Query Evalaution

CSC443H1 Database System Technology

Niv Dayan

A

B

Consider three tables

Consider three tables

common keys

AB X ™M B c%¥ SMCc D

Consider three tables

Name B T~ B C T C Address

Human House

A

T1

B

Consider three tables

Join Join

T2

Select A, D from T1, T2, T3 where
T1.B=T2.B and T2.C = T3.C

T3

Consider three tables

A B B C C D

Join Join

A=“...” D=“...”

Select A, D from T1, T2, T3 where
T1.B=T2.Band T2.C =T3.C

and A=“...” and D="...”

Converted into a query plan of logical operators

Tt projection

T1.B=T2.Band T2.C = T3.C

Select A, D from T1, T2, T3 where @

and A="...” and D="“...” Join ...X T3
Join TIXT2
/‘ '\@
a O selection

(2

O selection

T projection
Select A, D from T1, T2, T3 where
T1.B=T2.Band T2.C = T3.C

and A="...” and D="“...” ° Join ...X T3

Join TIXT2
/' \@
a O selection

(2

O selection

Tt projection

T1.B=T2.Band T2.C = T3.C

Select A, D from T1, T2, T3 where @

and A=“...” and D="...” Join ...XT3
Join TIXT2
/‘ \@
a O selection

o selection

Tt projection

T1.B=T2.B and T2.C =T3.C

Select A, D from T1, T2, T3 where @

and A="...” and D="“...” Join ...X T3
Join TIX T2
/ \@
a O selection

(2

O selection

Tt projection

T1.B=T2.Band T2.C = T3.C

Select A, D from T1, T2, T3 where @

and A="...” and D=...” Join ...XT3
Join TIXT2
/ \®
” o selection

(2

O selection

Tt projection

T1.B=T2.Band T2.C = T3.C

Select A, D from T1, T2, T3 where @

and A=“...” and D="...” Join ...X T3
Join TIXT2
/ \@
v O selection

(2

O selection

Tt projection
All immplement an iterator interface
(the glue)
° Join ...xT3
Join TIX T2
/ '\@
e O selection

(2

O selection

Selection Projection Join

O I

Order by Distinct Group by

= oA

Each can be implemented using different algorithms

Selection Projection Join
& IT Y
Order by Distinct Group by

= o 686

Each can be implemented using different algorithms

Selection Projection Join
& IT Y
Order by Distinct Group by

= o 686

different trade-offs for different contexts

Most content

/\

Selection Projection Join
O I 9
Order by Distinct Group by

= o 686

A

B

Selection

Select * from ... where A = “...”

Select * from ... where A = “...”

Unclustered Clustered
Index Index

D LU=

Scan

Select * from ... where A = “...”

Unclustered Clustered
Index Index

D LU=

Scan

O(N/B)

Scan

O(N/B)

Select * from ... where A = “...

Unclustered

Index
2%

O(logs(N)+S)

Clustered
Index

11

Scan

O(N/B)

Select * from ... where A = “...

Unclustered

Index
2%

O(logs(N)+S)

/

Assuming B-tree

Clustered
Index

11

Scan

O(N/B)

Select * from ... where A = “...”

Unclustered Clustered

Index

O(logs(N)+

/

Assuming B-tree

Index

11

i

'\

qualifying tuples

Select * from ... where A = “...”

Unclustered Clustered
Index Index

R L

O(N/B) O(logs(N O(logs(N)+S/B)

Scan

Select * from ... where X = “...” and Y=*...”

[[

How about when we have multiple selection conditions?

X Y

Select * from ... where X = “...” and Y=*...”

Assume two unclustered indexes

X Y
X<]>< 'Xl>v

Select * from ... where X = “” and Y=

X Y

Let [Xi| and |Yj| denote the number of matching rows to A and to B, resp.
e.g., |Xil = 3 and |Yj|=4

Select * from ... where X = “” and Y=

X Y

Let |[Xi| and |Y;| denote the number of matching rows to A and to B, resp.
e.g., [Xi| =3 and |Y||=4
The query is looking for the intersection: |[Xi N Yj| = 1

Select * from ... where X = “” and Y=

X Y

Let |[Xi| and |Y;| denote the number of matching rows to A and to B, resp.
e.g., [Xi| = 3 and |Y||=4
The query is looking for the intersection: |X; N Yj| = 1

Some ideas?

