/ —

Static Filters

Research Topics in Database Management

Niv Dayan

What is a Filter?

What is a Filter?

Set

Does X exist? —>

What is a Filter?

Set
Does X exist? —> —>
No false false positives with

negatives tunable probability

o @

W
h
y
u
S
e
aF
1t
e
r
?

D
ata

Data

Does key X exist
> 4

. Does key
- X exist

D

Memory Data

If key X exists

. Does key
- X exist

D

Memory Data

If key X does not exist

Does key

Memor Data
X exist 4

If key X does not exist

Does key

Memor
X exist 4

positive Is
possible

f key X does not exist

Does key

Memor
X exist 4

True
negative positive
with prob 1-¢ with prob ¢

f key X does not exist

Does key
X exist

Memory

€ - false positive rate - FPR

Why care about filters?

Widely used in Hardware Algorithmic
systems Optimizations Reasoning/
Technigques

£

..

Why care about filters”?

Means to learn

Widely used in Hardware Algorithmic
systems Optimizations Reasoning/
Techniques

£

..

Static Filters

No Resizing

N r.ﬂ

No deletes

Static Filters

Liif

No deletes No Resizing

Modifications require rebuilding from scratch

Dynamic Filters

Static Filters (next week)

Delete + Resize

Static Filters Dynamic Filters

Fastest Lowest
Queries FPR

Delete + Resize

Static Filters

an

Fastest | owest
Queries FPR

%

But not both at
same time

Dynamic Filters

Delete + Resize

Bloom

g

Fastest
Queries

Static Filters

XOR

D

Lowest
FPR

g M
L

Q (D M B
%& (H Z{O(x@ 5? gﬂ+;$wd(a
167 g« r S+ G-V o '
TC(Q, 9. m) Z[,,?s D BANAN/S:)12\)]

/] sa’QF\ dA?(5d7)7 S/QD LpCs,¢)
%%‘:\ \ﬂ dam(s,@) Y O][AM(S/qD)

%/;/ ;?Cé*{ d.

Qf(ﬂgs@é—v %IT&L q]((L‘ﬂ}

Today is more mathematical than usual

QD) L
%& {H ZP@‘M\ gf’ gﬂ+;$wd(a

O R o -
TC(Q, 9. m) Z[,,?s NORE S)12\)]

/] sa’QF\ dA?(5d7)7 S/QD LpCs,¢)
%%‘:\ \ﬂ dam(s@) Y O][AM(S/qD)

%/;/ ;?Cé*{ d.

Qf(ﬂgs@é—v %IT&L q]((L‘ﬂ}

Today Is more mathematical than usual

(Do not be intimidated)

Bloom Filters

Bloom Fllters

Space/time Trade-Offs in Hash Coding with Allowable Errors
Burton Howard Bloom. Communications of the ACM, 1970.

k hash functions

0000000000

insert: Set from 0 to 1 or keep 1

inert(X)

0000100010

insert: Set from 0 to 1 or keep 1

insert(Y)

’ \ ,’!l“d '\“g,; 14 ‘
\‘ “’ - 5‘

Queries: return positive if all hashed bits are 1s

0010100010

Queries: return positive if all hashed bits are 1s

True
ChCKX) lf) positive

'

Queries: return positive if all hashed bits are 1s

True
negative

0010100010

Queries: return positive if all hashed bits are 1s

False
CCK(Q) lﬁ Positive

1010100010

No deletes - can lead to false negatives

Y X

\ .,' / 1 v‘.:'."‘a 77;:1\\\ ™) “l (

Thus, we consider it static

Y X

\ .") ,, T‘—’:-L\\ N _’ (
LK N l‘/"" - \:.Av | o
\ i ”’ ey

Thus, we consider it static

Y X

\ .") ,, T‘—’:-L\\ N _’ (
LK N l‘/"" - \:.Av | o
\ i ”’ ey

Construction contract

Construction contract

Know specs In advance:

N - # entries to Iinsert
e - desired FPR

Construction contract

KNOW Specs In advance:

N - # entries to Insert
e - desired FPR

Allocate filter with: N - In(2) - logz2(1/€) bits

M

Construction contract

KNOW Specs In advance:

N - # entries to Insert
e - desired FPR

Allocate filter with: N - In(2) - log2(1/€) bits

Insert N elements J%

Construction contract

KNOW Specs In advance:

N - # entries to Insert
e - desired FPR

Allocate filter with: N - In(2) - log2(1/€) bits

INnsert N elements

Guarantee FPR of €

Bloom Filters

Sectorization

P B

Analysis Blocking

vtfia
~+ /.
Chlni

Analysis

In CSC443

Now: ground up

aln

FPR Analysis

Network Applications of Bloom Filters: A Survey

Andrel Broder and Michael Mitzenmacher.
Allerton Conference, 2002

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

get(x) ’w
10171

> ——————————@

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is still not set after N insertions?

