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ε - false positive rate - FPR
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If key X does not exist
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Means to learn



Static Filters

No deletes No Resizing



Modifications require rebuilding from scratch 

No deletes No Resizing

Static Filters
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Dynamic Filters

But not both at 
same time
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Lowest
FPR

Static Filters

Delete + Resize



Fastest
Queries

Bloom XOR

Static Filters

Lowest
FPR



Note

Today is more mathematical than usual



Note

Today is more mathematical than usual

(Do not be intimidated)



Bloom Filters



Bloom Filters

Space/time Trade-Offs in Hash Coding with Allowable Errors
Burton Howard Bloom. Communications of the ACM, 1970. 
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bitmap a

k hash functions a

0 0 0 0 0 0 0 0 0 0

(k=2 in this example) a



insert(X)

0 0 0 0 1 0 0 0 1 0

insert: Set from 0 to 1 or keep 1



insert(  )
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insert: Set from 0 to 1 or keep 1

Inserted: X 
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Queries: return positive if all hashed bits are 1s
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Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

check(Q) False 
Positive

Inserted: X, Y 



No deletes - can lead to false negatives

Y

0 0 1 0 1 0 0 0 1 0

X

Inserted: X, Y 



Thus, we consider it static

Y

0 0 1 0 1 0 0 0 1 0

X

Inserted: X, Y 
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 N - # entries to insert
 ε - desired FPR

Construction contract

Insert N elements

Know specs in advance:

Allocate filter with: N · (log2(1/ε) / ln(2)) bits 



 N - # entries to insert
 ε - desired FPR

Construction contract

Insert N elements

Guarantee FPR of ε

Know specs in advance:

Allocate filter with: N · (log2(1/ε) / ln(2)) bits 



Bloom Filters

Analysis Blocking Sectorization



Analysis

In CSC443 Now: ground up



FPR Analysis 

Network Applications of Bloom Filters: A Survey
Andrei Broder and Michael Mitzenmacher. 

Allerton Conference, 2002
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FPR Analysis M: Total number of bits 
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( 1-1/M )M  = e-1Known identity: For any M
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Probability that some random bit is still not set after N insertions?  

# hash functions 
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# hash functions 
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FPR Analysis M: Total number of bits 
N: Total number of keys 
K: 

(1-e-KN/M)K

Probability that all k bits for a non-existing key are set? 

# hash functions 
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h1 One is too few: false positive 
occurs whenever we hit a 1  



0 1 0 0 1 0 0 1 0 0

h1 h2 h3 One is too few: false positive 
occurs whenever we hit a 1  

By adding hash functions, we 
initially decrease the false 

positive rate (FPR). 

How many hash functions should we use?



1 1 1 1 1 1 1 1 1 1

h1 hX…

But too many hash functions 
wind up increasing the FPR.

By adding hash functions, we 
initially decrease the false 

positive rate (FPR). 

One is too few: false positive 
occurs whenever we hit a 1  

How many hash functions should we use?



(Drawn for a filter using 10 bits per entry)

Minimum

How many hash functions should we use?



Minimum

Differentiate  (1-e-KN/M)K  with respect to K

How many hash functions should we use?



Minimum

Optimal # hash functions k = ln(2) · M/N

How many hash functions should we use?

Differentiate  (1-e-KN/M)K  with respect to K

(e.g. with Wolfram Alpha)



Optimal # hash functions k = ln(2) · M/N
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Optimal # hash functions k = ln(2) · M/N

False 
positives 

rate
(1-e-KN/M)K

2-M/N · ln(2)



assuming the optimal # hash functions,

false positive rate = 2-M/N · ln(2)



Some bit is 
not set e-KN/M

Optimal # hash functions k = ln(2) · M/N



Optimal # hash functions k = ln(2) · M/N

e-KN/M

0.5

Some bit is 
not set



Optimal # hash functions k = ln(2) · M/N

e-KN/M

0.5

50% of all bits are zero once the filter is full 

Some bit is 
not set
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Operation Costs (in hash functions computed)
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Positive Query =  

Insertion = 
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Positive Query =  

Insertion = 

Avg. Negative Query = 1 + 1/2 + 1/4 + … = 2

Operation Costs (in hash functions computed)

M/N · ln(2)

M/N · ln(2)

(50% of bits are zeros) 



Positive Query =  

Insertion = 

Avg. Negative Query =

Full analysis from ground up :)

2

Operation Costs (in hash functions computed)

M/N · ln(2)

M/N · ln(2)



Positive Query =  

Insertion = 

Avg. Negative Query =

Is this ok for modern hardware? 

