LSM-Trees

Niv Dayan

Project Announcements

=4

&G

Feedback weeks Deadline
Oct 6-10-Step 1 Dec 1
Nov 3-7 - Step 2

Project Announcements

(i)
i

Min Expected Struggling in your
Contribution: 20% group? Ask for help.

Project Announcements

(i)
i

Min Expected Struggling in your Last resort:
Contribution: 20% group? Ask for help. splitting

We are trying to optimize the following kinds of queries

\ n

select * from table where A = "...

\ n

select * from table where B > “.."and B < ...

Recap

Append-Only Table Sorted Table Extendible Hashing B-tree

Append-Only Table

O(N/B) for any selection query
O(1/B) for insertions

_— T\ flush

Buffer Table

Memory Storage

Append-Only Table Sorted Table Extendible Hashing B-tree

22
32
32
61
74
290
97

Sorted Table

Binary search: O(log2N/B) I/O

Update/insert/delete: O(N/B) read & write I/0O

Append-Only Table Sorted Table Extendible Hashing B-tree

A directory maps pages in
storage with a given hash prefix

Handle overflows via chaining

Extendible Hashing

Directory

M

00
01
10
11

W

Memory

/1N

Pages

X, Y, Z

Storage

When we reach capacity, double
directory size.

New directory slots still point to
previous pages

Extendible Hashing

Directory

M

000
010
100
110
001
011
101
111

SR

\
e

Pages

X Y, Z

Extendible Hashing

Directory Pages
rre——
000 i
010 g
100 [
Split one overflowing bucket at a
. . . 110 !
time by rehashing entries.
001 (Y 7
011 s !
101 \ [
111 QY
Mecaseremnases? ..
e

Query cost: O(1) read I/O

Insertion cost:
O(1) read I/O
O(1) write I/O

Extendible Hashing

Directory

M

000
010
100
110
001
011
101
111

W

/

Pages

Extendible Hashing

Directory Pages
ooy
Query cost: O(1) read I/O 000 r
010 g
Insertion cost: 100 (
O(1) read I/O 110 \
O(1) * GC write I/O -
001 (
011 !
101 {
Random writes to storage entail SSD 11 B
garbage-collection S .

Append-Only Table Sorted Table Extendible Hashing B-Tree

B-Tree

Each node has B children. This allows pruning by a
factor of B in each level

8

"E' 22"
D B D Can issue random writes to storage leading to SSD
oYY XY\ garbage-collection

B-Tree

Each node has B children. This allows pruning by a
factor of B in each level

8

"E' 22"
D B D Can issue random writes to storage leading to SSD
oYY XY\ garbage-collection
B B

Query: O(logsN) read I/O

Update/insert/query: O(loge N) read I/O
& O(1) * GC write I/O

Cost Unit append-only Sorted Extendible

)) . B-Tree
Metric table File Hashing
r —
Query Read IOs O(N/B) O(log2 N/B) O(1) O(logs N)
- =
Insert Read IOs 0 O(N/B) O(1) O(logs N)
Writes 10s O(1/B) O(N/B) O(1) & GC O(1) & GCJ
|

Cost : append-only _
Metric Unit table B-Tree
r —
Query Read IOs O(N/B)
- =
Insert Read 10s 0 O(logs N)
Writes IOs O(1) & GC
— J

Can we get the best of both worlds?

Typical CS approach:

(1) Identify solutions with diff properties

(2) Combine to get something in-between

Cost - append-only
Metric Unit table B-Tree
r -
Query Read IOs O(N/B)
- -
Insert Read 10s 0 O(logs N)
Writes IOs O(1) & GC
— - |

Can we get the best of both worlds?

The Log-Structured Merge-Tree

B-tree LSM-tree is Google’s BigTable LSM-tree is
is invented invented adopts LSM-tree widely used

e

1970 1996 2005 Today

&

B-tree LSM-tree is Google’s BigTable LSM-tree is
is invented invented adopts LSM-tree widely used
1970 1996 2005 Today

Why was it not invented and used sooner?