/

0

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is still not set after N insertions?

}

Probability that some random bit is still not set after 1 insertion?

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is still not set after N insertions?

}

Probability that some random bit is still not set after 1 insertion?

|

Probability that some random bit is set after 1 hash function?
1/M

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is still not set after N insertions?

}

Probability that some random bit is still not set after 1 insertion?

|

Probability that some random bit is not set after 1 hash function?
1-1/M

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is still not set after N insertions?

}

Probability that some random bit is still not set after 1 insertion?

(1-1/M)K

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is still not set after N insertions?

(1-1/M)KN

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is still not set after N insertions?

(1-1/M KN

Known identity: (1-1/M)M = e-1 Forany M

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is still not set after N insertions?

((1-1/M)M) KN/M

Known identity: (1-1/M)M = e Forany M

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is still not set after N insertions?

(e1) KNM

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is still not set after N insertions?

e-KN/M

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is st#=ot set after N insertions?

1-e-KN/M

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

|

Probability that some random bit is set after N insertions?

1-@-KN/M

FPR Analysis M: Total number of bits

N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set”?

(1-e-KN/M)K

How many hash functions should we use”

One is too few: false positive
occurs whenever we hita 1

0100000000

How many hash functions should we use”

No N3 One is too few: false positive
occurs whenever we hit a 1

0100100100 By adding hash functions, we
initially decrease the false
positive rate (FPR).

How many hash functions should we use”

N1 Nx

% i 2N 2N 2N 2N 2NN NN 228N -
\ “«é' ’/ \ N i' // \ N E // \ *é // \ . ~_§" r/ \ b ~£ // \ ~§ // \ \‘é' // \ N i' y \ - é //

One is too few: false positive
occurs whenever we hit a 1

By adding hash functions, we
initially decrease the false
positive rate (FPR).

But too many hash functions
wind up increasing the FPR.

How many hash functions should we use”

0.1

o O
o O
a

sitive rate

S 0.04

false

0.02

Minimum

l

5 10 15
hash functions

(Drawn for a filter using 10 bits per entry)

20

How many hash functions should we use”

—
—

© O
o O
a0

ositive rate

S 0.04 Minimum

&
s 0.02 l

0 5 10 15 20
hash functions

Differentiate (1-e-KN'M)K with respect to K

How many hash functions should we use”

©
>

o O
-
00

Minimum
}

0 5 10 15 20
hash functions

O O
o ©o o
NS O

false positive rate

-

Differentiate (1-e-KNM)K with respect to K

Optimal # hash functions k =In(2) - M/N

(e.g. with Wolfram Alpha)

Optimal # hash functions k =1In(2) - M/N

False) *p

positives (1-e-KN/M)K
rate

Optimal # hash functions k =1In(2) - M/N

~alse) *f'

positives (1-e-KN/M)K

rate
@ & 2-M/N - In(2)

assuming the optimal # hash functions,

false positive rate = 2-M/N-In(2)

1
. 0 5 10 15
w
- 0.1
©
S 0.01
: 0.001
3
0.0001

bits per entry (M)

Optimal # hash functions k =1In(2) - M/N

Some bit is) t\

e-KN/M
not set

Optimal # hash functions k =

- M/N
(]
Some bit IS) %’\

e-KN/M
NOT SEt

AN

Optimal # hash functions k = In(2) - M/N

Some bit s _) %p

NOT Set

50% of all bits are zero once the filter is full

Operation Costs (in hash functions computed)

[@% Insertion =

q Positive Query =
q Negative Query =

Operation Costs (in hash functions computed)

LR Insertion = M/N - In(2)

q Positive Query =
q Negative Query =

Operation Costs (in hash functions computed)

LR Insertion= M/N - In(2)

q Positive Query = M/N - In(2)

q Negative Query =

Operation Costs (in hash functions computed)

LR Insertion= M/N - In(2)

q Positive Query = M/N - In(2)

q Negative Query =

(50% of bits are zeros)

Operation Costs (in hash functions computed)

LR Insertion= M/N - In(2)

q Positive Query = M/N - In(2)

Q Avg. Negative Query= 1+ 121 +1/2-(...))

