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Widely used in Hardware Algorithmic
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Means to learn

Widely used in Hardware Algorithmic
systems Optimizations Reasoning/
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Static Filters

No Resizing

N r.ﬂ

No deletes




Static Filters

Liif

No deletes No Resizing

Modifications require rebuilding from scratch



Dynamic Filters

Static Filters (next week)

Delete + Resize
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Bloom Fllters

Space/time Trade-Offs in Hash Coding with Allowable Errors
Burton Howard Bloom. Communications of the ACM, 1970.




k hash functions
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insert: Set from 0 to 1 or keep 1
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insert: Set from 0 to 1 or keep 1
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Queries: return positive if all hashed bits are 1s
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Queries: return positive if all hashed bits are 1s
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Queries: return positive if all hashed bits are 1s

True
negative
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Queries: return positive if all hashed bits are 1s
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No deletes - can lead to false negatives
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Thus, we consider it static
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e - desired FPR

Allocate filter with: N - In(2) - logz2(1/€) bits

M




Construction contract

KNOW Specs In advance:

N - # entries to Insert
e - desired FPR

Allocate filter with: N - In(2) - log2(1/€) bits

Insert N elements J%




Construction contract

KNOW Specs In advance:

N - # entries to Insert
e - desired FPR

Allocate filter with: N - In(2) - log2(1/€) bits

INnsert N elements

Guarantee FPR of €
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Analysis

In CSC443

Now: ground up
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FPR Analysis

Network Applications of Bloom Filters: A Survey

Andrel Broder and Michael Mitzenmacher.
Allerton Conference, 2002
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FPR Analysis M: Total number of bits

N: Total number of keys
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FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

(1-e-KN/M)K



How many hash functions should we use”

One is too few: false positive
occurs whenever we hita 1
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How many hash functions should we use”

No N3 One is too few: false positive
occurs whenever we hit a 1

0100100100 By adding hash functions, we
initially decrease the false
positive rate (FPR).




How many hash functions should we use”
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One is too few: false positive
occurs whenever we hit a 1

By adding hash functions, we
initially decrease the false
positive rate (FPR).

But too many hash functions
wind up increasing the FPR.



How many hash functions should we use”
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Optimal # hash functions k =In(2) - M/N

(e.g. with Wolfram Alpha)
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assuming the optimal # hash functions,

false positive rate = 2-M/N-In(2)
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Optimal # hash functions k =1In(2) - M/N

Some bit is ) t\
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Optimal # hash functions k = In(2) - M/N

Some bit s _ ) %p

NOT Set

50% of all bits are zero once the filter is full



Operation Costs (in hash functions computed)
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Operation Costs (in hash functions computed)
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q Positive Query =  M/N - In(2)
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(50% of bits are zeros)



Operation Costs (in hash functions computed)

LR Insertion= M/N - In(2)

q Positive Query =  M/N - In(2)

Q Avg. Negative Query= 1+ 12+ 1/4+ ... = 2

(50% of bits are zeros)



Operation Costs (in hash functions computed)

LR Insertion= M/N - In(2)

q Positive Query =  M/N - In(2)

q Avg. Negative Query = 2

Full analysis from ground up :)



Operation Costs (in hash functions computed)

LR Insertion= M/N - In(2)

q Positive Query =  M/N - In(2)

q Avg. Negative Query = 2

Is this ok for modern hardware?



Recall the memory hierarchy

CPU Registers
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CPU Registers =

L1 -
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Move data at “cache
line” granularity

(e.g., 64B)



CPU Registers Move data at “word

granularity
LT (e.g., 8B)
| 2
| 3




CPU Registers =
> 3-4 cycles
L1 -

L2 [ ]
13 [ ]



CPU Registers =

L1 (e > 10-12 cycles
e

L2

13 [ ]



CPU Registers =
L1 -
30-70 cycles
L2 [

13 [ ]



CPU Registers =
L1 -
L2 [::j 100-150 cycles

13 [ ]



Source: http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
(Numbers from 2016)

CPU Registers
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L3
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Each hash function can lead to a cache miss

Insertion = M/N - In(2)
Positive Query = M/N - In(2)

Avg. Negative Query = 2



Each hash function can lead to a cache miss

Insertion = M/N - In(2) - 100 ns
Positive Query = M/N - In(2) - 100 ns

Avg. Negative Query = 2 - 100 ns
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Observation

With hardware
optimizations, it is the
fastest
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Basic Bloom filter
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Observation

With hardware
optimizations, It Is the
fastest

£529 % o

lends itself to hardware optimization

Basic Bloom filter
1S slowest filter




Alleviate random accesses?