The declining costs of storage allow us to store more data cheaply.
Hence, application workloads are becoming more write-intensive.
This drives a need to optimize for data ingestion.

9
10
10? < Main Memory
105 XX XX XX - Disk
105 X
10 . X X X
10, XX XXk
102 ...'-. ><><><><><><><><
10 |
1

Price per GB (%)

10
10
10
10

10

0
1
4

1
2
3
5
1

980 1985 1990 1995 2000 2005 2010 2015
Year

At the same, the advent of SSDs makes write |/Os more expensive than read 1/0Os.
The drives a need for more write-optimized data structures.

Necessity is the mother
of invention

Plato

(Loose attribution)

Leveled LSM-tree Basic LSM-tree Tiered LSM-tree

13 %

Basic LSM-tree

Level
/ Buffer < 0
(1
Sorted 2

arrays

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Level
Buffer < 0
(1
Sorted 2
arrays 3

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Inserts
Level 1
Buffer < o L.
(1
Sorted 2
arrays 3

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Inserts
Level 1
Buffer < 0 sort & flush buffer
(1)
Sorted 2
arrays 3

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Inserts
Level 1

sort & flush buffer

Buffer <() D\A

Sorted 2

arrays 3

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging SSTs
Inserts
Level 1
Buffer < 0 sort & flush buffer
Sorted . 2
arrays 3

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging SSTs
Inserts
Level 1

sort & flush buffer

Buffer <()
Sorted 2 C “)
y

arrays Sort-merge

3

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging SSTs
Inserts
Level 1

sort & flush buffer

Buffer <() D\A
Sorted 2 “)
< Sort-merge &

arrays
3 Eliminate duplicates

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging SSTs
Inserts
Level 1

sort & flush buffer

Buffer < 0 D\A
(4 X

Sorted 2 o Xy -
arrays < Sort-merge &
3 Eliminate duplicates

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging SSTs
Inserts
Level 1
Buffer < 0 sort & flush buffer
(1 ><® D\ ®
Sorted 2 C X “)
arrays < Sort-merge &
3 Eliminate duplicates &
Discard original arrays

Basic LSM-tree - Example

Level
/ Buffer < 0
J 3
. Sorted 2
" arrays ;

Basic LSM-tree - Example

inserts
Level 1
x Buffer <() 46 9
(1
T Sorted 2
L’ arrays ;

Basic LSM-tree - Example

inserts
Level 1
Buffer < 0 D sort & flush buffer
(1 4 6 9
Sorted 2

arrays 3

Basic LSM-tree - Example

inserts
Level 1
x Buffer <()
(1 46 9
T Sorted 2
L’ arrays ;

Basic LSM-tree - Example

inserts
Level 1
f Buffer <O G
/ r
1 46 9
< Sorted 2
‘ arrays

Basic LSM-tree - Example

inserts
Level 1
& flush buffer

Buffer <() sort

- \

1 4 6 9 3 4 8

Sorted 2
arrays

3

Basic LSM-tree - Example

Level
j Buffer < 0
(1

. Sorted 2
- arrays

inserts

|

4 6 9

3

4

8

Basic LSM-tree - Example

inserts
Level 1
Buffer <()
-
1 C 4 6 9 3 4 8
Sorted 2 34689
arrays < ; Sort-merge

Basic LSM-tree - Example

inserts
Level 1

Buffer < 0
)
4

1 C 4'1 6 9 3 2 8
Sorted 2 34,6 8 9
< Sort-merge &

arrays
3 Eliminate duplicates

Basic LSM-tree - Example

inserts
Level 1
Buffer <()
£ O ©
Sorted 2 <34689“)
arrays Sort-merge &
3 Eliminate duplicates &
Discard original arrays

Basic LSM-tree - Example

inserts
Level 1
j Buffer < 0
(1

" Sorted 2 34689
: arrays

Basic LSM-tree - Example

inserts
Level 1
j Buffer <() 5 7 8
(1

" Sorted 2 34689
: arrays

Basic LSM-tree - Example

inserts
Level 1
Buffer < 0 sort & flush buffer
r)
1 2 7 8
Sorted 2 346 89

arrays 3

Basic LSM-tree - Example

inserts
Level 1
j Buffer <()
i -
1 2 7 8

" Sorted 2 34689
: arrays

Levels have exponentially increasing capacities.