(50% of bits are zeros)

Operation Costs (in hash functions computed)

LR Insertion= M/N - In(2)

q Positive Query = M/N - In(2)

Q Avg. Negative Query= 1+ 12+ 1/4+ ... = 2

(50% of bits are zeros)

Operation Costs (in hash functions computed)

LR Insertion= M/N - In(2)

q Positive Query = M/N - In(2)

q Avg. Negative Query = 2

Full analysis from ground up :)

Operation Costs (in hash functions computed)

LR Insertion= M/N - In(2)

q Positive Query = M/N - In(2)

q Avg. Negative Query = 2

Is this ok for modern hardware?

Recall the memory hierarchy

CPU Registers
|1

| 2

|3

CPU Registers =

L1 -
‘7

L2 []
13 []]

)
DRAM E:::]

Move data at “cache
line” granularity

(e.g., 64B)

CPU Registers Move data at “word

granularity
LT (e.g., 8B)
| 2
| 3

CPU Registers =
> 3-4 cycles
L1 -

L2 []
13 []

CPU Registers =

L1 (e > 10-12 cycles
e

L2

13 []

CPU Registers =
L1 -
30-70 cycles
L2 [

13 []

CPU Registers =
L1 -
L2 [::j 100-150 cycles

13 []

Source: http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
(Numbers from 2016)

CPU Registers
L1

L2

L3

-
e

Each hash function can lead to a cache miss

Insertion = M/N - In(2)
Positive Query = M/N - In(2)

Avg. Negative Query = 2

Each hash function can lead to a cache miss

Insertion = M/N - In(2) - 100 ns
Positive Query = M/N - In(2) - 100 ns

Avg. Negative Query = 2 - 100 ns

O
bservation

Basi

|

o $cI:OBIoam filte
west filter l‘

@‘3

Observation

With hardware
optimizations, it is the
fastest

%0 % o

Basic Bloom filter
IS slowest filter

Observation

With hardware
optimizations, It Is the
fastest

£529 % o

lends itself to hardware optimization

Basic Bloom filter
1S slowest filter

Alleviate random accesses?

-— -
Bloom filter

Blocked Bloom Filters

Cache-, Hash- and Space-Efficient Bloom Filters
Journal of Experimental Algorithms, 2010

Felix Putze, Peter Sanders, Johannes Singler

S
Bloom filter

Hash to one block, sized as a cache line

X

/

Blocked Bloom filter

Insert as though block is an

; iIndependent Bloom filter

Blocked Bloom filter

1 cache miss per query/insertion

. ©

Blocked Bloom filter

1 cache miss per query/insertion
Anything bad?

X

Blocked Bloom filter

uneven distribution of entries across blocks

i I

Blocked Bloom filter

uneven distribution of entries across blocks
impact on FPR?

i =

Blocked Bloom filter

uneven distribution of entries across blocks
impact on FPR"”
General analysis technique for hash tables

i I

Blocked Bloom filter

entries per block follows binomial distribution

f(napa l) — (n) °pi ' (1 _p)n—i

l

i I

Blocked Bloom filter

entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i
T

entries

i 4

entries per block follows binomial distribution
- L j n—i
f(n,p, i) =)P (1 —=p)
T
Prob of 1 entry falling into a given
block, i.e., 1/n

i 4

entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i
T

| entries falling into our bucket

i 4

entries per block follows binomial distribution

f(napa l) — (n) °pi ' (1 _p)n—i

l

T

Ways of choosing k out of n entries

i 4

entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i
T

k entries falling into our block

i 4

entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i
T

All other entries falling into other blocks

i B

entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i

Cumbersome

i 4

entries per block follows binomial distribution

f(napa l) — (’:) °pi ' (1 _p)n—i
T

For n = oo, binomial converges to Poisson

i 4

/Ii
o e_;t

ol
| en
trie
sf
all i
Into
given
blo
ck]
~ Poi
ISS
on(i
I, A)
7!