-— -
Bloom filter



Blocked Bloom Filters

Cache-, Hash- and Space-Efficient Bloom Filters
Journal of Experimental Algorithms, 2010

Felix Putze, Peter Sanders, Johannes Singler
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Hash to one block, sized as a cache line

X
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Blocked Bloom filter




Insert as though block is an

; iIndependent Bloom filter

Blocked Bloom filter



1 cache miss per query/insertion
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Blocked Bloom filter



1 cache miss per query/insertion
Anything bad?

X

Blocked Bloom filter



uneven distribution of entries across blocks

i I

Blocked Bloom filter




uneven distribution of entries across blocks
impact on FPR?

i =

Blocked Bloom filter




uneven distribution of entries across blocks
impact on FPR"”
General analysis technique for hash tables

i I

Blocked Bloom filter




# entries per block follows binomial distribution

f(napa l) — (n) °pi ' (1 _p)n—i
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Blocked Bloom filter



# entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i
T

# entries
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# entries per block follows binomial distribution
- L j n—i
f(n,p, i) = )P (1 —=p)
T
Prob of 1 entry falling into a given
block, i.e., 1/n

i 4




# entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i
T

| entries falling into our bucket

i 4




# entries per block follows binomial distribution

f(napa l) — (n) °pi ' (1 _p)n—i
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Ways of choosing k out of n entries
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# entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i
T

k entries falling into our block

i 4




# entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i
T

All other entries falling into other blocks

i B




# entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i

Cumbersome

i 4




# entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i
T

For n = oo, binomial converges to Poisson

i 4
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/Ii =4
P[i entries fall into given block] ~ Poisson(i, A) = 'e
!

A = avg. entries per block = B/(M/N)

/

Bits per cache
line (e.g., 256)

i B




/Ii =4
P[i entries fall into given block] ~ Poisson(i, A) = 'e
!

A = avg. entries per block = B/(M/N)

/N

Bits per cache Bits per
ine (e.q., 256) entry (e.g., 8)

i B




Pli entries tall into given block] ~ Poisson(i, A)

A = avg. entries per block

Prob

0.12
0.1

0.08
0.06

0.04
0.02

0
0 10 20 30 40

Entries 1 per block with A =16



Pli entries tall into given block] ~ Poisson(i, A)

A = avg. entries per block

Prob

40

Entries 1 per block with A =16



.

Eentries in a block ~ Poisson(i, B/(M/N))



.

Eentries in a block ~ Poisson(i, B/(M/N))

FPR for filter ~ FPR(N, M, K) = (1-e"KNM)K



+

entries in a block ~ Poisson(i, B/(M/N))

PR for filter ~

TN

| entries In
cache line

FPR(1, B, K)

B bits In
cache line

K hash
functions
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Avg. FPR across all blocks = ) Poisson(i, B/(M/N)) - FPR(, B, K)
=0



»— Classic Bloom —=— 32-bit blocked
+— 64-bit blocked —+— 512-bit blocked

FPR

Bits / entry (M/N)



»— Classic Bloom —=— 32-bit blocked
64-bit blocked —+— 512-bit blocked

109
FPR ,,-2 With smaller blocks, there is more
< variation in entries across blocks.
‘\\ Overflowing blocks blow up the FPR.
10— 4

O 10 15 20

Bits / entry (M/N)



»— Classic Bloom —=— 32-bit blocked
64-bit blocked —+— 512-bit blocked

109

FPR ,,-2

\
\ « With a block the size of a cache line,

, we don’t lose much
5 10 15 20

10— 4|

Bits / entry (M/N)



size blocks as cache lines



size blocks as cache lines

00000 00000 00000 00000 00000 00000
>y > 00—

Block Block Block Block Block Block

512 512 512 512 512 512
bits bits bits bits bits bits



Any remaining issue?

