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Consider three tables

A B CB DC

Join
⋈

Join
⋈

T1 T2 T3

Select A, D from T1, T2, T3 where 
T1.B = T2.B and T2.C = T3.C



Consider three tables

Join
⋈

Join
⋈

A=“…” D=“…” 

A B CB DC

Select A, D from T1, T2, T3 where 
T1.B = T2.B and T2.C = T3.C

and A=“…” and D=“…” 



σ selection

Join T1   T2

Join …   T3

π projection

σ selection

Converted into a query plan of logical operators
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C
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Select A, D from T1, T2, T3 where 

T1.B = T2.B and T2.C = T3.C
and A=“…” and D=“…” 



Select A, D from T1, T2, T3 where 
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Select A, D from T1, T2, T3 where 
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All implement an iterator interface 
(the glue)

σ selection

Join T1   T2

Join …   T3

π projection

σ selection

B

⋈

A

D

C
⋈

B, C
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Order by Distinct Group by



Each can be implemented using different algorithms

ProjectionSelection Join

Order by Distinct Group by



Each can be implemented using different algorithms

different trade-offs for different contexts 

ProjectionSelection Join

Order by Distinct Group by



ProjectionSelection Join

Order by Distinct Group by

Most content



Selection

A B

Select * from … where A = “…” 



Select * from … where A = “…” 

Scan Unclustered 

Index

Clustered 

Index



O(N/B)

Select * from … where A = “…” 

Scan Unclustered 

Index

Clustered 

Index



O(N/B) O(logB(N)+S)
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Scan Unclustered 
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Index



O(N/B) O(logB(N)+S)

Assuming B-tree

Select * from … where A = “…” 

Scan Unclustered 

Index

Clustered 

Index



O(N/B) O(logB(N)+S)

Assuming B-tree # qualifying tuples

Select * from … where A = “…” 

Scan Unclustered 

Index

Clustered 

Index



O(N/B) O(logB(N)+S) O(logB(N)+S/B)

Scan Unclustered 

Index

Clustered 

Index

Select * from … where A = “…” 



Select * from … where X = “…” and Y=“…” 

X Y

How about when we have multiple selection conditions?



Select * from … where X = “…” and Y=“…” 

X Y

Assume two unclustered indexes
X Y



X Y

X Y

Let |Xi| and |Yj| denote the number of matching rows to A and to B, resp.
e.g., |Xi| = 3 and |Yj|=4

Select * from … where X = “i” and Y=“j” 



The query is looking for the intersection: |Xi ∩ Yj| = 1

X Y

X Y

Select * from … where X = “i” and Y=“j” 

Let |Xi| and |Yj| denote the number of matching rows to A and to B, resp.
e.g., |Xi| = 3 and |Yj|=4



The query is looking for the intersection: |Xi ∩ Yj| = 1

X Y

X Y

Select * from … where X = “i” and Y=“j” 

Let |Xi| and |Yj| denote the number of matching rows to A and to B, resp.
e.g., |Xi| = 3 and |Yj|=4

Some ideas? 



Algorithm 1: Search index Y
For each row in table, check if X matches 

X Y

X Y

Select * from … where X = “i” and Y=“j” 

Cost: 



Algorithm 1:

Cost: logB(N) + |Yj|/B + |Yj| I/O 

X Y

X Y

Search index Y
For each row in table, check if X matches 

Select * from … where X = “i” and Y=“j” 



Cost: 

X Y

X Y

Select * from … where X = “i” and Y=“j” 

logB(N) + |Yj| I/O 

Algorithm 1: Search index Y
For each row in table, check if X matches 



Algorithm 2: Search index X
For each row in table, check if Y matches 

X Y

X Y

Select * from … where X = “i” and Y=“j” 

Cost: 



Algorithm 2: Search index X
For each row in table, check if Y matches 

Cost: logB(N) + |Xi|/B + |Xi| I/O 

X Y

X Y

Select * from … where X = “i” and Y=“j” 



Algorithm 2: Search index X
For each row in table, check if Y matches 

Cost: logB(N) + |Xi| I/O 

X Y

X Y

Select * from … where X = “i” and Y=“j” 