Select * from ... where X = “” and Y=

X Y

Algorithm 1: Search index Y
For each row In table, check if X matches

Cost:

Select * from ... where X = “” and Y=

Algorithm 1: Search index Y
For each row In table, check if X matches

Cost: logs(N) + |Yj|/B + |Y;| I/0

Select * from ... where X = “” and Y=

Algorithm 1: Search index Y
For each row In table, check if X matches

Cost: logs(N) + |Yj| 1/0

Select * from ... where X = “” and Y=

Algorithm 2: Search index X
For each row In table, check if Y matches

Cost:

Select * from ... where X = “” and Y=

Algorithm 2: Search index X
For each row In table, check if Y matches

Cost: logs(N) + [Xi|/B + |Xi| I/0

Select * from ... where X = “” and Y=

Algorithm 2: Search index X
For each row In table, check if Y matches

Cost: logs(N) + |Xi| I/0

Select * from ... where X = “” and Y=

Algorithm 2: Search index X
For each row In table, check if Y matches

Cost: logs(N) + |Xi| I/0

Less expensive since [Xi| < [Y;| (Xi|=3 and |Y;| = 4)

Select * from ... where X = “” and Y=

Principle: filter based on most selective predicate first

Select * from ... where X = “” and Y=

Principle: filter based on most selective predicate first

This requires frequency estimation, e.g., estimating |Xi| or |Yj

Select * from ... where X = “” and Y=

Principle: filter based on most selective predicate first
This requires frequency estimation, e.g., estimating [Xi| or [Yj|

Is there yet another alternative?

Select * from ... where X = “” and Y=

X Y

Algorithm 3: Search index A and B for matching row IDs

Select * from ... where X = “” and Y=

X Y

Algorithm 3: Search index A and B for matching row IDs

Select * from ... where X = “” and Y=

X Y

Algorithm 3: Search index A and B for matching row IDs
Access table for intersection

Select * from ... where X = “” and Y=

X Y

Algorithm 3: Search index A and B for matching row IDs
Access table for intersection

Cost:

Select * from ... where X = “” and Y=

Algorithm 3: Search index A and B for matching row IDs
Access table for intersection

Cost: 2-logs(N) + |Xi|/B + |Y;|//B + [XinY;| 1/0

Select * from ... where X = “” and Y=

Algorithm 3: Search index A and B for matching row IDs
Only search table for intersection

Cost: 2 -logs(N) + [Xi|/B + |Yj|/B + [XinY;j| I/0
Better if [XiNYj| is small relative to |Xil, |Yjf

Select * from ... where X = “” and Y=

X Y

What if we combine these indexes into a composite index?

Select * from ... where surname = “Lovelace” and firsthame=“Ada’

Address , Phone

Surname, first name X

Long, Justin
Lovelace, Abby
Lovelace, Ada
Lovelace, Adam

Lopez, Jenniffer

Select * from ... where X = “...” and Y=*...”

X Y

Algorithm 4: Search composite index A and B for matching row IDs

Select * from ... where X = “...” and Y=*...”

X Y

Algorithm 4. Search composite index A and B for matching row IDs
Cost: logs(N) + [XinY;j| 1/0

Select * from ... where X = “...” and Y=*...”

X Y

Algorithm 4. Search composite index A and B for matching row IDs
Cost: logs(N) + |XiNY;j| I/O

Cheapest option so far!

Select * from ... where X = “...” and Y=*...”

X Y

Algorithm 4. Search composite index A and B for matching row IDs
Cost: logs(N) + |XiNY;j| I/O

Cheapest option so far!
Downsides?

Select * from ... where Y=...”