00000 00000 00000 00000 00000 00000
>y > 00—

Block Block Block Block Block Block

512 512 512 512 512 512
bits bits bits bits bits bits



Any remaining issue?

Random access within a cache line




CPU Registers =
7 words (8B) 3-4 cycles

[::] 7 cache lines (64B)

L1/L2/L3




Each random access moves different
word from L1 cache to register




e.d., 4 hash functions, 2 words per block
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e.d., 4 hash functions, 2 words per block



e.d., 4 hash functions, 2 words per block



Solutions?

e.d., 4 hash functions, 2 words per block

i



Split block Bloom filters. Jim Apple. Arxiv 2023.
Used in the Impala system as of 2016 (
\
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Split block Bloom filters. Jim Apple. Arxiv 2023.

Performance-Optimal Filtering: Bloom Overtakes
Cuckoo at High Throughput. Harald Lang, Thomas
Neumann, Alfons Kemper, Peter Boncz. VLDB 2019.



Partition into s sectors, each the
size of a word (e.g., 64 bits)
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Example: s = 4 sectors



Insertion: hashes to k/ s bits per sector sequentially



Insertion: hashes to k / s bits per sector sequentially

e.g., s=4 sectors and k=8 hashes
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Hash 2 bits
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Insertion: hashes to k / s bits per sector sequentially

e.g., s=4 sectors and k=8 hashes

Hash 2 bits

A




Insertion: hashes to k / s bits per sector sequentially

Read/written 4 rather than 8 registers

Hash 2 bits

A




Query: check k / s hashes per sector sequentially

Hash 2 bits

X




Query: check k / s hashes per sector sequentially

Hash 2 bits

X

And




Query: check k / s hashes per sector sequentially

Hash 2 bits

X

( And ==




Query: check k / s hashes per sector sequentially

Hash 2 bits

X

if ( And ) !=
Return false




Query: check k / s hashes per sector sequentially

Hash 2 bits
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Query: check k / s hashes per sector sequentially

Hash 2 bits

A




Query: check k / s hashes per sector sequentially

Hash 2 bits

X




: check k /s hashes per sector sequentially

4000

sectoriz@d

3000

2000

1000 blocked

| | |
0 1 4 16

Words per block




Further ways to optimize?



Further ways to optimize?

AVX - SIMD



Further ways to optimize”

AVX - SIMD

Operate on each sector in parallel

A X X X




Problems with Sectorized Bloom filters?
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Problems with Sectorized Bloom filters”

# hashes must be multiple of # sectors
Why is this bad?
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Why Is this bad?
Force using sub-optimal # hash functions
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Problems with Sectorized Bloom filters”

# hashes must be multiple of # sectors
Why iIs this bad”

Force using sub-optimal # hash functions
Harm FPR - solutions?

——
R



Divide sectors into Z groups



Map each key to one sector per group based on its hash

Key
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N




Hash bits only to relevant sector in each group

Key

O\
AN N




Hash bits only to relevant sector in each group

e.d., here we can use 6 hashes :)

Key

O\
AN N




Hash bits only to relevant sector in each group

Key

O\
AN N

Nearly best of both worlds :) fast & low FPR



Break



Bloom

{’b

FPR & ~ 2 -WN-In(2)




Bloom

g

FPR & ~ 2 -WN-In(2)

Lower Bound

LIV,

\'/
”’ ~

/1 \

277?



