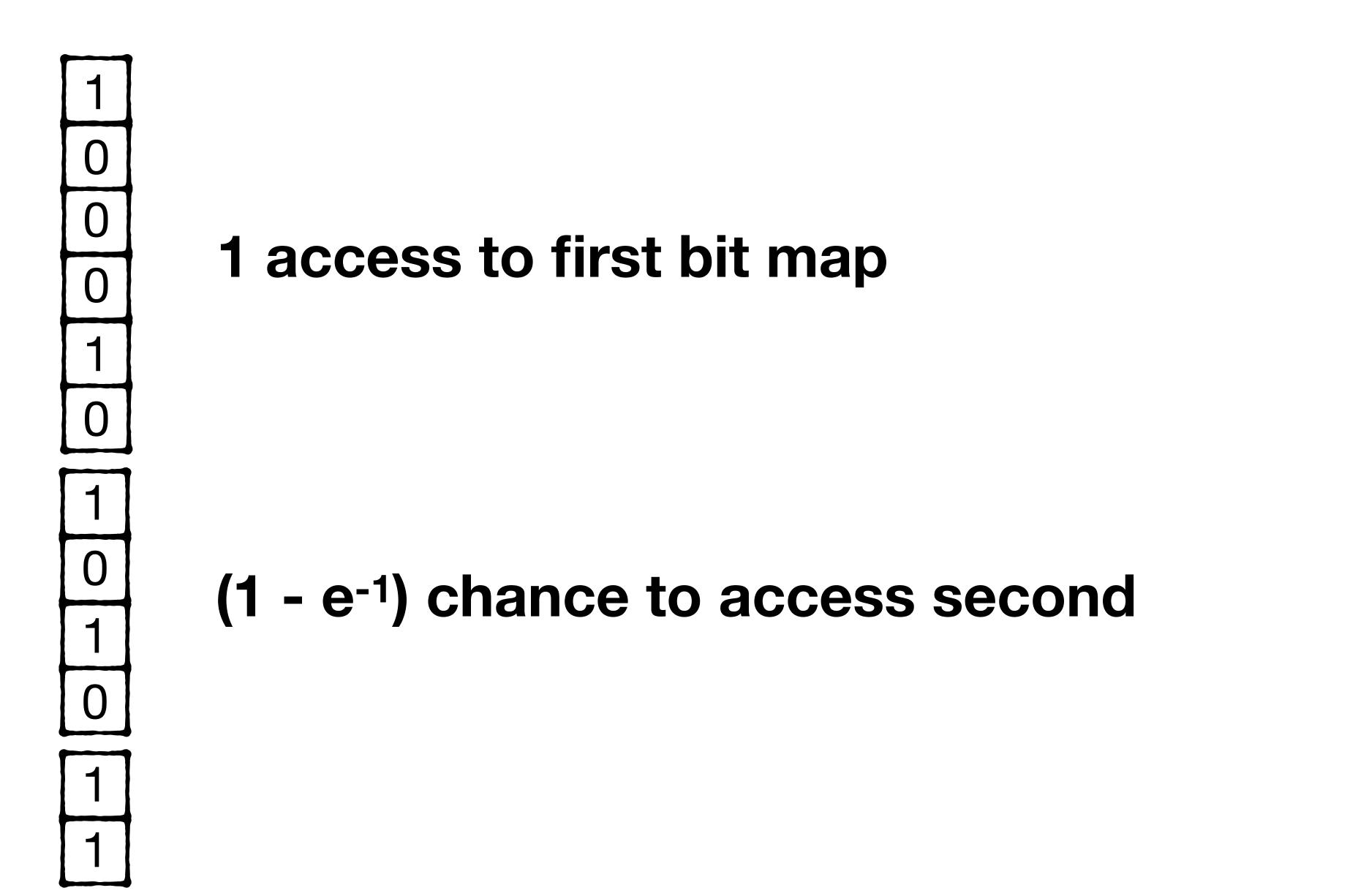


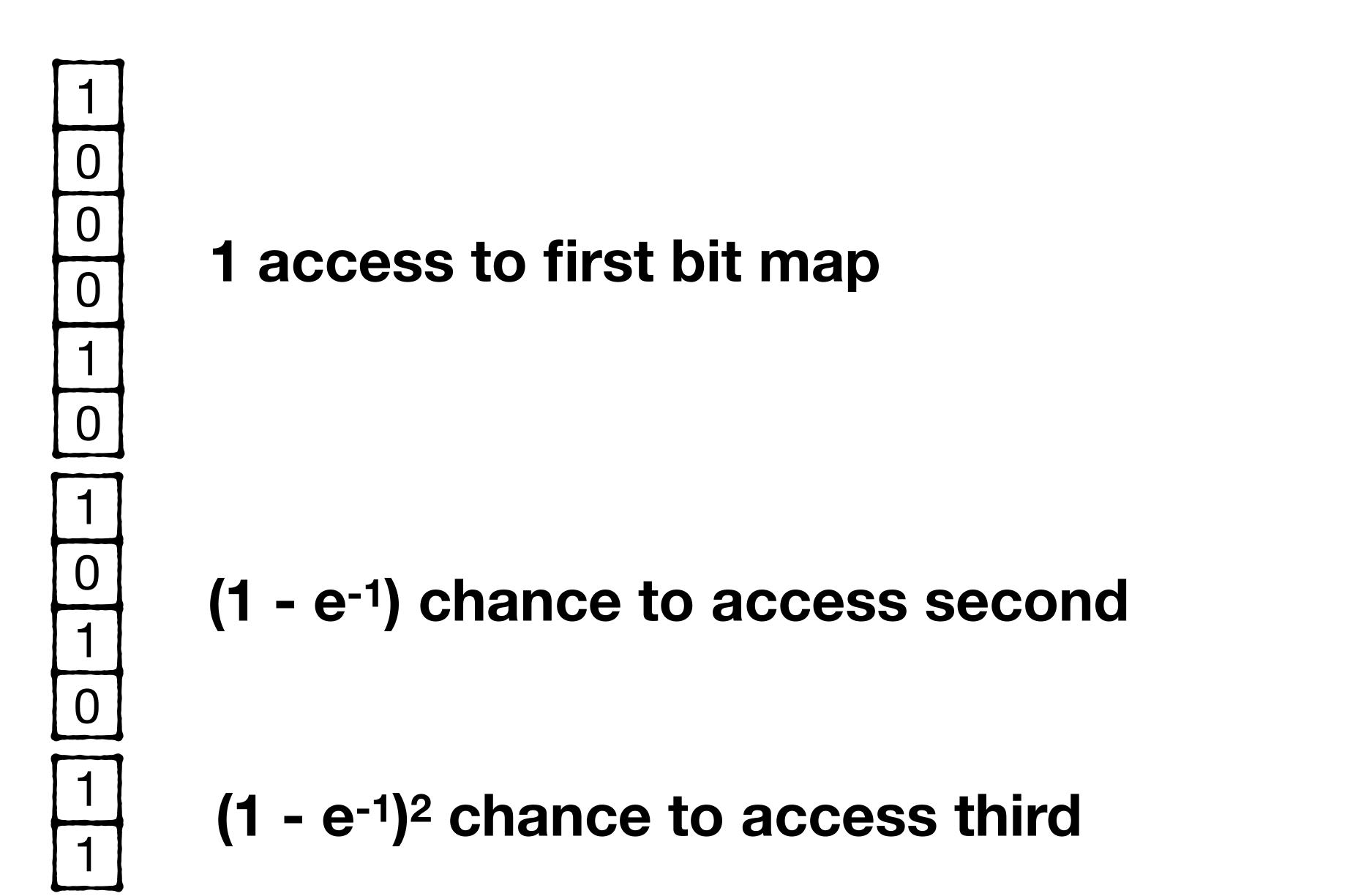
Is it really so bad?







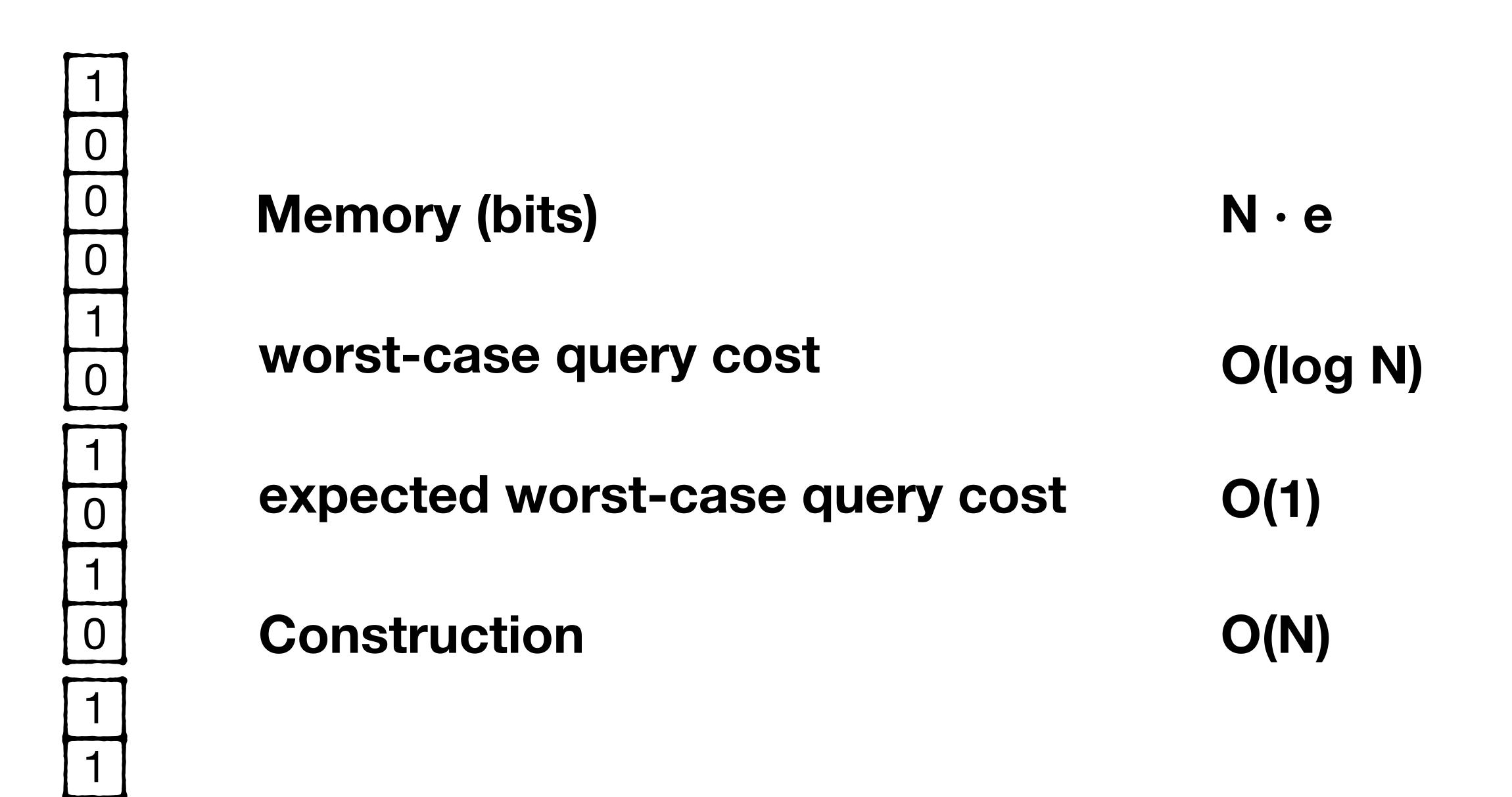




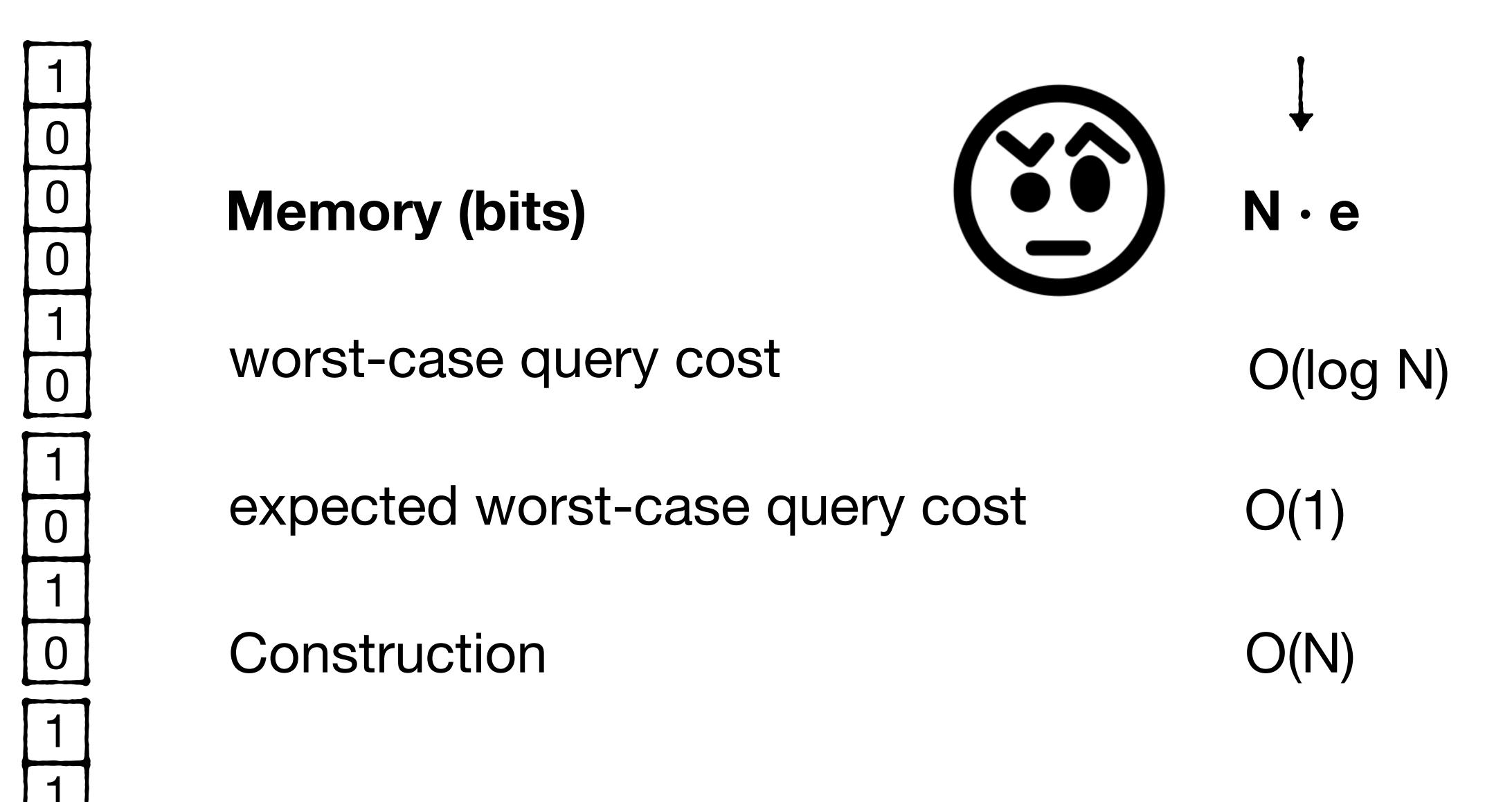
$$= 1 + (1 - e^{-1}) + (1 - e^{-1})^{2} + (1 - e^{-1})^{3} + ...$$

$$= 1 + (1 - e^{-1}) + (1 - e^{-1})^{2} + (1 - e^{-1})^{3} + \dots$$

$$= \frac{1}{1 - e^{-1}} = 1.58 = O(1)$$



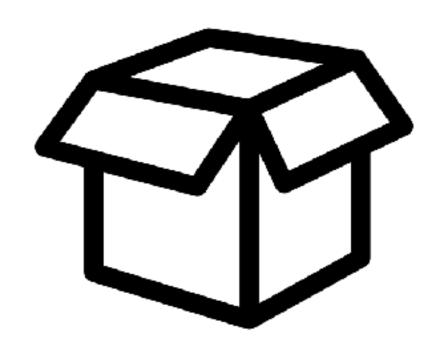
Is this the best we can do?



Lower Bound for Minimal Perfect Hashing

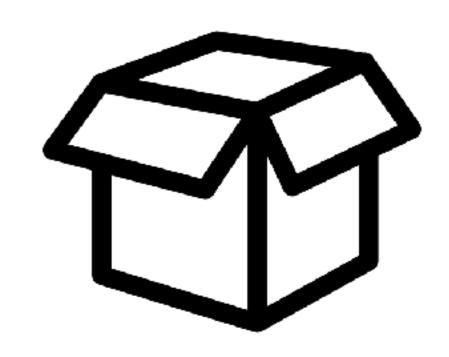
Lower Bound for Minimal Perfect Hashing

Assume nothing about implementation



Analyze with respect to specification

Assume nothing about implementation



Analyze with respect to specification

N - # entries Bijective (one-to-one)

IMPHI + ??? ≥ IPermutation

What data must we add to transform MPH into permutation?:)

What data must we add to transform MPH into permutation?:)

The data itself! N · log₂(N)

$$|MPH| + N \cdot log_2(N) \ge |Permutation|$$

$$|\mathsf{MPH}| + \mathsf{N} \cdot \mathsf{log}_2(\mathsf{N}) \ge \mathsf{IPermutationI}$$
 \uparrow

How big is this?

$$|\mathsf{MPH}| + \mathsf{N} \cdot \mathsf{log}_2(\mathsf{N}) \ge \mathsf{log}_2(\mathsf{N}!)$$

 \uparrow
 How big is this?

$$|MPH| + N \cdot log_2(N) \ge N \cdot log_2(N) + N \cdot log_2(e)$$

By Stirling's approximation

IMPHI \geq N log₂(e)

We're done:)

Lower Bound

Fingerprinting

N·log₂(e)

N·e

Lower Bound

Fingerprinting

N·log₂(e)

 $N \cdot e$

Not far off, but also not there...

Lower Bound

Fingerprinting

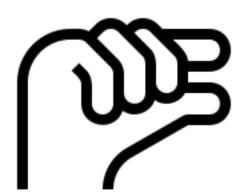
N·log₂(e)

 $N \cdot e$

Not far off, but also not there...

Other methods push memory footprint lower:)

Perfect Hashing



Minimal

space-efficient static data

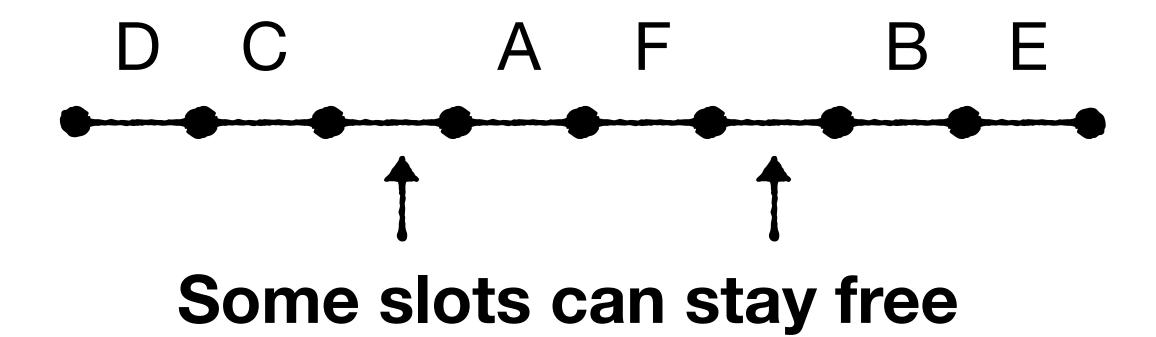
Dynamic

more space supports updates

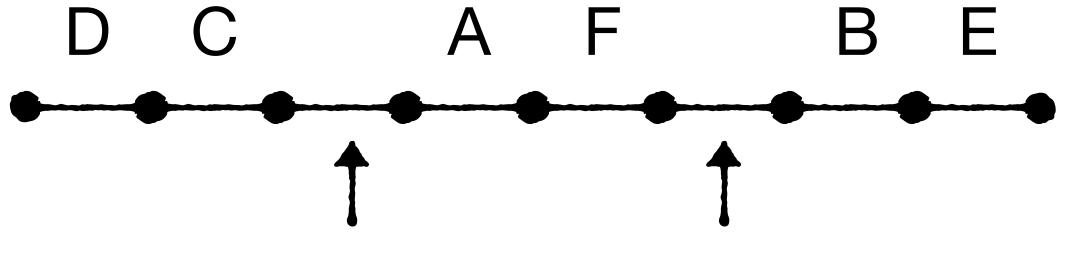
N keys

A B C D E F

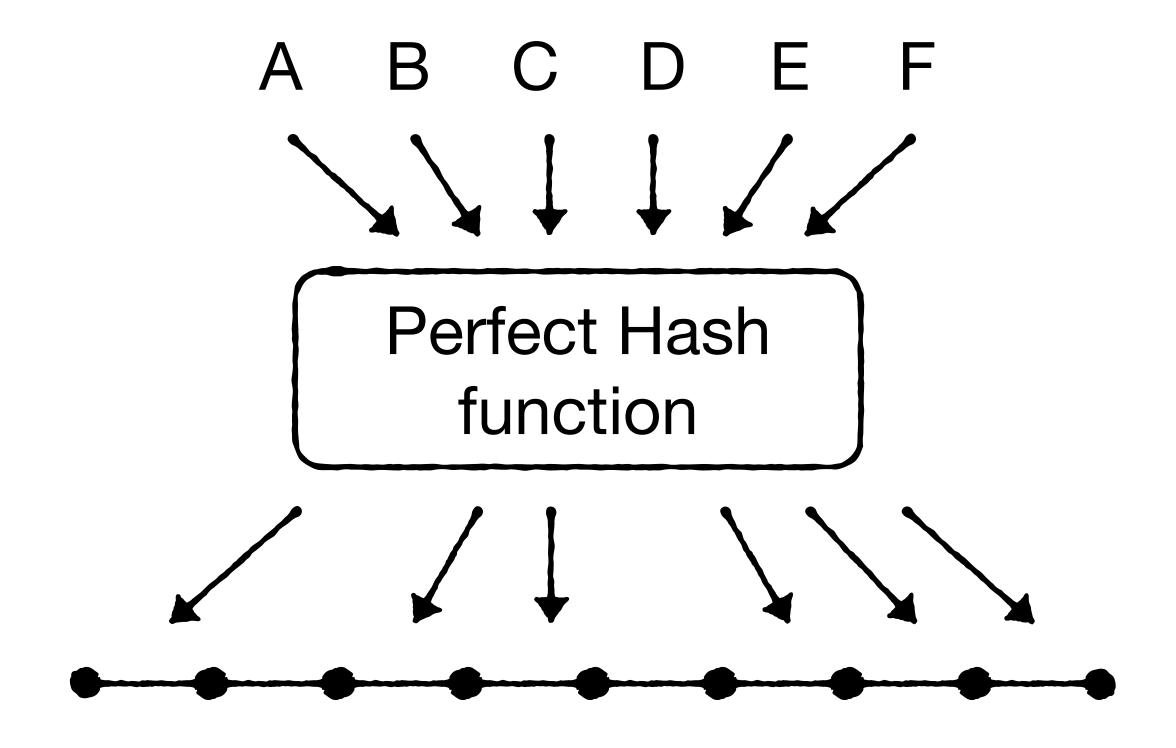
more than N slots

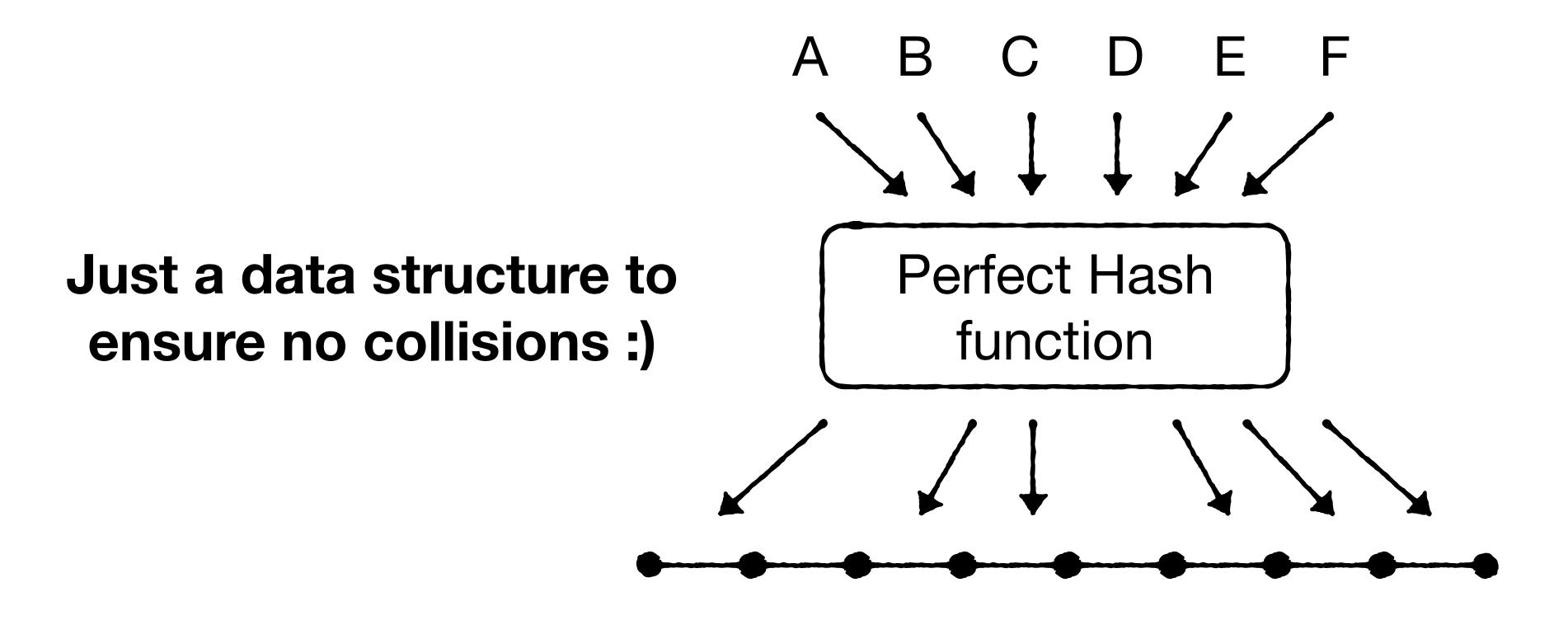


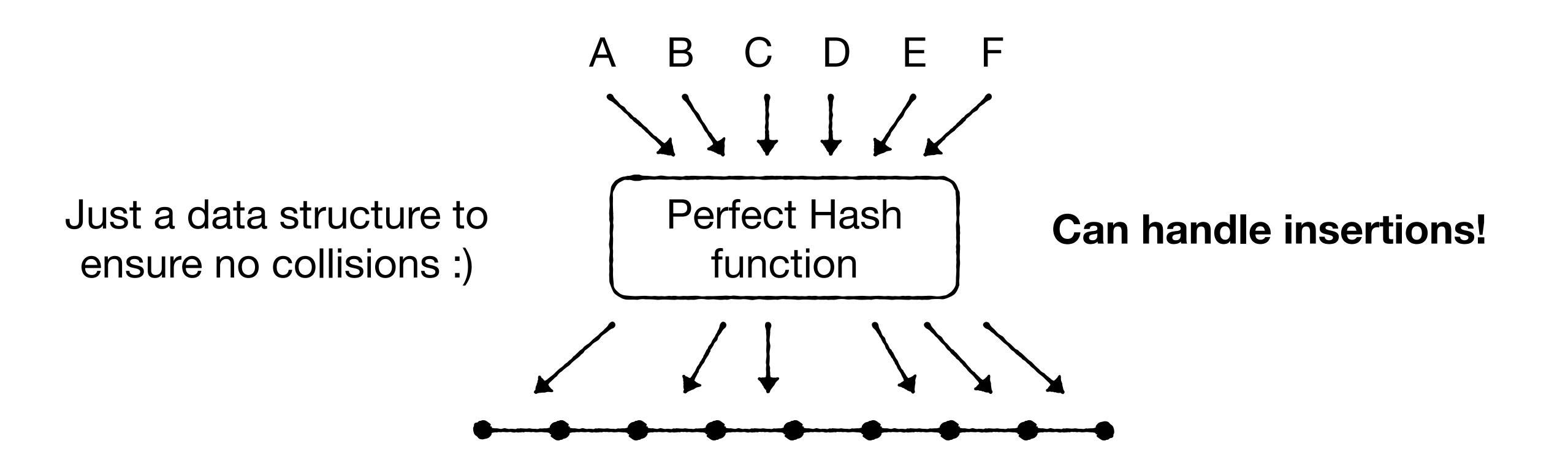
More flexibility:)

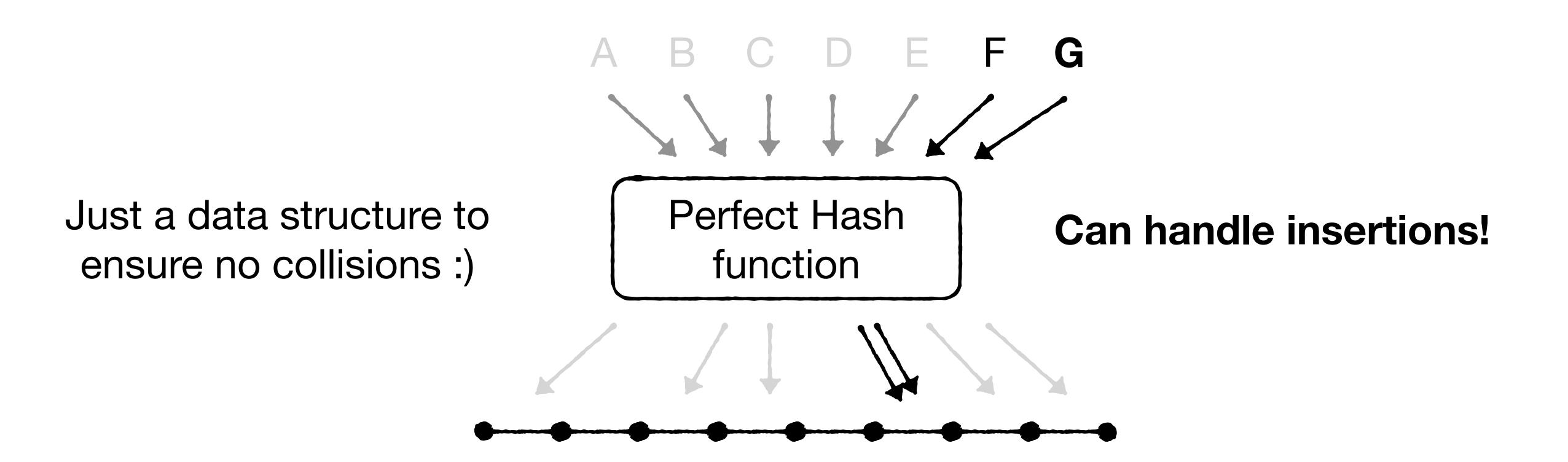


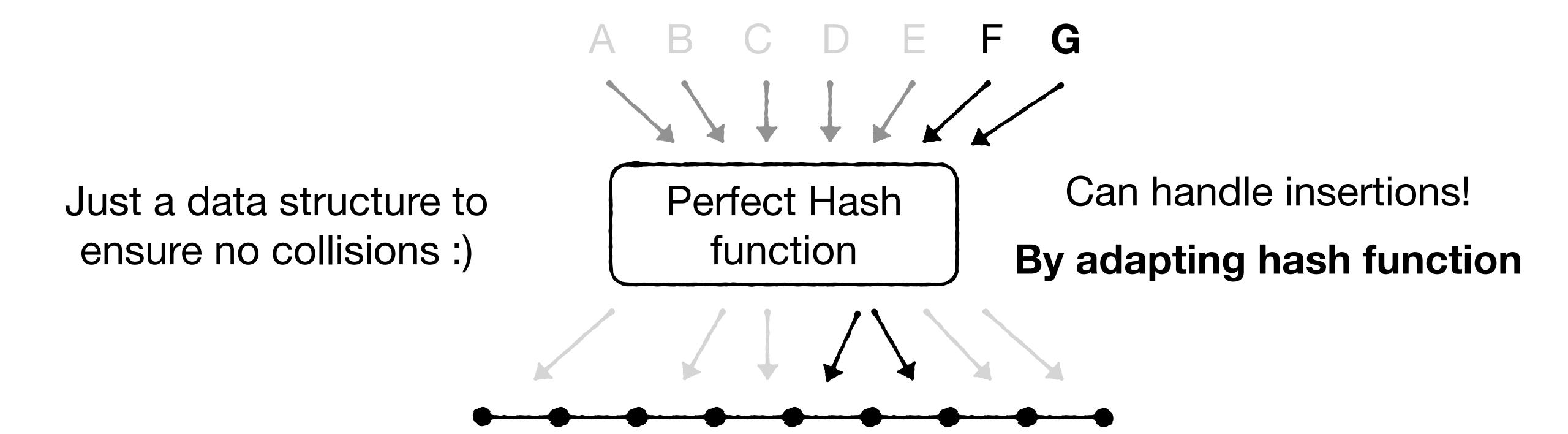
Some slots can stay free











Storing a Sparse Table with 0(1) Worst Case Access Time. JACM 1984. ML Fredman, J Komlós, E Szemerédi

The End of Moore's Law and the Rise of the Data Processor. VLDB 2021.