Level Capacity
Buffer < o 1

1 HEe 2
Sorted 2 [IO R I 4

arrays

An updates is made out-of-place through an insertion into the buffer

Put(X, Y)
Level Capacity
Buffer <O . 1
p-
1] 2
Sorted 2 x| I I 4

<

arrays 3 [N N (N Y A P I AN (N B 8

An updates is made out-of-place through an insertion into the buffer

Only an entry’s most recent version should be returned to the user
during a query

Level Capacity
Buffer <O I e I 1
p-
1] 2
Sorted 2 x| I I 4

arrays 3 [N N (N Y A P I AN (N B 8

How to handle deletes?

Level Capacity
Buffer <O . Xo ... 1

(1 v X1 2
Sorted 2 L Xo o oo ... 4
arrays 3 B R Y R Y A I I I 8

Delete an entry out-of-place by inserting a tombstone

Delete(X)

Level Capacity
Buffer <O L XT 1

(1 o X1 2
Sorted 2 XT oo o . 4
arrays 3 LT el T 3

Delete an entry out-of-place by inserting a tombstone

If the most recent version of an entry is a tombstone, it’s
considered deleted. (X is deleted but Y isn’t in this example)

Level Capacity
Buffer < 0 el 1
=
1 e X1 Y 2
Sorted 2 [I 4

arrays
Y 3 bon R T B R R X Yr 8

A point query searches the LSM-tree from smaller to larger levels.
It stops when it finds the first entry with a matching key. Entries with
a matching key at larger levels are older and thus superseded.

Level get(X) Capacity
Buffer < o 1
p> - No need to
i : search here 2
Sorted 2 X oo W 4

arrays

How many levels to search?

Level Capacity
Buffer <o 1

1 HEE 2
Sorted 2 4
arrays 3 o

Buffer size (# entries)

|

How many levels to search? O(log2 N/P)
Level Capacity
Buffer <o 1
1 HEE 2
Sorted 2 4
arrays 3 o

How many levels to search? O(log2 N/P)

Cost per searching each level?

Level Capacity
Buffer <o 1

1 HEE 2
Sorted 2 4

arrays

How many levels to search? O(log2 N/P)

Cost per searching each level? O(log2 N/B) w. binary search

Level Capacity
Buffer <o 1
1 HEE 2
Sorted 2 4
y

arrays

How many levels to search? O(logz N/P)

Cost per searching each level? O(log2 N/B)

Total search cost: O(log2(N/P) “log2(N/B))
Level Capacity
Buffer <o 1
1 HEE 2
Sorted . 2 4
arrays ; ‘

How many levels to search? O(logz N/P)

Cost per searching each level? O(log2 N/B)
Total search cost: O(log2(N/P) * log2(N/B))
If P=B then: O(log2(N/B)32)

Level Capacity
Buffer < o 1

1 R 2
Sorted . 2 4
arrays 3 o

Basic LSM-tree - Get Queries Cost

We can do slightly better by structuring each file (SST) as a static B-tree.
How would this impact search cost?

Total search cost: O(log2(N/P) * log2(N/B))

SST static B-tree structure

Basic LSM-tree - Get Queries Cost

We can do slightly better by structuring each file (SST) as a static B-tree.
How would this impact search cost?

Total search cost: O(log2(N/P) * loge N)

SST static B-tree structure

Basic LSM-tree - Scan Queries

Return most recent version of each entry in the range across entire tree.