X Y

Algorithm 4: Search composite index A and B for matching row IDs
Cost: logs(N) + |XiNY;j| I/O

Cheapest option so far!
Downsides? Cannot handle queries just based onY

Select * from ... where Y=...”

X Y

Composite indexes can achieve better performance for some
queries but are less generic. Choose them carefully :)

Selection Projection Join

O I

Order by Distinct Group by

= oA

Projection Select X from table

i

X Y

Projection Select X from table

i

X Y

Trivial in row-stores. More interesting in column-stores (next week).

Selection Projection Join

O I

Order By Distinct Group by

= oA

Select ... From ... where ... Order By coll, col2, ... ASC | DESC

Select ... From ... where ... Order By col1, col2, ... ASC | DESC

If we have an applicable index

Unclustered Clustered
iIndex scan iIndex scan

A oY

Select ... From ... where ... Order By col1, col2, ... ASC | DESC

If we have an applicable index

Unclustered Clustered
iIndex scan iIndex scan

D LD

(Good if result set is small) (Good in all cases)

Select ... From ... where ... Order By col1, col2, ... ASC | DESC

Quick-Sort Heap-Sort

o

If result set fits iIn memory If quick-sort takes longer than
expected

Select ... From ... where ... Order By col1, col2, ... ASC | DESC

Quick-Sort Heap-Sort

o

If result set fits iIn memory If quick-sort takes longer than
expected

Introsort :)

Select ... From ... where ... Order By col1, col2, ... ASC | DESC

Or external sort if data does not fit in memory

Sorted partitions Sorted output

Selection Projection Join

O I

Order By Distinct Group by

= oA

Select Distinct c1, c2, ... FROM ...;

Select Distinct address FROM people;

Name Address Address

Bert 48 1st St.
48 1st St.

Ernie 48 1st St.

Select Distinct address FROM people;

Name Address Address

Bert 48 1st St.
48 1st St.

Ernie 48 1st St.

How to implement?

Select Distinct c1, c2, ... FROM ...;

Sort & eliminate adjacent
Identical items

Select Distinct c1, c2, ... FROM ...;

Sort & eliminate adjacent
Identical items

Quick-Sort

O
Heap-Sort a—
External Sort p—

a—

Index scan
Etc.

Select Distinct c1, c2, ... FROM ...;

Sort & eliminate adjacent Hash to identify identical
iIdentical items Items
Quick-Sort 0000
ALK

O
Heap-Sort a—
External Sort p— V
Index scan -

Etc.

Select Distinct c1, c2, ... FROM ...;

Sort & eliminate adjacent Hash to identify identical
Identical items items
Quick-Sort : : : : : Line.ar. probing
Heap-Sort Chaining
External Sort V Extendible hashing
Index scan Cuckoo hashing

Etc. Etc.

Select Distinct c1, c2, ... FROM ...;

Sort & eliminate adjacent Hash to identify identical
iIdentical items items
0§80
THT

I= /

CPU: O(N log2 N) O(N)

Select Distinct c1, c2, ... FROM ... order by c1, c2 ...;

Sort & eliminate adjacent Hash to identify identical
iIdentical items items
000
l— 11
CPU: O(N log2 N
Better if we later need to O(N)

sort anyways

Select Distinct c1, c2, ... FROM ...;

Sort & eliminate adjacent Hash to identify identical
iIdentical items items
. 10090
A KL K
o
l S
]
CPU: O(N logz N) O(N)
Better if we later need to Good if user is fine with

sort anyways unordered output

Selection Projection Join

O I

Order by Distinct Group By

= oA

Select c1, c2, ... FROM ... Group By

Select address, sum(income) FROM people Group By address
(Income per household)

Name Address lncome Address lIncome

Select address, sum(income) FROM people Group By address
(Income per household)

Name Address lncome Address lIncome

Bert 48 1st St. 100K 48 1st St. 200K

Ernie 48 1st St. 100K

Select address, sum(income) FROM people Group By address
(Income per household)

Name Address lncome Address lIncome

Bert 48 1st St. 100K 48 1st St. 200K

Ernie 48 1st St. 100K

How to execute?