Niv Dayan, Moshe Twitto, Yuval Rochman, Uri Beitler, Itai Ben Zion, Edward Bortnikov, Shmuel Dashevsky, Ofer Frishman, Evgeni Ginzburg, Igal Maly, Avraham Meir, Mark Mokryn, Iddo Naiss, Noam Rabinovich

Many more...

The End of Moore's Law and the Rise of the Data Processor. VLDB 2021.

Niv Dayan, Moshe Twitto, Yuval Rochman, Uri Beitler, Itai Ben Zion, Edward Bortnikov, Shmuel Dashevsky, Ofer Frishman, Evgeni Ginzburg, Igal Maly, Avraham Meir, Mark Mokryn, Iddo Naiss, Noam Rabinovich

space-efficient, used in practice

Delta Hash Table

Delta Hash Table

hash(X) =
$$0101001101100...$$

hash(Y) = $010100110101101...$

Same slot

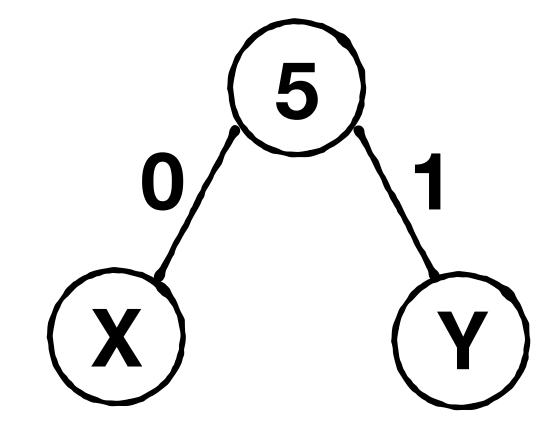
Delta Hash Table

hash(X) =
$$101100...$$

hash(Y) = $101101...$

$$hash(X) = 101100...$$

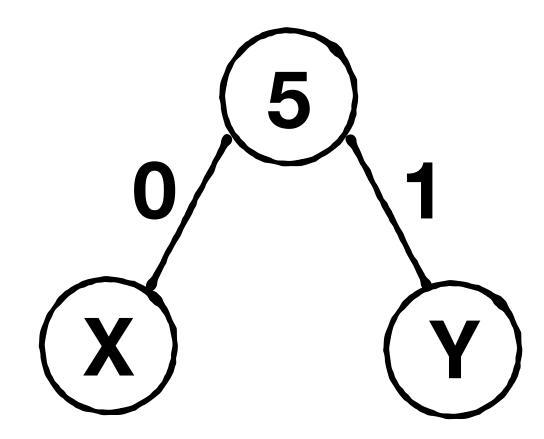
$$hash(Y) = 101101...$$



$$hash(X) = 101100...$$

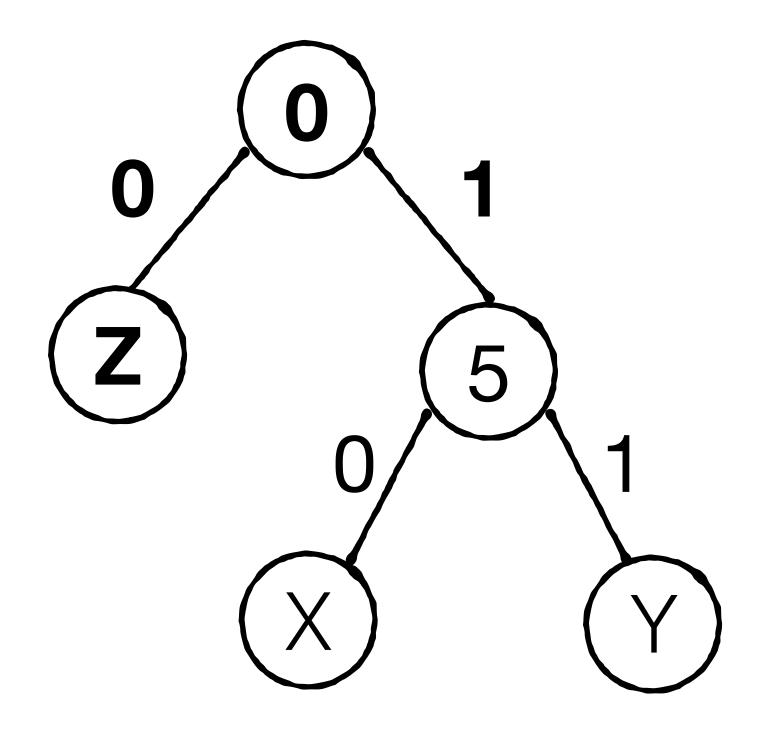
$$hash(Y) = 101101...$$

$$hash(Z) = 010011...$$



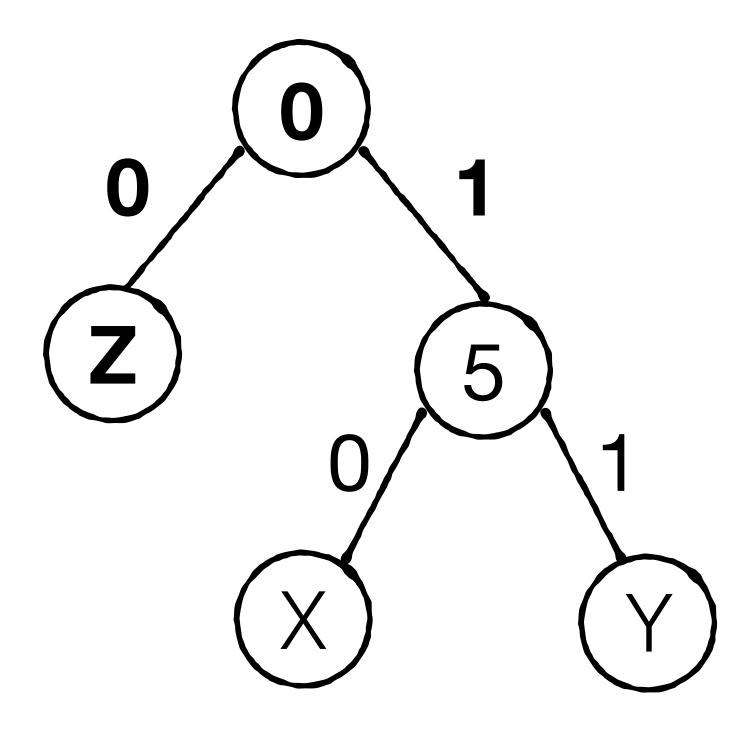
hash(X) =
$$\frac{101100...}{101101}$$

$$hash(Z) = 010011...$$



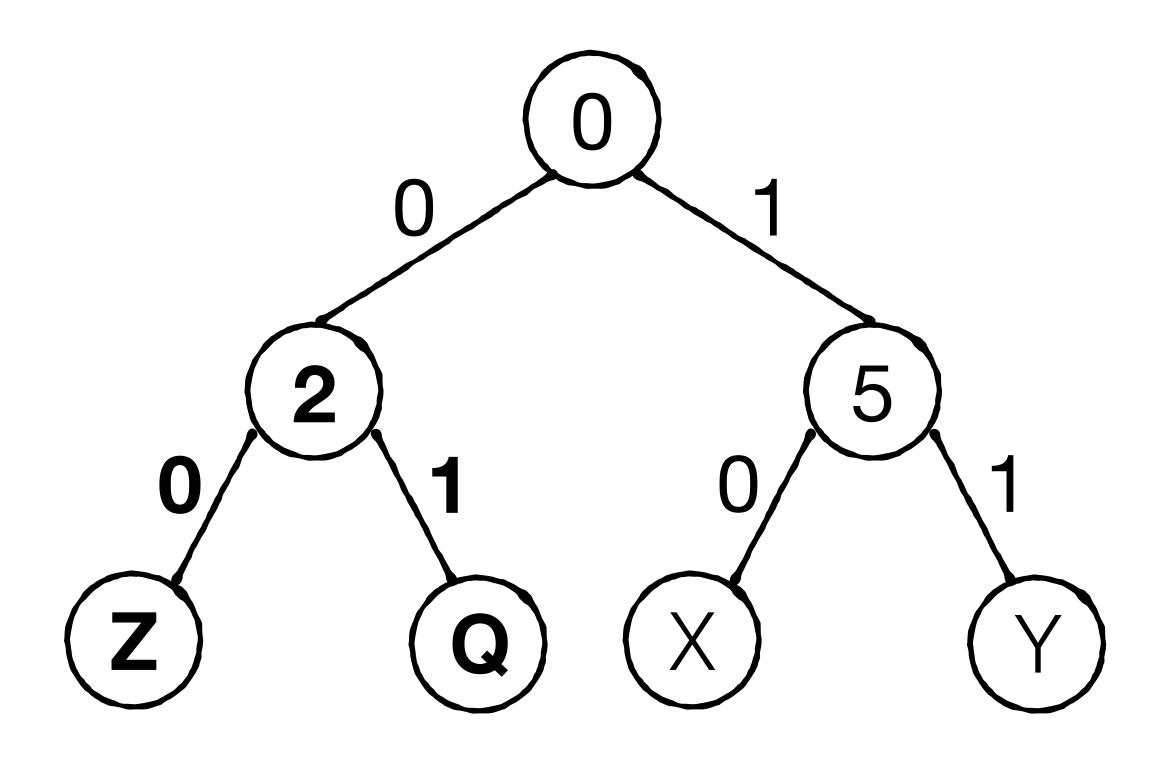
hash(X) =
$$101100...$$

hash(Y) = $101101...$
hash(Z) = $010011...$
hash(Q) = $011001...$



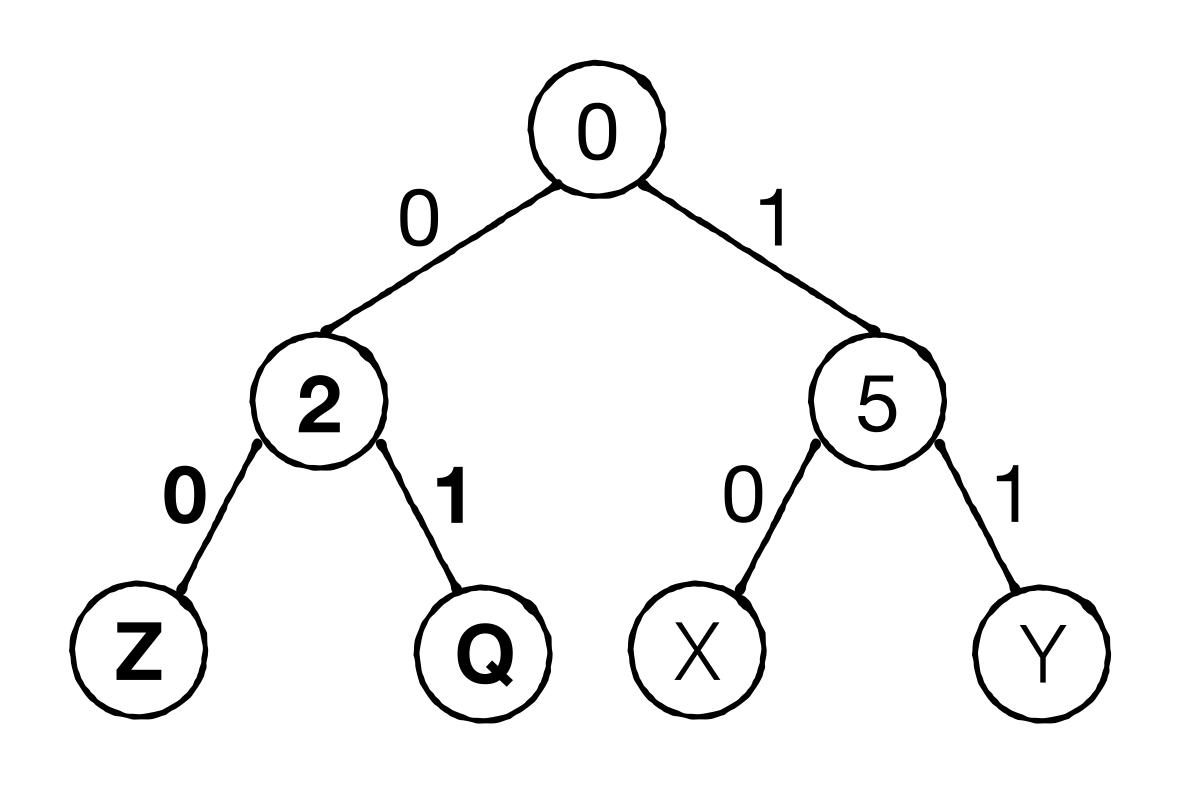
hash(X) =
$$101100...$$

hash(Y) = $101101...$
hash(Z) = $010011...$
hash(Q) = $011001...$



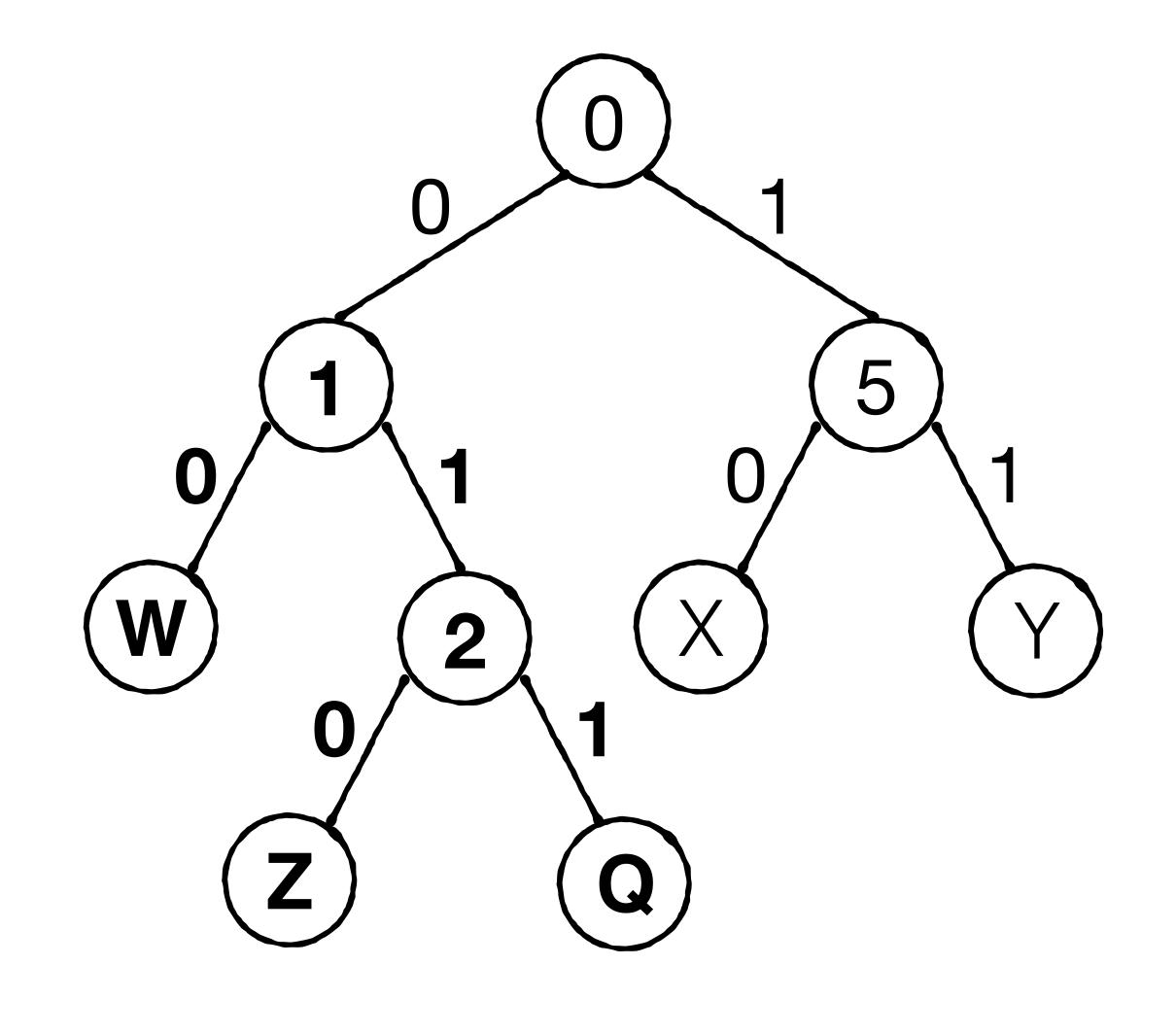
hash(X) =
$$101100...$$

hash(Y) = $101101...$
hash(Z) = $010011...$
hash(Q) = $011001...$

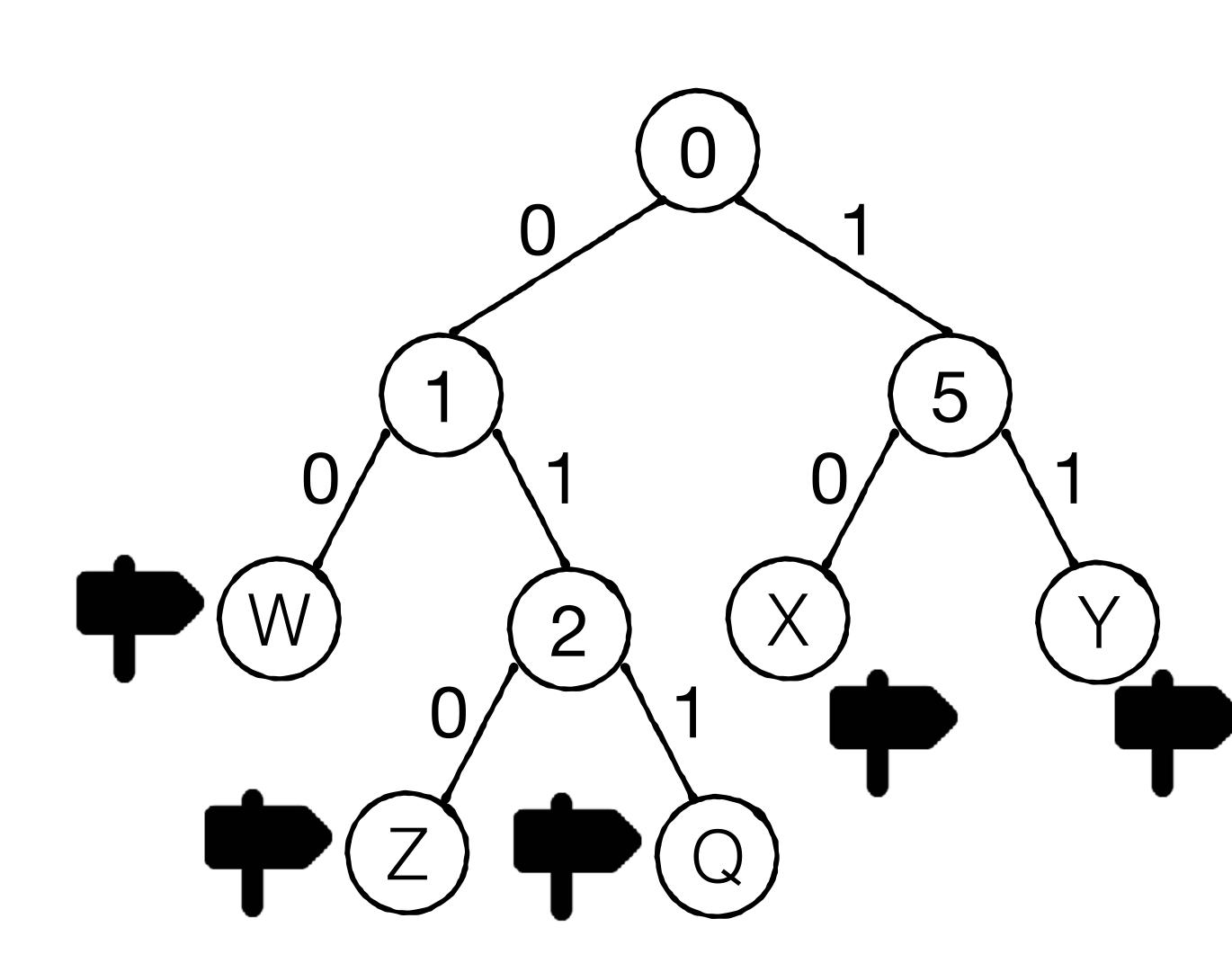


hash(X) =
$$101100...$$

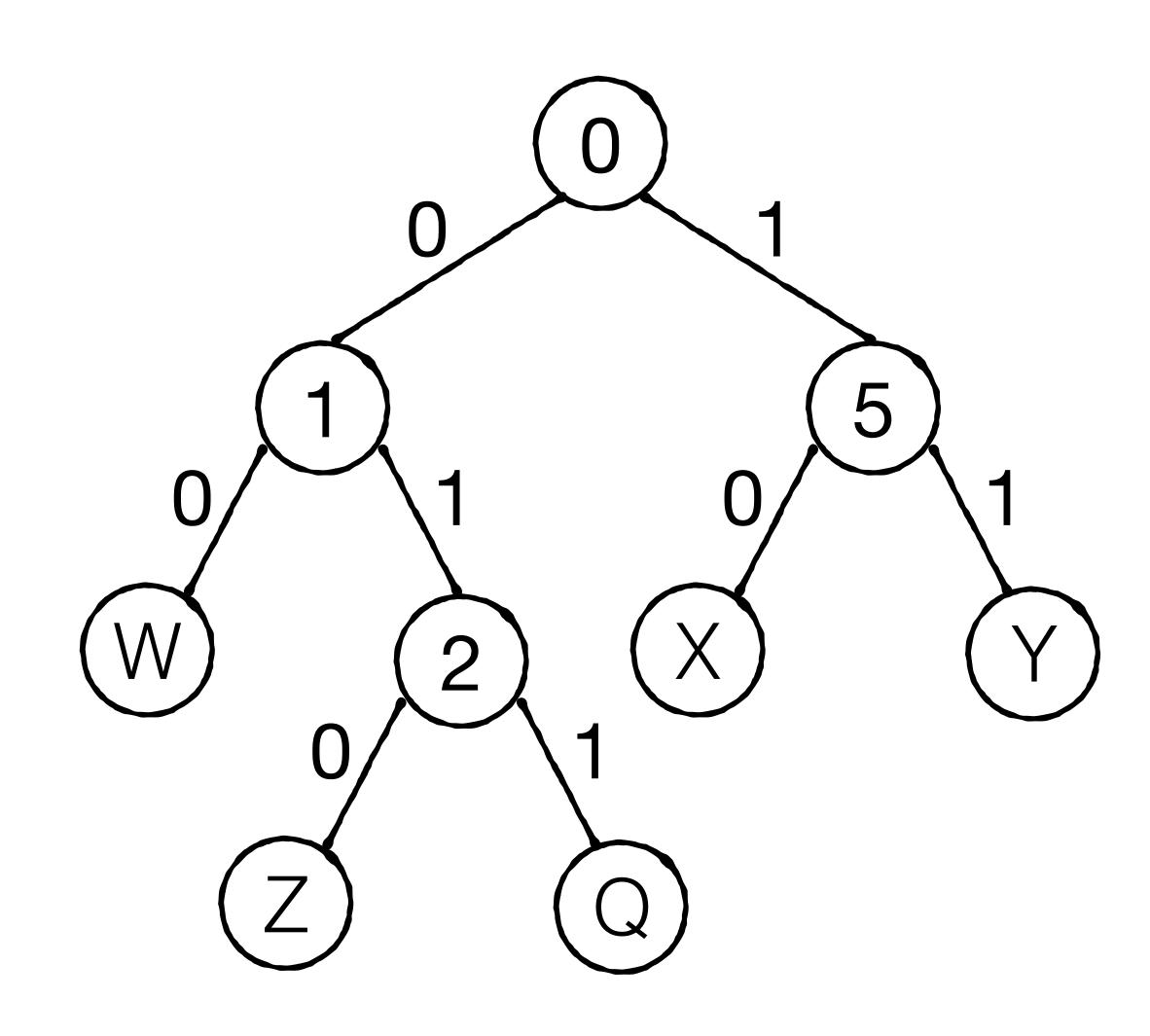
hash(Y) = $101101...$
hash(Z) = $010011...$
hash(Q) = $011001...$
hash(W) = $001001...$