2

Operation Costs (in hash functions computed)

M/N · ln(2)

M/N · ln(2)



CPU Registers

L1

L2

L3

DRAM

Recall the memory hierarchy



CPU Registers
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Move data at “cache 
line” granularity 

(e.g., 64B)



CPU Registers

L1

L2

L3

DRAM

Move data at “word” 
granularity 
(e.g., 8B)



CPU Registers

L1

L2

L3

DRAM

3-4 cycles 



CPU Registers

L1

L2

L3

DRAM

10-12 cycles



CPU Registers

L1

L2

L3

DRAM

30-70 cycles



CPU Registers

L1

L2

L3

DRAM

100-150 cycles



CPU Registers

L1

L2

L3

DRAM

Source: http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
(Numbers from 2016)



Positive Query =  

Insertion = 

Avg. Negative Query =
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2

Each hash function can lead to a cache miss



Positive Query =  

Insertion = 

Avg. Negative Query =

M/N · ln(2) · 100 ns 

M/N · ln(2) · 100 ns 

2 · 100 ns 

Each hash function can lead to a cache miss
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Observation

With hardware 
optimizations, it is the 
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Basic Bloom filter 
is slowest filter 



Observation

With hardware 
optimizations, it is the 

fastest

Basic Bloom filter 
is slowest filter 

lends itself to hardware optimization 



Bloom filter
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X

Alleviate random accesses?



Blocked Bloom Filters

Cache-, Hash- and Space-Efficient Bloom Filters

Journal of Experimental Algorithms, 2010

Felix Putze, Peter Sanders, Johannes Singler



Bloom filter
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X



X

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hash to one block, sized as a cache line

Blocked Bloom filter



X

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Insert as though block is an 
independent Bloom filter 

Blocked Bloom filter



X

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 cache miss per query/insertion

Blocked Bloom filter



X

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Anything bad?
1 cache miss per query/insertion

Blocked Bloom filter



uneven distribution of entries across blocks

Blocked Bloom filter



impact on FPR?

Blocked Bloom filter

uneven distribution of entries across blocks



impact on FPR?

Blocked Bloom filter

uneven distribution of entries across blocks

General analysis technique for hash tables 



Blocked Bloom filter

f(n, p, i) = (n
i ) ⋅ pi ⋅ (1 − p)n−i

# entries per block follows binomial distribution



# entries

f(n, p, i) = (n
i ) ⋅ pi ⋅ (1 − p)n−i

# entries per block follows binomial distribution



Prob of 1 entry falling into a given 
block, i.e., 1/n

f(n, p, i) = (n
i ) ⋅ pi ⋅ (1 − p)n−i

# entries per block follows binomial distribution



i entries falling into our bucket

f(n, p, i) = (n
i ) ⋅ pi ⋅ (1 − p)n−i

# entries per block follows binomial distribution



Ways of choosing i out of n entries

f(n, p, i) = (n
i ) ⋅ pi ⋅ (1 − p)n−i

# entries per block follows binomial distribution



i entries falling into our block 

f(n, p, i) = (n
i ) ⋅ pi ⋅ (1 − p)n−i

# entries per block follows binomial distribution



All other entries falling into other blocks

f(n, p, i) = (n
i ) ⋅ pi ⋅ (1 − p)n−i

# entries per block follows binomial distribution



Cumbersome

f(n, p, i) = (n
i ) ⋅ pi ⋅ (1 − p)n−i

# entries per block follows binomial distribution



For n → ∞ & p → 0, binomial converges to Poisson

f(n, p, i) = (n
i ) ⋅ pi ⋅ (1 − p)n−i

# entries per block follows binomial distribution



λi ⋅ e−λ

i!
P[i entries fall into given block] ~ Poisson(i, λ) = 



P[i entries fall into given block] ~ Poisson(i, λ) = λi ⋅ e−λ

i!