Algorithm 2: Search index X
For each row in table, check if Y matches 

Cost: logB(N) + |Xi| I/O 
Less expensive since |Xi| < |Yj| (|Xi|=3 and |Yj| = 4)

X Y

X Y

Select * from … where X = “i” and Y=“j” 



Principle: filter based on most selective predicate first 

X Y

X Y

Select * from … where X = “i” and Y=“j” 



Principle: filter based on most selective predicate first 
This requires frequency estimation, e.g., estimating |Xi| or |Yj| 

X Y

X Y

Select * from … where X = “i” and Y=“j” 



Principle: filter based on most selective predicate first 
This requires frequency estimation, e.g., estimating |Xi| or |Yj| 

Is there yet another alternative?

X Y

X Y

Select * from … where X = “i” and Y=“j” 



Algorithm 3: Search index A and B for matching row IDs

X Y

X Y

Select * from … where X = “i” and Y=“j” 



Algorithm 3: Search index A and B for matching row IDs

X Y

X Y

Select * from … where X = “i” and Y=“j” 



Algorithm 3: Search index A and B for matching row IDs

X Y

X Y

Select * from … where X = “i” and Y=“j” 

Access table for intersection



Algorithm 3:

Cost: 

Select * from … where X = “i” and Y=“j” 

X Y

X Y

Search index A and B for matching row IDs
Access table for intersection



Algorithm 3:

Cost: 2 · logB(N) + |Xi|/B + |Yj|/B + |Xi∩Yj| I/O 

Select * from … where X = “i” and Y=“j” 

X Y

X Y

Search index A and B for matching row IDs
Access table for intersection



Algorithm 3: Search index A and B for matching row IDs
Only search table for intersection 

Cost: 
Better if |Xi∩Yj| is small relative to |Xi|, |Yj|

2 · logB(N) + |Xi|/B + |Yj|/B + |Xi∩Yj| I/O 

Select * from … where X = “i” and Y=“j” 

X Y

X Y



What if we combine these indexes into a composite index?

X, Y

X Y

Select * from … where X = “i” and Y=“j” 



Surname, first name

Select * from … where surname = “Lovelace” and firstname=“Ada” 

Address , Phone

Lovelace, Abby
Lovelace, Ada

Lopez, Jenniffer 
Lovelace, Adam

Long, Justin
…

…



Select * from … where X = “…” and Y=“…” 

X Y

X,Y

Algorithm 4: Search composite  index A and B for matching row IDs



Algorithm 4: Search composite  index A and B for matching row IDs
Cost: logB(N) + |Xi∩Yj| I/O 

X Y

X,Y

Select * from … where X = “…” and Y=“…” 



Select * from … where X = “…” and Y=“…” 

Algorithm 4: Search composite  index A and B for matching row IDs
Cost: logB(N) + |Xi∩Yj| I/O 

Cheapest option so far! 

X Y

X,Y



Select * from … where X = “…” and Y=“…” 

Algorithm 4: Search composite  index A and B for matching row IDs
Cost: 

Cheapest option so far! 
Downsides?

X Y

X,Y

logB(N) + |Xi∩Yj| I/O 



Select * from … where Y=“…” 

Algorithm 4: Search composite  index A and B for matching row IDs
Cost: 

Downsides? Cannot  handle queries just based on Y

X Y

X,Y

logB(N) + |Xi∩Yj| I/O 

Cheapest option so far! 



Select * from … where Y=“…” 

Composite indexes can achieve better performance for some 
queries but are less generic. Choose them carefully :)

X Y

X,Y



ProjectionSelection Join

Order by Distinct Group by



X Y

Projection Select X from table



X Y

Trivial in row-stores. More interesting in column-stores (next week).  