Level
Buffer < o ..
SO | |
Sorted 2

y

arrays

Basic LSM-tree - Scan Queries

Return most recent version of each entry in the range across entire tree.

e.g., Scan(4, 6) - range inclusive

Expected output?

Level
Buffer < 0 10 4o 7o
(1 2, 61 9:
Sorted 2 02 42 52 72 82 92

arrays
3 13 23 33 43 53 63 73 83 93

Basic LSM-tree - Scan Queries

Return most recent version of each entry in the range across entire tree.

e.g., Scan(4, 6)
Expected output: 495,61

Level
Buffer < 0 10 4o 7o
(1 2, 61 9:
Sorted 2 02 42 52 72 82 92

arrays
3 13 23 33 43 53 63 73 83 93

Scan(4, 6)

1. Allocate an in-memory buffer (21 page) for each level

e.g., 1 page buffer and
a page Contains 2 entries

10 4o} 70

(o 270)
Eoolo)

21 61]91

02 42]5 7282 92

LSM-tree in storage In-memory buffers Output

Scan(4, 6)

1. Allocate an in-memory buffer (>1 page) for each level
2. Search for start of key range at each level

¥

l1o 4o|7o l 10 4o

¥

l21 61I91 l 2 61

4
02 42)52 72152 95 02 4»

v
63 23133 ﬂés 6J73 8&5793 I J 33 43

LSM-tree in storage In-memory buffers

Output

Scan(4, 6)

1. Allocate an in-memory buffer (>1 page) for each level
2. Search for start of key range at each level

10 4o

21 b1

02 4o

33 43

LSM-tree in storage In-memory buffers

Output

Scan(4, 6)

1. Allocate an in-memory buffer (>1 page) for each level
2. Search for start of key range at each level

Loop until reaching end of range
3. Output youngest version of entry with next smallest key

¥

l1o 40I7o | 10 4o —PP 4

¥

l21 61I91 l 2 61

4
02 42)52 72152 95 02 4»

v
63 23133 ﬂés 6J73 8&5793 I J 33 43

LSM-tree in storage In-memory buffers Output

Scan(4, 6)

1. Allocate an in-memory buffer (>1 page) for each level
2. Search for start of key range at each level
Loop until reaching end of range
3. Output youngest version of entry with next smallest key
4. If we traverse last entry in a given buffer, read next page from run

u/——__\t

‘10 4o|7o | 10 4o 4

v
l21 61I91 | 2, B4
.
63 2J§3 43153 @3 8@3 I J 33 43

LSM-tree in storage In-memory buffers Output

Scan(4, 6)

1. Allocate an in-memory buffer (>1 page) for each level

2. Search for start of key range at each level

Loop unt

il reaching end of range

3. Output youngest version of entry with next smallest key

4. If we traverse last entry in a given buffer, read next page from run

d

10 40|70

21 61)91

o

02 42152 72182 92

Gs 2J§3

e ale o)

LSM-tree in storage

7o
21 b1

52 72

53 63

In-memory buffers

Output

Scan(4, 6)

1. Allocate an in-memory buffer (>1 page) for each level
2. Search for start of key range at each level
Loop until reaching end of range
3. Output youngest version of entry with next smallest key
4. If we traverse last entry in a given buffer, read next page from run

d

‘10 40I7o | 70 4o 52
v

l21 61I91 | 2, B4 J
v

‘02 42'52 72!82 92, 52 72

(1'3 2J§3 43l53 @3 8&@3 I J 53 63

LSM-tree in storage In-memory buffers Output

Scan(4, 6)

1. Allocate an in-memory buffer (>1 page) for each level
2. Search for start of key range at each level
Loop until reaching end of range
3. Output youngest version of entry with next smallest key
4. If we traverse last entry in a given buffer, read next page from run

v
'10 4o|7o | 70 49 5o 61

¥
l21 61'91 l 21 61 \/

‘02 42'52 72!82 92, 52 72
(1'3 2J§3 43l53 @3 8&@3 I J 53 63

LSM-tree in storage In-memory buffers Output

Basic LSM-tree - Scan Queries I/O Cost?