Lower Bound for Filter Memory



ower Bound for Filter Memory

Assume nothing
about implementation




ower Bound for Filter Memory

Assume nothing Analyze with respect to
about Implementation filter specification




ower Bound for Filter Memory

Assume nothing Analyze with respect to
about Implementation filter specitication

] —
0 —
=
0D =
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€ - FPR

N - # entries

U - Universe size



| ower Bound for Exact Set

7\
N



| ower Bound for Exact Set

Out of Universe U, store N entries




| ower Bound for Exact Set

(U choose N) combinations




| ower Bound for Exact Set

log2(U choose N) Dbits

to encode a unique combination



| ower Bound for Exact Set

l0g2(U choose N) = N - logz2(U / N) bits @

for large U



_ower Bound for Filter - Approximate Set
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IFilterl + IDisambiguationl = IExact Setl

I

What information must we add the filter
to turn it into an exact set?

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl + IDisambiguationl = N - log2(U / N)

I

Plug In

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl + IDisambiguationl = N - log2(U / N)

I

Query filter U times

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl + IDisambiguationl = N - log2(U / N)

I

Tells us all positive keys
N+e-U

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl + IDisambiguationl = N - log2(U / N)

I

Tells us all positive keys
e-U

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl + IDisambiguationl = N - log>(U / N)

I

Of all positives € - U, which
keys are positive N

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl + IDisambiguationl = N - log>(U / N)

I

€ - Uchoose N

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl + IDisambiguationl = N - log>(U / N)

I

logz(€ - U choose N)

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl + IDisambiguationl = N - log>(U / N)

I

N - logz((g - U) / N)

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl + N -logz((e - U)/N) = N -logo(U/N)

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl = N - log2(U/N)-N - logz((e - U)/ N)

Legend
€ - FPR

N - # entries
U - Universe size




IFilterl = N - logz(1/¢€)

€ - FPR

N - # entries
U - Universe size




€ - FPR

N - # entries
U - Universe size
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XOR Filter

D

Xor Filters: Faster and Smaller Than Bloom Filters
Thomas Mueller Graf, Daniel Lemire

Journal of Experimental Algorithmics, 2020



XOR Operator

Input 1 0 0 1

1N
L/

Input 2 0 1 0

Parity 0 1 1




Parity can help recover any input

Input 1 0 0 1 1

Suppose we
lost input 2

Parity 0 1 1 0




Suppose we
lost input 2

Parity can help recover any input

Input 1

Parity

Input 2

Recovered



Parity can help recover any input

Input 2 0 1 0 1

Or suppose we
lost input 1

Parity 0 1 1 0




Or suppose we
lost input 1

Parity can help recover any input

Input 2

Parity

Input 1

Recovered



XOR is commutative and associative

Input 1 O 000 1T 1 1 1

Input 2 o 01100 1 1

Input 3 O/ 10,1010 1

Parity o1 ;1 ]0] 10,0 1




XOR is commutative and associative

Input 1 olo /oo 1 1]1]1

Input 2 o 01100 1 1

Input 3 O/ 10,1010 1

Parity o1 ;1 ]0] 10,0 1

Parity can recover any input, as long as we also have all the other inputs



XOR filter stores a fingerprint for each key

FP(Ow)=



XOR filter stores a fingerprint for each key

F bits
g

Example: FP( X )= 0100



Does FP(X) exist?
' XOR filter |

Query(X)



Does FP(X) exist?

| XOR filter |
1. True negative
2. True positive
3. False positive with probability 2-F

Query(X)



How does XOR filter store its fingerprints?




Hash each entry to three slots




Assign one slot to uniquely own each entry
(More on this shortly)




Each bucket stores XOR of fingerprint and other two slots

2 DFP(Y)D 6

— | T~

Owns Y




During queries, recover fingerprints by xoring three slots

get(Y) returns trueif FP(Y)= 2D 4 D 6

— | T~

Y Y Y
Owns Y




How to assign slots to own different entries?