Select address, sum(income) FROM people Group By address

Index/Sort by Category

=

e.d., B-tree (address -> sum(income))

Select address, sum(income) FROM people Group By address

Index/Sort by Category Hash by Category

= N

e.d., also (address -> sum(income))

Select c1, c2, ... FROM ...

Index/Sort by Category

=

CPU: O(N logz N)

Group By

Hash by Category
0§80
THT

N/

O(N)

Select c1, c2, ... FROM ... Group By

Index/Sort by Category Hash by Category
00
l CE—— : 0 : ’ :
CPU: O(N logz N O(N)
Better if we later need to Good if user is fine with

sort anyways unordered output

Selection Projection Join

O I

Order by Distinct Group By

= oA

Join: Select ... FROM T1, T2 where T1.B = T2=B

A B B C

Join

T1 T2

Select Owner, Specie FROM People, Pets where T1.Pet_ID = T2=Pet_ID

Owner Pet ID Pet ID Specie
Bert 1 : 1 shark
Join
Ernie 2 X 2 tiger

People Pets

Select Owner, Specie FROM People, Pets where T1.Pet_ID = T2=Pet_ID

Owner Pet ID Pet ID Specie Owner Specie

Bert 1 . 1 shark Bert shark
Join

Ernie 2 X 2 tiger Ernie tiger

People Pets

Join Algorithms

Nested Block . Sort-merge (Grace hash
Nested Index-Join . .
Loop Join Join
Loop

Join Algorithms

Nested Slock . Sort-merge Grace hash
Nested Index-Join . .
Loop Join Join

Loop

Straw man

Join Algorithms

Nested Slock . Sort-merge Grace hash
Nested Index-Join . .
Loop Join Join
Loop

T

Good when one relation almost
or entirely fits In memory

Join Algorithms

Nested Block . Sort-merge (Grace hash
Nested Index-Join . .
Loop Join Join
Loop

T

There are index/es on the join keys

Join Algorithms

Nested Block . Sort-merge (Grace hash
Nested Index-Join . .
Loop Join Join
Loop

N/

Both relations must bigger than
memory

Nested Loop

For each entry In one relation, scan whole other relation

Nested Loop

For each entry In one relation, scan whole other relation

CNO <X
X
Zm<=>Q0
]

Nested Loop

For each entry In one relation, scan whole other relation

G
W
Y
E

CNO <X
X

—_—) N

No match for X

Nested Loop

For each entry In one relation, scan whole other relation

—

G
W
X Y
E

CNQO <X

N

No match for X

Nested Loop

For each entry In one relation, scan whole other relation

M} —

G
W
Y
E

CNQO <X

N
Match for Y

Nested Loop

For each entry In one relation, scan whole other relation

G
W
Y
E

CNO <X
X

—_—) N

No more matches for Y

Nested Loop

For each entry In one relation, scan whole other relation

Cost?

11 12

Nested Loop

For each entry In one relation, scan whole other relation

Cost: O(|T1|- [T2|/B) I/0

11 12

Nested Loop

For each entry In one relation, scan whole other relation

Cost: O(T1| - [T2|/B) I/O

What'’s a simple improvement?

11 12

Block Nested Loop

For each block in one relation, scan whole other relation

—(

Block Nested Loop

For each block in one relation, scan whole other relation

Block Nested Loop

For each block in one relation, scan whole other relation

Block Nested Loop

For each block in one relation, scan whole other relation

Block Nested Loop

For each block in one relation, scan whole other relation

No match in first block

Block Nested Loop

For each block in one relation, scan whole other relation

Block Nested Loop

For each block in one relation, scan whole other relation

Block Nested Loop

For each block in one relation, scan whole other relation

Match!

Block Nested Loop

For each block in one relation, scan whole other relation

Block Nested Loop

For each block in one relation, scan whole other relation

Block Nested Loop

For each block in one relation, scan whole other relation

— < Cost?
X
T1 T2

Block Nested Loop

For each block in one relation, scan whole other relation

— < Cost: O(|T1|/B - [T2[/B) I/0
X
T T2

Block Nested Loop

What if we read Q pages from T1 for each scan of T2?