λ = avg. entries per block



λi ⋅ e−λ

i!

λ = avg. entries per block

Bits per cache 
line (e.g., 256)

 = B/(M/N)

P[i entries fall into given block] ~ Poisson(i, λ) = 



λi ⋅ e−λ

i!

λ = avg. entries per block

Bits per cache 
line (e.g., 256)

 = B/(M/N)

P[i entries fall into given block] ~ Poisson(i, λ) = 

Bits per 
entry (e.g., 8)



λi ⋅ e−λ

i!

λ = avg. entries per block

256 / 8 = 32

 = B/(M/N)

P[i entries fall into given block] ~ Poisson(i, λ) = 



λi ⋅ e−λ

i!

λ = avg. entries per block

P[i entries fall into given block] ~ Poisson(i, λ) = 

Entries i per block with λ = 16

Pr
ob



λi ⋅ e−λ

i!

λ = avg. entries per block

P[i entries fall into given block] ~ Poisson(i, λ) = 

Entries i per block with λ = 16

Pr
ob

Overflowing Un
de

rfl
ow

in
g 



# entries in a block ~ Poisson(i, B/(M/N))



FPR for filter ~ FPR(N, M, K) = (1-e-KN/M)K

# entries in a block ~ Poisson(i, B/(M/N))



FPR for filter ~ FPR(i, B, K)

# entries in a block ~ Poisson(i, B/(M/N))

i entries in 
cache line 

B bits in 
cache line

K hash 
functions



·∑
i=0

∞
Poisson(i, B/(M/N)) FPR(i, B, K)Avg. FPR across all blocks =



Bits / entry (M/N)

FPR



With smaller blocks, there is more 
variation in entries across blocks. 

Overflowing blocks blow up the FPR. 

Bits / entry (M/N)

FPR



With large blocks, we don’t 
lose much

Bits / entry (M/N)

FPR



size blocks as cache lines
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Block Block Block Block Block Block



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Block Block Block Block Block Block

size blocks as cache lines

512 

bits

512 

bits

512 

bits

512 

bits

512 

bits

512 

bits



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Block Block Block Block Block Block

Any remaining issue? 

512 

bits

512 

bits
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bits

512 

bits

512 

bits

512 

bits



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Block Block Block Block Block Block

Any remaining issue? 

512 

bits

512 

bits

512 

bits

512 

bits

512 

bits

512 

bits

Random access within a cache line



CPU Registers

L1/L2/L3

DRAM

words (8B) 3-4 cycles

cache lines (64B)



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Block Block Block Block Block Block

Each random access moves different 
word from L1 cache to register 



Block Block Block Block Block Block

e.g., 4 hash functions, 2 words per block



Block Block Block Block Block Block

e.g., 4 hash functions, 2 words per block

H1



Block Block Block Block Block Block

e.g., 4 hash functions, 2 words per block

H2



Block Block Block Block Block Block

e.g., 4 hash functions, 2 words per block

H3



Block Block Block Block Block Block

e.g., 4 hash functions, 2 words per block

H4

Solutions?



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Block Block Block Block Block Block

Split block Bloom filters. Jim Apple. Arxiv 2023. 

Used in the Impala system as of 2016



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Block Block Block Block Block Block

Split block Bloom filters. Jim Apple. Arxiv 2023. 

Performance-Optimal Filtering: Bloom Overtakes 
Cuckoo at High Throughput. Harald Lang, Thomas 
Neumann, Alfons Kemper, Peter Boncz. VLDB 2019. 