LSM-tree in storage In-memory buffers

Basic LSM-tree - Scan Queries I/0O Cost

O(log2(N/P) *logg(N) + S/B)

LSM-tree in storage In-memory buffers

Basic LSM-tree - Scan Queries I/0O Cost

lvls

v

O(logz2(N/P) * logs(N) + S/B)

LSM-tree in storage In-memory buffers

Basic LSM-tree - Scan Queries I/0O Cost

lvls

v

O(log2(N/P) *logs(N) + S/B)

T

B-tree search cost

LSM-tree in storage In-memory buffers

Basic LSM-tree - Scan Queries I/0O Cost

Ivls # output size

¥ v

O(log2(N/P) *logs(N) + S/B)

T

B-tree search cost

LSM-tree in storage In-memory buffers

Basic LSM-tree - Insertion/Update/Delete cost

How many times is each entry copied?

Level
Buffer < o ..
SO | |
Sorted 2
y

arrays

Basic LSM-tree - Insertion/Update/Delete cost

How many times is each entry copied? O(logz2 N/P)
Level
Buffer < o ...
1 HEE
Sorted . 2
arrays 3

Basic LSM-tree - Insertion/Update/Delete cost

How many times is each entry copied? O(log2 N/P)

Price of each copy?

Level
Buffer - {0 L
1 HHEB
Sorted 2
<

arrays

Basic LSM-tree - Insertion/Update/Delete cost

How many times is each entry copied? O(log2 N/P)
Price of each copy? O(1/B) reads & writes
Level
Buffer - {0 L
1 HHEB
Sorted . 2
arrays 3

Basic LSM-tree - Insertion/Update/Delete cost

How many times is each entry copied? O(log2 N/P)
Price of each copy? O(1/B) reads & writes
Total cost: O((log2 N/P)/B) read & write 1/Os
Level
Buffer < 0 .
1 R
Sorted 2
arrays < 3

Basic LSM-tree - Insertion/Update/Delete cost

Total cost: O((log2 N/P)/B) read & write 1/Os

As all writes are large & sequential (rather than random), there is less
SSD garbage-collection

Level
Buffer < o ..
SO | |
Sorted 2

arrays 3

Operation I/O0 append-only Basic LSM-tree B-Tree
table table
r —
Query Reads O(N/B) O(log2(N/P) * logs N) O(logs N)
- -
Insert Reads 0 O((log2 N/P)/B) O(logs N)
| Writes O(1/B) O((log2 N/P)/B) O(1) & GCJ

Break :)

Declining Main Memory Cost

10,
10 .

~N o0 ©
X
X
X
X
X

(@)
X
X
X
X
X
X

ot
X

e e e
SO OO
W
X
X

[\

Price per GB ($)

N N N

< Main Memory

- Disk

e e e
SO OO O

1980 1985 1990 1995 2000
Year

2005 2010 2015

Declining Main Memory Cost

It’s viable to pin the internal nodes of B-trees in memory

Fence
pointers < 110715 %...
/1 N\
,\ (Block1 | Block2 _ T
| 1 10 15
N array < ; " e
6 13 18

Cost

) Unit append-only Basic LSM-tree)
Metric table table B-Tree
r B
Query Reads IOs O(N/B) O(log2(N/P) Syedg N) o(gx<q)
H —
Insert Reads I0s 0 O((log2 N/P)/B) (1)
Write IOs O(1/B) O((log2 N/P)/B) O(1) & GC
L J

Cost

Unit

append-only

Basic LSM-tree

Metric table table B-Tree
B —
Query Reads IOs O(N/B) O(log2(N/P)) O(1)
- -
Incert Reads I0s 0 O((logz N/P)/B) 0(1)
| Write IOs O(1/B) O((log2 N/P)/B) O(1) & GC
PVIemory #entries O(B) O(N/B) O(N/B)
L -

Memory cost is measured here as # of entries stored in memory

Leveled LSM-tree Basic LSM-tree Tiered LSM-tree

13 %

Leveled LSM-tree

@ Lookup cost IUpdate cost

Leveled LSM-tree

Lookup cost depends on number of levels

Level

Bufter < 0o
(1

Sorted 2

arrays 3

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it?

