
Niv Dayan

Column-Store Tutorial
CSC443H1 Database System Technology

Question 1

Column A has N entries of which |A| are unique and |A| << N. It is subject to:
“select B where x ≤ A and y ≥ A” where y > x. We want to compress the
column and process the above query without decompressing the data.

(1) How do we achieve this when 1 < |A| < log2(N)?

(2) How about when log2(N) < |A| < ?

A
10
0

30
0

20
20
0

N

Question 1

(1) How do we achieve this when 1 < |A| < log2(N)?

10 200
0
1
0
1
0
0
1

1
0
0
0
0
0
0

0
0
0
0
1
1
0

30
0
0
1
0
0
0
0

A
10
0

30
0

20
20
0

There are few unique values, so we can compress using bit-vector encoding

Question 1

(1) How do we achieve this when 1 < |A| < log2(N)?

10 20
1
0
0
0
0
0
0

0
0
0
0
1
1
0

A
10
0

30
0

20
20
0

There are few unique values, so we can compress using bit-vector encoding

How to process queries?

e.g., select B where 10 ≤ A and 20 ≥ A
0
0
1
0
1
0
0
1

30
0
0
1
0
0
0
0

Question 1

(1) How do we achieve this when 1 < |A| < log2(N)?

10 20
1
0
0
0
0
0
0

0
0
0
0
1
1
0

There are few unique values, so we can compress using bit-vector encoding

How to process queries?

e.g., select B where 10 ≤ A and 20 ≥ A

“OR” the vectors of values in the range.
OR

1
0
0
0
1
1
0

=

Question 1

(2) How about when log2(N) < |A| < ?N

Question 1

In this case, bit vector encoding may inflate rather than compress the
data. Lets instead employ dictionary encoding.

01
00
11
00
10
10
00

A
10
0

30
0

20
20
0

dict
0
10
20
30

00
01
10
11

(2) How about when log2(N) < |A| < ?N

Question 1

01
00
11
00
10
10
00

A
10
0

30
0

20
20
0

dict
0
10
20
30

00
01
10
11

Note our dictionary is order-preserving.

In this case, bit vector encoding may inflate rather than compress the
data. Lets instead employ dictionary encoding.

(2) How about when log2(N) < |A| < ?N

Question 1

01
00
11
00
10
10
00

A
10
0

30
0

20
20
0

dict
0
10
20
30

00
01
10
11

Note our dictionary is order-preserving.

How to process queries?

e.g., select B where 10 ≤ A and 20 ≥ A

Replace dictionary values in query

In this case, bit vector encoding may inflate rather than compress the
data. Lets instead employ dictionary encoding.

(2) How about when log2(N) < |A| < ?N

Question 1

01
00
11
00
10
10
00

A
10
0

30
0

20
20
0

dict
0
10
20
30

00
01
10
11

Note our dictionary is order-preserving.

How to process queries?

e.g., select B where 01 ≤ A and 10 ≥ A

Replace dictionary values in query

In this case, bit vector encoding may inflate rather than compress the
data. Lets instead employ dictionary encoding.

(2) How about when log2(N) < |A| < ?N

Question 1

01
00
11
00
10
10
00

A
10
0

30
0

20
20
0

Note our dictionary is order-preserving.

How to process queries?

e.g., select B where 01 ≤ A and 10 ≥ A

Run on compressed column.

In this case, bit vector encoding may inflate rather than compress the
data. Lets instead employ dictionary encoding.

(2) How about when log2(N) < |A| < ?N

Question 2
Describe how to physically process the following query using late materialization.

No information on cardinality is provided.