Projection Select X from table



ProjectionSelection Join

Order By Distinct Group by



Select … From … where … Order By col1, col2, ... ASC | DESC



Unclustered 
index scan

Clustered 
index scan

Select … From … where … Order By col1, col2, ... ASC | DESC

If we have an applicable index



Unclustered 
index scan

Clustered 
index scan

(Good if result set is small) (Good in all cases)

If we have an applicable index

Select … From … where … Order By col1, col2, ... ASC | DESC



Quick-Sort

If result set fits in memory

Heap-Sort

If quick-sort takes longer than 
expected 

Select … From … where … Order By col1, col2, ... ASC | DESC



Quick-Sort

If result set fits in memory

Heap-Sort

If quick-sort takes longer than 
expected 

Select … From … where … Order By col1, col2, ... ASC | DESC

Introsort :)



Sorted output

heap
Buffers

Sorted partitions

Or external sort if data does not fit in memory

Select … From … where … Order By col1, col2, ... ASC | DESC



ProjectionSelection Join

Order By Distinct Group by



Select Distinct c1, c2, ... FROM …;



Select Distinct address FROM people;

Bert

Name Address 

 Ernie

48 1st St.

48 1st St.

Address 

48 1st St.

… …



Select Distinct address FROM people;

Bert

Name Address 

 Ernie

48 1st St.

48 1st St.

Address 

48 1st St.

… …

How to implement?



Select Distinct c1, c2, ... FROM …;

Sort & eliminate adjacent 
identical items 
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Sort & eliminate adjacent 
identical items 
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Heap-Sort
External Sort
Index scan
Etc.



Select Distinct c1, c2, ... FROM …;

Sort & eliminate adjacent 
identical items 

Quick-Sort
Heap-Sort
External Sort
Index scan
Etc.

Hash to identify identical 
items 



Select Distinct c1, c2, ... FROM …;

Sort & eliminate adjacent 
identical items 

Quick-Sort
Heap-Sort
External Sort
Index scan
Etc.

Hash to identify identical 
items 

Linear probing
Chaining
Extendible hashing
Cuckoo hashing
Etc.



Select Distinct c1, c2, ... FROM …;

Sort & eliminate adjacent 
identical items 

Hash to identify identical 
items 

O(N log2 N) O(N)CPU:



Sort & eliminate adjacent 
identical items 

O(N log2 N)
Better if we later need to 

sort anyways

CPU:

Select Distinct c1, c2, ... FROM … order by c1, c2 …;

Hash to identify identical 
items 

O(N)



Sort & eliminate adjacent 
identical items 

Hash to identify identical 
items 

O(N log2 N) O(N)
Better if we later need to 

sort anyways
Good if user is fine with 

unordered output

CPU:

Select Distinct c1, c2, ... FROM …;



ProjectionSelection Join

Order by Distinct Group By



Select c1, c2, ... FROM … Group By



Select address, sum(income) FROM people Group By address

Name Address Address Income

(Income per household)

Income



Select address, sum(income) FROM people Group By address

Name Address Address Income

(Income per household)

Income

Bert

Ernie

48 1st St.

48 1st St.

100K

100K

48 1st St. 200K



Select address, sum(income) FROM people Group By address

Name Address Address Income

(Income per household)

Income

Bert

Ernie

48 1st St.

48 1st St.

100K

100K

48 1st St. 200K

How to execute?



Index/Sort by Category

e.g., B-tree (address -> sum(income))

Select address, sum(income) FROM people Group By address



Index/Sort by Category Hash by Category

e.g., also (address -> sum(income))

Select address, sum(income) FROM people Group By address



Select c1, c2, ... FROM … Group By

Index/Sort by Category Hash by Category

O(N log2 N) O(N)CPU:



Select c1, c2, ... FROM … Group By

Index/Sort by Category Hash by Category

O(N)
Better if we later need to 

sort anyways
Good if user is fine with 

unordered output

O(N log2 N)CPU:



Join

Group By

ProjectionSelection

Order by Distinct



Select … FROM T1, T2 where T1.B = T2=BJoin:

A B CB

Join
⋈

T1 T2



Select Owner, Specie FROM People, Pets where T1.Pet_ID = T2=Pet_ID

Owner Pet_ID SpeciePet_ID

Join
⋈

People Pets

Bert
Ernie

1
2

1
2

shark
tiger



Select Owner, Specie FROM People, Pets where T1.Pet_ID = T2=Pet_ID

Owner Pet_ID SpeciePet_ID

Join
⋈

People Pets

Bert
Ernie

1
2

1
2

shark
tiger

=

SpecieOwner
Bert
Ernie

shark
tiger



Join Algorithms

Nested 

Loop

Block 
Nested 

Loop

Index-Join Sort-merge

Join

Grace hash

Join



Join Algorithms

Nested 

Loop

Block 
Nested 

Loop

Index-Join Sort-merge

Join

Grace hash

Join

Straw man 



Join Algorithms

Nested 

Loop

Block 
Nested 

Loop

Index-Join Sort-merge

Join

Grace hash

Join

Good when one relation almost 
or entirely fits in memory 



Join Algorithms

Nested 

Loop

Block 
Nested 

Loop

Index-Join Sort-merge

Join

Grace hash

Join

There are index/es on the join keys



Join Algorithms

Nested 

Loop

Block 
Nested 

Loop

Index-Join Sort-merge

Join

Grace hash

Join

Both relations must bigger than 
memory 



Nested Loop

⋈

For each entry in one relation, scan whole other relation



Nested Loop

⋈

For each entry in one relation, scan whole other relation

=

X
Y
Q
Z
U

G
W
Y
E
N



Nested Loop

⋈

For each entry in one relation, scan whole other relation

=

X
Y
Q
Z
U

G
W

E
N

 No match for X

Y



Nested Loop

⋈

For each entry in one relation, scan whole other relation

=

X
Y
Q
Z
U

G
W
Y
E
N

 No match for X



Nested Loop

⋈

For each entry in one relation, scan whole other relation

=

X
Y
Q
Z
U

G
W
Y
E
N

Match for Y

Y



Nested Loop

⋈

For each entry in one relation, scan whole other relation

=

X
Y
Q
Z
U

G
W
Y
E
N

No more matches for Y

Y



Nested Loop

⋈

For each entry in one relation, scan whole other relation

Cost?

T1 T2



Nested Loop

⋈

For each entry in one relation, scan whole other relation

Cost:  O(|T1| · |T2|/B) I/O

T1 T2



Nested Loop

⋈

For each entry in one relation, scan whole other relation

Cost:  O(|T1| · |T2|/B) I/O

T1 T2

What’s a simple improvement?



Block Nested Loop

For each block in one relation, scan whole other relation

⋈



Block Nested Loop

For each block in one relation, scan whole other relation

⋈ =

X
Y
Q
Z
U

G
W
Y
E
N

K M
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Block Nested Loop
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Block Nested Loop

For each block in one relation, scan whole other relation

⋈ =

X
Y
Q
Z
U

G
W
Y
E
N

K M
No match in first block



Block Nested Loop

For each block in one relation, scan whole other relation
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Block Nested Loop

For each block in one relation, scan whole other relation
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Block Nested Loop

For each block in one relation, scan whole other relation

⋈ =

X
Y
Q
Z
U

G
W
Y
E
N

Y

K M
Match!



Block Nested Loop

For each block in one relation, scan whole other relation

⋈ =

X
Y
Q
Z
U

G
W
Y
E
N

Y

K M



Block Nested Loop

For each block in one relation, scan whole other relation

⋈ =

X
Y
Q
Z
U

G
W
Y
E
N

Y

K M
And so on…



⋈

Cost?

T1 T2

For each block in one relation, scan whole other relation

Block Nested Loop



⋈

Cost:  O(|T1|/B · |T2|/B) I/O

T1 T2

For each block in one relation, scan whole other relation

Block Nested Loop



⋈

T1 T2

What if we read Q pages from T1 for each scan of T2?  

Block Nested Loop

Cost:  O(|T1|/B · |T2|/B) I/O



⋈

T1 T2

What if we read Q pages from T1 for each scan of T2?  

Block Nested Loop

Cost:  O(|T1|/(B · Q) · |T2|/B) I/O



⋈

Cost:  O(|T1|/(B · Q) · |T2|/B) I/O

T1 T2

Block Nested Loop

(One table fits in memory)

What if Q = min(|T1|/B, |T2|/B)?