Partition into s sectors, each the 
size of a word (e.g., 64 bits)

Block



Sectors

Block

Example: s = 4 sectors

64 
bits

64 
bits

64 
bits

64 
bits



Sectors

Block

Insertion: hashes to k / s bits per sector sequentially 



Sectors

Block

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially 



Sectors

Block

Hash 2 bits 

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially 



Sectors

Block

0 1 0 1 0
Or

0 0 0 0 1

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially 

Hash 2 bits 



Sectors

Block

0 1 0 1 1

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially 

Hash 2 bits 



Sectors

Block

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially 

Hash 2 bits 



Sectors

Block

Hash 2 bits 

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially 



Sectors

Block

Hash 2 bits 

Insertion: hashes to k / s bits per sector sequentially 

Read/written 4 rather than 8 registers



Sectors

Block

Query: check k / s hashes per sector sequentially 

Hash 2 bits 



Sectors

Block

Query: check k / s hashes per sector sequentially 

0 1 0 1 0
And

0 1 0 1 1

Hash 2 bits 



Sectors

Block

Query: check k / s hashes per sector sequentially 

0 1 0 1 0 And 0 1 0 1 1

Hash 2 bits 

( ) == 0 1 0 1 0



Sectors

Block

Query: check k / s hashes per sector sequentially 

0 1 0 1 0 And 0 1 0 1 1

Hash 2 bits 

( ) != 0 1 0 1 0if
Return false 



Query: check k / s hashes per sector sequentially 

Hash 2 bits 

Sectors

Block



Query: check k / s hashes per sector sequentially 

Hash 2 bits 

Sectors

Block



Query: check k / s hashes per sector sequentially 

Hash 2 bits 

Sectors

Block



Query: check k / s hashes per sector sequentially 

blocked

sectorized



Further ways to optimize?

Sectors

Block



Further ways to optimize?

Sectors

Block

AVX - SIMD



Further ways to optimize?

Sectors

Block

AVX - SIMD

Operate on each sector in parallel



Problems with Sectorized Bloom filters? 

Sectors

Block



Problems with Sectorized Bloom filters? 

Sectors

Block

# hashes must be multiple of # sectors
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Why is this bad?
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Force using sub-optimal # hash functions 
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Problems with Sectorized Bloom filters? 

Sectors

Block

# hashes must be multiple of # sectors
Why is this bad?
Force using sub-optimal # hash functions 
Harm FPR - solutions?



Divide sectors into Z groups

Sectors

Block

Groups



Sectors

Block

Groups

Map each key to one sector per group based on its hash

Key



Sectors

Block

Groups

Hash bits only to relevant sector in each group

Key



Sectors

Block

Groups

Hash bits only to relevant sector in each group

Key

e.g., here we can use 6 hashes :)



Sectors

Block

Groups

Hash bits only to relevant sector in each group

Key

Nearly best of both worlds :) faster & low FPR



Break 



Bloom 

≈ 2 -M/N · ln(2)FPR ε



Bloom Lower Bound

???≈ 2 -M/N · ln(2)FPR ε



Lower Bound for Filter Memory



Lower Bound for Filter Memory

Assume nothing 
about implementation 



Lower Bound for Filter Memory

Analyze with respect to 
filter specification

Assume nothing 
about implementation 



Lower Bound for Filter Memory

Analyze with respect to 
filter specification

Assume nothing 
about implementation 

ε - FPR
N - # entries
U - Universe size



Lower Bound for Exact Set



Out of Universe U, store N entries

Lower Bound for Exact Set



(U choose N) combinations 

Lower Bound for Exact Set



(U choose N)

to encode a unique combination

log2

Lower Bound for Exact Set

bits



bitslog2(U choose N) ≈ N · log2(U / N) 

Lower Bound for Exact Set

for large U  



Lower Bound for Filter - Approximate Set



Lower Bound for Filter

|Filter|  +  |Disambiguation|  ≥  |Exact Set|



|Filter|  +  |Disambiguation|  ≥  |Exact Set|

ε - FPR
N - # entries
U - Universe size

Legend



ε - FPR
N - # entries
U - Universe size

|Filter|  +  |Disambiguation|  ≥  |Exact Set|

What information must we add the filter 
to turn it into an exact set?  