:
:
D

/Ii
o e_;t

Pl
entri
res
fall |
INT
O given b
[ele:
K]
~ Pol
ISSO
N(|
) 7\) —
1!

)\ -
= av
g. e
ntries pe
rb
loc
K

:
:
D

/Ii =4
P[i entries fall into given block] ~ Poisson(i, A) = 'e
!

A = avg. entries per block = B/(M/N)

/

Bits per cache
line (e.g., 256)

i B

/Ii =4
P[i entries fall into given block] ~ Poisson(i, A) = 'e
!

A = avg. entries per block = B/(M/N)

/N

Bits per cache Bits per
ine (e.q., 256) entry (e.g., 8)

i B

Pli entries tall into given block] ~ Poisson(i, A)

A = avg. entries per block

Prob

0.12
0.1

0.08
0.06

0.04
0.02

0
0 10 20 30 40

Entries 1 per block with A =16

Pli entries tall into given block] ~ Poisson(i, A)

A = avg. entries per block

Prob

40

Entries 1 per block with A =16

.

Eentries in a block ~ Poisson(i, B/(M/N))

.

Eentries in a block ~ Poisson(i, B/(M/N))

FPR for filter ~ FPR(N, M, K) = (1-e"KNM)K

+

entries in a block ~ Poisson(i, B/(M/N))

PR for filter ~

TN

| entries In
cache line

FPR(1, B, K)

B bits In
cache line

K hash
functions

&)

Avg. FPR across all blocks =) Poisson(i, B/(M/N)) - FPR(, B, K)
=0

»— Classic Bloom —=— 32-bit blocked
+— 64-bit blocked —+— 512-bit blocked

FPR

Bits / entry (M/N)

»— Classic Bloom —=— 32-bit blocked
64-bit blocked —+— 512-bit blocked

109
FPR ,,-2 With smaller blocks, there is more
< variation in entries across blocks.
‘\\ Overflowing blocks blow up the FPR.
10— 4

O 10 15 20

Bits / entry (M/N)

»— Classic Bloom —=— 32-bit blocked
64-bit blocked —+— 512-bit blocked

109

FPR ,,-2

\
\ « With a block the size of a cache line,

, we don’t lose much
5 10 15 20

10— 4|

Bits / entry (M/N)

size blocks as cache lines

size blocks as cache lines

00000 00000 00000 00000 00000 00000
>y > 00—

Block Block Block Block Block Block

512 512 512 512 512 512
bits bits bits bits bits bits

Any remaining issue?

00000 00000 00000 00000 00000 00000
>y > 00—

Block Block Block Block Block Block

512 512 512 512 512 512
bits bits bits bits bits bits

Any remaining issue?

Random access within a cache line

CPU Registers =
7 words (8B) 3-4 cycles

[::] 7 cache lines (64B)

L1/L2/L3

Each random access moves different
word from L1 cache to register

e.d., 4 hash functions, 2 words per block

e.d., 4 hash functions, 2 words per block

e.d., 4 hash functions, 2 words per block

e.d., 4 hash functions, 2 words per block

Solutions?

e.d., 4 hash functions, 2 words per block

i

Split block Bloom filters. Jim Apple. Arxiv 2023.
Used in the Impala system as of 2016 (
\

h

Split block Bloom filters. Jim Apple. Arxiv 2023.

Performance-Optimal Filtering: Bloom Overtakes
Cuckoo at High Throughput. Harald Lang, Thomas
Neumann, Alfons Kemper, Peter Boncz. VLDB 2019.