Place pointer/payload in leafs

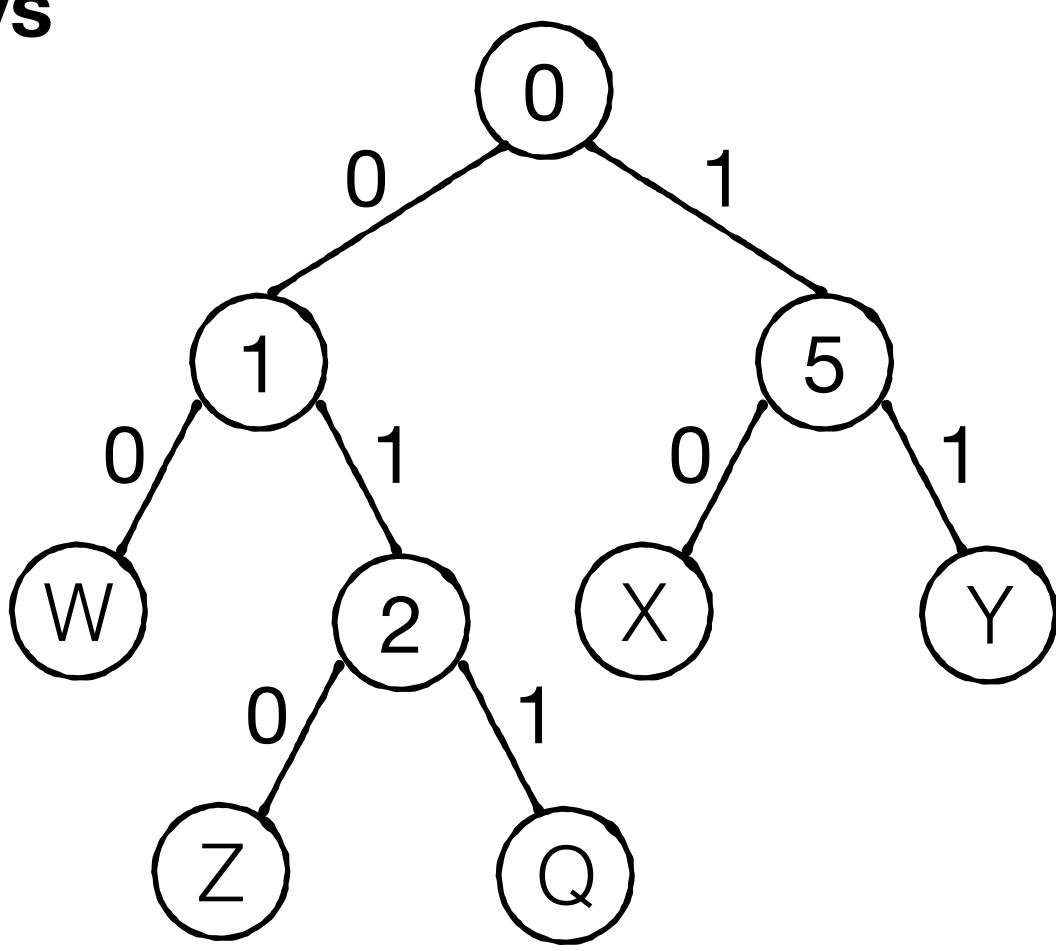


Existing keys are fully differentiated

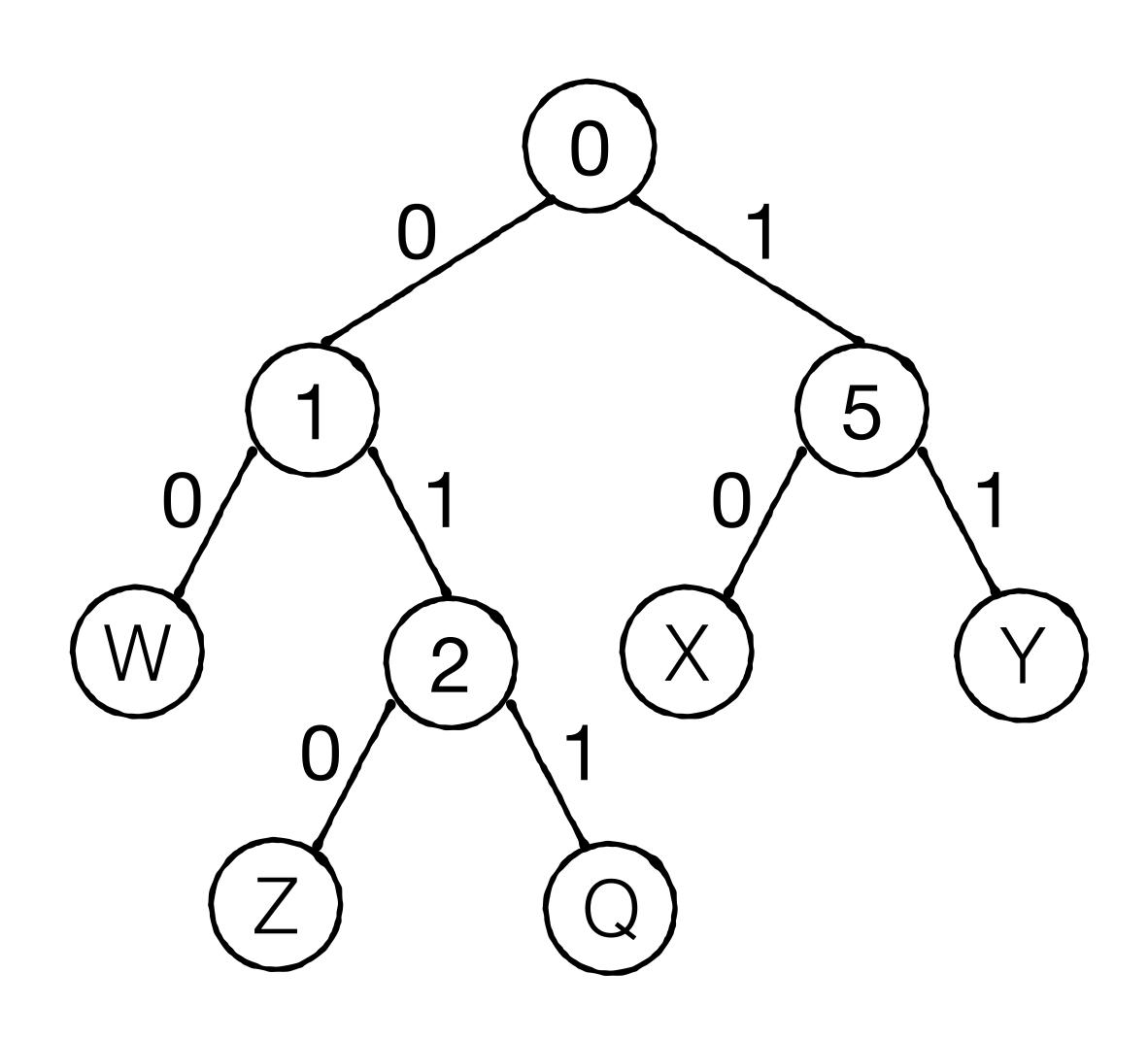


Existing keys are fully differentiated

A query to an existing key always finds correct payload

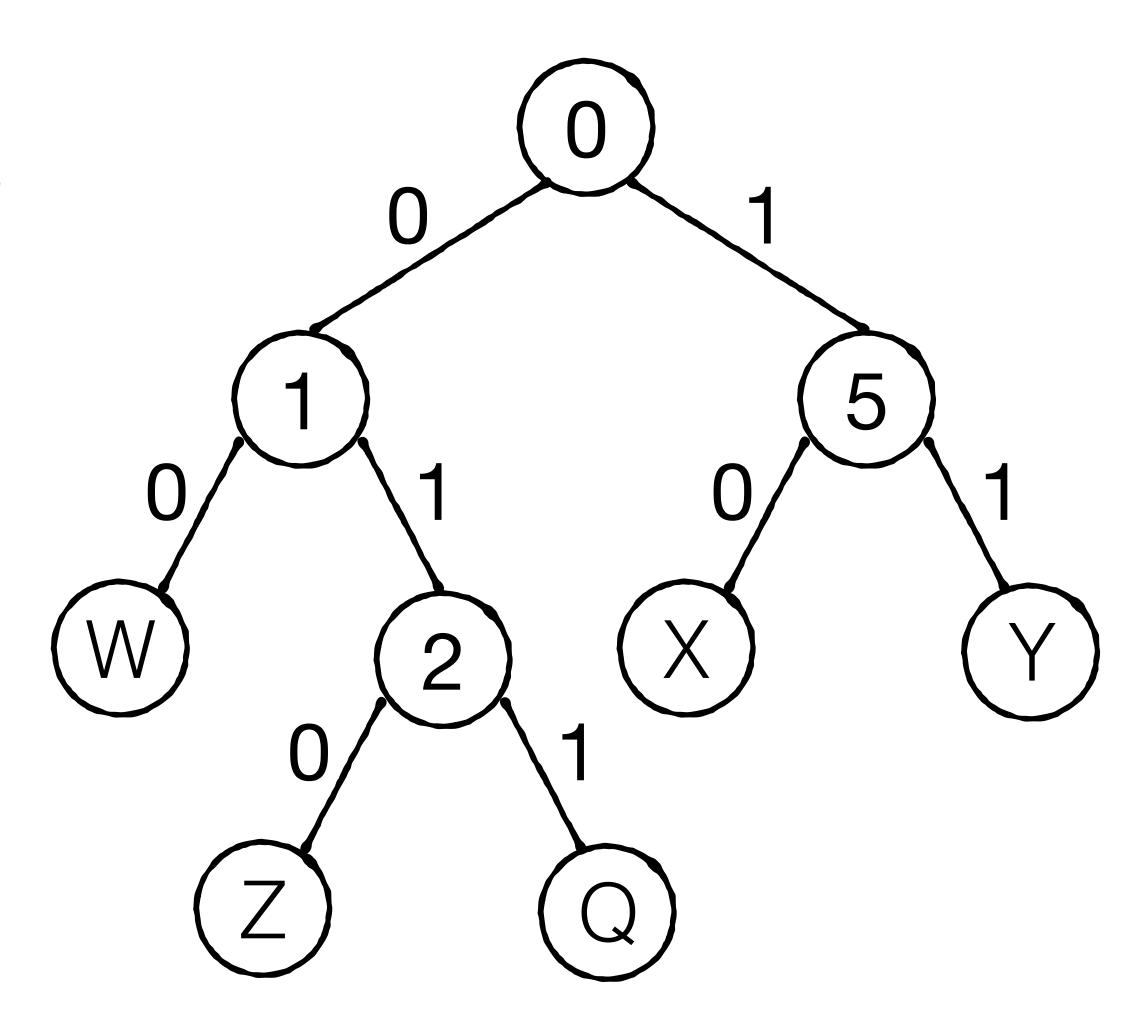


How about a query to non-existing key?

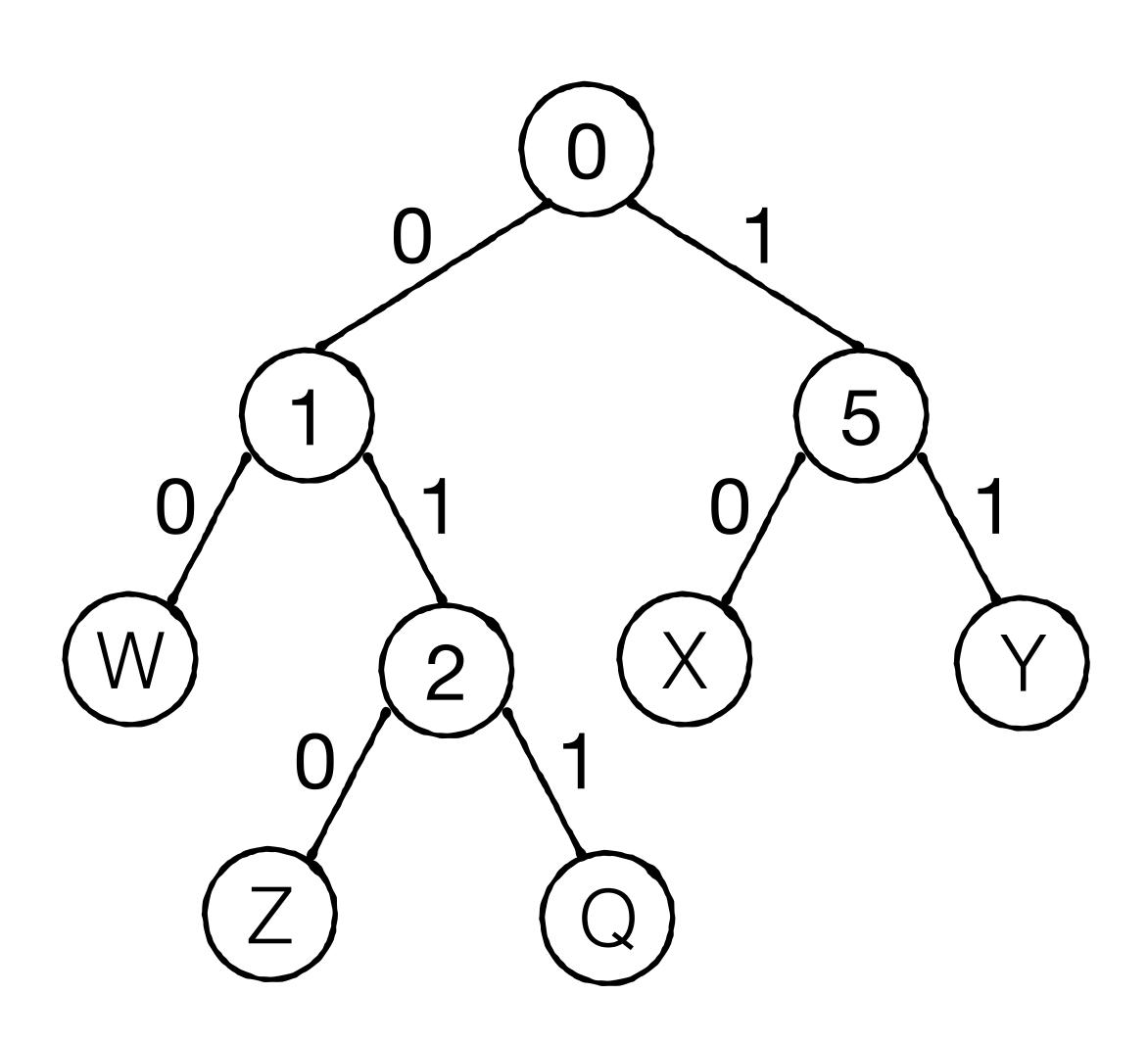


How about a query to non-existing key?

Finds empty slot or returns payload associated with some other key

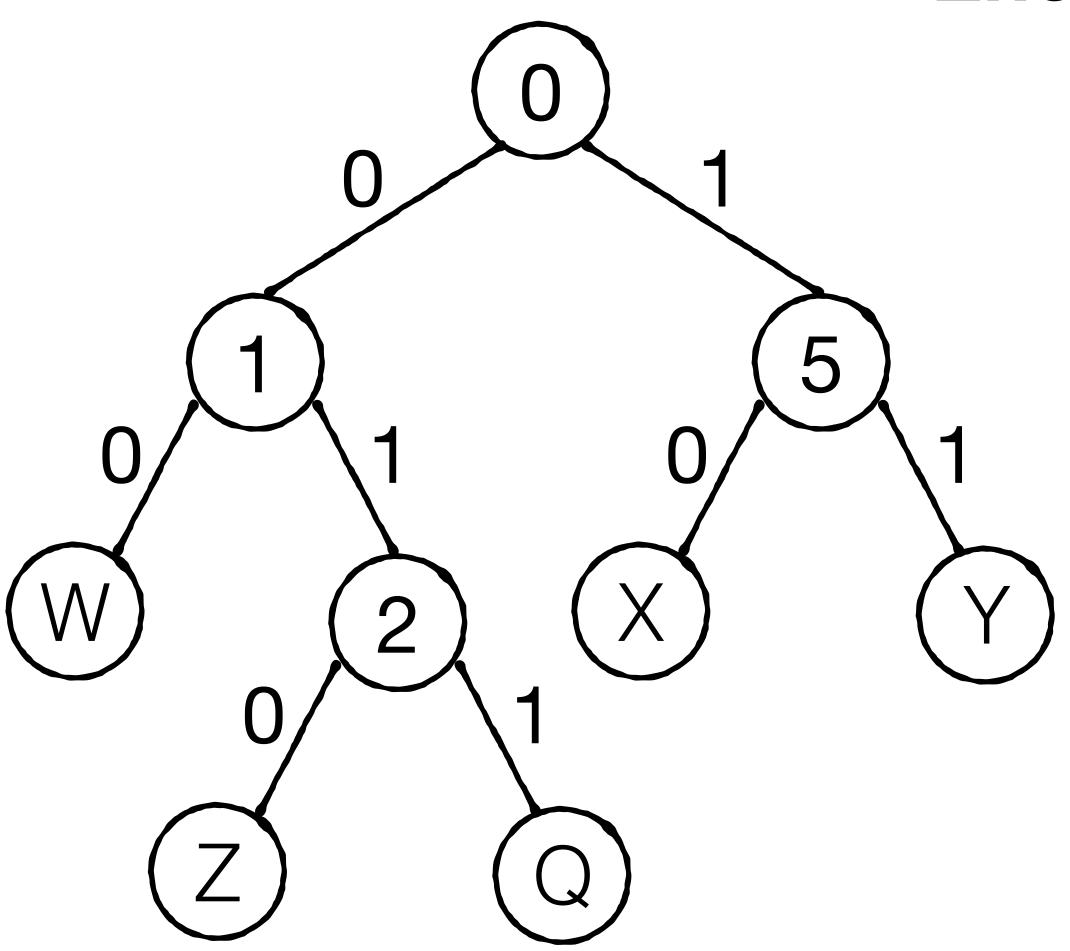


How to encode this trie efficiently within a hash table bucket?



How to encode this trie efficiently within a hash table bucket?

Encode # entries in unary: 111110



How to encode this trie efficiently within a hash table bucket?

Encode # entries in unary: 1111110

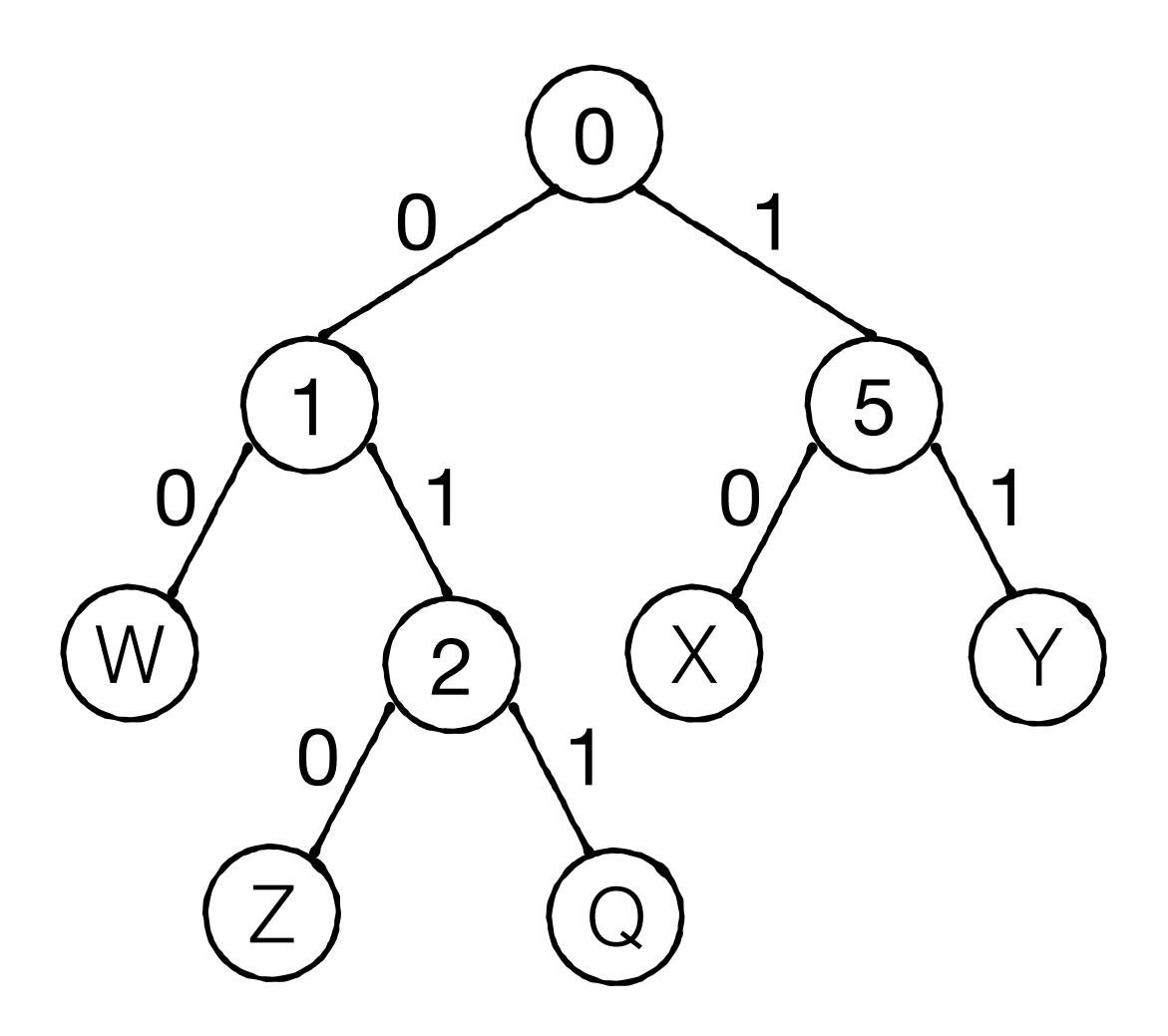
O

1

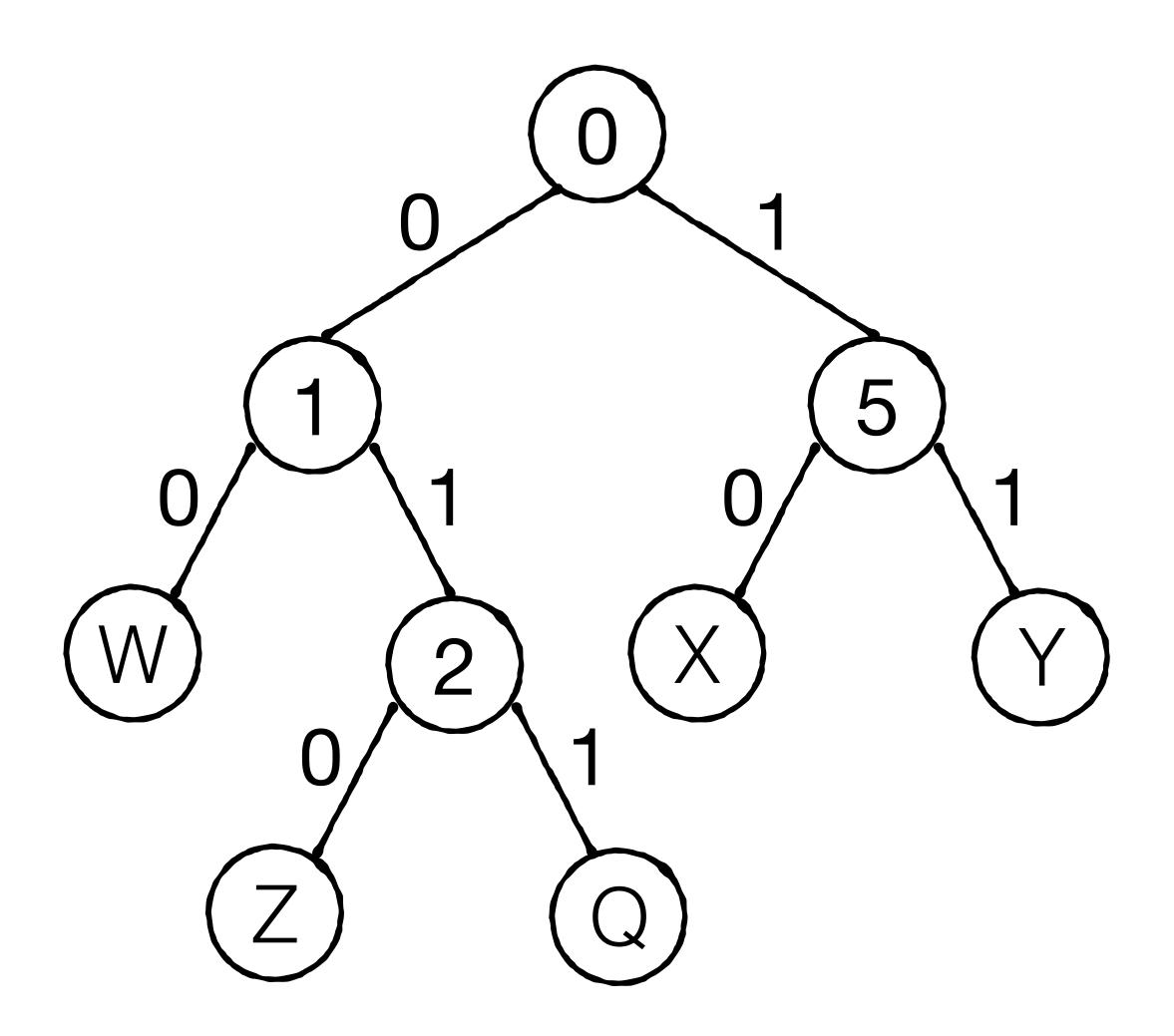
Unary is ideal since trie is

Unary is ideal since trie is usually small (0-2 entries)

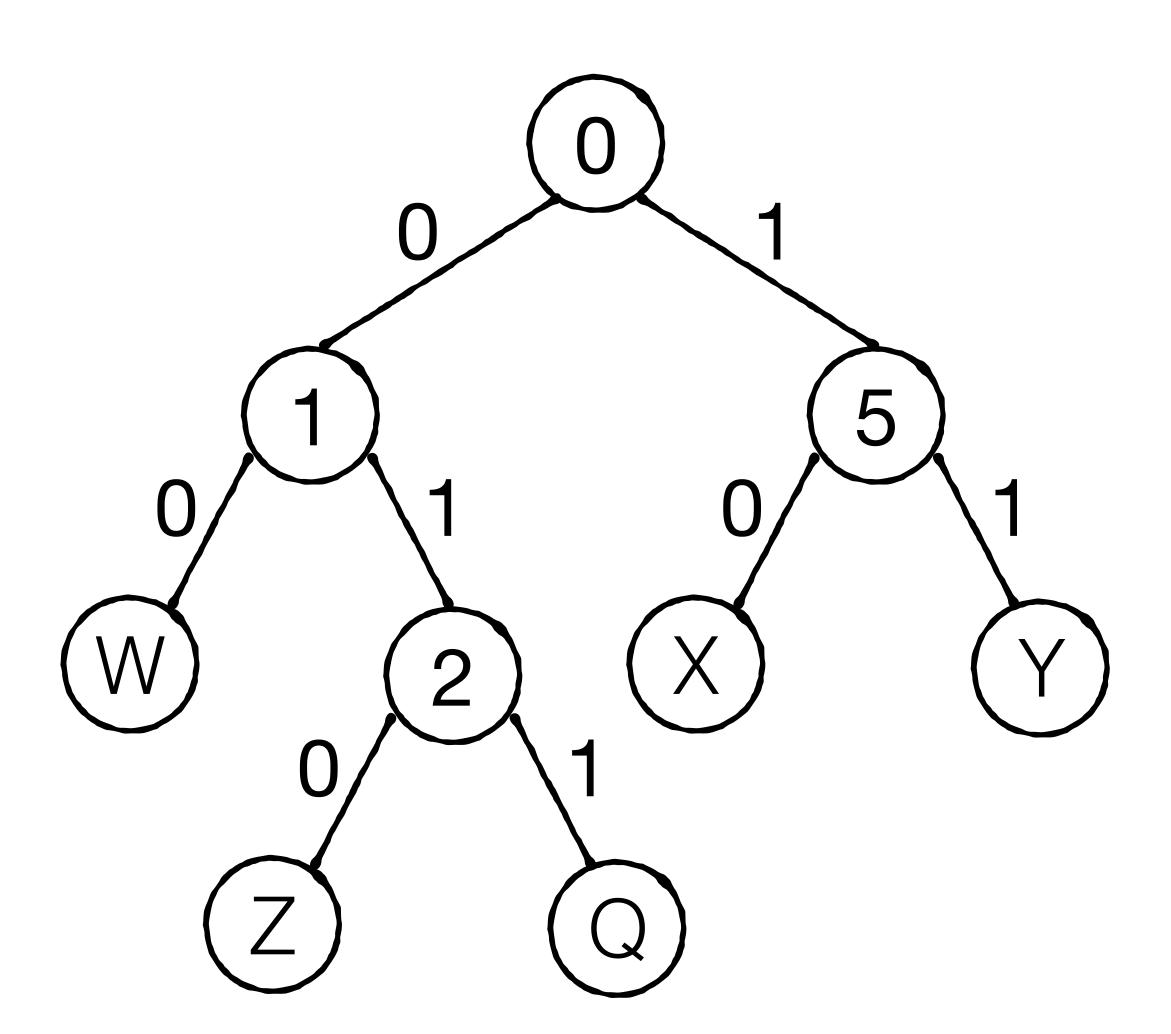
entries
11110



Trie topology?



Trie topology?