What if we read Q pages from T1 for each scan of T2?  



⋈

Cost:  O(|T1|/(B · Q) · |T2|/B) I/O

T1 T2

Block Nested Loop

(One table fits in memory)

What if Q = min(|T1|/B, |T2|/B)?

What if we read Q pages from T1 for each scan of T2?  

Cost:  O(|T1|/B + |T2|/B) I/O



Join Algorithms

Nested 

Loop

Block 
Nested 

Loop

Index-Join Sort-merge

Join

Grace hash

Join



Index-Join

⋈

T1 T2

Suppose we have index on one of the relations 



Index-Join

T1 T2

For each entry in one relation, search index for other relation

⋈



Index-Join

T1 T2

For each entry in one relation, search index for other relation

⋈

Cost?
(Assuming B-tree, clustered 

or unclustered )



Index-Join

T1 T2

For each entry in one relation, search index for other relation

⋈

O( |T1|/B + |T1| · logB|T2| ) I/O
Cost:

(Assuming B-tree, clustered 
or unclustered )



Index-Join

T1 T2

For each entry in one relation, search index for other relation

⋈

O( |T1| · logB|T2| ) I/O
Cost:

(Assuming B-tree, clustered 
or unclustered )



Index-Join

T1 T2

What if both relations have an unclustered index on the join key?

⋈
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What if both relations have an unclustered index on the join key?

T1 T2

⋈

F
B
E
A
D

D
F
E
B
C

C A

A
B
C
D
E
F

A
B
C
D
E
F



Index-Join

What if both relations have an unclustered index on the join key?

T1 T2

⋈

F
B
E
A
D

D
F
E
B
C

C A

A
B
C
D
E
F

A
B
C
D
E
F



Index-Join

What if both relations have an unclustered index on the join key?

T1 T2

⋈

F
B
E
A
D

D
F
E
B
C

C A

A
B
C
D
E
F

A
B
C
D
E
F



Index-Join

What if both relations have an unclustered index on the join key?
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Index-Join

What if both relations have an unclustered index on the join key?

T1 T2

⋈

F
B
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Index-Join

What if both relations have an unclustered index on the join key?

T1 T2

⋈

Cost?



Index-Join

What if both relations have an unclustered index on the join key?

T1 T2

⋈

Cost:  
O( |T1|/B + |T1| + |T2|/B + |T2| )



Index-Join

What if both relations have an unclustered index on the join key?

T1 T2

⋈

Cost:  
O( |T1| + |T2| )



Index-Join

What if both indexes are clustered?

T1 T2

⋈

Cost?



Index-Join

What if both indexes are clustered?

T1 T2

⋈

Cost: O(|T1|/B + |T2|/B)



Nested 

Loop

Block 
Nested 

Loop

Index-Join Sort-Merge

Join

Grace hash

Join



T1 T2

Sort-Merge Join

⋈

(A) Sort both relations based on join key

F
B
E
A
D

D
F
E
B
C

C A



T1 T2

Sort-Merge Join
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(A) Sort both relations based on join key

A
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(B) Scan both relations linearly
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T1 T2

Sort-Merge Join

⋈

(A) Sort both relations based on join key

A
B
C
D
E
F

A
B
C
D
E
F

(B) Scan both relations linearly

I/O cost?

CPU cost?

Memory cost?

Assuming both relations do not fit in 
memory, and two-pass sorting



T1 T2

Sort-Merge Join

⋈

(A) Sort both relations based on join key

A
B
C
D
E
F

A
B
C
D
E
F

(B) Scan both relations linearly

I/O cost?

CPU cost?

Memory cost?

Assuming both relations do not fit in 
memory, and two-pass sorting

O(|T1|/B + |T2|/B)



T1 T2

Sort-Merge Join

⋈

(A) Sort both relations based on join key

A
B
C
D
E
F

A
B
C
D
E
F

(B) Scan both relations linearly

I/O cost?

CPU cost?

Memory cost?