Cost: O([T1|/B - [T2|/B) I/O

11 12

Block Nested Loop

What if we read Q pages from T1 for each scan of T2?

Cost: O(T1|[/(B - Q) - [T2|/B) I/O

11 12

Block Nested Loop

What if we read Q pages from T1 for each scan of T2?

Cost: O(|T1/(B - Q) - [T2|/B) I/O
X What if Q = min(|T1|/B, |[T2|/B)?
(One table fits iIn memory)

11 12

Block Nested Loop

What if we read Q pages from T1 for each scan of T2?

Cost: O(|T1/(B - Q) - [T2|/B) I/O
X What if Q = min(|T1|/B, |[T2|/B)?
(One table fits In memory)

T T2 Cost: O(|T1/B + |T2[/B) I/O

Join Algorithms

Nested Slock : Sort-merge Grace hash
Nested Index-Join . .
Loop Join Join
Loop

Index-Join

Suppose we have index on one of the relations

11 12

Index-Join

For each entry in one relation, search index for other relation

LML

Index-Join

For each entry in one relation, search index for other relation

—
Cost?
M (Assuming B-tree, clustered
or unclustered)
T T2

Index-Join

For each entry in one relation, search index for other relation

Cost:

\ O(|T1|/B + |[T1]| - logs|T2|) I/0
(Assuming B-tree, clustered
or unclustered)

Index-Join

For each entry in one relation, search index for other relation

Cost:

—
\ O(|T1] - logs|T2|) I/0
2 (Assuming B-tree, clustered
or unclustered)
T T2

Index-Join

What if both relations have an unclustered index on the join key?

H-d

Index-Join

What if both relations have an unclustered index on the join key?

TmMmOO M >

OO > MO
> OImmMmmMO

11 12

Index-Join

What if both relations have an unclustered index on the join key?

TmMmOO W >

OO P> MM
> OITMmMmMQO

11 12

Index-Join

What if both relations have an unclustered index on the join key?

mMmmOoOOWm>
OO0O> MW@
X
mMmmOoOOWm>
> OWmmMO

11 12

Index-Join

What if both relations have an unclustered index on the join key?

MmO >
OO > MmN
X
MmO >
> O0OWmmMO

11 12

Index-Join

What if both relations have an unclustered index on the join key?

mMmmOO >
OO > M
X
mMmmOO >
> OTmmO

11 12

Index-Join

What if both relations have an unclustered index on the join key?

Cost?
X <R
T T2

Index-Join

What if both relations have an unclustered index on the join key?

Cost:
O(|T1|/B + |[T1| + [T2|/B + |T2]|)
X X X
T T2

Index-Join

What if both relations have an unclustered index on the join key?

Cost:
O(|T1]| + |T2|)
T1 T2

Index-Join

What if both indexes are clustered?

Cost?
- -
3 A 3
T1 T2

Index-Join

What if both indexes are clustered?

Cost: O(|T1|/B + [T2|/B)
- -
3 X 3
T T2

Nested Block . Sort-Merge (Grace hash
Nested Index-Join . .
Loop Join Join
Loop

Sort-Merge Join

(A) Sort both relations based on join key

OO > MO
> OImmMmmMO

11 12

Sort-Merge Join

(A) Sort both relations based on join key
(B) Scan both relations linearly

A
B
C
X
D
E
F

A
B
C
D
E
F

11 12

Sort-Merge Join

(A) Sort both relations based on join key
(B) Scan both relations linearly

A
B
C
X
D
E
F

A
B
C
D
E
F

11 12

TMmOO T >

11

Sort-Merge Join

(A) Sort both relations based on join key
(B) Scan both relations linearly

A
B /0 cost?
9 C CPU cost?
D Memory cost?
=
F

Assuming both relations do not fit in
T2 memory, and two-pass sorting

TMmOO T >

11

Sort-Merge Join

(A) Sort both relations based on join key
(B) Scan both relations linearly

A

= /0 cost? O(|T1|/B + [T2|/B)
C CPU cost?
D
E
F

Memory cost?