How to assign slots to own different entries”




Peeling
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Slots
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Peeling

While not all keys have been assigned to a slot

Slots 0 1 2 3 4

O
o)
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Peeling

While not all keys have been assigned to a slot
Assign some entry x to some slot y that only entry x maps to
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Peeling

While not all keys have been assigned to a slot
Assign some entry x to some slot y that only entry x maps to




Peeling

While not all keys have been assigned to a slot
Assign some entry x to some slot y that only entry x maps to

Slots 0 1 2 3 4

O
o)
~







Populate all unassigned slots with zeros

0000 0000 0000 0000
Slots 0 1 2 3 4 5 0 V4

*x B A ®

—




Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are populated

0000 0000 0000 0000
Slots 0 ] O 6 /

km_/‘ ¢

*x B




Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 0000 0000 0000
Slots 0 ] o 6

km_/‘ C

1101 QR

*x B




Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 0000

Ol

Slots 0 1 6

km_/‘ C

0000 @ 1101 @ 0000 = 1101

*x B




Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 0000 1101 0000 0000
Slots 0 1 2 3 4 5 6 V4

*x B @




Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 0000 1101 0000 0000
Slots 0 1 2 3 4 5 6 V4

* 145/' ®

0001 1R




Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 0000 0000
Slots 1 2 3 4 5 0 V4

* _

/ ‘
1,4,5

0000 ® 0001 ©® 1101 = 1100

—




Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

1100 0000 0000 1101 0000 0000
Slots 0 1 2 3 4 5 0 V4

*x B @

0,1,3

@ 1001



Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 1101 0000 0000
Slots 0 1 2 3 4 5 0 V4

0,1,3

1100 ® 1001 ® 0000 = 0101



Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0101 1100 0000 0000 1101 0000 0000
Slots 0 1 2 3 4 5 0 V4




Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filleo

Xor its fingerprint with content at other slots and store

Slots

0101
0

1101

0000 0000

1111

0000 @ 1111® 0000



Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

01017 1100 O0O0O0OO0 0000 1101 O0O0O0OO 0000 1111
Slots 0 1 2 3 4 5 0 V4




We’'re
done :)

Slots 0101 1100 0000 0000 1101 0000 0000 1111
s > ——



Query(X) where FP(X) = 1001

Slots 0101 1100 0000 0000 1101 0000 0000 1111
s > ——



Query(X) where FP(X) = 1001

1100 & 0000 © 0000 = 1100

Slots 0101 0000 1101 0000 1111
r——r—r—r——————S



Not a fingerprint match so return negative

Query(X) where FP(X) = 1001

1100 & 0000 © 0000 = 1100

Slots 0101 0000 1101 0000 1111
r——r—r—r——————S



Construction can fail if there is no entry we can peel




Construction can fail if there is no entry we can peel

Example:




Construction can fail it there is no entry we can peel

0 ] 2 3 4

o /

AO®

@)

*O® XA * A

No slot has one entry uniquely mapping to it




If we fail, we must restart from scratch.




It we fail, we must restart from scratch.

free space is necessary to succeed with high probability

0 ] 2 3 4

O
o)
~

*O® XA * A




It we fail, we must restart from scratch.

free space Is necessary to succeed with high probability

What’s the interplay between free space and # number
of hash functions?
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Not enough placement flexibility
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# hash functions



Utilization

0.8

0.6

0.4

0.2

Too many items hashing to each slot

l
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# hash functions



Utilization

0.8
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Optimal 0.81
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# hash functions



Optimal 0.81

|
R

0.4

0.2

0
0 2 4 6

Similar to finding the optimal # hash functions
with Bloom filters :)
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Bloom

{25

~ D -M/N-0.69

XOR

D

Ribbon

~ 2 -M/N-0.92

Denser XOR filter
In RocksDB since 2020
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XOR filter w.
Spatial Coupling

W O wm [T]

~ D -M/N-0.69 ~ 2 -M/N-0.81 ~ D -M/N-0.92 ~ 2 -M/N

Bloom XOR Ribbon

Approach ideal



Operation Costs (in hash functions computed)

[@% Construction =

q Positive Query =
q Avg. Negative Query =




Operation Costs (in hash functions computed)
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Operation Costs (in hash functions computed)

[@E Construction = O(N)

q Positive Query = 3
Q Avg. Negative Query = 3




Operation Costs (in hash functions computed)

[@E Construction = O(N)

q Positive Query = 3
Q Avg. Negative Query = 3

Not as good as blocked Bloom filters




Blocked
Bloom

W O wm [T]

XOR Ribbon Spatial Coupling

Faster Lower FPR



And now: office hours :)