Assuming both relations do not fit in 
memory, and two-pass sorting

O(|T1|/B + |T2|/B)

O(|T1|·log2|T1|+|T2|·log2|T2|)



T1 T2

Sort-Merge Join

⋈

(A) Sort both relations based on join key

A
B
C
D
E
F

A
B
C
D
E
F

(B) Scan both relations linearly

O(|T1|/B + |T2|/B)

O(|T1|·log2|T1|+|T2|·log2|T2|)

I/O cost?

CPU cost?

Memory cost? O( max( |T1 | , |T2 | ) ⋅ B)

Assuming both relations do not fit in 
memory, and two-pass sorting



Nested 

Loop

Block 
Nested 

Loop

Index-Join Sort-Merge

Join

Grace Hash

Join



Grace Hash Join

Smaller
Larger

⋈

Best for very large relations that do not fit in memory 



Grace Hash Join

Smaller

(A) Hash partition smaller table

Hash partition G groups



Grace Hash Join

Hash partition

Repartition until each partition fits in memory
(A) Hash partition smaller table

Smaller



Grace Hash Join

Requires one pass and multiple buffers 
(A) Hash partition smaller table

Smaller



Grace Hash Join

Larger

(B) Hash partition larger table using same hash function 



Grace Hash Join

Larger

(B) Hash partition larger table using same hash function 
For larger table, each partition can be larger than memory. 



Grace Hash Join

T1 T2

⋈

⋈

⋈

(C) Join each pair of matching partitions independently



Grace Hash Join

T1 T2

⋈

⋈

⋈

(C) Join each pair of matching partitions independently
Only a pair of matching partitions can have joining 

keys since we hash partitioned 



Grace Hash Join

(C) Join each pair of matching partitions independently

T1 T2

⋈

⋈

⋈

Scan page 
at a time

Load to 
memory



Grace Hash Join Analysis

Smaller

When partitioning smaller table, number of available buffers dictates 
how many iterations we need until all partitions it in memory



Grace Hash Join Analysis

Smaller

Assuming M entries fit in memory, # iterations needed is:

logM
B ( |Smaller |

M ) + 1

When partitioning smaller table, number of available buffers dictates 
how many iterations we need until all partitions it in memory



Grace Hash Join Analysis

Smaller

Assuming M entries fit in memory, # iterations needed is:

When partitioning smaller table, number of available buffers dictates 
how many iterations we need until all partitions it in memory

Partitioning 
fanout

# partitions we must 
divide table into such 
that each fits in memory 

logM
B ( |Smaller |

M ) + 1



Grace Hash Join Analysis

Smaller

Assuming M entries fit in memory, # iterations needed is:

When partitioning smaller table, number of available buffers dictates 
how many iterations we need until all partitions it in memory

Partitioning 
Iterations 

Joining 
Iteration

logM
B ( |Smaller |

M ) + 1



Grace Hash Join Analysis

Smaller

Assuming M entries fit in memory, # iterations needed is:

When partitioning smaller table, number of available buffers dictates 
how many iterations we need until all partitions it in memory

logM
B ( |Smaller |

B )=logM
B ( |Smaller |

M ) + 1

Same as external merge sort :)



Grace Hash Join Analysis

Smaller

Assuming M entries fit in memory, # iterations needed is:

When partitioning smaller table, number of available buffers dictates 
how many iterations we need until all partitions it in memory

Equate to 2 and solve for M to obtain 
memory needed to join in two passes

M = |Smaller | ⋅ B= 2logM
B ( |Smaller |

B )



Grace Hash Join Analysis

Overall analysis including both tables, assuming two-pass partitioning

O(|T1|/B + |T2|/B)

O(|T1|+|T2|)

I/O cost?

CPU cost?

Memory cost? O( min( |T1 | , |T2 | ) ⋅ B)

T1 T2

⋈

⋈

⋈



Grace Hash Join Analysis

Overall analysis including both tables, assuming two-pass partitioning

O(|T1|/B + |T2|/B)

O(|T1|+|T2|)

I/O cost?

CPU cost?

Memory cost? O( min( |T1 | , |T2 | ) ⋅ B)

T1 T2

⋈

⋈

⋈

Lower memory footprint and 
CPU cost than merge-sort join :)



Grace Hash Join Analysis

Overall analysis including both tables, assuming two-pass partitioning

O(|T1|/B + |T2|/B)

O(|T1|+|T2|)

I/O cost?