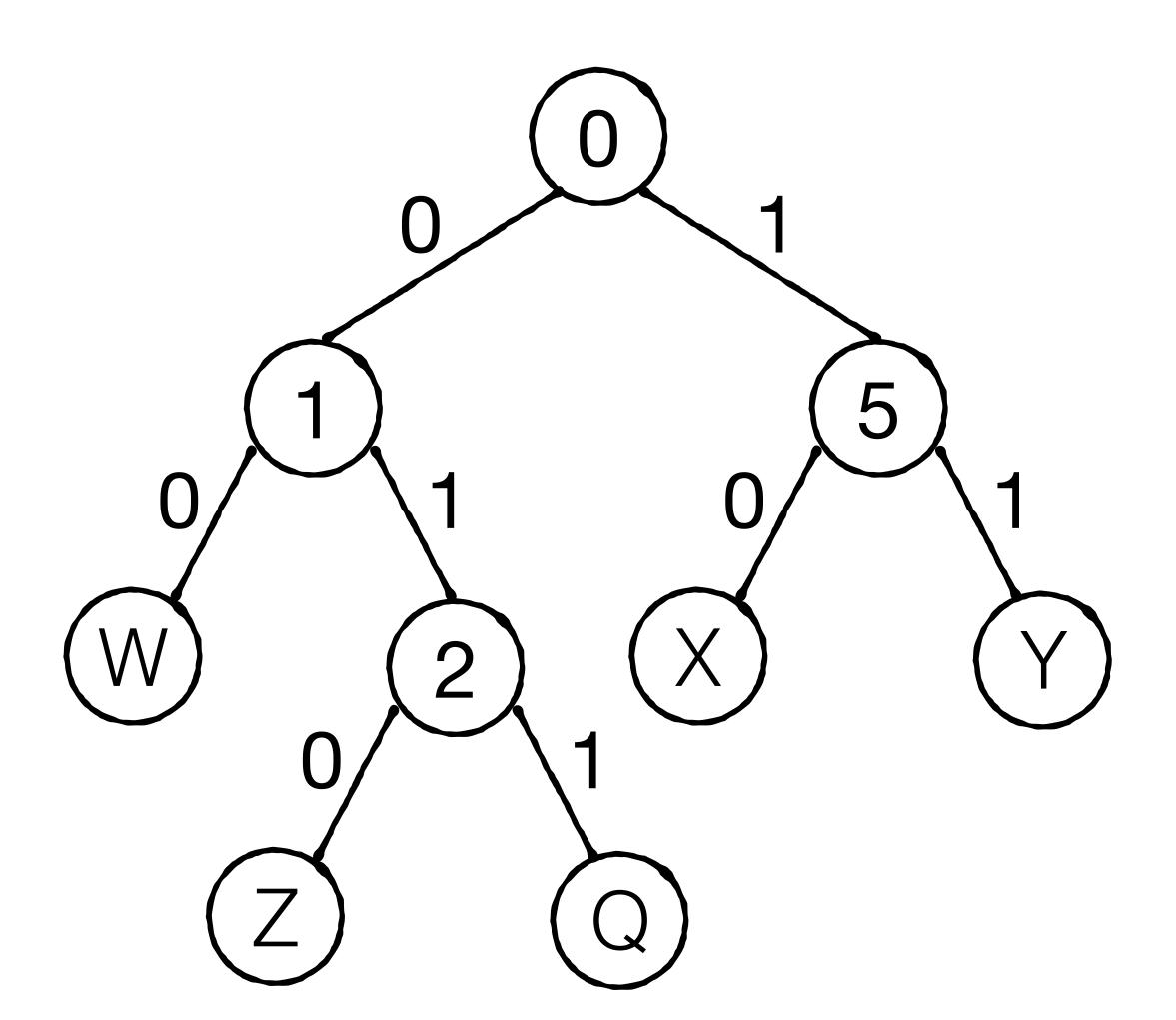
00 - no children

01 - one right child node

10 - one left child node

11 - two children

Trie topology?



00 - no children

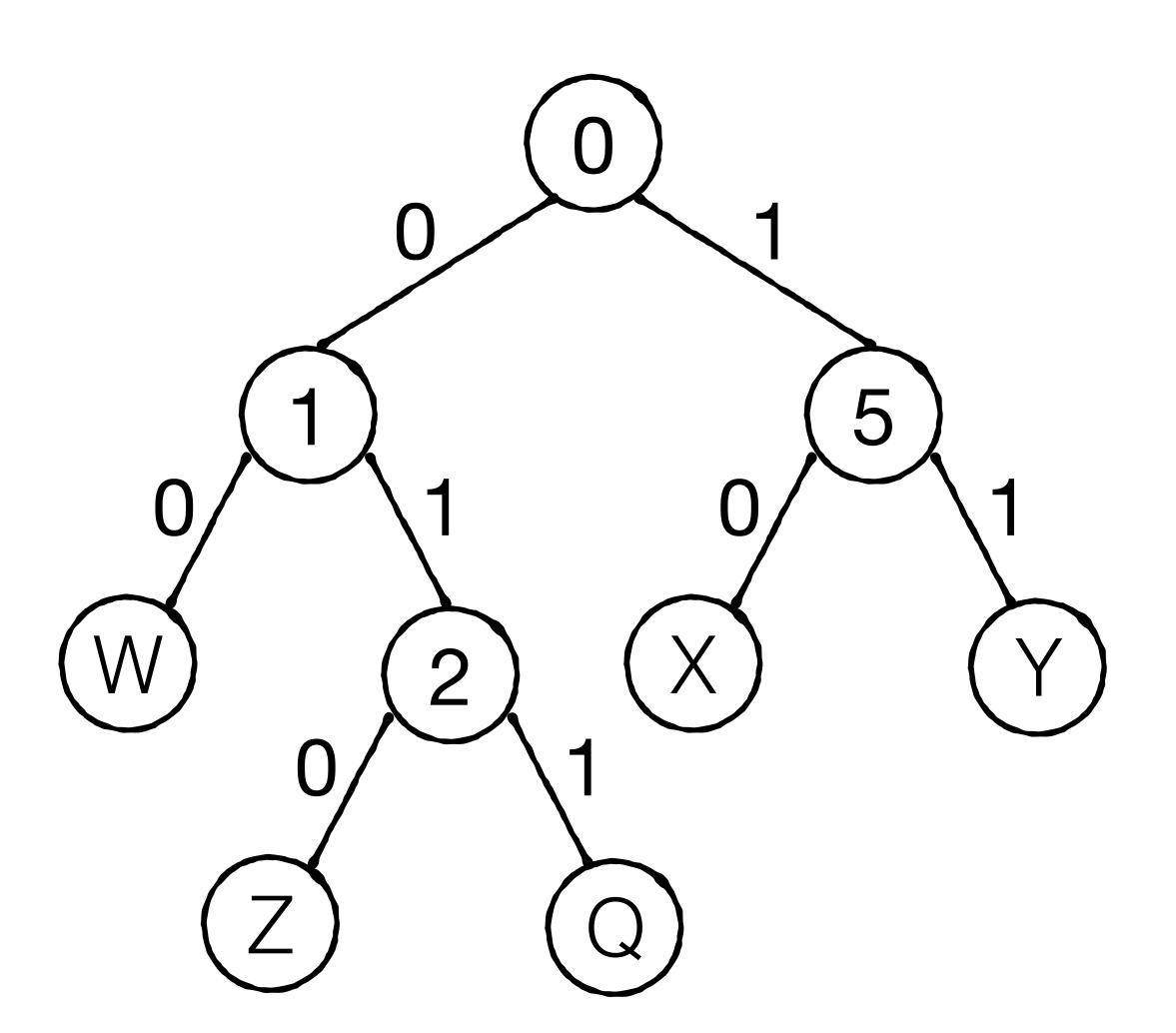
01 - one right child node

10 - one left child node

11 - two children

Encode structure depth-first 11 01 00 00

Trie topology?



00 - no children

01 - one right child node

10 - one left child node

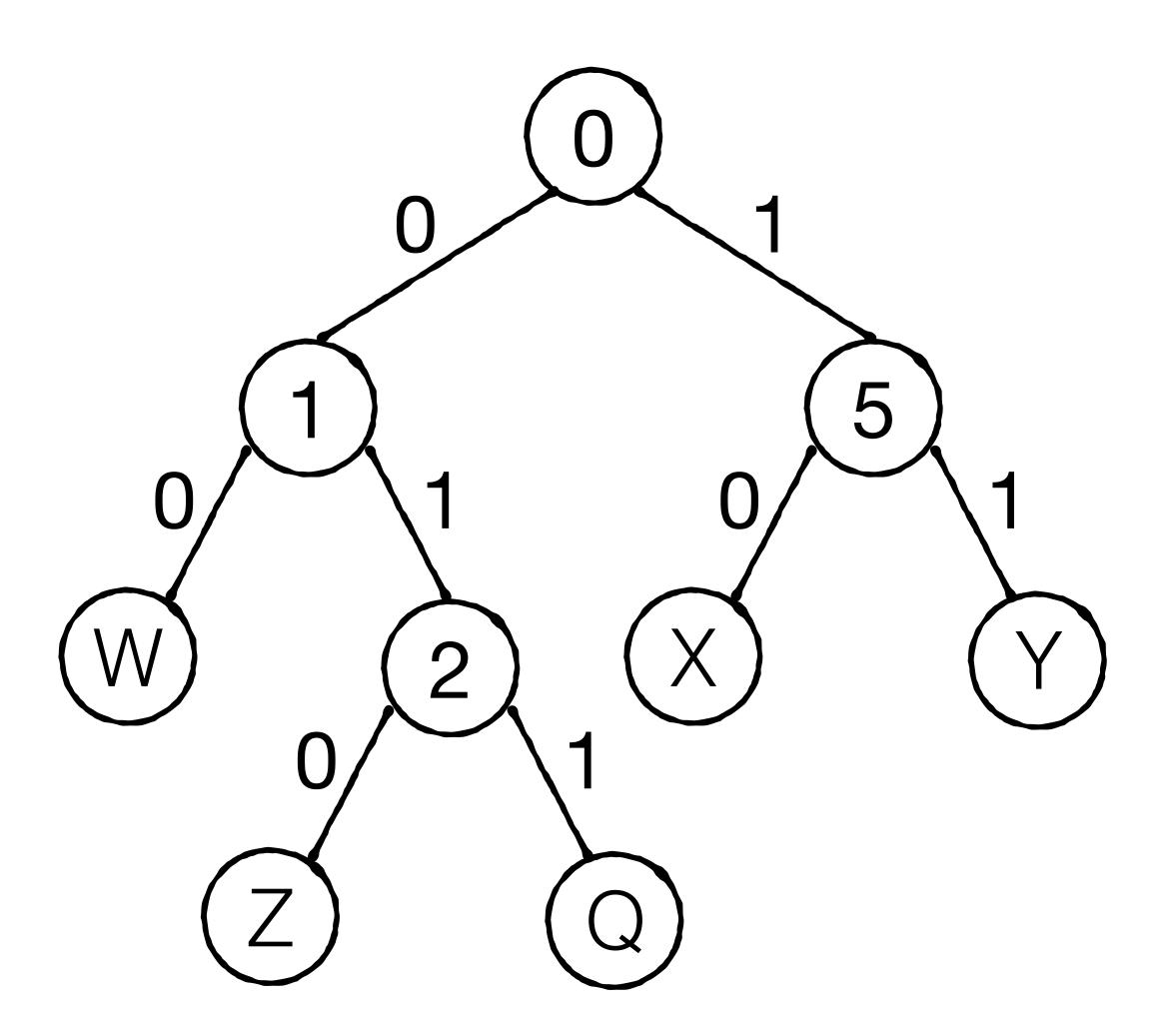
11 - two children

Encode structure depth-first

11 01 00 00

Last bits always zero

Trie topology?



00 - no children

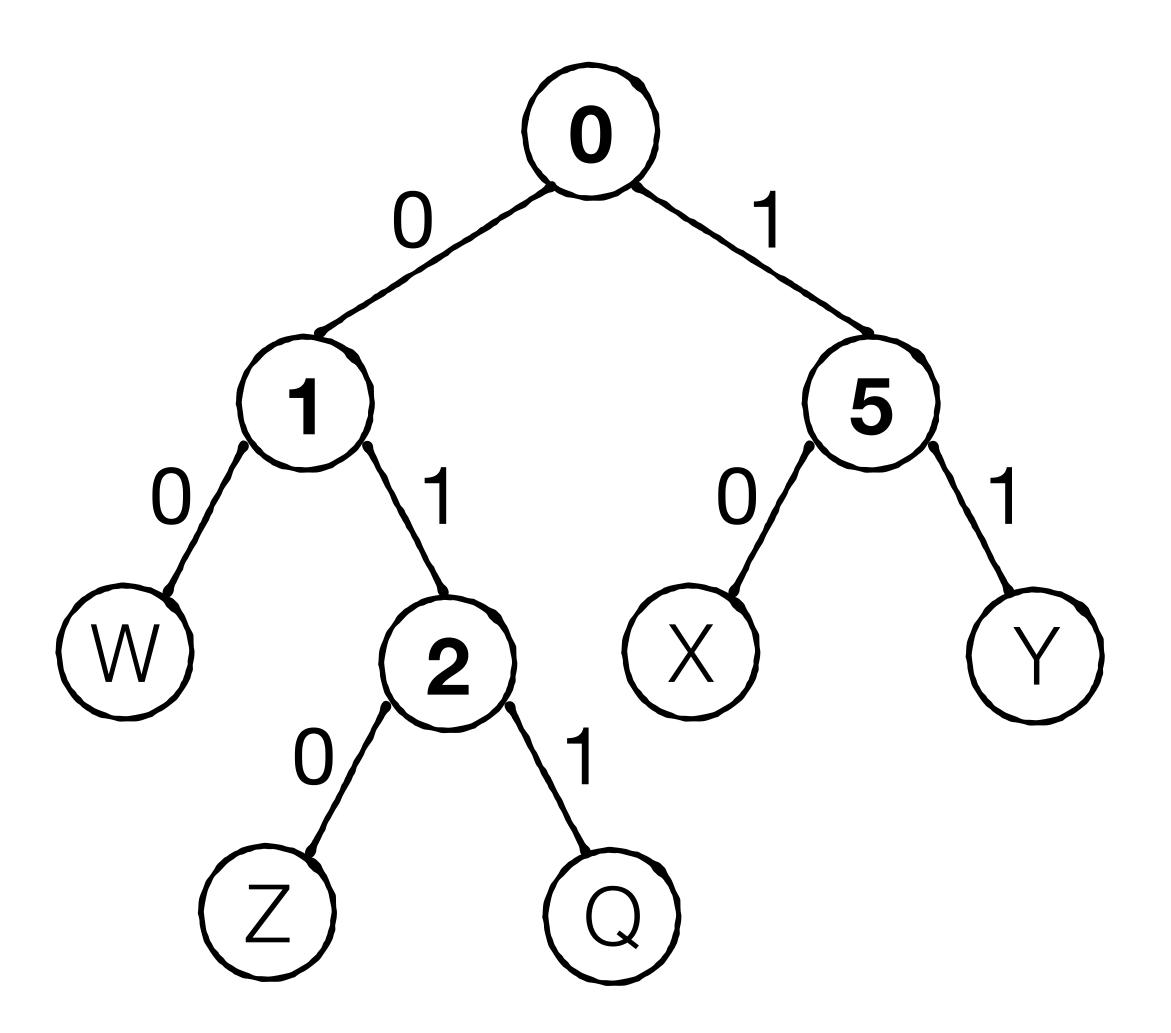
01 - one right child node

10 - one left child node

11 - two children

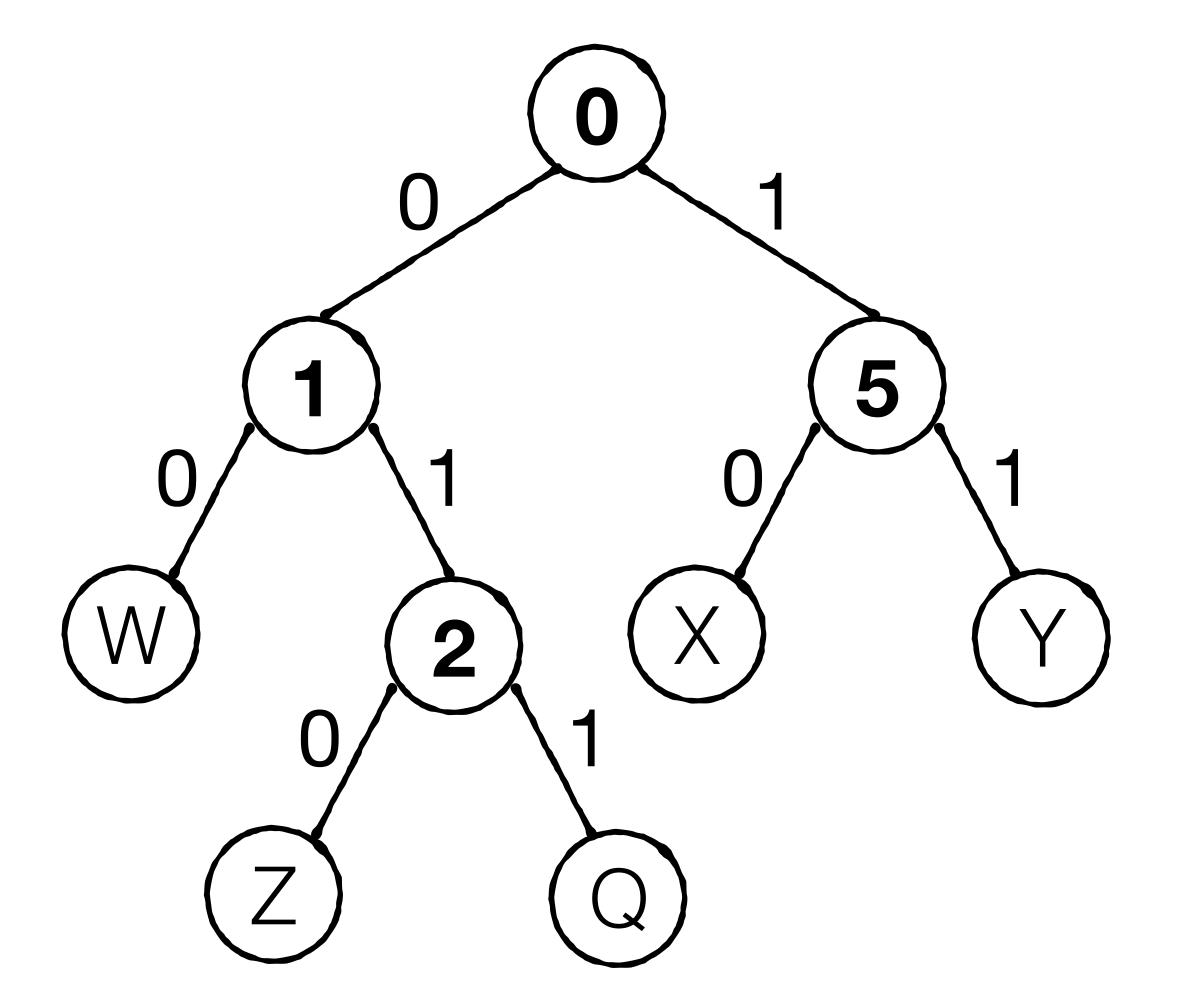
Encode structure depth-first 11 01 00

entries **Topology** 111110 **11 01 00**

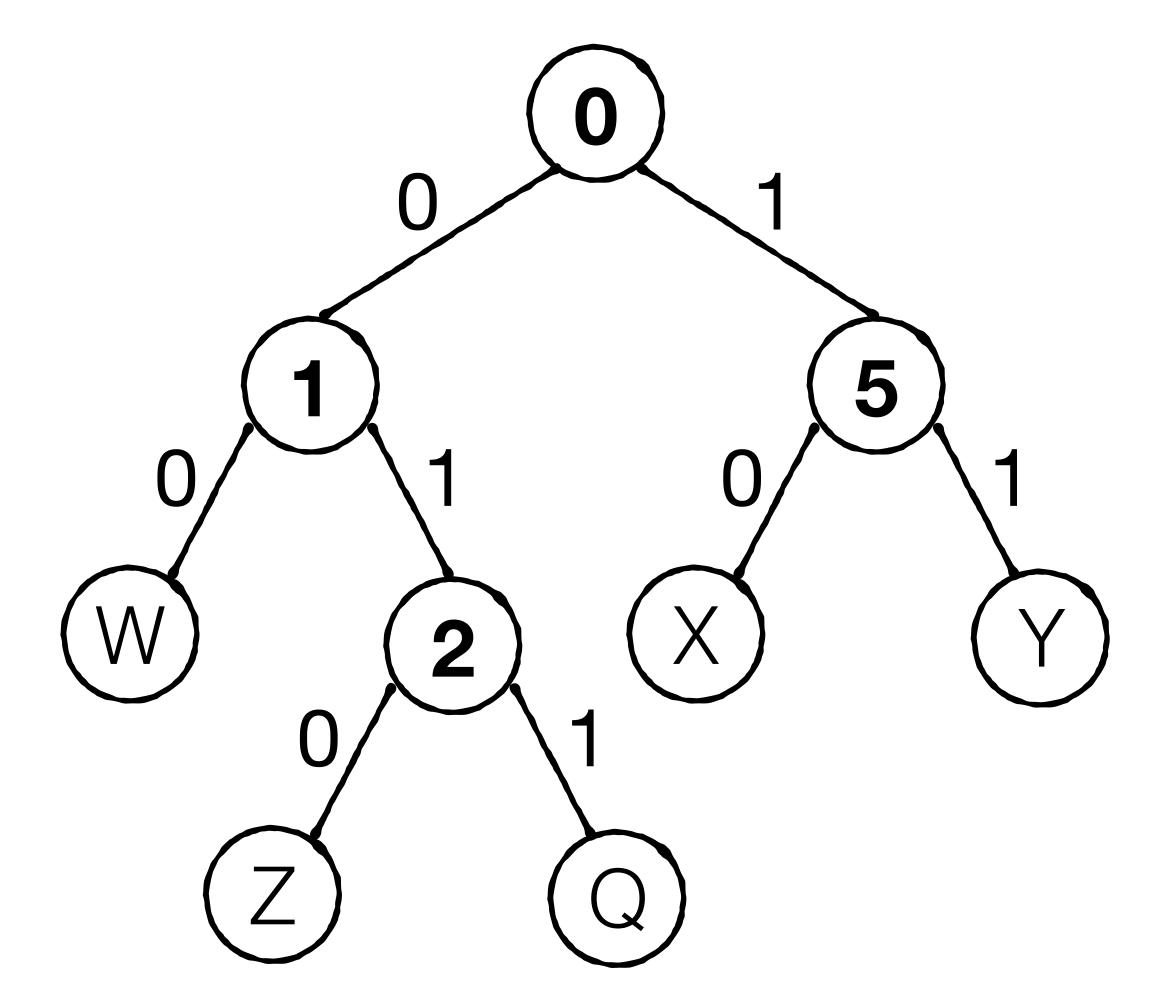


Topology 11 01 00

Differentiating bit indexes?



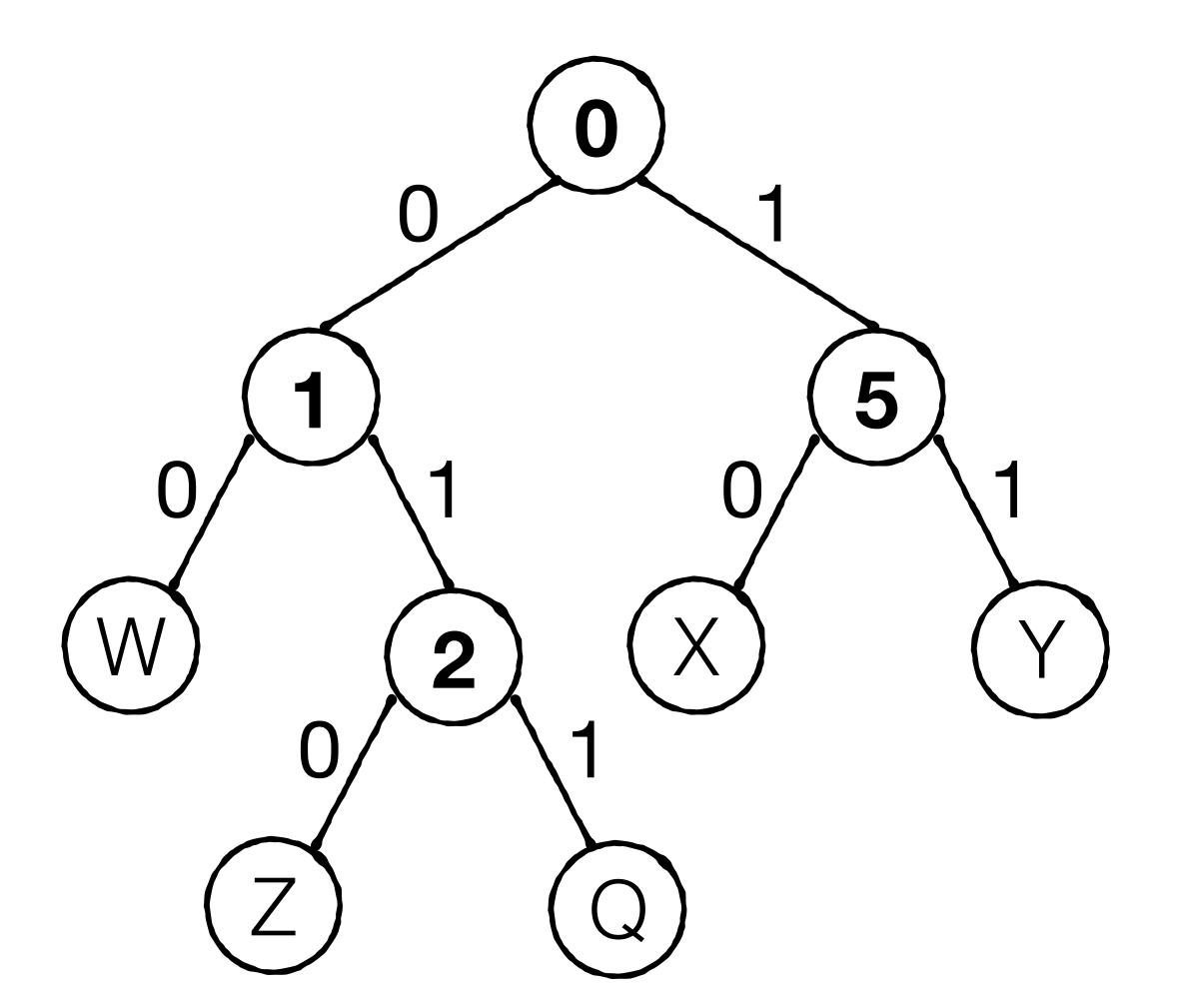
Topology 11 01 00



Differentiating bit indexes?

Depth-first, unary
0 10 110 11110

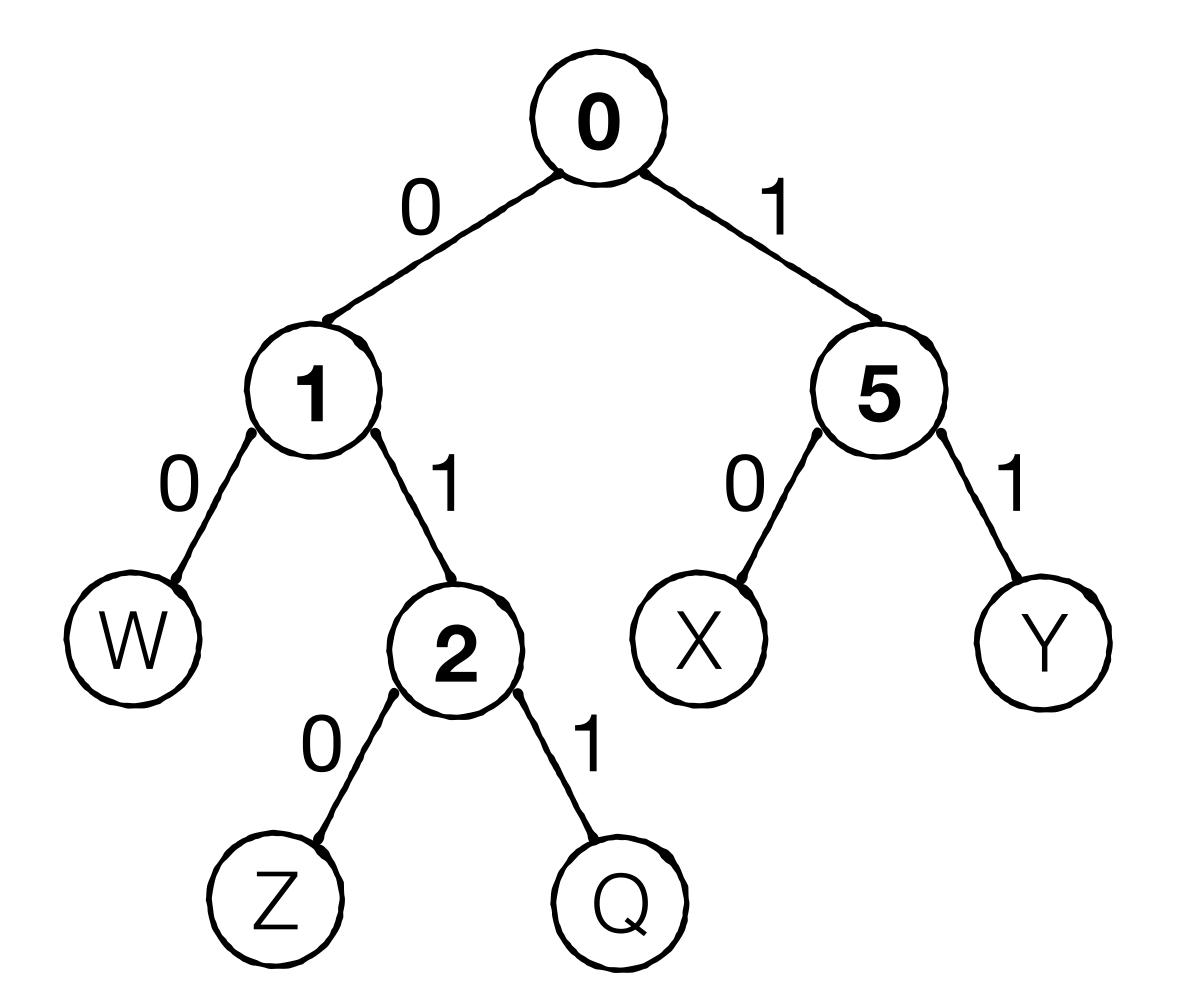
Topology 11 01 00



Differentiating bit indexes?