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
Relation R

17
49
58
99
64
37
53
61
32
50

E
11
35
62
44
29
78
19
23
26
23

D
Relation S Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

Question 2

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
Relation R

Select sum(A) from R, S where C=D and
5<A<20 and 40<B<50 and 55<E<65

2
4
5
7
9

Question 2

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
Relation R

Select sum(A) from R, S where C=D and
5<A<20 and 40<B<50 and 55<E<65

2
4
5
7
9

Question 2

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
Relation R

Select sum(A) from R, S where C=D and
5<A<20 and 40<B<50 and 55<E<65

2
4
5
7
9

4
5
9

Question 2

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
Relation R

Select sum(A) from R, S where C=D and
5<A<20 and 40<B<50 and 55<E<65

2
4
5
7
9

4
5
9

Question 2

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
Relation R

Select sum(A) from R, S where C=D and
5<A<20 and 40<B<50 and 55<E<65

2
4
5
7
9

4
5
9

4
5
9

23
78
29

CR.ID

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

4
5
9

23
78
29

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
17
49
58
99
64
37
53
61
32
50

E
11
35
62
44
29
78
19
23
26
23

D
Relation R Relation S

CR.ID

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

4
5
9

23
78
29

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
17
49
58
99
64
37
53
61
32
50

E
11
35
62
44
29
78
19
23
26
23

D
Relation R

3
5
8

CR.ID

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
17
49
58
99
64
37
53
61
32
50

E
11
35
62
44
29
78
19
23
26
23

D
Relation R

3
5
8

4
5
9

23
78
29

CR.ID

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
17
49
58
99
64
37
53
61
32
50

E
11
35
62
44
29
78
19
23
26
23

D
Relation R

3
5
8

3
5
8

62
29
23

4
5
9

23
78
29

D S.IDCR.ID

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
17
49
58
99
64
37
53
61
32
50

E
11
35
62
44
29
78
19
23
26
23

D
Relation R

3
5
8

62
29
23

⨝

C DR.ID S.ID
4
5
9

23
78
29

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

4
5
9

23
78
29

3
16
56
9

11
27
8

41
19
35

A
12
34
75
45
49
58
97
75
42
55

B
12
34
53
23
78
65
33
21
29
0

C
17
49
58
99
64
37
53
61
32
50

E
11
35
62
44
29
78
19
23
26
23

D
Relation R

3
5
8

62
29
23

C DR.ID S.ID

R.ID S.ID
4 8
9 5

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

3
16
56
9

11
27
8

41
19
35

A
Relation R

R.ID S.ID
4 8
9 5

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

3
16
56
9

11
27
8

41
19
35

A
Relation R

R.ID
4
9

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

3
16
56
9

11
27
8

41
19
35

A

R.ID
4
9

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

3
16
56
9

11
27
8

41
19
35

A

R.ID
4
9

9
19

Question 2
Select sum(A) from R, S where C=D and

5<A<20 and 40<B<50 and 55<E<65

9

19
+

= 28

“Column groupings” are a way to store values from across several
columns in a table in a row-store format. In which cases is it beneficial to
group columns, and in which cases is it harmful?

Question 3

A B C A B C A B C

Example 1 Example 2 Example 3

Question 3

“Column groupings” are a way to store values from across several
columns in a table in a row-store format. In which cases is it beneficial to
group columns, and in which cases is it harmful?

A B C

Example:

Good when values of corresponding rows
along grouped columns are always accessed
at the same time

Select A, B, C where C=“”

Question 3

“Column groupings” are a way to store values from across several
columns in a table in a row-store format. In which cases is it beneficial to
group columns, and in which cases is it harmful?

A B C

Example:
Select A, C

It’s harmful for queries that access only a
subset of entries in a group, or that don’t
require some column in a group

Select B, C where B=“”
Select A, B where A = “…”

Question 4
Consider a column of International Bank Account Numbers (IBANs). We
have queries of the form “select * where IBAN = x”. How can we optimize
for such queries without sorting the column or using an index? Propose a
generic solution that’s suitable beyond just IBANs.

IBAN column

Question 4
Consider a column of International Bank Account Numbers (IBANs). We
have queries of the form “select * where IBAN = x”. How can we optimize
for such queries without sorting the column or using an index? Propose a
generic solution that’s suitable beyond just IBANs.

IBAN column
Byte1 Byte2 Byte3 Byte4 …Byte weaving: store each

byte as a column.

Question 4
Consider a column of International Bank Account Numbers (IBANs). We
have queries of the form “select * where IBAN = x”. How can we optimize
for such queries without sorting the column or using an index? Propose a
generic solution that’s suitable beyond just IBANs.

IBAN column
Byte1 Byte2 Byte3 Byte4 …Byte weaving: store each

byte as a column.

Traverse columns from most
selective byte first and employ
late materialization.

