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Question 1

Column A has N entries of which |A| are unique and |A| << N. It is subject to: 
“select B where x ≤ A and y ≥ A” where y > x.  We want to compress the 
column and process the above query without decompressing the data. 

(1) How do we achieve this when 1 < |A| < log2(N)?

(2) How about when  log2(N) < |A| <        ?
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How to process queries? 

e.g., select B where 10 ≤ A and 20 ≥ A

“OR” the vectors of values in the range. 
OR
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(2) How about when  log2(N) < |A| <         ?N



Question 1

In this case, bit vector encoding may inflate rather than compress the 
data. Lets instead employ dictionary encoding. 
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How to process queries? 

e.g., select B where 01 ≤ A and 10 ≥ A

Run on compressed column. 

In this case, bit vector encoding may inflate rather than compress the 
data. Lets instead employ dictionary encoding. 

(2) How about when  log2(N) < |A| <         ?N



Question 2
Describe how to physically process the following query using late materialization.

No information on cardinality is provided.  
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“Column groupings” are a way to store values from across several 
columns in a table in a row-store format. In which cases is it beneficial to 
group columns, and in which cases is it harmful?

Question 3

A B C A B C A B C

Example 1 Example 2 Example 3
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“Column groupings” are a way to store values from across several 
columns in a table in a row-store format. In which cases is it beneficial to 
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A B C

Example:

Good when values of corresponding rows 
along grouped columns are always accessed 
at the same time

Select A, B, C where C=“”



Question 3

“Column groupings” are a way to store values from across several 
columns in a table in a row-store format. In which cases is it beneficial to 
group columns, and in which cases is it harmful?

A B C

Example:
Select A, C

It’s harmful for queries that access only a 
subset of entries in a group, or that don’t 
require some column in a group 

Select B, C where B=“”
Select A, B where A = “…”
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Consider a column of International Bank Account Numbers (IBANs). We 
have queries of the form “select * where IBAN = x”. How can we optimize 
for such queries without sorting the column or using an index? Propose a 
generic solution that’s suitable beyond just IBANs. 

IBAN column
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Question 4
Consider a column of International Bank Account Numbers (IBANs). We 
have queries of the form “select * where IBAN = x”. How can we optimize 
for such queries without sorting the column or using an index? Propose a 
generic solution that’s suitable beyond just IBANs. 

IBAN column
Byte1 Byte2 Byte3 Byte4 …Byte weaving: store each 

byte as a column.  

Traverse columns from most 
selective byte first and employ 
late materialization. 