Assuming both relations do not fit in
T2 memory, and two-pass sorting

TMmOO T >

11

Sort-Merge Join

(A) Sort both relations based on join key
(B) Scan both relations linearly

g /O cost? O(|T1|/B + [T2|/B)

C CPU cost? O(|T1|-log2|T1|+|T2|-log2|T2])
D

E

F

Memory cost?

Assuming both relations do not fit in
T2 memory, and two-pass sorting

TMmOO T >

11

Sort-Merge Join

(A) Sort both relations based on join key
(B) Scan both relations linearly

A
0 /O cost? O(|T1|/B + |T2|/B)
v C CPU cost? O(|T1|-logz[T1|+[T2|-l0g2|T2|)
D Memory cost? O(/max(|T1],|T2])- B)
E
- Assuming both relations do not fit in
T2 memory, and two-pass sorting

Nested Block . Sort-Merge (Grace Hash
Nested Index-Join . .
Loop Join Join
Loop

Grace Hash Join

Best for very large relations that do not fit in memory

Smaller
Larger

Grace Hash Join

(A) Hash partition smaller table

Hash partltlon E:]
G groups

Smaller

Grace Hash Join

(A) Hash partition smaller table
Repartition until each partition fits in memory

/ — []

\
Hash partltlon E:] E:—j

I

Smaller

Grace Hash Join

(A) Hash partition smaller table

Requires one pass and multiple buffers

~ODH

L]
"
B

Smaller

Grace Hash Join

(B) Hash partition larger table using same hash function

i

[
U
—

Larger

Grace Hash Join

(B) Hash partition larger table using same hash function
For larger table, each partition can be larger than memory.

~ODH

L]
"
B

Larger

Grace Hash Join

(C) Join each pair of matching partitions independently

Grace Hash Join

(C) Join each pair of matching partitions independently

Only a pair of matching partitions can have joining
keys since we hash partitioned

Grace Hash Join

(C) Join each pair of matching partitions independently

Scan page Load to
at a time H_____j . C::j memory
I
L=

T1 T2

Grace Hash Join Analysis

When partitioning smaller table, number of available buffers dictates
how many iterations we need until all partitions it in memory

000 SE:‘J
|\
|

Smaller

Grace Hash Join Analysis

When partitioning smaller table, number of available buffers dictates
how many Iterations we need until all partitions it in memory

Assuming M entries fit in memory, # iterations needed is:

log (| Smaller|) 1
~5350 NoM

L[]
*D
[

Smaller

Grace Hash Join Analysis

When partitioning smaller table, number of available buffers dictates
how many Iterations we need until all partitions it in memory

Assuming M entries fit in memory, # iterations needed is:

. | (| Smaller |) L
OgM | —————
ajee [] X M
> RN
Partitioning # partitions we must
D fanout divide table into such

Smaller that each fits in memory

Grace Hash Join Analysis

When partitioning smaller table, number of available buffers dictates
how many Iterations we need until all partitions it in memory

Assuming M entries fit in memory, # iterations needed is:

e~ log (| Smaller|) 1
Q00 [’ M
. T T
[___] Partitioning Joining

Smaller Ilterations Ilteration

Grace Hash Join Analysis

When partitioning smaller table, number of available buffers dictates
how many Iterations we need until all partitions it in memory

Assuming M entries fit in memory, # iterations needed is:

(| Smaller |) (| Smaller|)
logy [————) +1 = logn (————
M B b
S

D g
\‘ D ame as external merge sort :)

Smaller

Grace Hash Join Analysis

When partitioning smaller table, number of available buffers dictates
how many Iterations we need until all partitions it in memory