Partition into s sectors, each the
size of a word (e.g., 64 bits)

———+
Gy > —-o>—— e

Example: s = 4 sectors

Insertion: hashes to k/ s bits per sector sequentially

Insertion: hashes to k / s bits per sector sequentially

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially

e.g., s=4 sectors and k=8 hashes

Hash 2 bits

A

Insertion: hashes to k / s bits per sector sequentially

e.g., s=4 sectors and k=8 hashes

Hash 2 bits

X

Or

Insertion: hashes to k / s bits per sector sequentially

e.g., s=4 sectors and k=8 hashes

Hash 2 bits

X

Insertion: hashes to k / s bits per sector sequentially

e.g., s=4 sectors and k=8 hashes

Hash 2 bits

A

Insertion: hashes to k / s bits per sector sequentially

e.g., s=4 sectors and k=8 hashes

Hash 2 bits

A

Insertion: hashes to k / s bits per sector sequentially

Read/written 4 rather than 8 registers

Hash 2 bits

A

Query: check k / s hashes per sector sequentially

Hash 2 bits

X

Query: check k / s hashes per sector sequentially

Hash 2 bits

X

And

Query: check k / s hashes per sector sequentially

Hash 2 bits

X

(And ==

Query: check k / s hashes per sector sequentially

Hash 2 bits

X

if (And) !=
Return false

Query: check k / s hashes per sector sequentially

Hash 2 bits

A

Query: check k / s hashes per sector sequentially

Hash 2 bits

A

Query: check k / s hashes per sector sequentially

Hash 2 bits

X

: check k /s hashes per sector sequentially

4000

sectoriz@d

3000

2000

1000 blocked

| | |
0 1 4 16

Words per block

Further ways to optimize?

Further ways to optimize?

AVX - SIMD

Further ways to optimize”

AVX - SIMD

Operate on each sector in parallel

A X X X

Problems with Sectorized Bloom filters?

Problems with Sectorized Bloom filters”

hashes must be multiple of # sectors

Problems with Sectorized Bloom filters”

hashes must be multiple of # sectors
Why is this bad?

Problems with Sectorized Bloom filters”

hashes must be multiple of # sectors
Why Is this bad?
Force using sub-optimal # hash functions

Problems with Sectorized Bloom filters”

hashes must be multiple of # sectors
Why iIs this bad”

Force using sub-optimal # hash functions
Harm FPR

——
R

Problems with Sectorized Bloom filters”

hashes must be multiple of # sectors
Why iIs this bad”

Force using sub-optimal # hash functions
Harm FPR - solutions?

——
R

Divide sectors into Z groups

Map each key to one sector per group based on its hash

Key

O\
N

Hash bits only to relevant sector in each group

Key

O\
AN N

Hash bits only to relevant sector in each group

e.d., here we can use 6 hashes :)

Key

O\
AN N

Hash bits only to relevant sector in each group

Key

O\
AN N

Nearly best of both worlds :) fast & low FPR

Break

Bloom

{’b

FPR & ~ 2 -WN-In(2)

Bloom

g

FPR & ~ 2 -WN-In(2)

Lower Bound

LIV,

\'/
”’ ~

/1 \

277?

Lower Bound for Filter Memory

ower Bound for Filter Memory

Assume nothing
about implementation

ower Bound for Filter Memory

Assume nothing Analyze with respect to
about Implementation filter specification

ower Bound for Filter Memory

Assume nothing Analyze with respect to
about Implementation filter specitication

] —
0 —
=
0D =
0D =

€ - FPR

N - # entries

U - Universe size

| ower Bound for Exact Set

7\
N

| ower Bound for Exact Set

Out of Universe U, store N entries

| ower Bound for Exact Set

(U choose N) combinations

| ower Bound for Exact Set

log2(U choose N) Dbits

to encode a unique combination

| ower Bound for Exact Set

l0g2(U choose N) = N - logz2(U / N) bits @

for large U

_ower Bound for Filter - Approximate Set

L ower Bound tor Filter

IFilterl + IDisambiguationl = |IExact Setl

IFilterl + IDisambiguationl = |IExact Setl

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl + IDisambiguationl = IExact Setl

I

What information must we add the filter
to turn it into an exact set?

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl + IDisambiguationl = N - log2(U / N)

I

Plug In

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl + IDisambiguationl = N - log2(U / N)

I

Query filter U times

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl + IDisambiguationl = N - log2(U / N)

I

Tells us all positive keys
N+e-U

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl + IDisambiguationl = N - log2(U / N)

I

Tells us all positive keys
e-U

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl + IDisambiguationl = N - log>(U / N)

I

Of all positives € - U, which
keys are positive N

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl + IDisambiguationl = N - log>(U / N)

I

€ - Uchoose N

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl + IDisambiguationl = N - log>(U / N)

I

logz(€ - U choose N)

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl + IDisambiguationl = N - log>(U / N)

I

N - logz((g - U) / N)

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl + N -logz((e - U)/N) = N -logo(U/N)

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl = N - log2(U/N)-N - logz((e - U)/ N)

Legend
€ - FPR

N - # entries
U - Universe size

IFilterl = N - logz(1/¢€)

€ - FPR

N - # entries
U - Universe size

€ - FPR

N - # entries
U - Universe size

Bloom

{’b

~ 2 -M/N- 0.69

L ower bound

LIV,
\'/
” ~

/1 \

2 -M/N

Bloom

{’b

~ 2 -M/N- 0.69

?7??