CPU cost?

Memory cost? O( min( |T1 | , |T2 | ) ⋅ B)

T1 T2

⋈

⋈

⋈

Sort join is still better if we have 
an order by clause 

Lower memory footprint and 
CPU cost than merge-sort join :)



ProjectionSelection Join

Distinct Group byOrder by

Query Operators



Query 
Operators

Cardinality 

Estimation

Query 
Optimization



Query 
Operators

Cardinality  
Estimation

Query 
Optimization



Select * from … where X = “i” and Y=“j” 

X Y

X Y

Cardinality Estimation



logB(N) + |Yj| I/O Search index YAlgo 1:

logB(N) + |Xi| I/O Search index XAlgo 2:

Search bothAlgo 3: 2 · logB(N) + |Xi|/B + |Yj|/B + |Xi∩Yj| I/O 

Select * from … where X = “i” and Y=“j” 

X Y

X Y

Cardinality Estimation



Determining best plan requires estimating |Xi|, |Yj| and |Xi∩Yj|  

Select * from … where X = “i” and Y=“j” 

X Y

X Y

Cardinality Estimation

logB(N) + |Yj| I/O Search index YAlgo 1:

logB(N) + |Xi| I/O Search index XAlgo 2:

Search bothAlgo 3: 2 · logB(N) + |Xi|/B + |Yj|/B + |Xi∩Yj| I/O 



How many rows have a particular value Xi?

Cardinality Estimation

X

|X3|=2

4
3
2
3
1



Cardinality Estimation

X
4
3
2
3
1 Approach 1: Estimate Xi as N / |X|

# rows # unique X values 

How many rows have a particular value Xi?
|X3|=2



Cardinality Estimation

X
4
3
2
3
1

|X|=4
N=5

# rows

Approach 1: Estimate Xi as N / |X| = 5/4

# unique X values 

How many rows have a particular value Xi?
|X3|=2



Cardinality Estimation

X
4
3
2
3
1

|X|=4
N=5

Approach 1: Estimate Xi as N / |X| = 5/4

Problem: estimating |X| is non-trivial as well! 

How many rows have a particular value Xi?
|X3|=2



Cardinality Estimation

X
4
3
2
3
1

Problem: estimating |X| is non-trivial as well! 

e.g., during insertion, we do not know if new 
value is unique or not

Insert 2 
Approach 1: Estimate Xi as N / |X| = 5/4

How many rows have a particular value Xi?



Cardinality Estimation

X
4
3
2
3
1

If we have an index on X, it becomes easy to tell if any 
new insert/delete/update adds or removes a unique value

1
2
3
3
4 Approach 1: Estimate Xi as N / |X| = 5/4

How many rows have a particular value Xi?



Cardinality Estimation

X
4
3
2
3
1

If we have an index on X, it becomes easy to tell if any 
new insert/delete/update adds or removes a unique value

1
2
3
3
4 Approach 1: Estimate Xi as N / |X| = 5/4

So we can maintain a cardinality counter for each index

How many rows have a particular value Xi?

|X|=4



Cardinality Estimation

X
4
3
2
3
1

If we have an index on X, it becomes easy to tell if any 
new insert/delete/update adds or removes a unique value

1
2
3
3
4

So we can maintain a cardinality counter for each index

|X|=4

Delete 2
Example



Cardinality Estimation

X
4
3
3
1

If we have an index on X, it becomes easy to tell if any 
new insert/delete/update adds or removes a unique value

1
3
3
4

So we can maintain a cardinality counter for each index

|X|=4

Delete 2

Subtract



Cardinality Estimation

X
4
3
3
1

If we have an index on X, it becomes easy to tell if any 
new insert/delete/update adds or removes a unique value

1
3
3
4

So we can maintain a cardinality counter for each index

|X|=3

Delete 2

Subtract



Cardinality Estimation

X
4
3
3
1

What if there is no index? 

1
3
3
4



Cardinality Estimation

X
4
3
3
1

1
3
3
4

periodically scan and count #unique entries

What if there is no index? 