Assuming M entries fit in memory, # iterations needed is:

| Smaller |
logu B a— =2 — M=+/|Smaller| B

D 00
\‘ D Equate to 2 and solve for M to obtain

memory needed to join in two passes
Smaller

Grace Hash Join Analysis

Overall analysis including both tables, assuming two-pass partitioning

<[]
[:_____] /O cost? O(|T1|/B + |[T2|/B)
[j o CPU cost? O(|T1|+|T2|)

[____] N Memory cost? OG/min(|T1],|T2]) - B)
T1 T2

Grace Hash Join Analysis

Overall analysis including both tables, assuming two-pass partitioning

<[]
[:_____] /O cost? O(|T1|/B + |[T2|/B)
[j o CPU cost? O(|T1|+|T2|)

[::] <] Memory cost? ~ OG/min([TT[,[72]) - B)

T1 T2 Lower memory footprint and
CPU cost than merge-sort join :)

Grace Hash Join Analysis

Overall analysis including both tables, assuming two-pass partitioning

/0O cost? O(|T1|/B + |T2|/B)
|« 3

CPU cost? O(|T1|+|T2])

[j O Memory cost? OG/min(|T1][,|T2]) - B)
[:::] o] L ower memory footprint and

CPU cost than merge-sort join :)
T1 T2

Sort join is still better if we have
an order by clause

Query Operators

Selection Projection Join

O I

Order by Distinct Group by

= oA

Query Cardinality Query
Operators Estimation Optimization

Query Cardinality Query
Operators Estimation Optimization

Cardinality Estimation

Y Select * from ... where X = “i” and Y="}"

Cardinality Estimation

X Y Select * from ... where X = “i” and Y=j”
Algo 1: Search index Y logs(N) + [|Y;| 170
Algo 2: Search index X logs(N) + [Xi] I/0

Algo 3: Search both 2 - logs(N) + [Xi|/B + |Yj|/B + [XinYj| I/0

Cardinality Estimation

X Y Select * from ... where X = “i” and Y=j”
Algo 1: Search index Y logs(N) + [Y;j| I/0

Algo 2: Search index X loga(N) + [Xi] 1/O

Algo 3: Search both 2 - logs(N) + |Xi|/B + |Yj|/B + [XinYj| I/0

Determining best plan requires estimating |Xil, |Y;| and |[XiNYj|

Cardinality Estimation

How many rows have a particular value X;?

[X3|=2

S W N WDIX

Cardinality Estimation

How many rows have a particular value X?

Approach 1: Estimate X; as N / [X]

/N

rows # unique X values

[X3|=2
|X|=4
N=5

S W N WDIX

Cardinality Estimation

How many rows have a particular value X?

Approach 1: Estimate Xias N/ |[X| = 5/4

/N

rows # unique X values

[X3|=2
|X|=4
N=5

Cardinality Estimation

How many rows have a particular value X?

S W N WDIX

Approach 1: Estimate Xias N/ [X| = 5/4

Problem: estimating |X| is non-trivial as well!

Cardinality Estimation

How many rows have a particular value X?

S W N WDIX

Approach 1: Estimate Xias N/ [X| = 5/4
Insert 2 —

Problem: estimating [X| is non-trivial as well!

e.d., during insertion, we do not know if new
value is unique or not

Cardinality Estimation

How many rows have a particular value X?

B WWN =
S W N WDIX

Approach 1: Estimate Xias N/ [X| = 5/4

If we have an index on X, it becomes easy to tell if any
new insert/delete/update adds or removes a unique value

Cardinality Estimation

How many rows have a particular value X?

— W N W HMIX

’
2
3
3
4 Approach 1: Estimate Xias N/ [X| = 5/4
1X|=4

If we have an index on X, it becomes easy to tell if any
new insert/delete/update adds or removes a unique value

So we can maintain a cardinality counter for each index

Cardinality Estimation

:
Example o
Delete2 —» 3
3
4

1X|=4

X

—< WO NN W B

If we have an index on X, it becomes easy to tell if any
new insert/delete/update adds or removes a unique value

So we can maintain a cardinality counter for each index

Cardinality Estimation

X

4

3
Delete 2 3
3

B~ W0 W =

1X|=4

If we have an index on X, it becomes easy to tell if any
new insert/delete/update adds or removes a unique value

So we can maintain a cardinality counter for each index

Cardinality Estimation

X

4

3
Delete 2 3
3

B~ W0 W =

If we have an index on X, it becomes easy to tell if any
new insert/delete/update adds or removes a unique value

So we can maintain a cardinality counter for each index

Cardinality Estimation

X

4
3
3
1

B~ W0 W =

What if there is no index?