L ower bounda

LY,

\'/
”’ ~

/1 \

2 -M/N

Bloom

{?b

~ 2 -M/N- 0.69

XOR Filter

D

~ 2 -M/N-0.81

L ower bound

LIV,
\'/
” ~

/1 \

~ 2 -M/N

XOR Filter

D

Xor Filters: Faster and Smaller Than Bloom Filters
Thomas Mueller Graf, Daniel Lemire

Journal of Experimental Algorithmics, 2020

XOR Operator

Input 1 0 0 1

1N
L/

Input 2 0 1 0

Parity 0 1 1

Parity can help recover any input

Input 1 0 0 1 1

Suppose we
lost input 2

Parity 0 1 1 0

Suppose we
lost input 2

Parity can help recover any input

Input 1

Parity

Input 2

Recovered

Parity can help recover any input

Input 2 0 1 0 1

Or suppose we
lost input 1

Parity 0 1 1 0

Or suppose we
lost input 1

Parity can help recover any input

Input 2

Parity

Input 1

Recovered

XOR is commutative and associative

Input 1 O 000 1T 1 1 1

Input 2 o 01100 1 1

Input 3 O/ 10,1010 1

Parity o1 ;1]0] 10,0 1

XOR is commutative and associative

Input 1 olo /oo 1 1]1]1

Input 2 o 01100 1 1

Input 3 O/ 10,1010 1

Parity o1 ;1]0] 10,0 1

Parity can recover any input, as long as we also have all the other inputs

XOR filter stores a fingerprint for each key

FP(Ow)=

XOR filter stores a fingerprint for each key

F bits
g

Example: FP(X)= 0100

Does FP(X) exist?
' XOR filter |

Query(X)

Does FP(X) exist?

| XOR filter |
1. True negative
2. True positive
3. False positive with probability 2-F

Query(X)

How does XOR filter store its fingerprints?

Hash each entry to three slots

Assign one slot to uniquely own each entry
(More on this shortly)

Each bucket stores XOR of fingerprint and other two slots

2 DFP(Y)D 6

— | T~

Owns Y

During queries, recover fingerprints by xoring three slots

get(Y) returns trueif FP(Y)= 2D 4 D 6

— | T~

Y Y Y
Owns Y

How to assign slots to own different entries?

How to assign slots to own different entries”

Peeling

0

Slots

Peeling

0

Slots

Peeling

While not all keys have been assigned to a slot

Slots 0 1 2 3 4

O
o)
~

Peeling

While not all keys have been assigned to a slot
Assign some entry x to some slot y that only entry x maps to

Slots 0 1 2 3 4

O
o)
~

Peeling

While not all keys have been assigned to a slot
Assign some entry x to some slot y that only entry x maps to

Slots 0 1 2 3 4

O
o)
~

Peeling

While not all keys have been assigned to a slot
Assign some entry x to some slot y that only entry x maps to

Peeling

While not all keys have been assigned to a slot
Assign some entry x to some slot y that only entry x maps to

Slots 0 1 2 3 4

O
o)
~

Populate all unassigned slots with zeros

0000 0000 0000 0000
Slots 0 1 2 3 4 5 0 V4

*x B A ®

—

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are populated

0000 0000 0000 0000
Slots 0] O 6 /

km_/‘ ¢

*x B

Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 0000 0000 0000
Slots 0] o 6

km_/‘ C

1101 QR

*x B

Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 0000

Ol

Slots 0 1 6

km_/‘ C

0000 @ 1101 @ 0000 = 1101

*x B

Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 0000 1101 0000 0000
Slots 0 1 2 3 4 5 6 V4

*x B @

Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 0000 1101 0000 0000
Slots 0 1 2 3 4 5 6 V4