Level

Bufter < 0o
(1

Sorted 2

arrays 3

Leveled LSM-tree

Lookup cost depends on number of levels

How to reduce it? Increase size ratio T
Level
Buffer < 0
(1
Sorted 2
arrays 3

Leveled LSM-tree

Lookup cost depends on number of levels

How to reduce it? Increase size ratio T
Level Capacity
Bufter < o ... TO
(1 T1
Sorted 2 T2
arrays < 3 T3

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

Level Capacity
Bufter < 0o 1

(1 4
Sorted 2 16

arrays 3 6

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer < o L. 1
(1 4
Sorted 2 16

arrays 3 6

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

inserts
Level 1 Capacity
suffer - {0 L flush 1
(1 D 4
Sorted 2 16

arrays 3 6

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

inserts
Level | Capacity
Buffer < 0 flush & sort-merge 1
...... \
(1 4
Sorted 2 16

arrays 3 ca

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

inserts
Level | Capacity
Buffer < 0 flush & sort-merge 1
......... \4
(1 4
Sorted 2 16

arrays 3 ca

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

inserts
Level | Capacity
Buffer < o flush & sort-merge 1
—
(1 4
Sorted 2 16

arrays 3 ca

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer <0 1
rl D move 4
Sorted 2 16
arrays 3 4

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer {0 Ll 1
(4 A
Sorted 2 16

arrays 3 -

Leveled LSM-tree

Lookup cost?

inserts
Level 1 Capacity
Buffer {0 Ll 1
(4 A
Sorted 2 16
arrays 3 -

Leveled LSM-tree

Lookup cost?
O(log(N/P))

Level
j Buffer < 0
; 2
. Sorted 2
_Fe—” arrays ;

inserts

Capacity
1
4
16

64

Leveled LSM-tree

Lookup cost? Insertion cost?
O(log(N/P))

inserts
Level 1 Capacity
Buffer {0 Ll 1
(4 A
Sorted 2 16

arrays 3 -

Leveled LSM-tree

Lookup cost?
O(log(N/P))

Level
x Buffer < 0
(1

_ Sorted 2
' < arrays

inserts

Insertion cost?
O(T/B e log. (N/P))

Capacity
1
4
16

64

Leveled LSM-tree

Lookup cost? Insertion cost?
O(log(N/P)) O(T/B « log; (N/P))

What happens as we increase the size ratio T?

Leveled LSM-tree

Lookup cost? Insertion cost?
l O(log+(N/P)) O(T/B e log. (N/P)) I

What happens as we increase the size ratio T?

Leveled LSM-tree

Lookup cost? Insertion cost?
@ O(log+(N/P)) O(T/B e log. (N/P))

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/P?

Leveled LSM-tree

Lookup cost? Insertion cost?
l O(log+(N/P)) O(T/B e log. (N/P)) I

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/P?

Lookup cost becomes: Insert cost becomes:
O(1) O(N/(BeP))

Leveled LSM-tree

Lookup cost? Insertion cost?
@ O(log+(N/P)) O(T/B e log. (N/P))

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/P?

Lookup cost becomes: Insert cost becomes:
O(1) O(N/(BeP))

The LSM-tree becomes a sorted file!

Basic LSM-tree

Lookup cost

Insertion cost

Leveled LSM-tree Basic LSM-tree Tiered LSM-tree

13 %

Tiered LSM-tree

I Lookup cost @ Insertion cost

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.

Level Capacity
Bufter < o ... TO

(1 T
Sorted 2 T2

arrays 3 T3

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.

Level Capacity
sufer Lo L L

(1 T
Sorted . 2 T2

arrays 3 T3

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

Level Capacity
sufer - {0 L .