X
4
3
2
3
1
5

estimate any |Xi| as N/|X|

Assumes counts of all values are uniform



X
4
3
2
3
1
5

estimate any |Xi| as N/|X|

Can we do better? 

Assumes counts of all values are uniform



0 - 2 

Histograms

3 - 5 6 - 8 

Count

Range buckets
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6
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0 - 2 

Histograms

3 - 5 6 - 8 

Count

Range buckets

4

10
6

2
0



0 - 2 

Histograms

Estimate |Xi| as bucket count / bucket range 

3 - 5 6 - 8 
Range buckets

4

10
6

2
0

Count



Estimate |Xi| as bucket count / bucket range 

Estimate |X4| = as 10/3=3.3

Count

Range buckets

4

10
6

2
0

0 - 2 3 - 5 6 - 8 



Query 
Operators

Cardinality 

Estimation

Query 
Optimization



Query Optimization

Join
⋈

Join
⋈

A=“…” D=“…” 

A B CB DC

Select A, D from T1, T2, T3 where 
T1.B = T2.B and T2.C = T3.C

and A=“…” and D=“…” 



Select A, D from T1, T2, T3 where 
T1.B = T2.B and T2.C = T3.C

and A=“…” and D=“…” 

σ selection

Join T1   T2

Join …    T3

π projection

σ selection

⋈

A=“…” 

D=“…” 

C
⋈

B, C

B



σ selection

Join T1   T2

Join …    T3

π projection

σ selection

⋈

A=“…” 

D=“…” 

C
⋈

B, C

B

Can join tables in different orders



σ selection

π projection

σ selection

A=“…” 

D=“…” 

B, C

Join T2   T3⋈

Join T1    …⋈

C

B

Can join tables in different orders



σ selection

π projection

σ selection

A=“…” 

D=“…” 

B, C

Join T2   T3⋈

Join T1    …⋈

C

B

Can select in different orders



σ selection

π projection

σ selection

A=“…” D=“…” 

B, C

Join T2   T3⋈

Join T1    …⋈

C

B

Can select in different orders



σ selection

π projection

σ selection

A=“…” D=“…” 

B, C

Join T2   T3⋈

Join T1    …⋈

C

B

Can project columns in different 
orders  as long as selections or 

joins do not rely on them



σ selection

π projection

σ selection

A=“…” 

D=“…” 

B

Join T2   T3⋈

Join T1    …⋈

C

B

π projectionC

Drop column C earlier as it’s not 
needed later



σ selection

π projection

σ selection

A=“…” 

D=“…” 

B

Join T2   T3⋈

Join T1    …⋈

C

B

π projectionC

Can implement each 
operator in different ways



σ selection

π projection

σ selection

A=“…” 

D=“…” 

B

Join T2   T3⋈

Join T1    …⋈

C

B

π projectionC

Can implement each 
operator in different ways

Scan vs. index? 



σ selection

π projection

σ selection

A=“…” 

D=“…” 

B

Join T2   T3⋈

Join T1    …⋈

C

B

π projectionC

Can implement each 
operator in different ways

Block nested loop? 
Sort-merge?  
Grace Hash?  

Index?



σ selection

π projection

σ selection

A=“…” 

D=“…” 

B

Join T2   T3⋈

Join T1    …⋈

C

B

These query plans all produce the same output

π projectionC



σ selection

π projection

σ selection

A=“…” 

D=“…” 

B

Join T2   T3⋈

Join T1    …⋈

C

B

These query plans all produce the same output

π projectionC

# possible plans is exponential in # of selection predicates
(you can permute them)



σ selection

π projection

σ selection

A=“…” 

D=“…” 

B

Join T2   T3⋈

Join T1    …⋈

C

B

However, the cost of each plan is different

π projectionC



σ selection

π projection

σ selection

A=“…” 

D=“…” 

B

Join T2   T3⋈

Join T1    …⋈

C

B

However, the cost of each plan is different

π projectionC

The optimizer searches the space of possible plans 
to find a good one (not best but good enough)



Thanks! 