Depth-first, unary

Topology 11 01 00



Differentiating bit indexes?

Depth-first, unary
0 10 110 11110

child's index is larger than parent's by at least 1

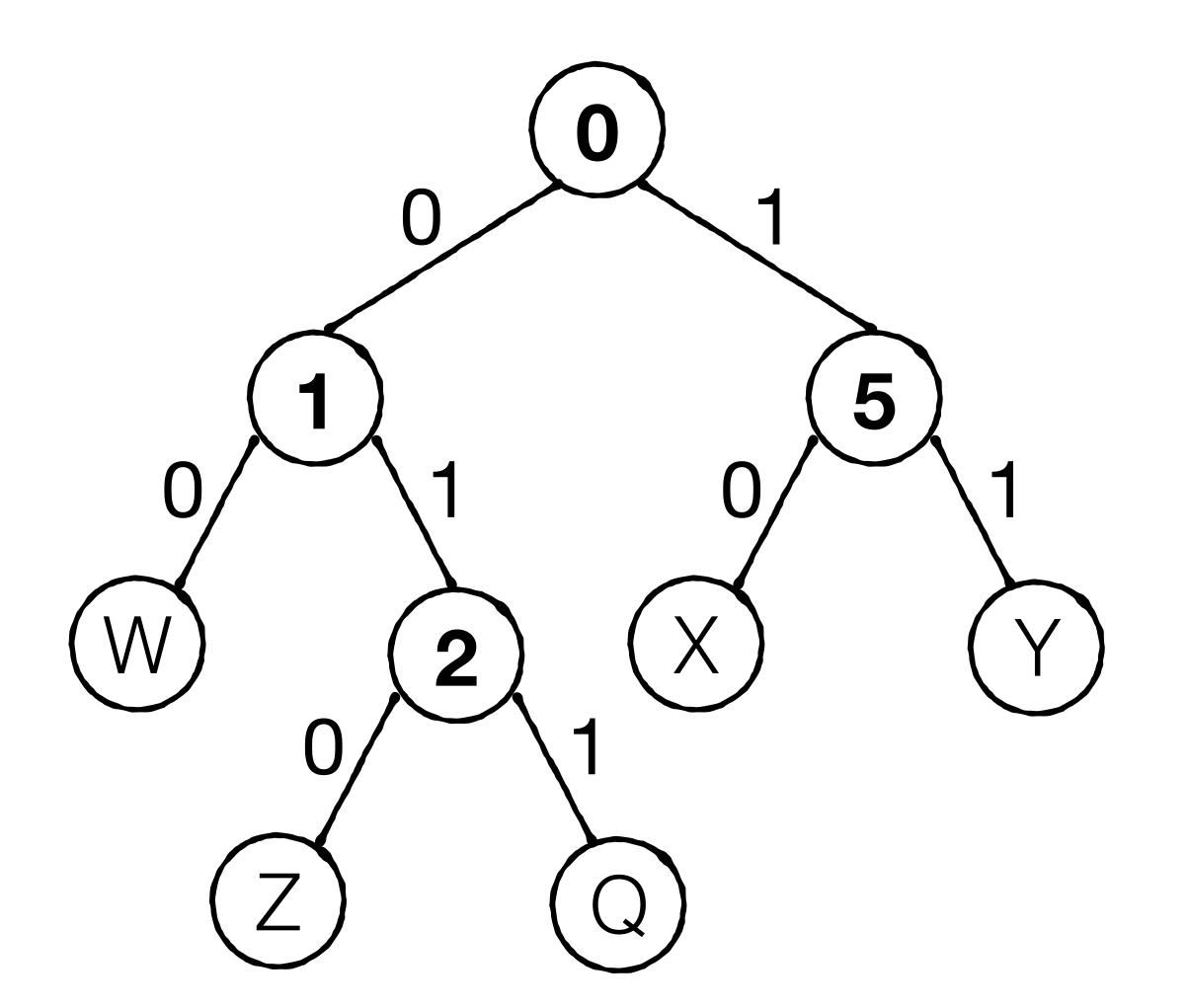
Topology 11 01 00

Differentiating bit indexes?

Depth-first, unary
0 10 110 11110

child's index is larger than parent's by at least 1

So let's encode index as Δ - 1



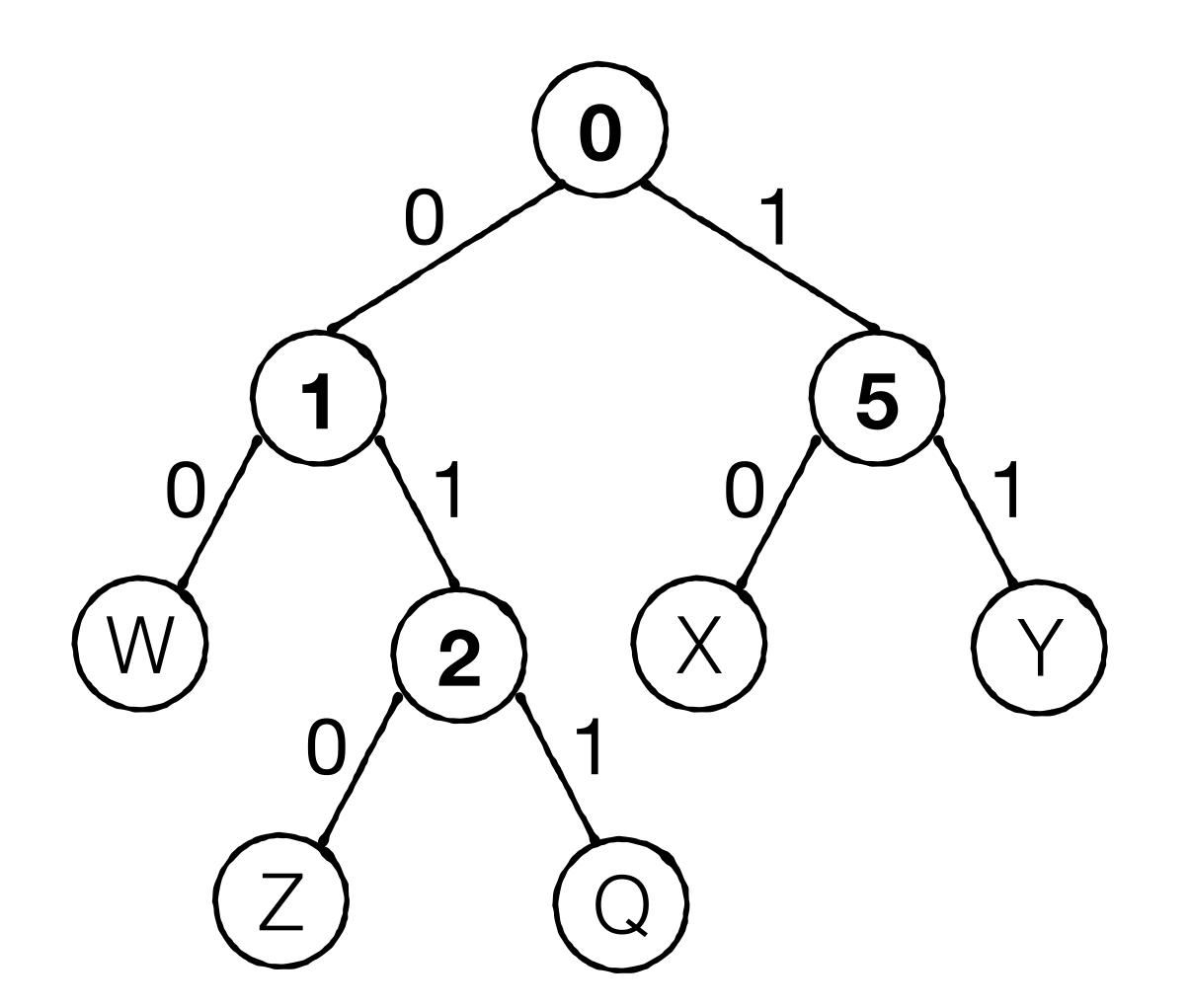
Topology 11 01 00

Differentiating bit indexes?

Depth-first, unary
0 40 440 411110

child's index is larger than parent's by at least 1

So let's encode index as Δ - 1



Topology 11 01 00

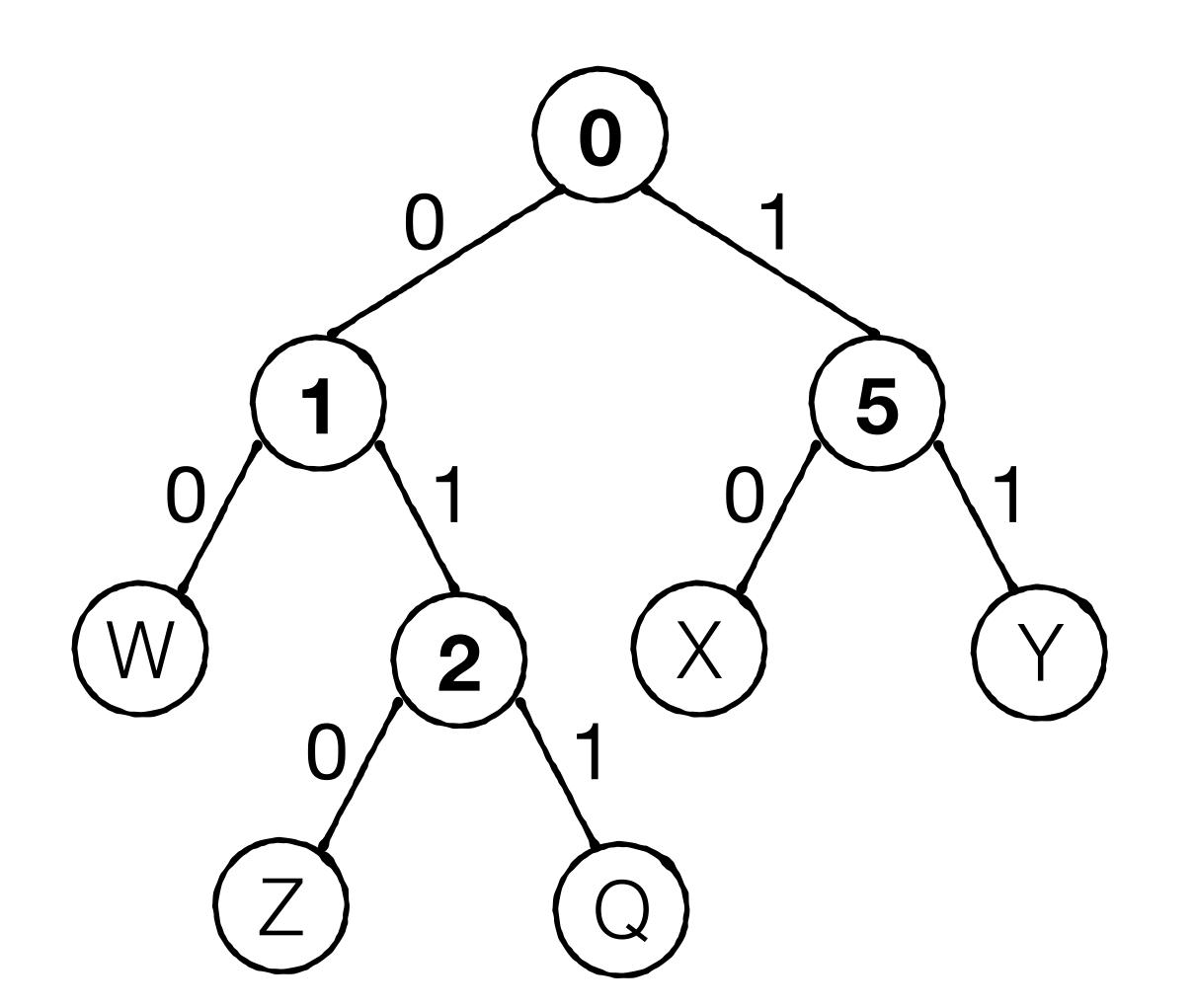
Differentiating bit indexes?

Depth-first, unary

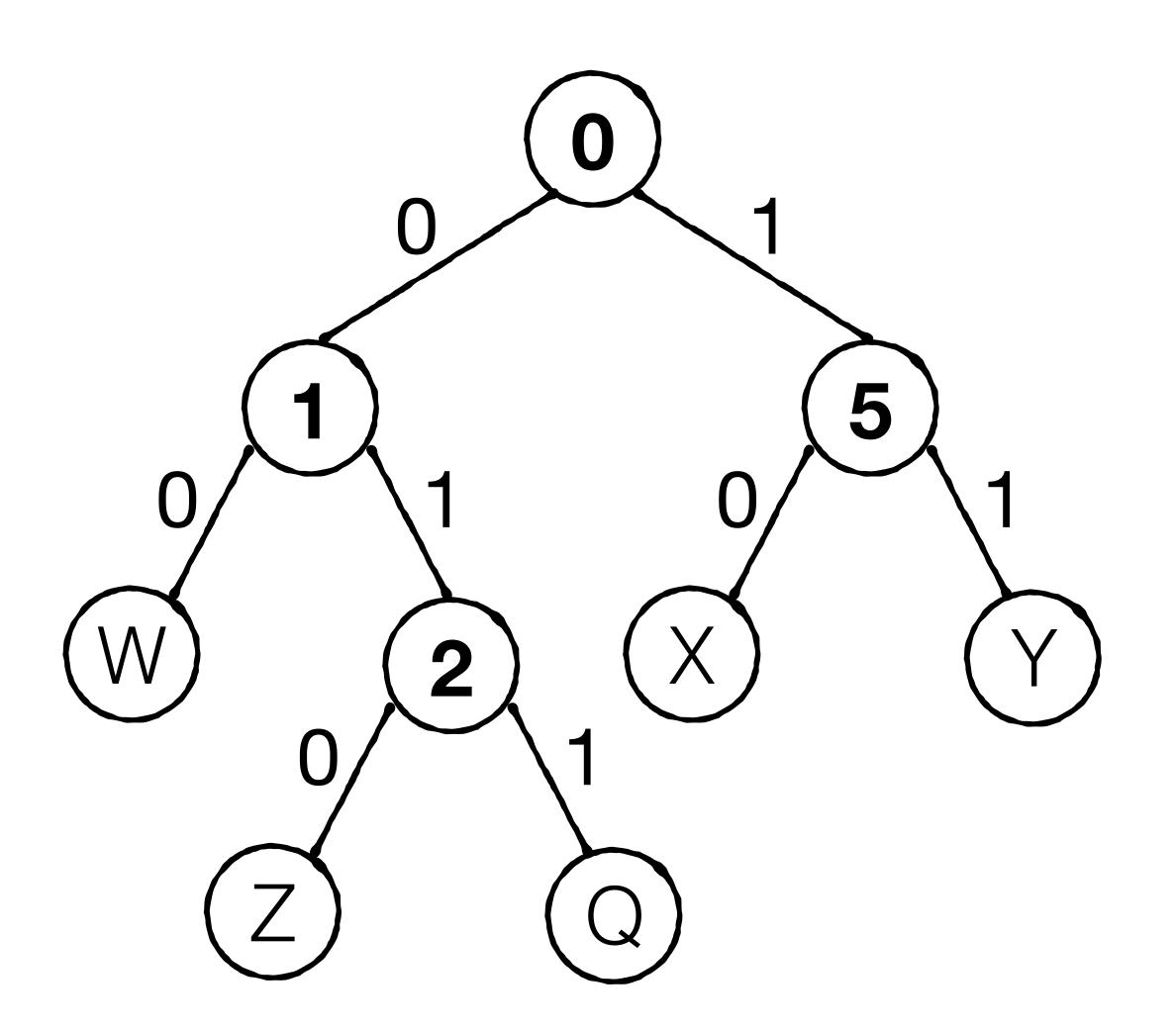
0 0 0 11110

child's index is larger than parent's by at least 1

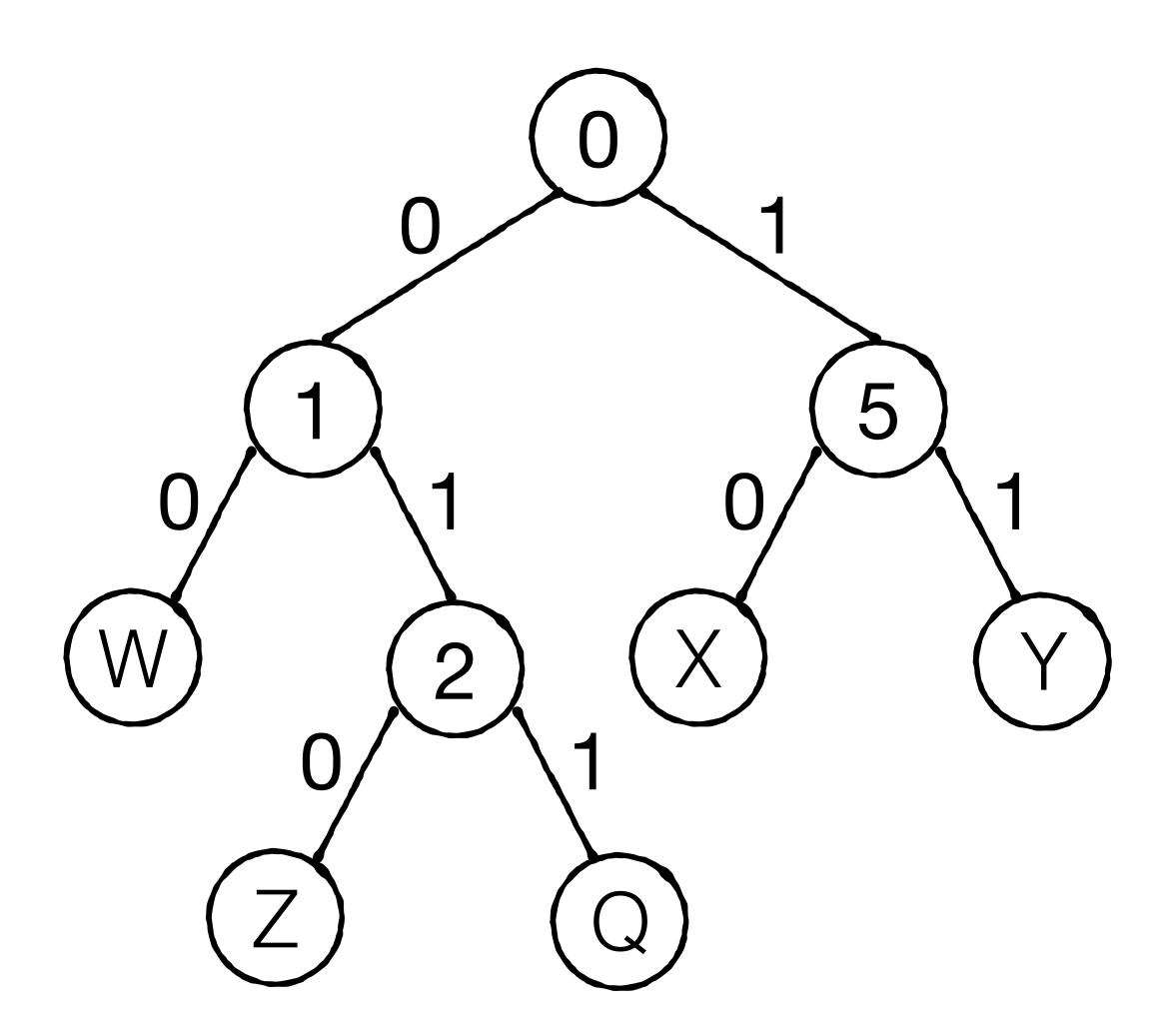
So let's encode index as Δ - 1

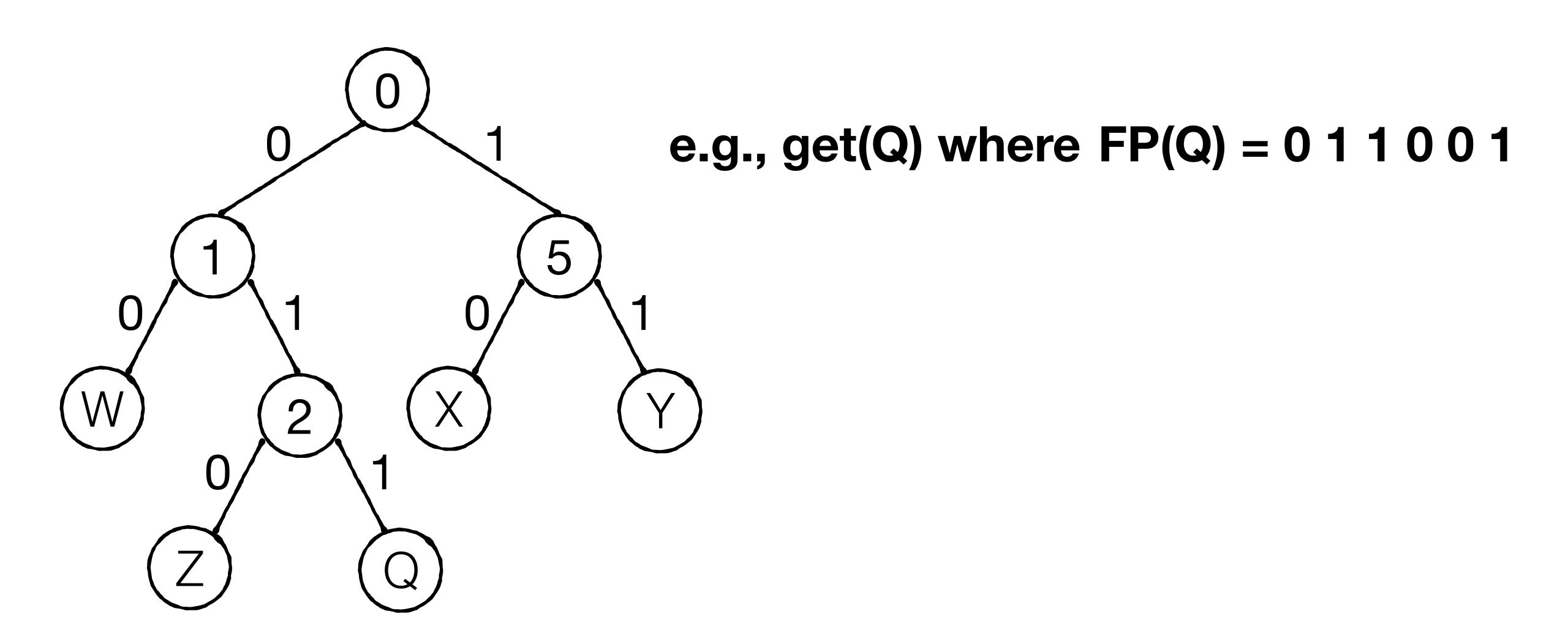


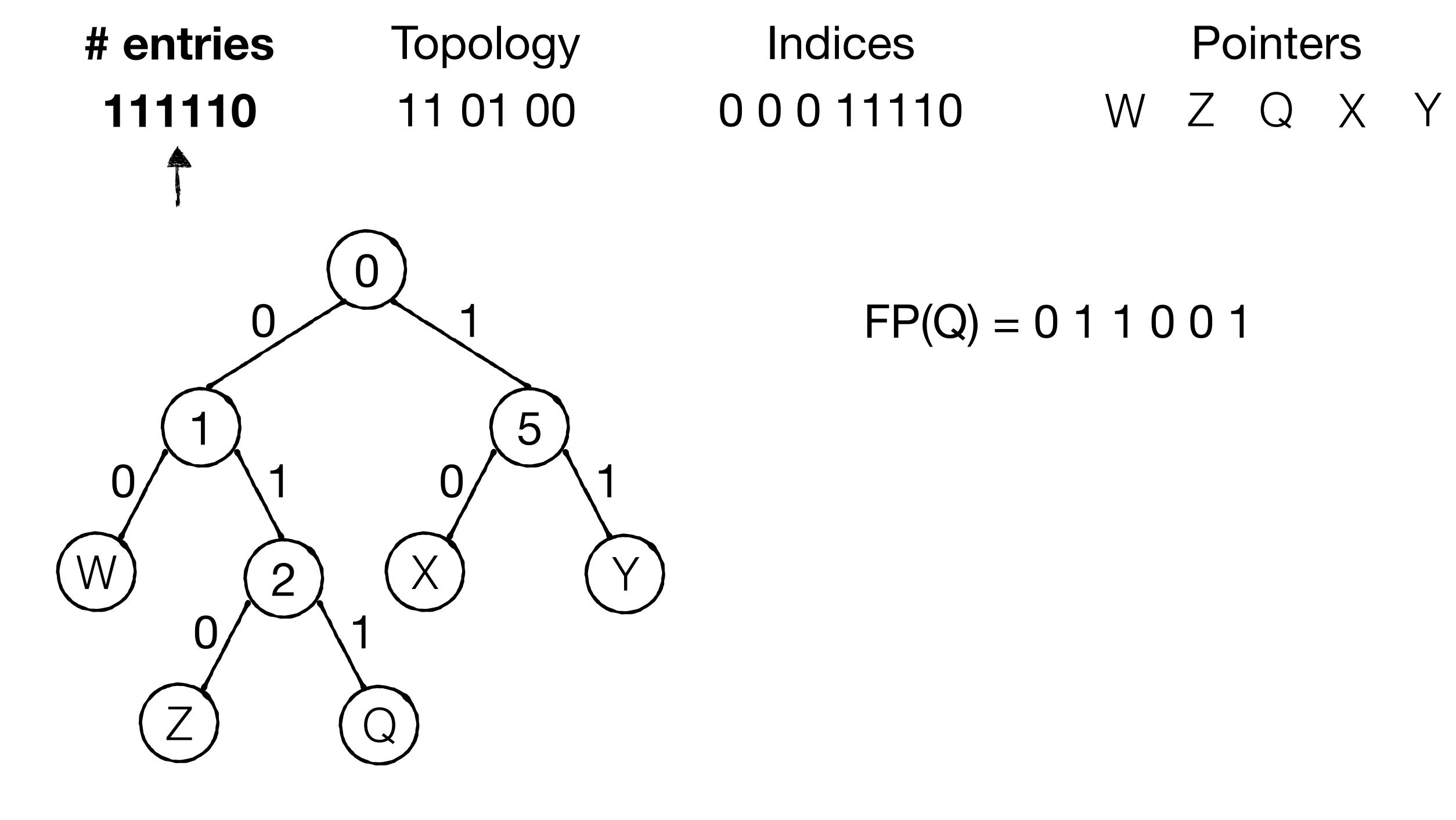
entries Topology Indices
111110 11 01 00 0 0 0 11110