(1 4
Sorted y 2 16

arrays 3 6l

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level 1 Capacity
suffer - {0 L]
(1 4
Sorted 2 16

y

arrays 3 6l

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level 1 Capacity
suffer - {0 L flush 1
(1 D 4
Sorted 2 16

<

arrays 3 6l

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
flush
Buffer 1
< o N
e O 4
Sorted 2 16

<

arrays 3 6l

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

E.g. size ratio of 4

Sorted
arrays

<

inserts

Capacity
1
4
16

64

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

E.g. size ratio of 4

Sorted
arrays

<

inserts

Capacity
1
4
16

64

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer {0 Ll 1
1 N BEE BEE BEe) 4
Sorted < 2 “ 16
arrays 3 sort-merge 62

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer {0 Ll 1
(4 A
Sorted y 2 16
arrays 3 -

Tiered LSM-tree

Lookup cost?

inserts
Level 1 Capacity
Buffer {0 Ll 1
(4 A
Sorted 2 16
arrays 3 -

Tiered LSM-tree

Lookup cost?
O(T « log(N/P))

Level
x Buffer < 0
J 2
T Sorted 2
CFe—” arrays ;

inserts

Capacity
1
4
16

64

Tiered LSM-tree

Lookup cost? Insertion cost?
O(T « log,(N/P))

inserts
Level 1 Capacity
Buffer {0 Ll 1
(4 A
Sorted 2 16

arrays 3 -

Tiered LSM-tree

Lookup cost?
O(T « log(N/P))

Level
f Buffer < 0
d 2
Sorted 2

arrays

inserts

Insertion cost?
O(1/B e log. (N/P))

Capacity
1
4
16

64

Tiered LSM-tree

Lookup cost? Insertion cost?
O(T o log(N/P)) O(1/B e log. (N/P))

What happens as we increase the size ratio T?

Tiered LSM-tree

Lookup cost? Insertion cost?

¥ o7+ log,(N/P)) 0(1/8 + log; (N/P) |

What happens as we increase the size ratio T?

Tiered LSM-tree

Lookup cost? Insertion cost?

T o7+ log,(N/P)) 0(1/8 + log; (N/P) |

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/P?

Tiered LSM-tree

Lookup cost? Insertion cost?

T o7+ log,(N/P)) 0(1/8 + log; (N/P) |

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/P?

Lookup cost becomes: Insert cost becomes:
O(N/P) O(1/B)

Tiered LSM-tree

Lookup cost? Insertion cost?

1 0T < tog,(n/p) 0(1/8 + log; (N/P) |

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/P?

Lookup cost becomes: Insert cost becomes:
O(N/P) O(1/B)

The tiered LSM-tree becomes an append-only file!

Append-
only file

Lookup cost

Insertion cost

Cost

Unit

Unordered

Tiered

Leveled

Metric File LSM-tree LSM-tree B-Tree
B =1
Query Reads IOs O(N/B) O(L*T) O(L) O(1)
- -
Insert Reads 10s 0 O(L/B) O((L * T)/B) O(1)
Write IOs 0(1/B) O(L/B) O((L * T)/B) O(1) & GC
r
Memory #entries O(B) O(N/B) O(N/B) O(N/B)
L -

Let L = logr(N/P)

This table assumes internal nodes fit in memory.

Conclusions - LSM-trees are:

Write-optimized

Conclusions - LSM-trees are:

Write-optimized

Highly tunable

Conclusions - LSM-trees are:

Write-optimized
Highly tunable

Backbone of many modern systems

Conclusions - LSM-trees are:

Write-optimized
Highly tunable
Backbone of many modern systems

Trade-off between lookup and insert cost (tiering/leveling, size ratio)

Conclusions - LSM-trees are:

Write-optimized
Highly tunable
Backbone of many modern systems

Trade-off between lookup and insert cost (tiering/leveling, size ratio)

Trade main memory for lookup cost (fence pointers, Bloom filters)