Cardinality Estimation

X

4
3
3
1

B~ W0 W =

What if there is no index?

periodically scan and count #unique entries

OO = W N WX

estimate any |Xi| as N/[X]

1

Assumes counts of all values are uniform

OO = W N WX

estimate any |Xi| as N/[X]

1

Assumes counts of all values are uniform

Can we do better?

Histograms

Count

o N B O

0-2 3-95 6-8
Range buckets

Histograms

—
-

Count

o N B O

0-2 3-95 6-8
Range buckets

Histograms

Count

o N B O

0-2 3-5 6-8
Range buckets

Estimate |Xi| as bucket count / bucket range

10

Count

o N B O

0-2 3-5 6-8
Range buckets

Estimate |Xi| as bucket count / bucket range

Estimate |X4| = as 10/3=3.3

Query Cardinality Query
Operators Estimation Optimization

Query Optimization

A B B C C D

Join Join

A=“...” D=“...”

Select A, D from T1, T2, T3 where
T1.B=T2.Band T2.C =T3.C

and A=“...” and D="...”

Tt projection
Select A, D from T1, T2, T3 where
T1.B=T2.Band T2.C =T3.C -
and A="...” and D="...” Jom e WS
Join TIX T2
/' '\
v O selection

O selection

Can join tables in different orders 1t projection

JOin XT3

Join TIX T2
/ '\
a O selection

O selection

Can join tables in different orders @ Tt projection

Join T1 ...
Join T2 T3
/' \@
AN
O selection

O selection

Can select in different orders @ Tt projection

Join T1 ...
Join T2 T3
/' \@
AN
O selection

O selection

Can select in different orders @ Tt projection

Join T1 X
2 "\
e,

o selection O Se|eCthr®

Join T2X T3

Can project columns in different
orders as long as selections or I projection
joins do not rely on them

Join T1 X
2 o\
e,

o selection O Se|eCthr®

Join T2X T3

Tt projection

| 1
Join T1X ...
a AN
@ Tt projection
AN
o selection
AN

o selection
Drop column C earlier as it’s not
needed later

Join T2X T3

Can implement each = broiection
operator in different ways P1o

| 1
Join T1X ...
a AN
@ Tt projection
AN
o selection
AN

) selectior@

Join T2X T3

Can implement each = broiection
operator in different ways P1o

| 1
Join T1 X ...
Scan vs. index? Va o\
@ Tt projection
o\
o selection
AN

o selectio@

Join T2X T3

Can implement each = broiection
operator in different ways Prol
1

Join T1X ...
a "
11 projection
Block nested loop? @

N
Sort-merge? o selection
Grace Hash?
Index? N
O selec’uo@
_______‘ Join T2XT3

Tt projection

| 1
Join T1X ...
a AN
@ Tt projection
AN
o selection
AN

O selection
These query plans all produce the same output @

Join T2X T3

Tt projection

| 1
Join T1X ...
a AN
@ Tt projection
AN
o selection
AN

O selection
These query plans all produce the same output @

possible plans is exponential in # of selection predicates
(you can permute them) Join T2X T3

Tt projection

| 1
Join T1X
a e AN
@ TT projection
AN
o selection
AN

However, the cost of each plan is different O SeleCti0f®

Join T2X T3

Tt projection

| 1
Join T1X ...
a AN
@ Tt projection
AN
o selection
AN

However, the cost of each plan is different o selection
The optimizer searches the space of possible plans

to find a good one (not best but good enough) Join TOXT3

Thanks!