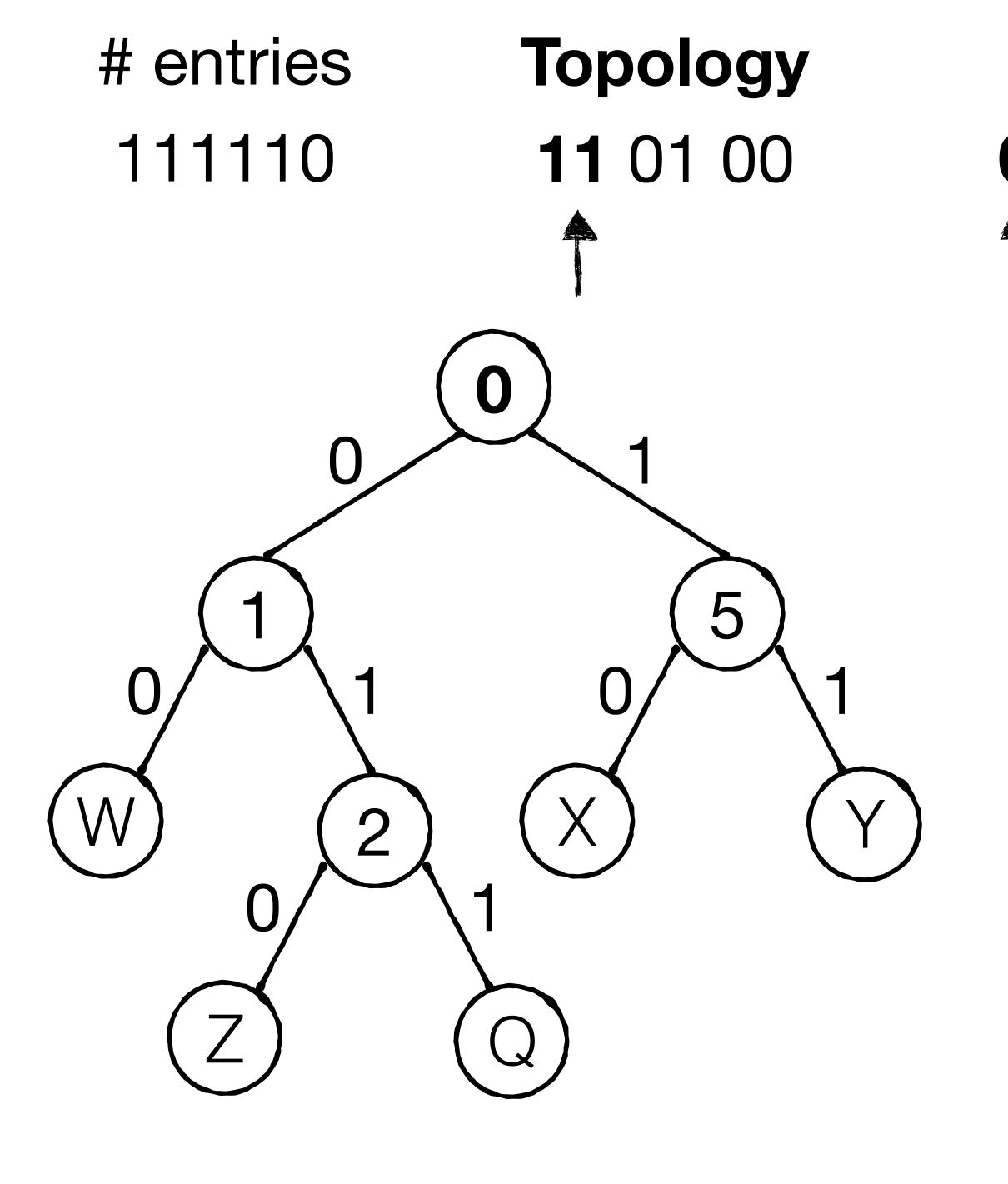


entries Topology Indices Pointers
111110 11 01 00 0 0 0 11110 W Z Q X Y



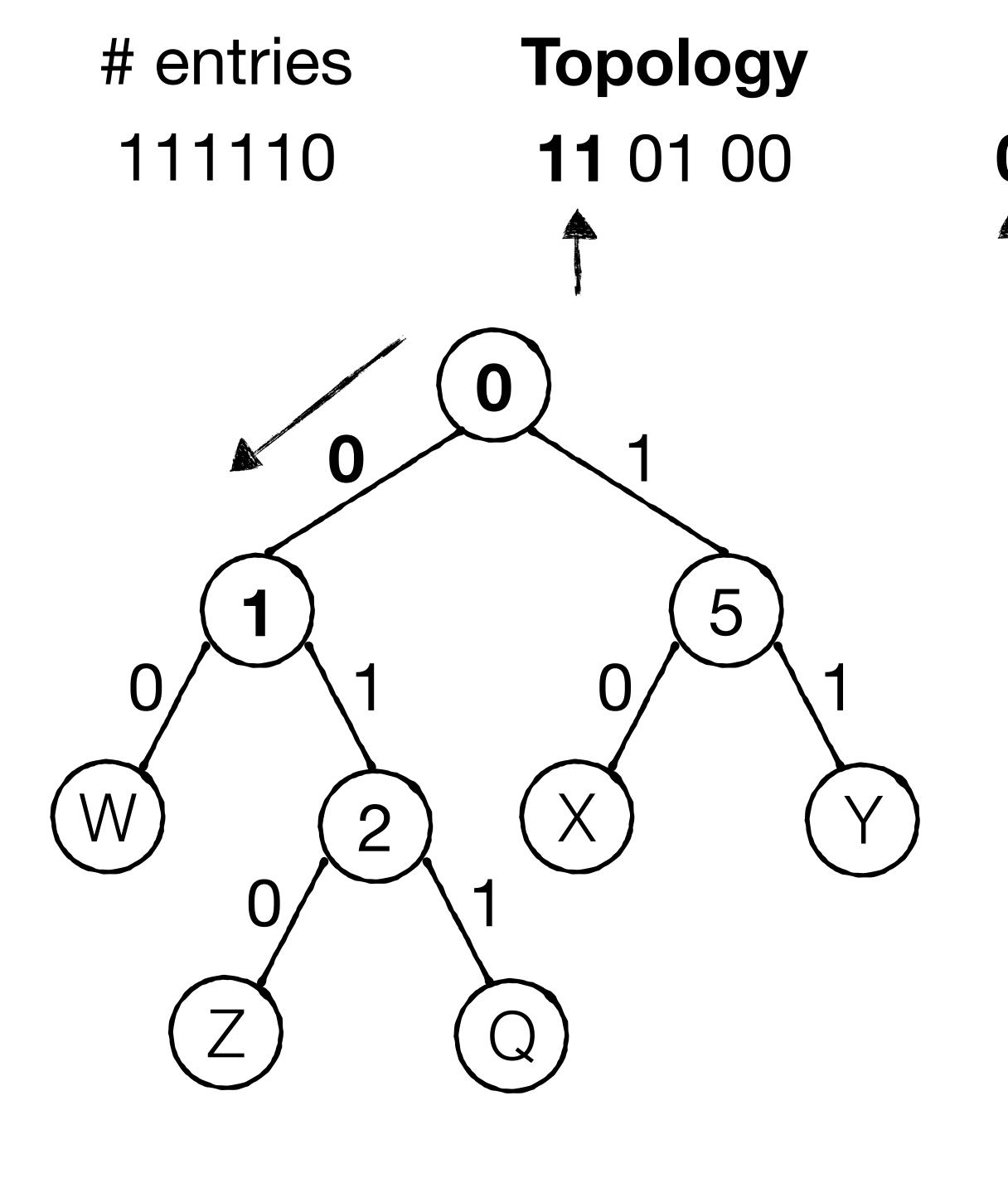






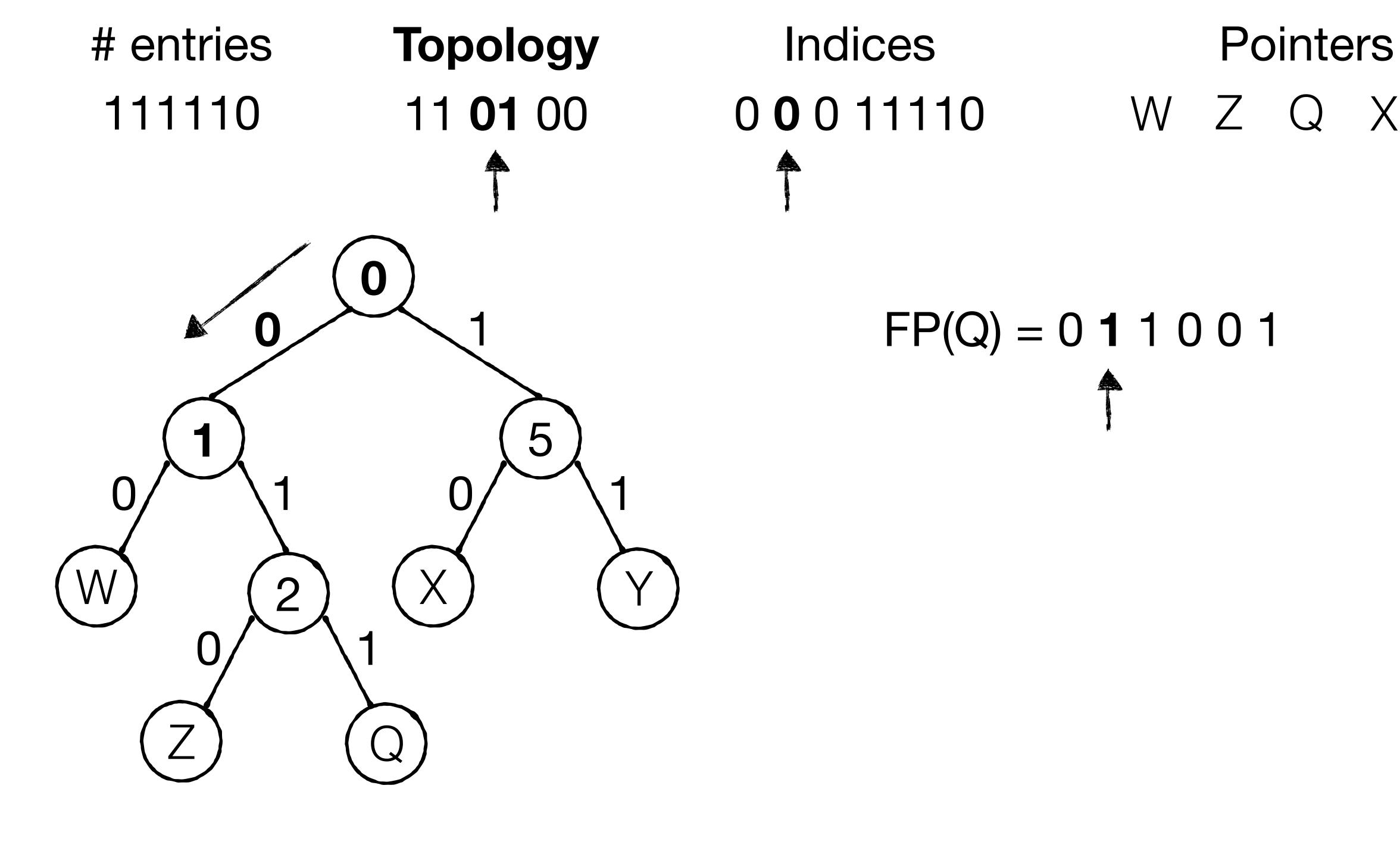
Indices Pointers

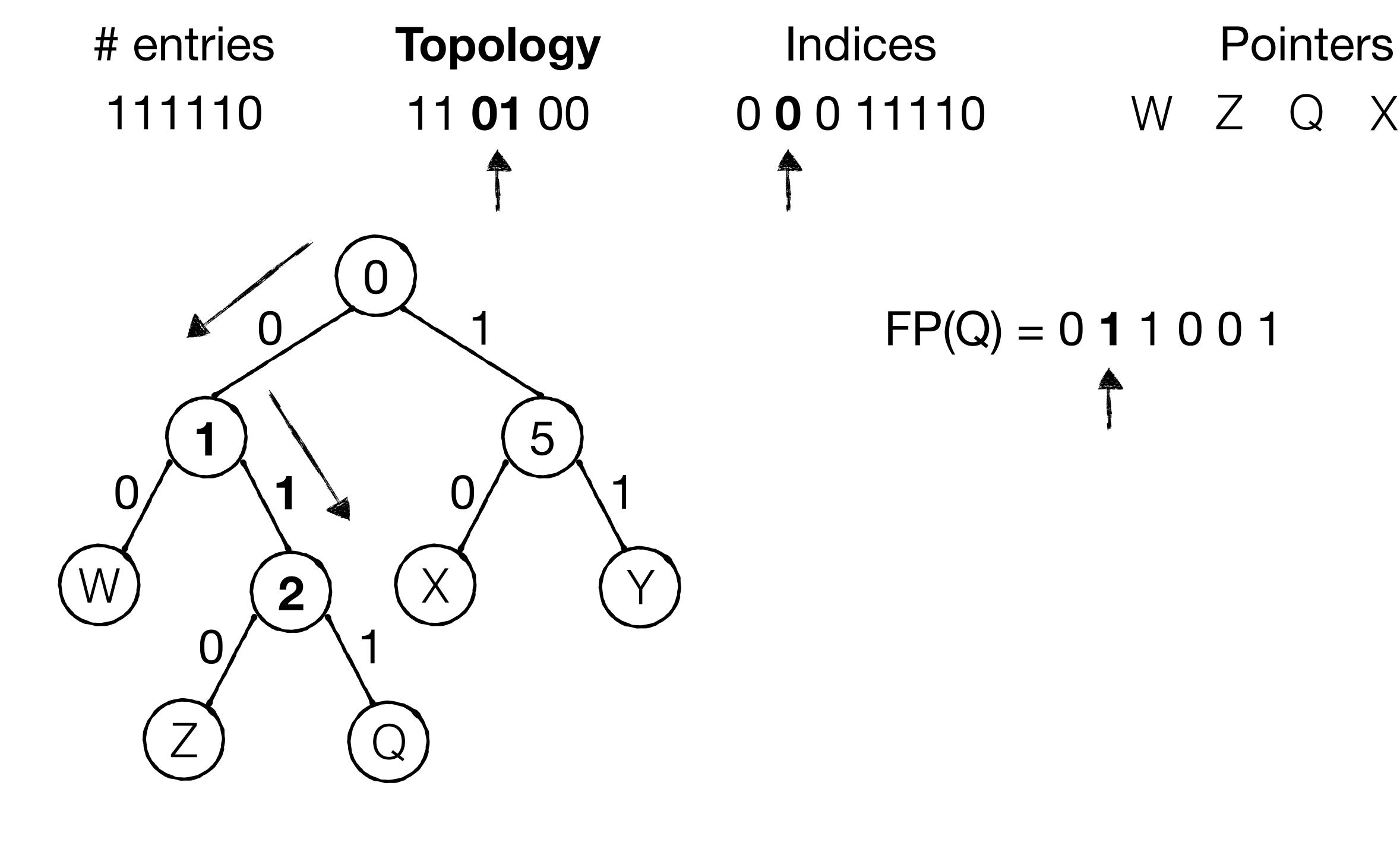
0 0 0 11110 W Z Q X

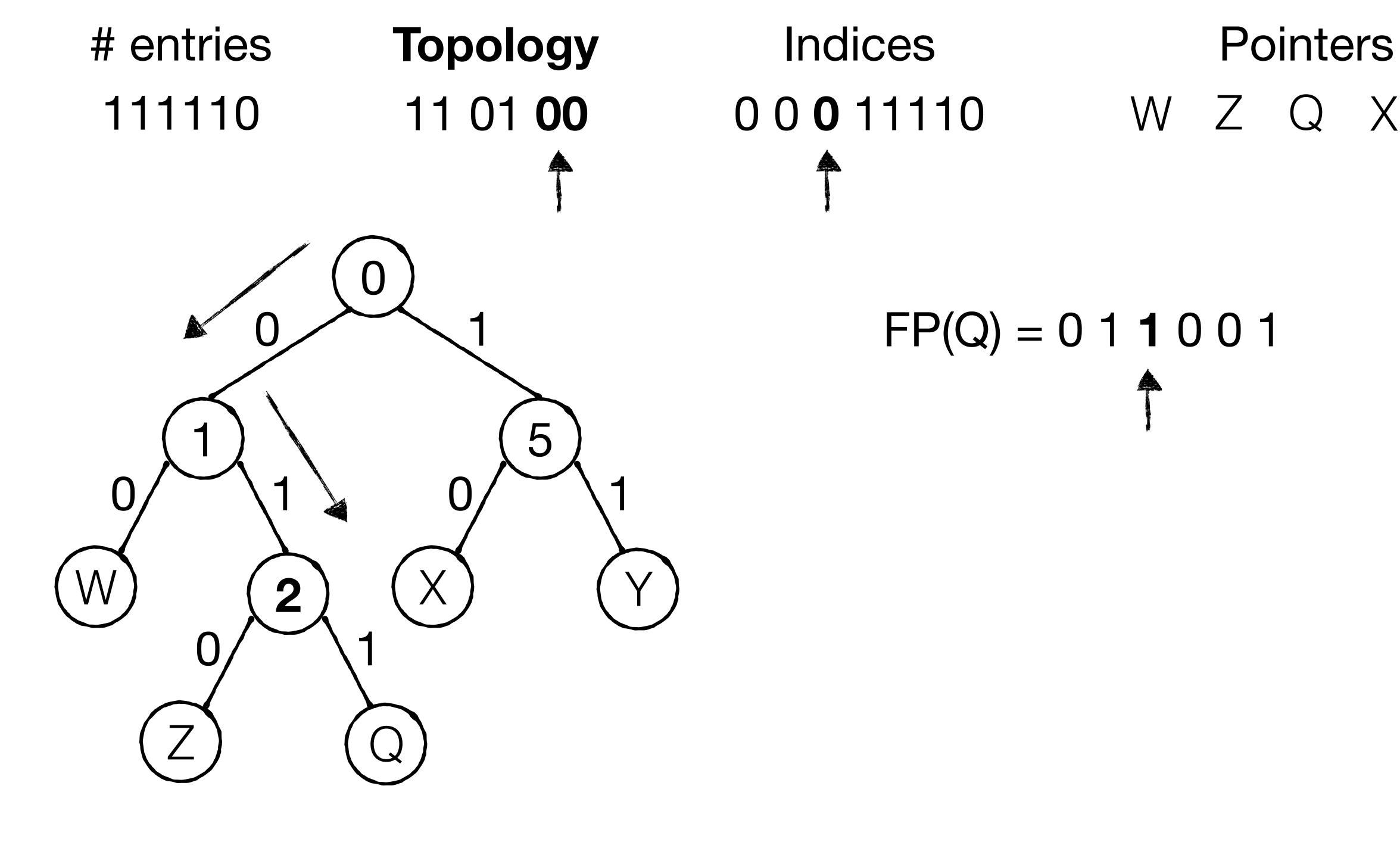


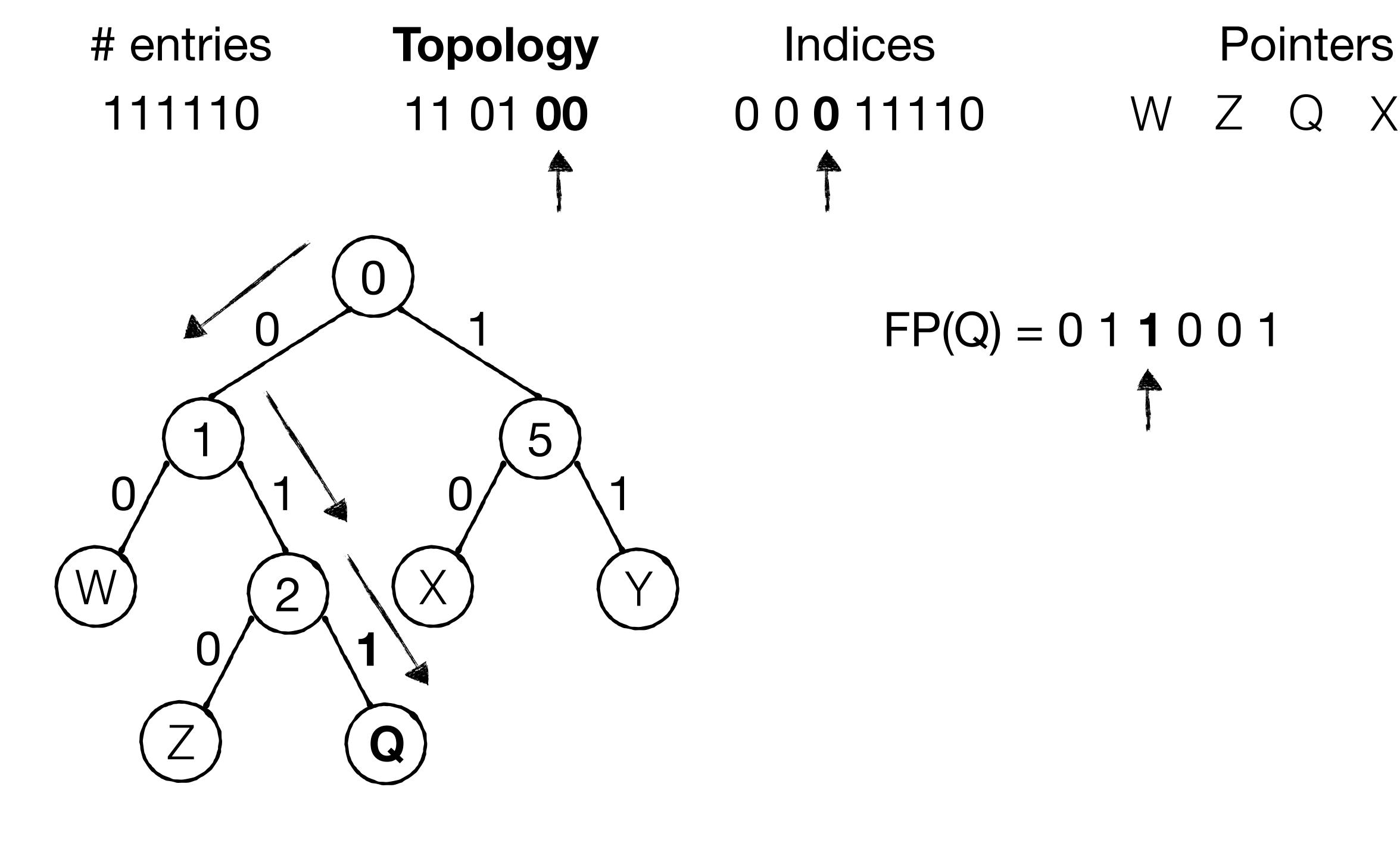
Indices Pointers

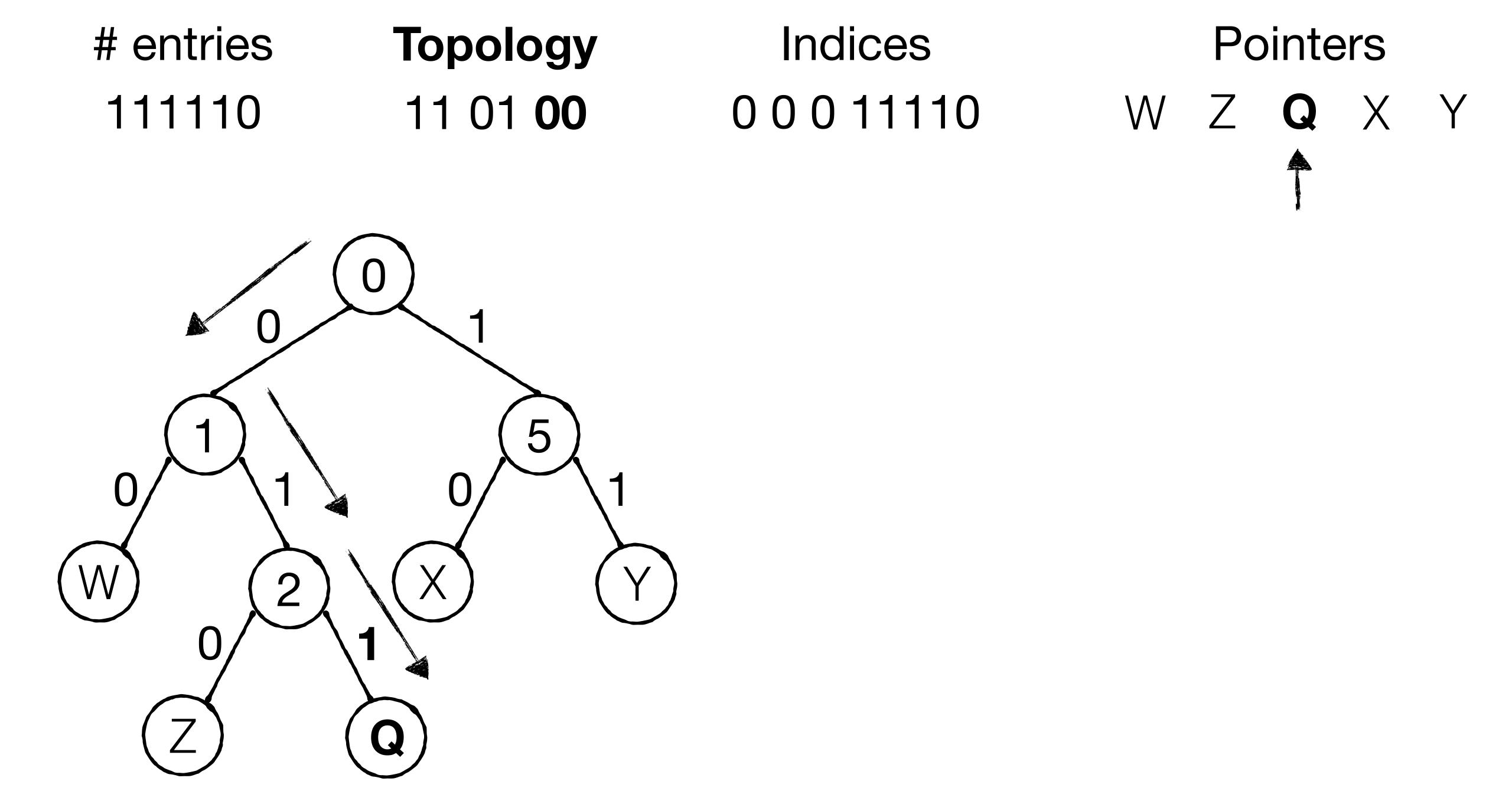
0 0 0 11110 W Z Q X Y

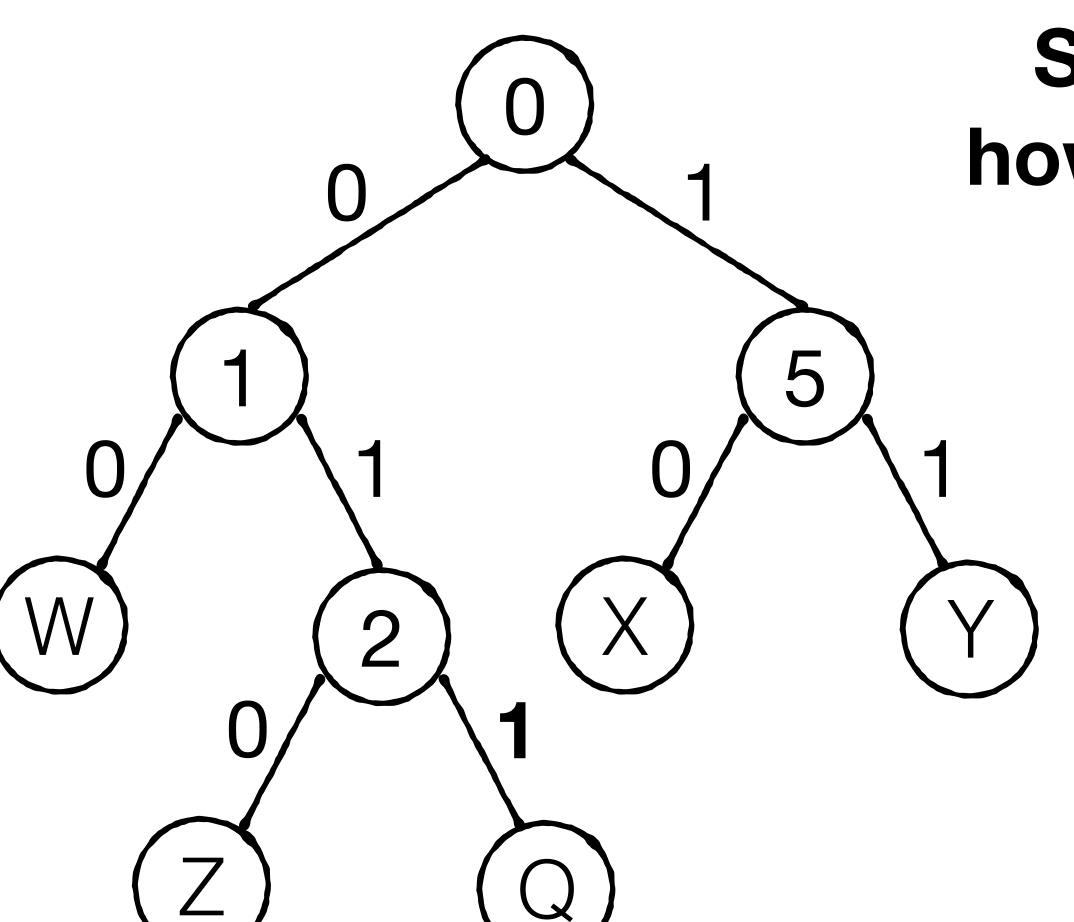




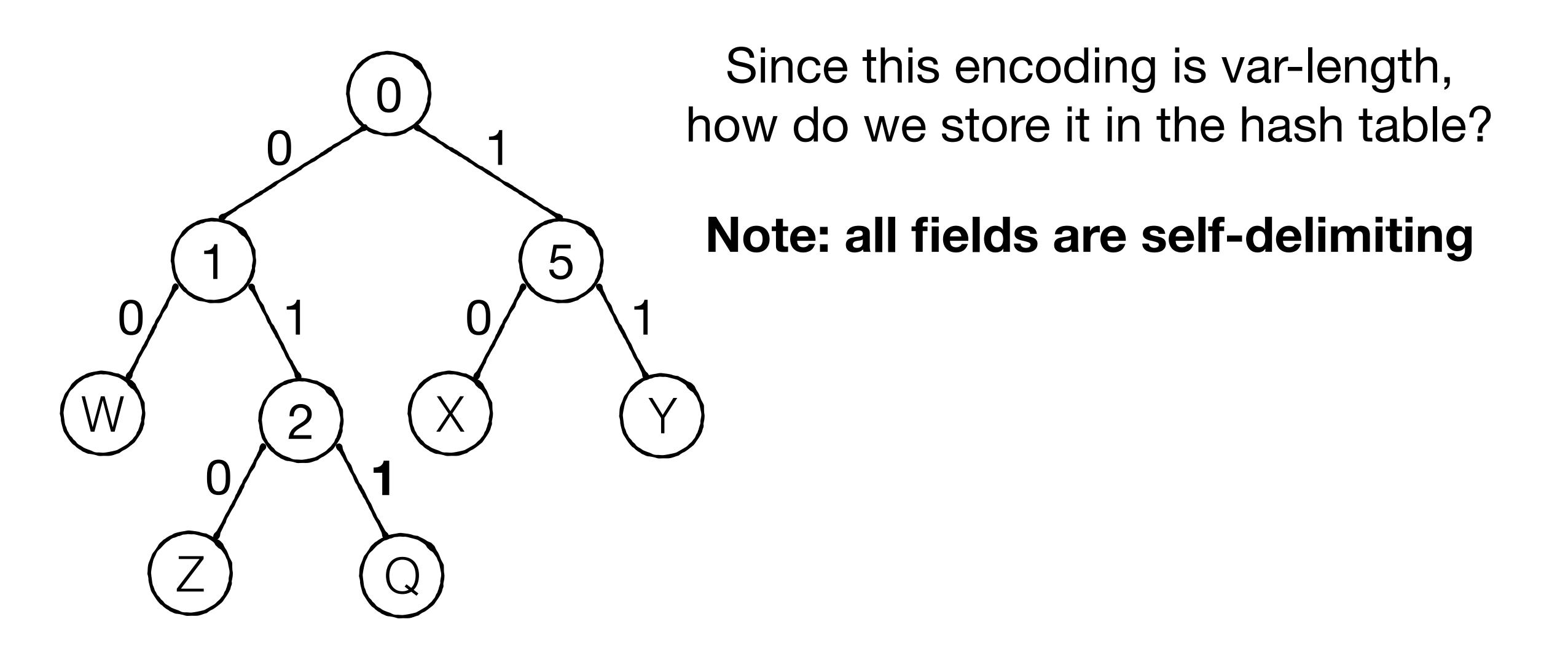


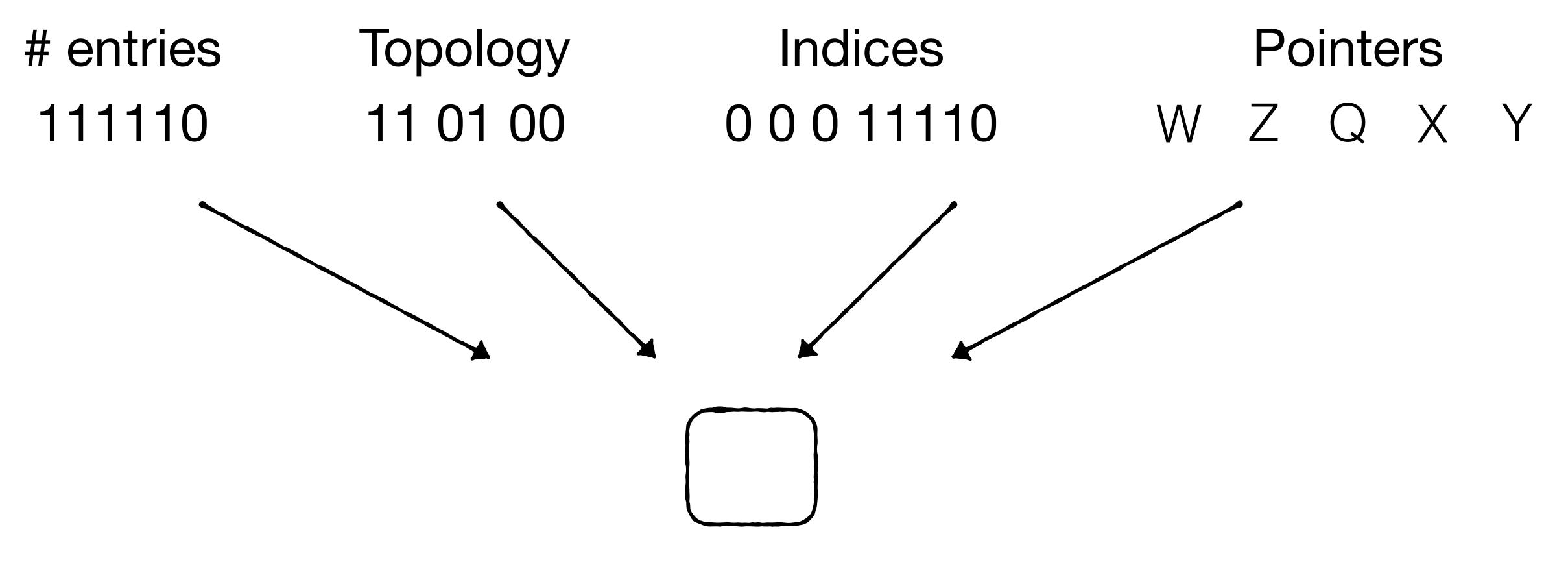






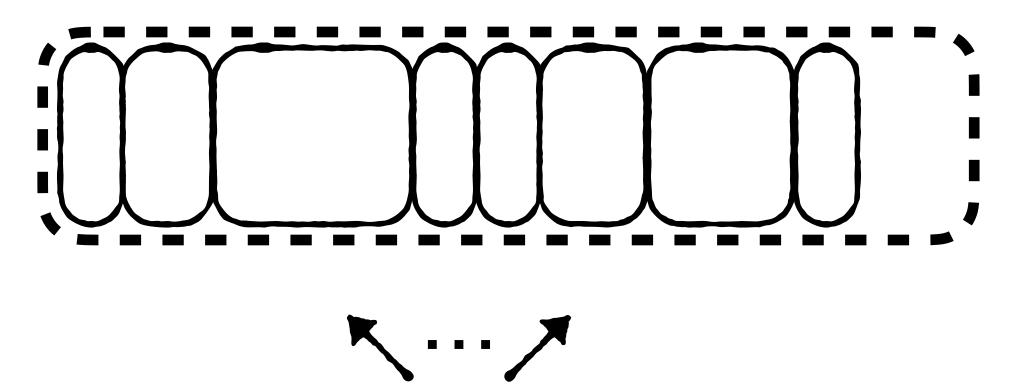
Since this encoding is var-length, how do we store it in the hash table?





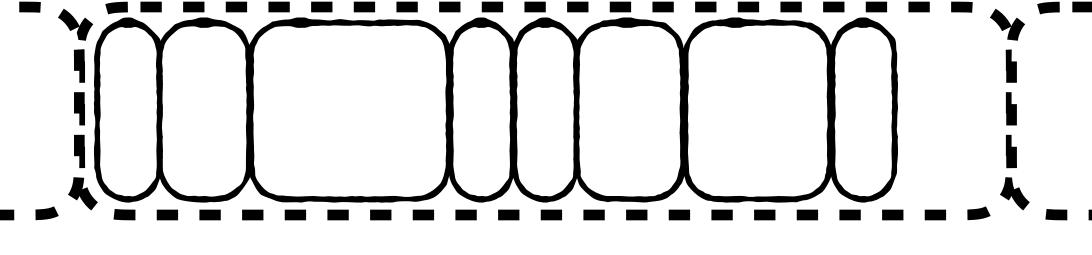
Variable-length slot

Fixed-sized block



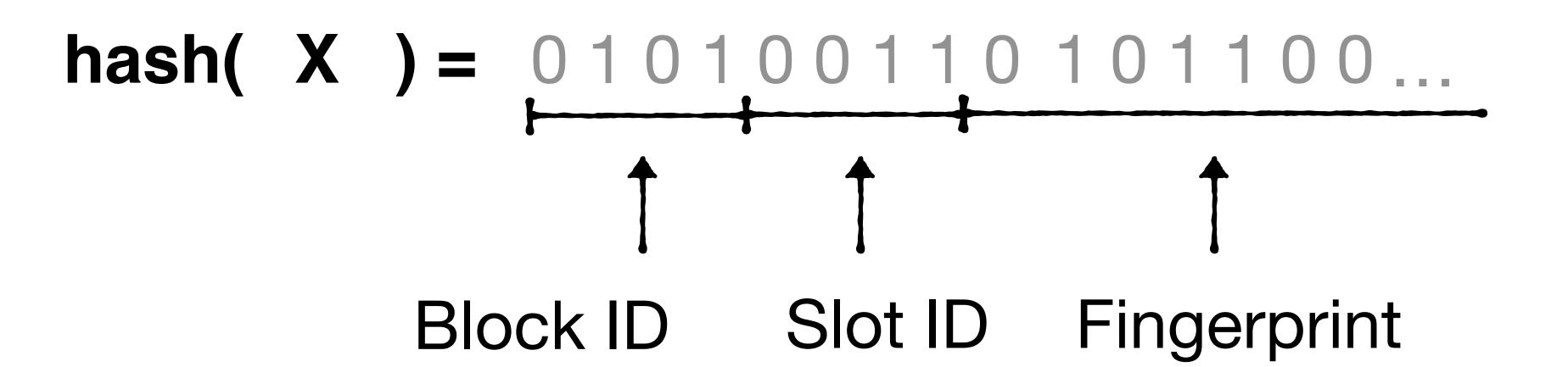