* 145/' ®

0001 1R

Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 0000 0000
Slots 1 2 3 4 5 0 V4

* _

/ ‘
1,4,5

0000 ® 0001 ©® 1101 = 1100

—

Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

1100 0000 0000 1101 0000 0000
Slots 0 1 2 3 4 5 0 V4

*x B @

0,1,3

@ 1001

Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0000 1101 0000 0000
Slots 0 1 2 3 4 5 0 V4

0,1,3

1100 ® 1001 ® 0000 = 0101

Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

0101 1100 0000 0000 1101 0000 0000
Slots 0 1 2 3 4 5 0 V4

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filleo

Xor its fingerprint with content at other slots and store

Slots

0101
0

1101

0000 0000

1111

0000 @ 1111® 0000

Populate all unassigned slots with zeros
Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

01017 1100 O0O0O0OO0 0000 1101 O0O0O0OO 0000 1111
Slots 0 1 2 3 4 5 0 V4

We’'re
done :)

Slots 0101 1100 0000 0000 1101 0000 0000 1111
s > ——

Query(X) where FP(X) = 1001

Slots 0101 1100 0000 0000 1101 0000 0000 1111
s > ——

Query(X) where FP(X) = 1001

1100 & 0000 © 0000 = 1100

Slots 0101 0000 1101 0000 1111
r——r—r—r——————S

Not a fingerprint match so return negative

Query(X) where FP(X) = 1001

1100 & 0000 © 0000 = 1100

Slots 0101 0000 1101 0000 1111
r——r—r—r——————S

Construction can fail if there is no entry we can peel

Construction can fail if there is no entry we can peel

Example:

Construction can fail it there is no entry we can peel

0] 2 3 4

o /

AO®

@)

*O® XA * A

No slot has one entry uniquely mapping to it

If we fail, we must restart from scratch.

It we fail, we must restart from scratch.

free space is necessary to succeed with high probability

0] 2 3 4

O
o)
~

*O® XA * A

It we fail, we must restart from scratch.

free space Is necessary to succeed with high probability

What’s the interplay between free space and # number
of hash functions?

Utilization

0.8

0.6

0.4

0.2

2 4

hash functions

Not enough placement flexibility

s /\
Utilization -

0.4

0.2

U 2 4

hash functions

Utilization

0.8

0.6

0.4

0.2

Too many items hashing to each slot

l
/\

2 4 6

hash functions

Utilization

0.8

0.6

0.4

0.2

Optimal 0.81

l
/\

2 4

hash functions

Optimal 0.81

|
R

0.4

0.2

0
0 2 4 6

Similar to finding the optimal # hash functions
with Bloom filters :)

Bloom

{?b

~ 2 -M/N-0.69

XOR

D

~ 2 -M/N-0.81

|dealized

LIV,
\'/
” ~

/1 \

~ 2 -M/N

Bloom

{25

~ 2 -M/N-0.69

XOR

D

Ribbon

~ 2 -M/N-0.92

Denser XOR filter

|dealized

LY,

x

/1 \

~

”’

”’

~

~ 2 -M/N

Bloom

{25

~ D -M/N-0.69

XOR

D

Ribbon

~ 2 -M/N-0.92

Denser XOR filter
In RocksDB since 2020

|dealized

LY,

x

/1 \

~

”’

”’

~

~ 2 -M/N

XOR filter w.
Spatial Coupling

W O wm [T]

~ D -M/N-0.69 ~ 2 -M/N-0.81 ~ D -M/N-0.92 ~ 2 -M/N

Bloom XOR Ribbon

Approach ideal

Operation Costs (in hash functions computed)

[@% Construction =

q Positive Query =
q Avg. Negative Query =

Operation Costs (in hash functions computed)

[@E Construction = O(N)

q Positive Query =
q Avg. Negative Query =

Operation Costs (in hash functions computed)

[@E Construction = O(N)

q Positive Query = 3
Q Avg. Negative Query = 3

Operation Costs (in hash functions computed)

[@E Construction = O(N)

q Positive Query = 3
Q Avg. Negative Query = 3

Not as good as blocked Bloom filters

Blocked
Bloom

W O wm [T]

XOR Ribbon Spatial Coupling

Faster Lower FPR

And now: office hours :)