Multiple Variable-length slots

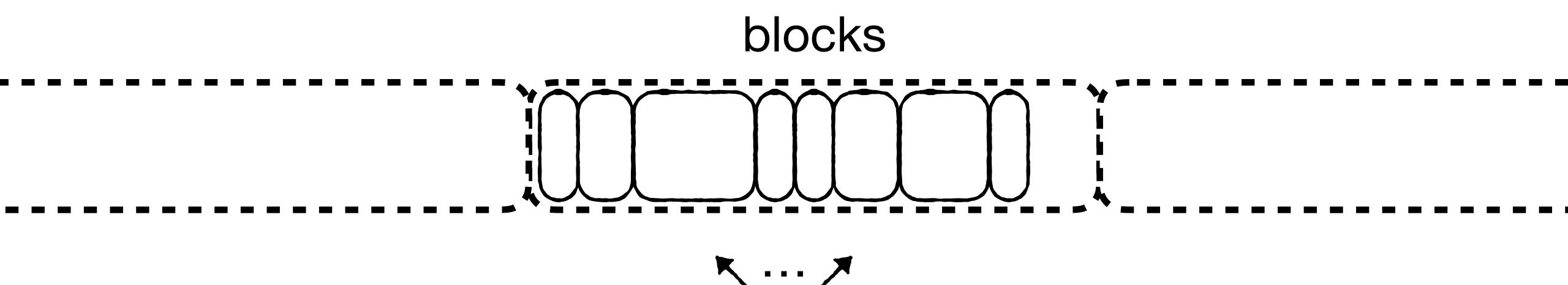
blocks



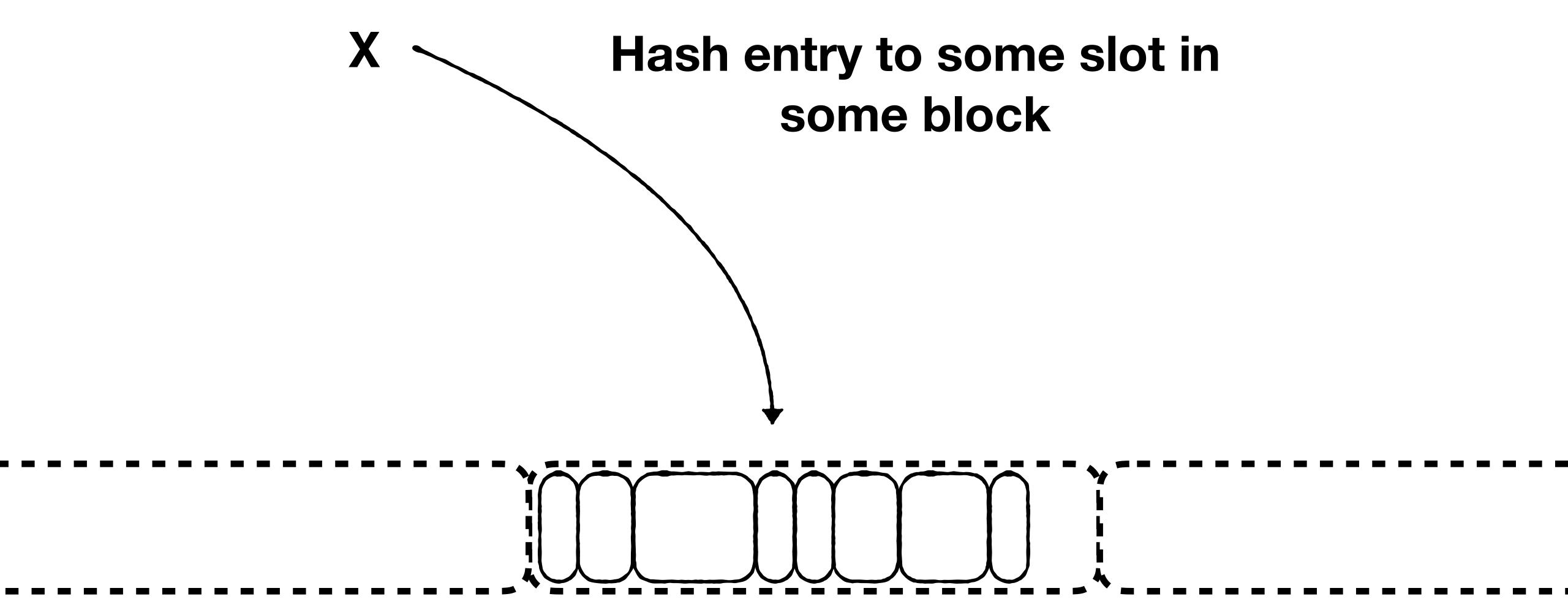


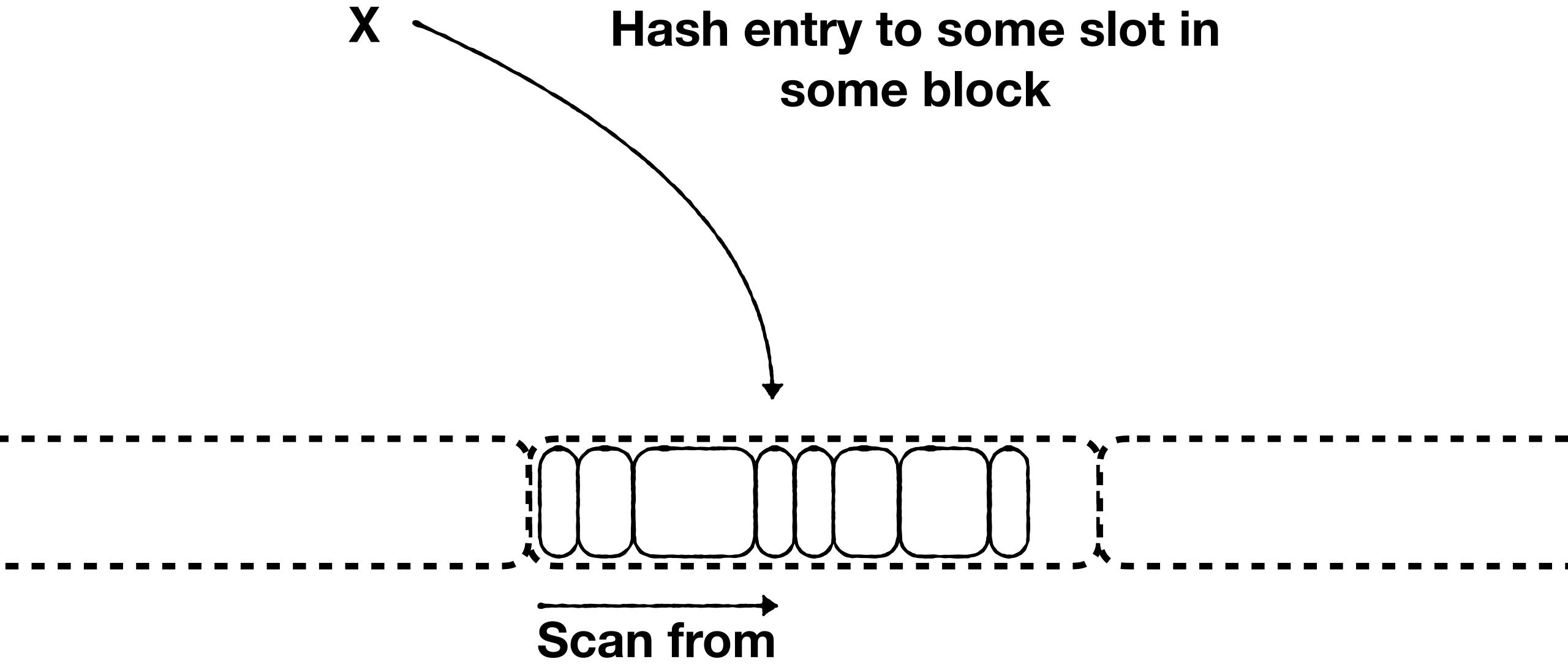
Multiple Variable-length slots



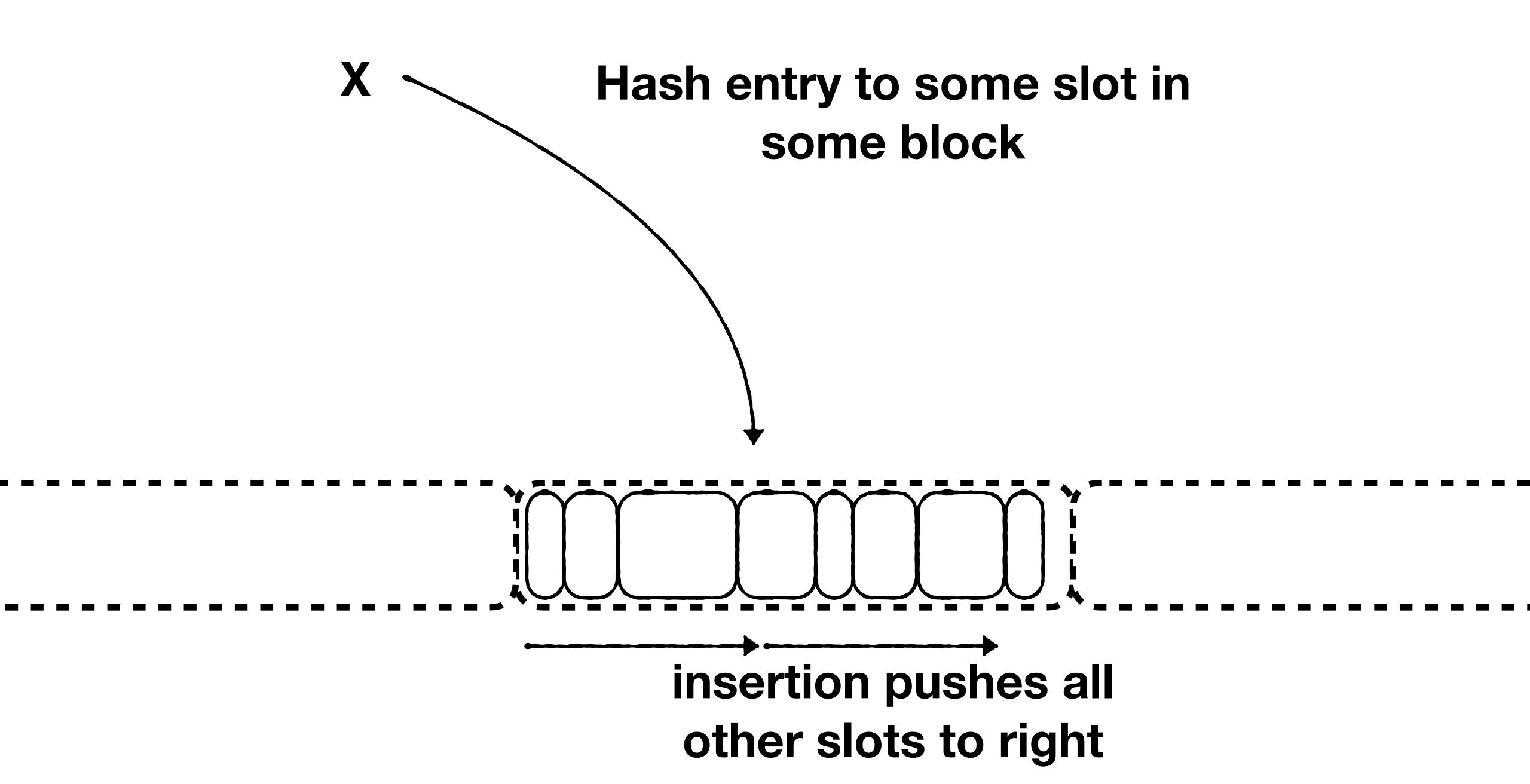


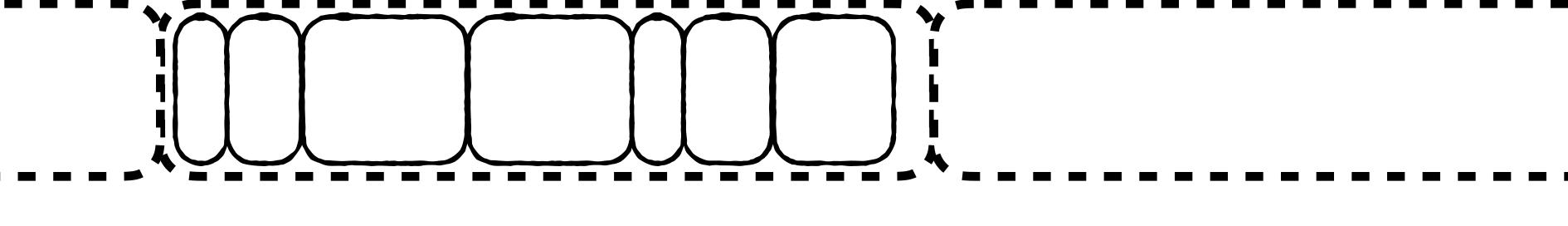
Multiple Variable-length slots



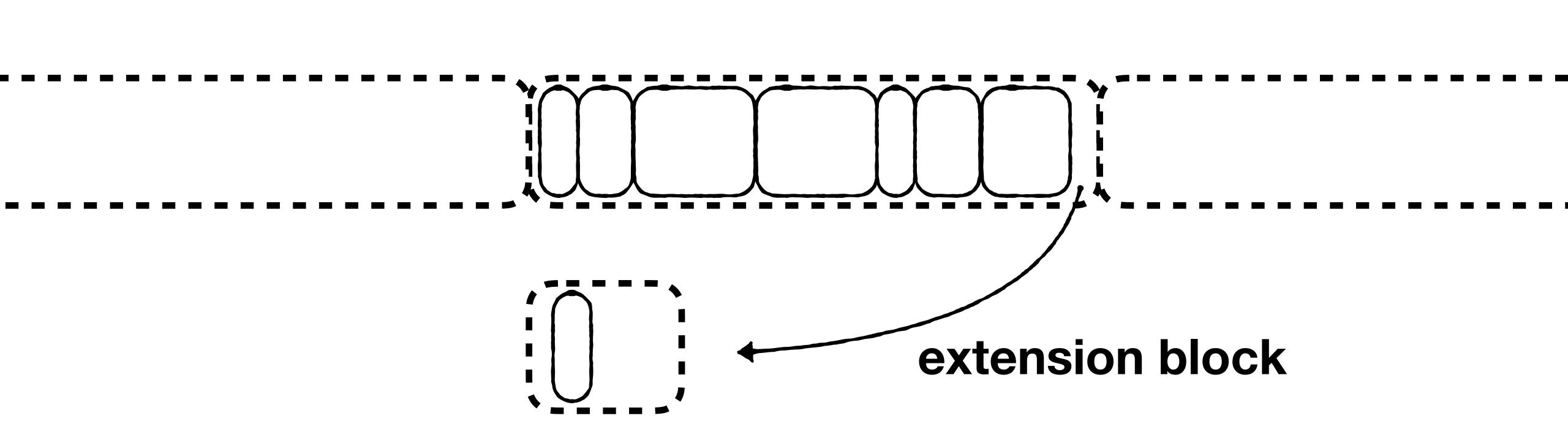


start of block



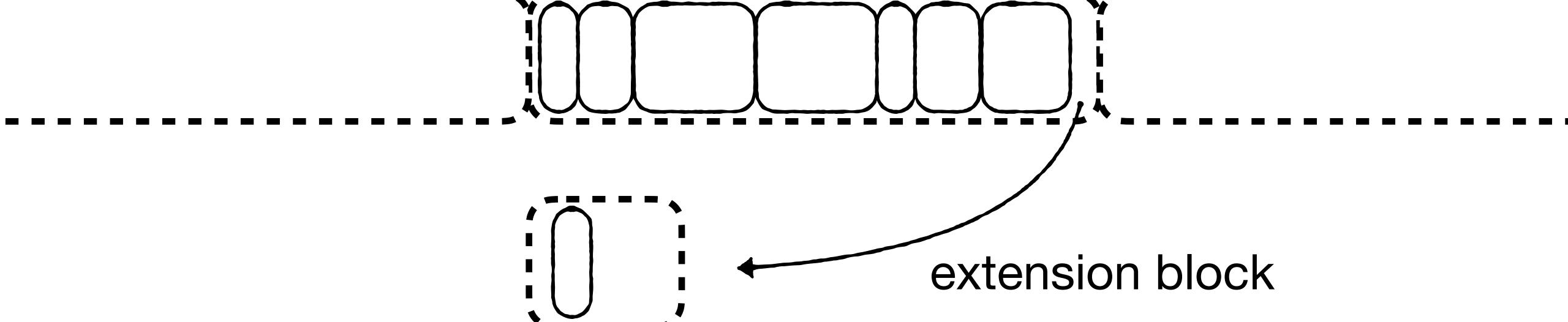


Overflow



With more slots per block...

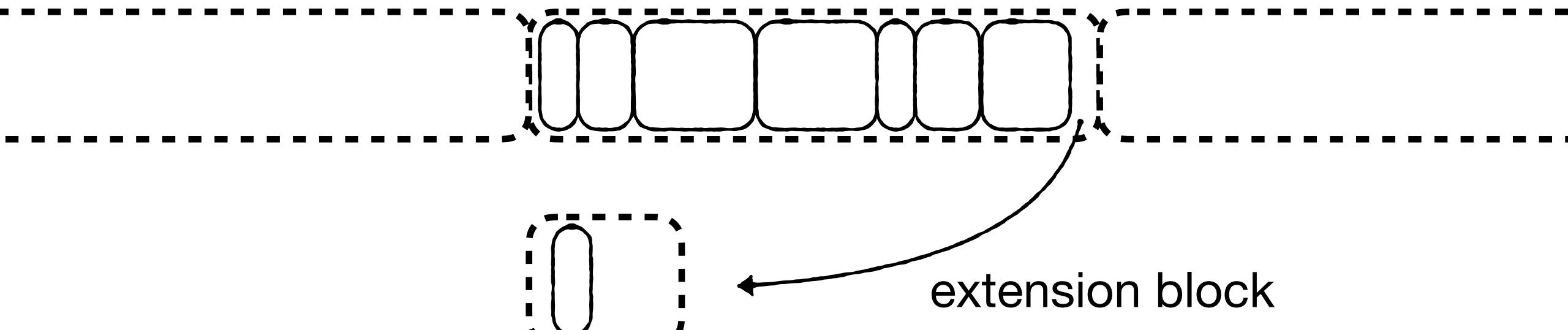
(1)



With more slots per block...

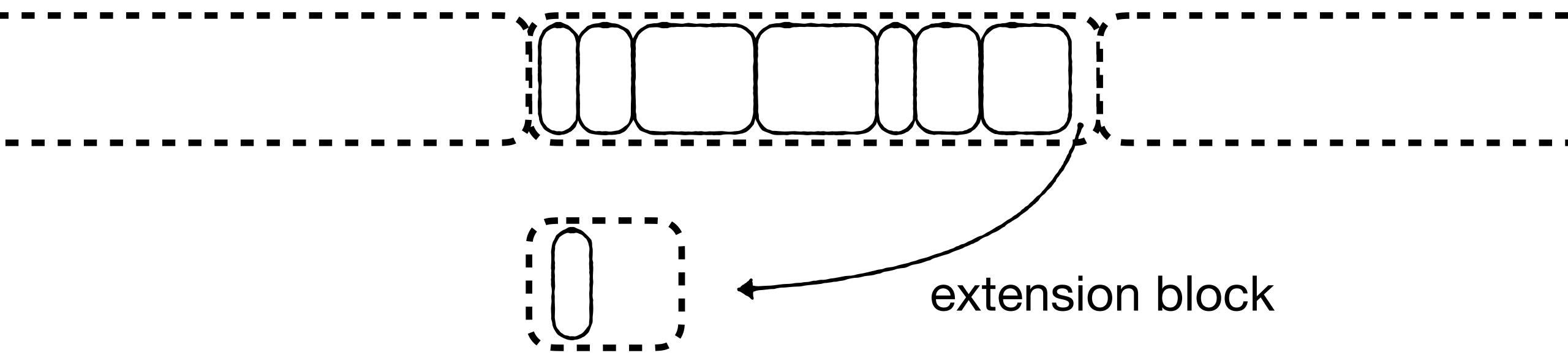
(1) Less size variability-> fewer overflows

(2) More to traverse for queries/inserts

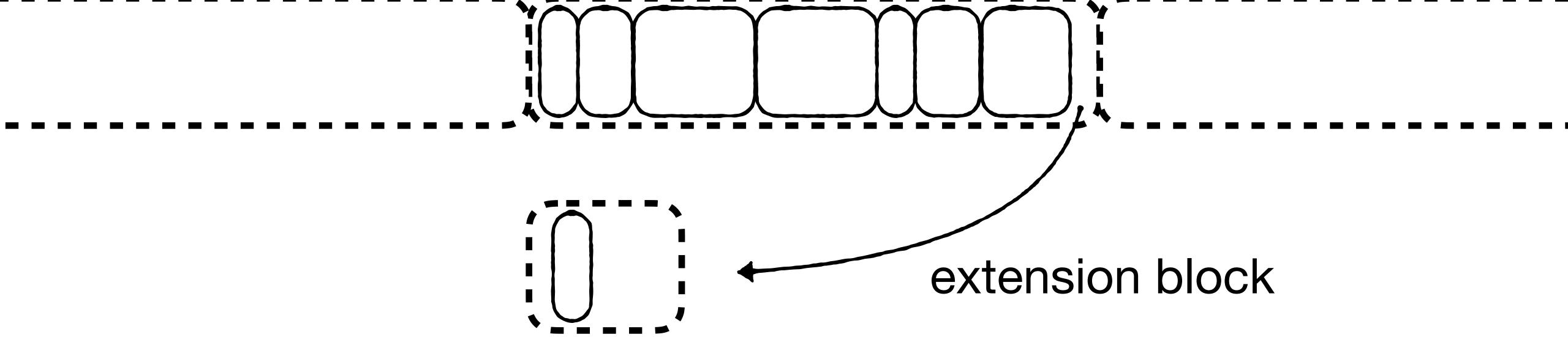


The structure is not expandable and tuned to support on avg. 1 entry per slot

e.g., 64 slots per block



How large is each slot?



How large is each slot?

#entries Topology Indices Pointers

Slot size X Encoding #Bits

Slot size X Encoding #Bits

Slot size X	Encoding	#Bits
-------------	----------	-------

0 1

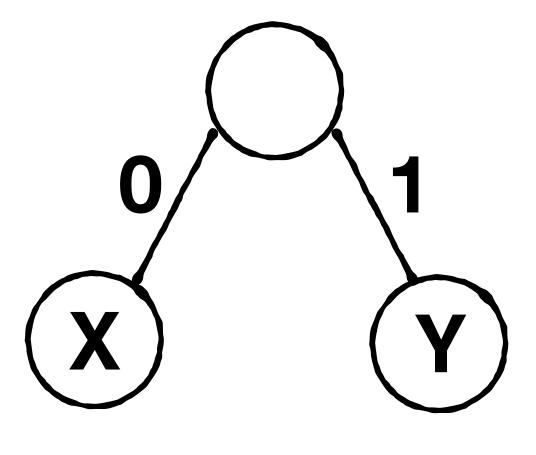
1 10 2

Slot size X En	coding #Bits
----------------	--------------

0 1

1 10 2

2 110 3

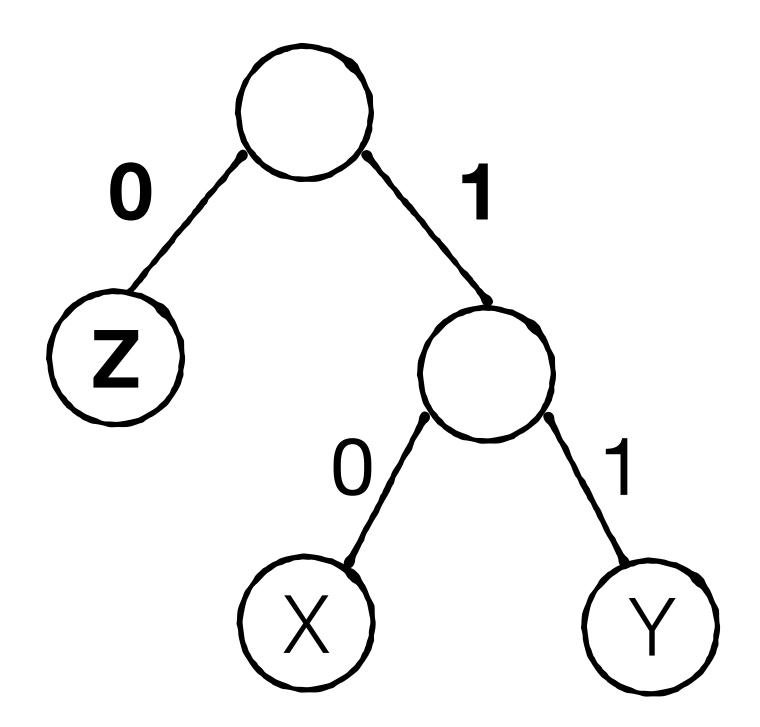


Slot size X	Encoding	#Bits
-------------	----------	-------

0 1

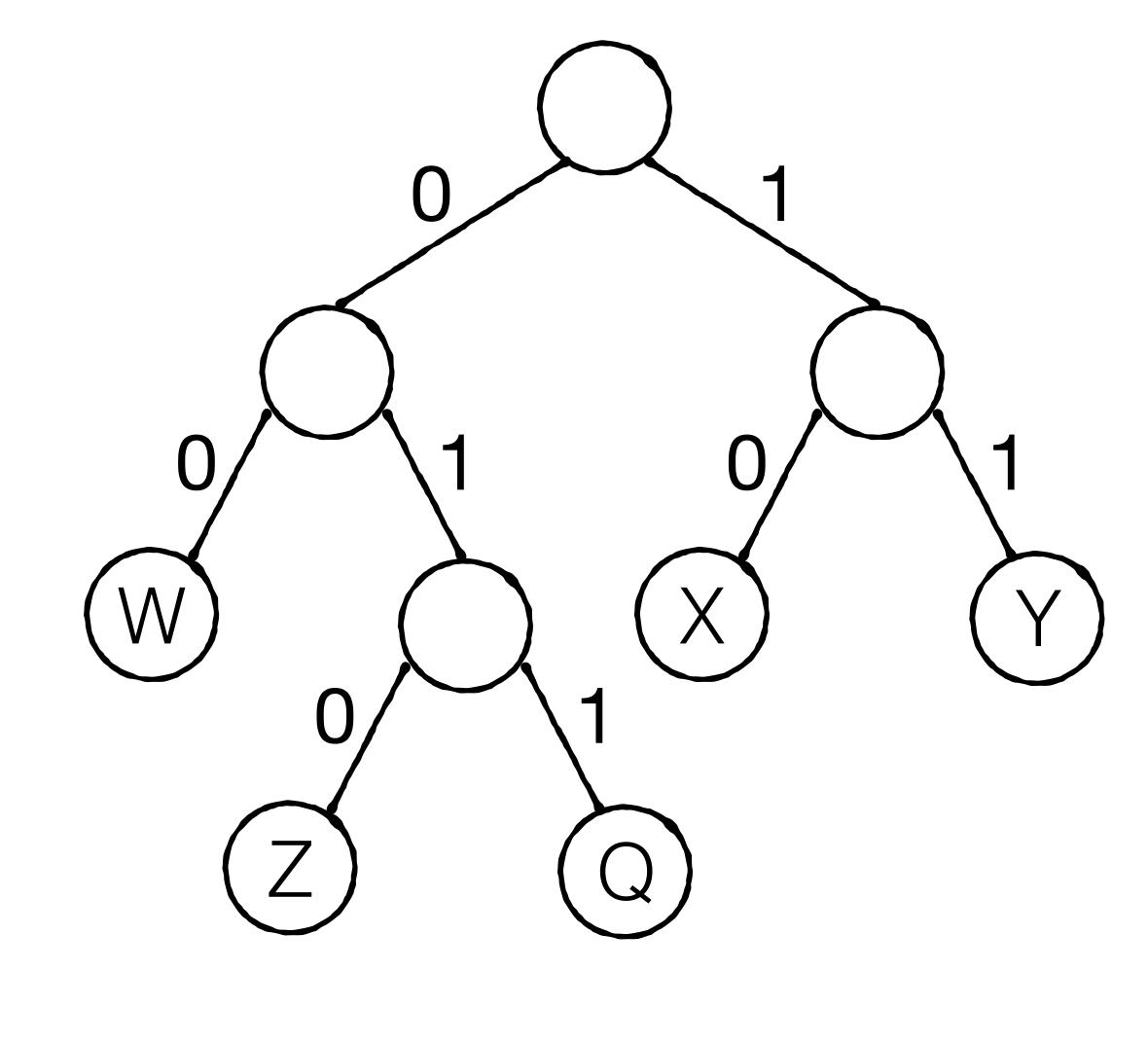
1 10 2

2 110 3



Slot size X	Encoding	#Bits	
0	0	1	0 1
1	10	2	
2	110	3	
3	1110	4	
4	11110	5	

Slot size X	Encoding	#Bits
0	0	1
1	10	2
2	110	3
3	1110	4
4	11110	5
5	11110	6



How large is each slot?

#entries Topology Indices Pointers

Slot size X Encoding #Bits

0 - 0

Slot size X Encoding #Bits

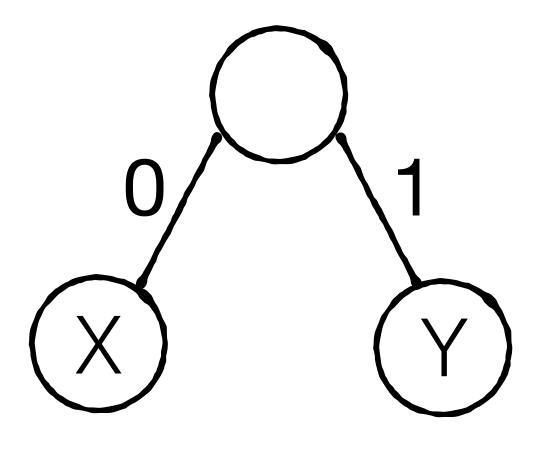
0 - 0

Slot size X Encoding #Bits

) – 0

1 0

2 -00-



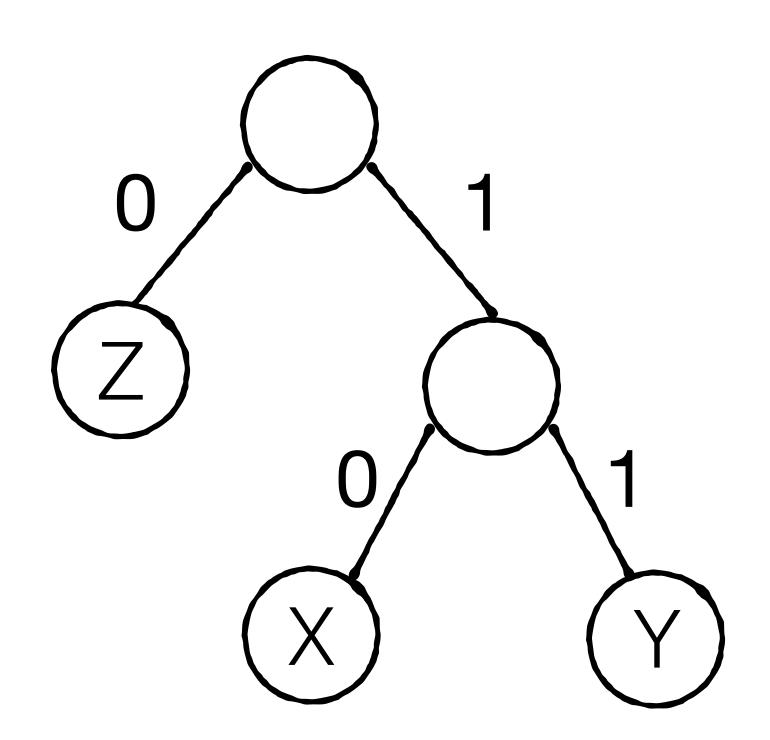
Slot size X	Encoding	#Bits
-------------	----------	-------

0 - 0

1 - 0

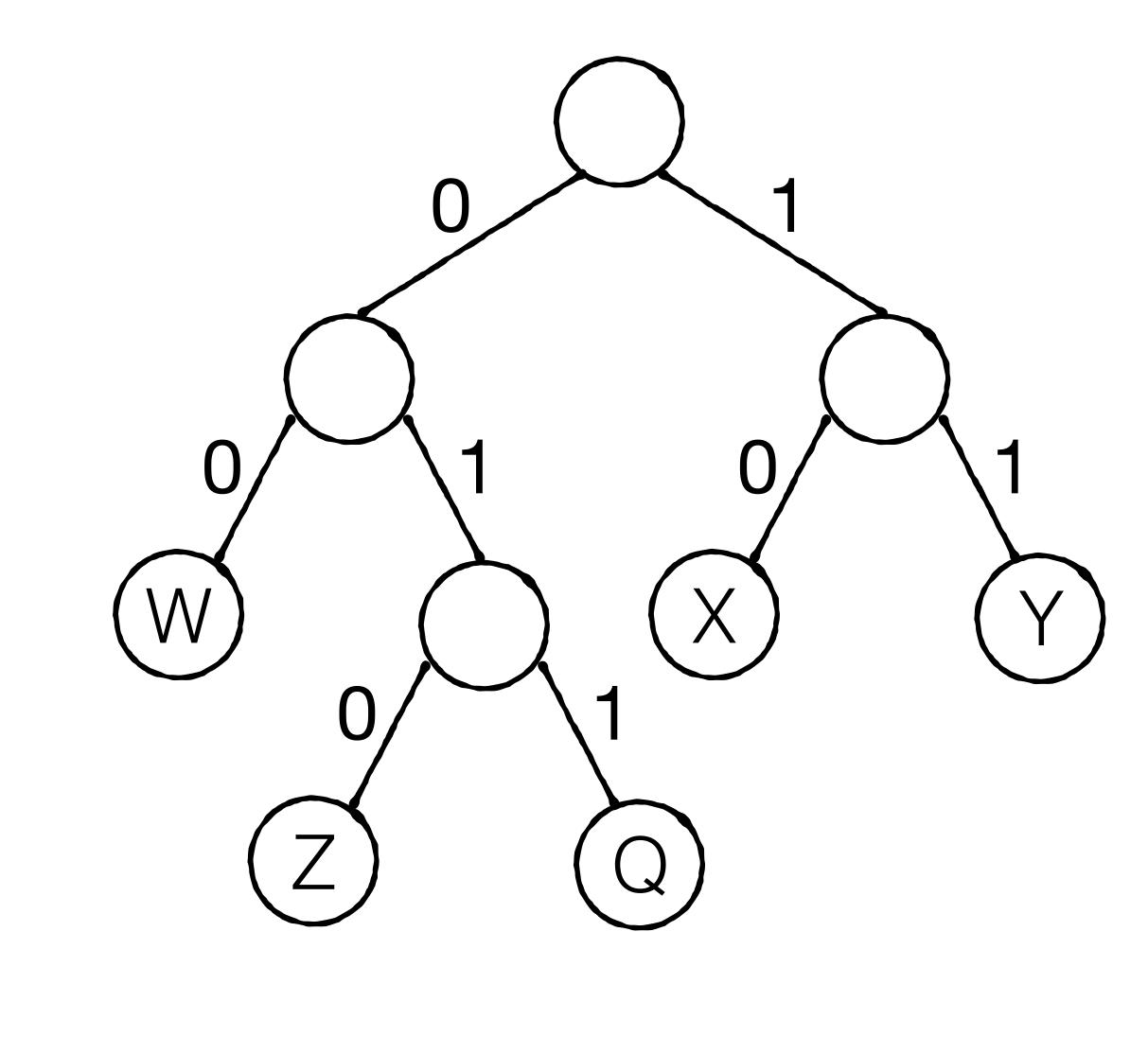
2 -00-0

3 01-00-2



Slot size X	Encoding	#Bits	
0		0	
1		0	(2) (5)
2	-00-	0	
3	01 -00-	2	
4	11 00-00-	4	

Slot size X	Encoding	#Bits
0		0
1		0
2	-00-	0
3	01-00-	2
4	11 00-00-	4
5	11 01 00-00-	6



How large is each slot?

#entries Topology Indices Pointers

Slot size X #Bits

Slot size X #Bits

Slot size X #Bits

0

Slot size X #Bits

0

1

2

hash(X) = 0 1 0 1 0 ...

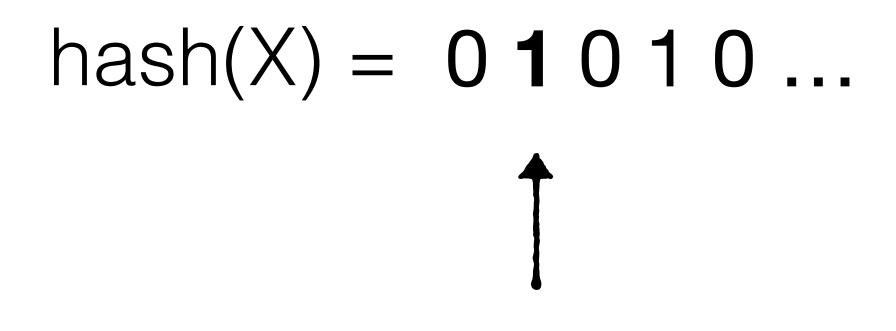
diff with prob 0.5

Slot size X #Bits

0

1

2



diff with prob 0.5

Slot size X #Bits

0

1

2

hash(X) = 0 1 0 1 0 ...

diff with prob 0.5

Slot size X #Bits

0

1

2

$$hash(X) = 0 1 0 1 0 ...$$

diff with prob 0.5

First diff bit occurs after 2 bits in expectation

0

1

2

$$hash(X) = 0 1 0 1 0 ...$$

diff with prob 0.5

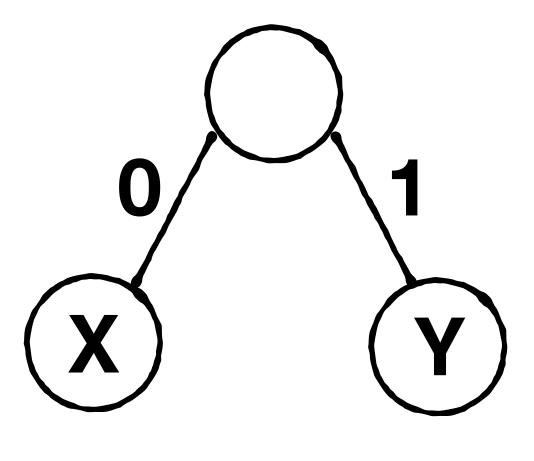
First diff bit occurs after 2 bits in expectation

Avg. of geometric dist. with prob 0.5

Slot size X Avg. #Bits

0

1

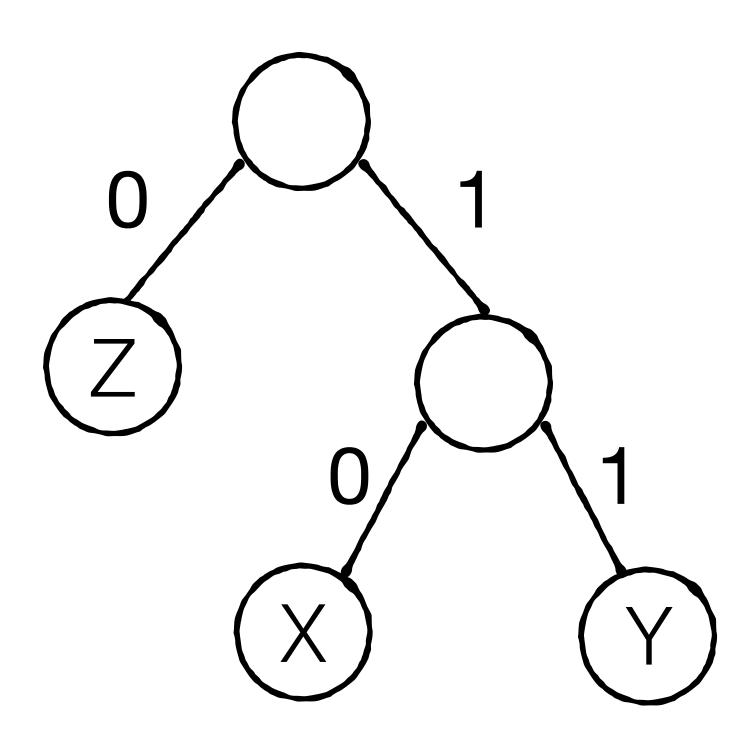


Slot size X Avg. #Bits

0

1 0

2



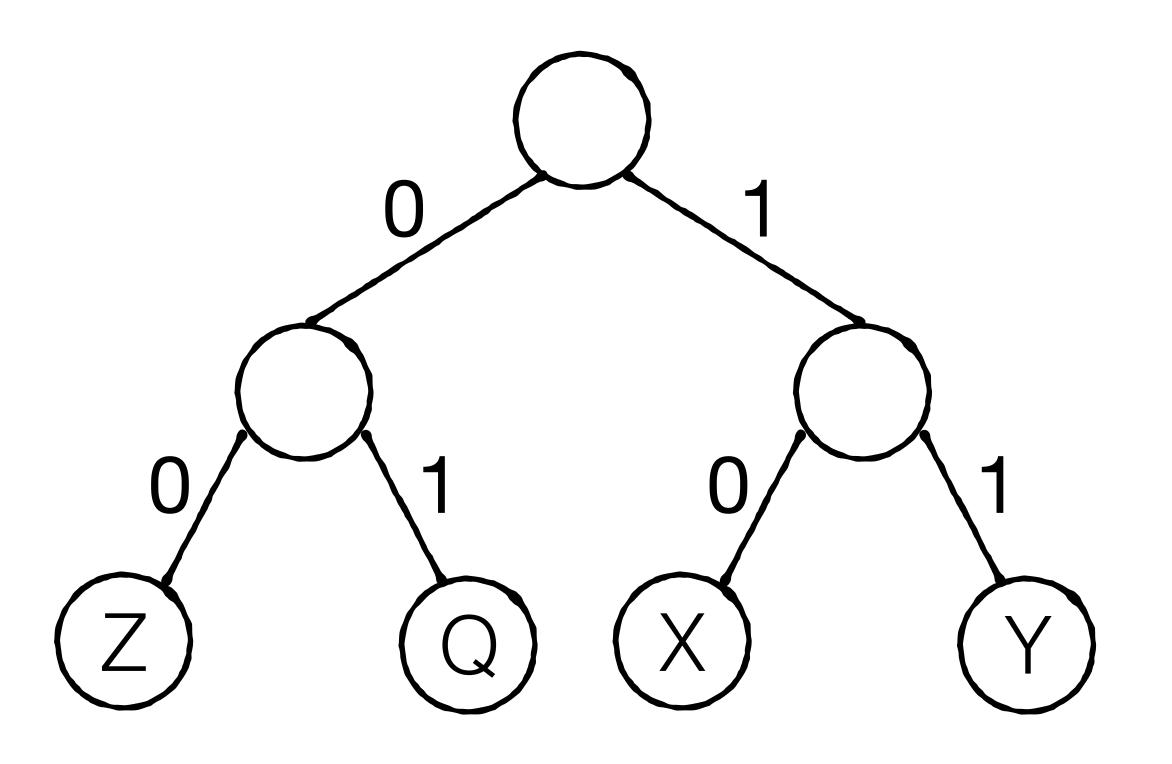
Slot size X Avg. #Bits

0

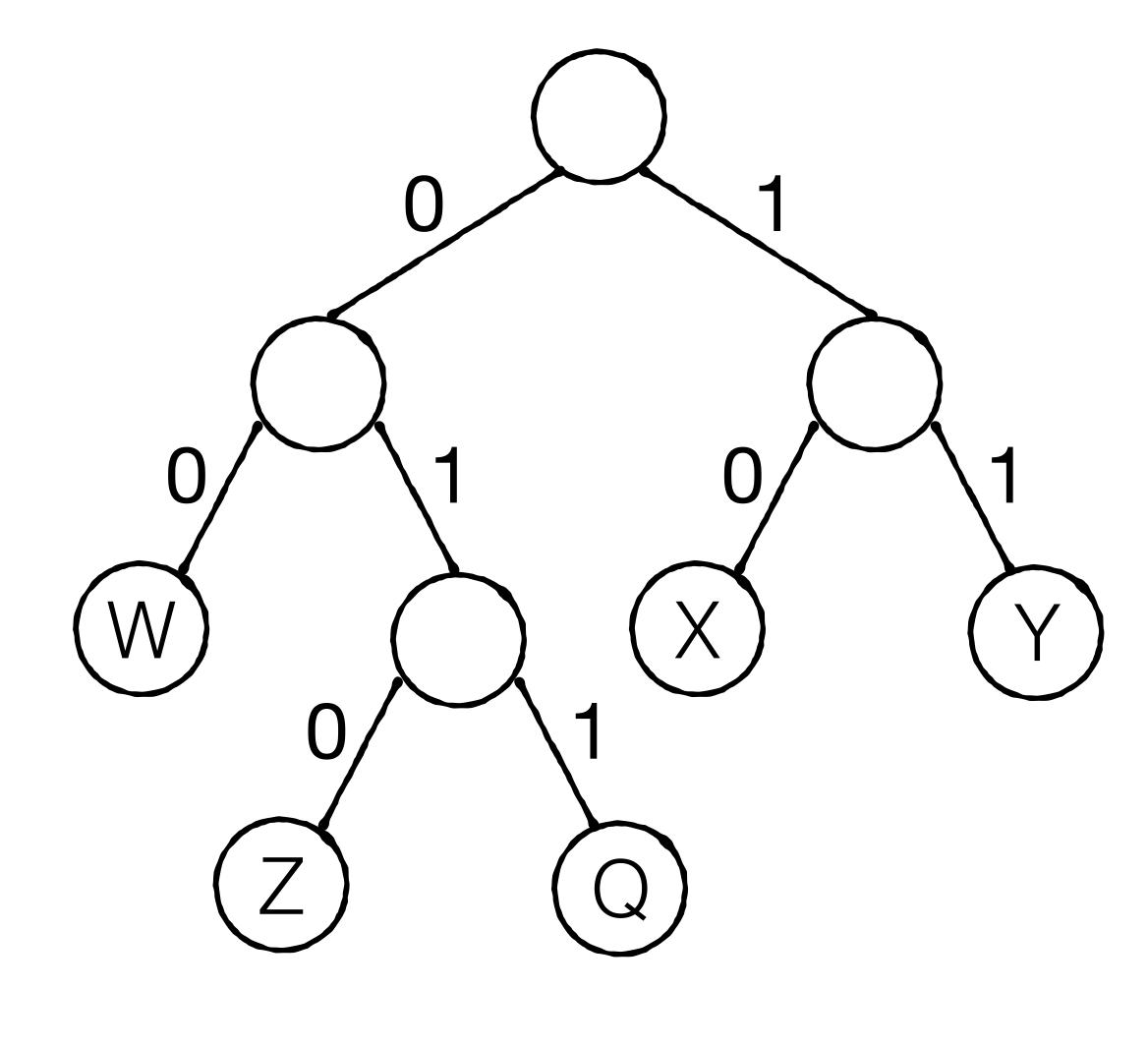
1 0

2

3



Slot size X Avg. #Bits



How large is each slot?

#entries Topology Indices

Average

```
( #entries(i) + Topology(i) + Indices(i) )
```

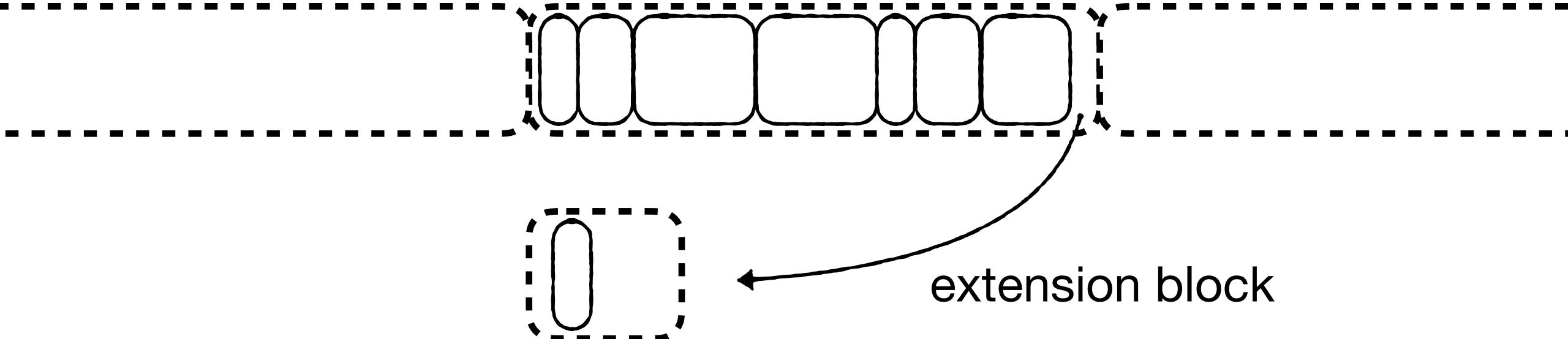
Average

```
\sum_{i=0}^{\infty} Poisson(1, i) \cdot ( #entries(i) + Topology(i) + Indices(i) )
```

Average

```
\sum_{i=0}^{\infty} Poisson(1, i) · ( #entries(i) + Topology(i) + Indices(i) ) ≈ 3 bits
```

bits in block containing X slots should be at least



bits in block containing X slots should be at least

$$X \cdot (3 + pointer_size + 1)$$

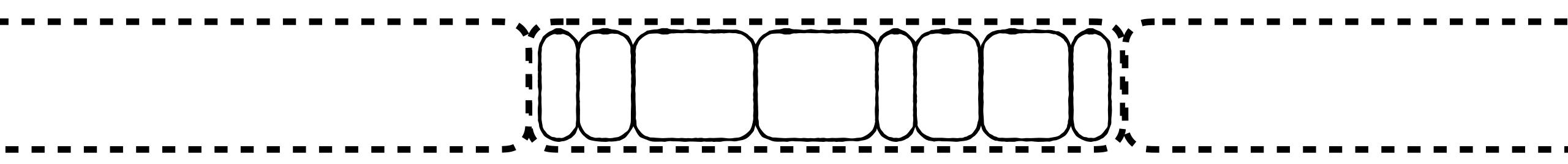
Reduce overflows



bits in block containing X slots should be at least

$$X \cdot (3 + pointer_size + 1)$$

Reduce overflows



Summary

	Fingerprinting	Delta Hash Table
Memory	≈ e·N	$\approx 4 \cdot N$
Load factor	100%	≈ 90%
Avg. query	O(1)	O(1)
Insertions	N/A	O(1)

	Fingerprinting	Delta Hash Table
Memory	≈ e·N	$\approx 4 \cdot N$
Load factor	100%	≈ 90%
Avg. query	O(1)	O(1)
Insertions	N/A	O(1)
Construction	O(N)	O(N)

And now, a student presentation