ε - FPR
N - # entries
U - Universe size

|Filter|  +  |Disambiguation|  ≥  N · log2(U / N) 

Plug in



ε - FPR
N - # entries
U - Universe size

Query filter U times

|Filter|  +  |Disambiguation|  ≥  N · log2(U / N) 



ε - FPR
N - # entries
U - Universe size

Tells us all positive keys 
N + ε · U

|Filter|  +  |Disambiguation|  ≥  N · log2(U / N) 



ε - FPR
N - # entries
U - Universe size

Tells us all positive keys 
ε · U

|Filter|  +  |Disambiguation|  ≥  N · log2(U / N) 



ε - FPR
N - # entries
U - Universe size

Of all positives ε · U, which 
keys are true positives?

|Filter|  +  |Disambiguation|  ≥  N · log2(U / N) 



ε - FPR
N - # entries
U - Universe size

ε · U choose N

|Filter|  +  |Disambiguation|  ≥  N · log2(U / N) 



ε - FPR
N - # entries
U - Universe size

log2(ε · U choose N)

|Filter|  +  |Disambiguation|  ≥  N · log2(U / N) 



ε - FPR
N - # entries
U - Universe size

N · log2((ε · U) / N)

|Filter|  +  |Disambiguation|  ≥  N · log2(U / N) 



ε - FPR
N - # entries
U - Universe size

Legend

|Filter|  +  N · log2((ε · U) / N)   ≥  N · log2(U / N) 



ε - FPR
N - # entries
U - Universe size

|Filter|   ≥  N · log2(U / N) - N · log2((ε · U) / N) 



ε - FPR
N - # entries
U - Universe size

|Filter|   ≥  N · log2(1 / ε)



ε - FPR
N - # entries
U - Universe size

ε  ≥  2 -M/N



Bloom 

≈ 2 -M/N · ln(2)

Lower bound

2 -M/N



Bloom 

≈ 2 -M/N · 0.69

Lower bound

2 -M/N



Bloom 

≈ 2 -M/N · 0.69 2 -M/N

???

Lower bound



Bloom Lower bound

≈ 2 -M/N

XOR Filter

≈ 2 -M/N · 0.69 ≈ 2 -M/N ·0.81



Xor Filters: Faster and Smaller Than Bloom Filters

Journal of Experimental Algorithmics, 2020

XOR Filter

Thomas Mueller Graf, Daniel Lemire



XOR Operator

0 0 1 1Input 1

Input 2

Parity

0 1 0 1

0 1 1 0
=



Parity can help recover any input

0 0 1 1Input 1

Parity 0 1 1 0

Suppose we 
lost input 2



Parity can help recover any input

0 0 1 1Input 1

Parity

Input 2

0 1 1 0

0 1 0 1
=

Recovered

Suppose we 
lost input 2



Parity can help recover any input

0 1 0 1Input 2

Parity 0 1 1 0

Or suppose we 
lost input 1



Parity can help recover any input

0 1 0 1Input 2

Parity 0 1 1 0

Or suppose we 
lost input 1

Input 1 0 0 1 1
=

Recovered



XOR is commutative and associative

0 0 0 0 1 1 1 1

=

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1

Input 1

Input 2

Parity

Input 3



XOR is commutative and associative

0 0 0 0 1 1 1 1

=

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1

Parity can recover any input, as long as we also have all the other inputs 

Input 1

Input 2

Parity

Input 3



XOR filter stores a fingerprint for each key

FP(        ) = ……     



XOR filter stores a fingerprint for each key

0100
F bits

Example: FP( X ) =



Query(X) XOR filter 

Does FP(X) exist?



Query(X) XOR filter 

Does FP(X) exist?

1. True negative
2. True positive
3. False positive with probability 2-F



How does XOR filter store its fingerprints? 

1 2 3 4 5 6



Hash each entry to three slots

X Y

1 2 3 4 5 6



Assign one slot to uniquely own each entry

X YX XY Y

Owns X Owns Y

1 2 3 4 5 6

(More on this shortly)



Each bucket stores XOR of fingerprint and other two slots

YY

Owns Y

FP(Y) 2 6

2 4 6

Y



During queries, recover fingerprints by xoring three slots

YY

Owns Y

2 4 6

Y

get(Y) returns true if      FP(Y) =  2 64



How to assign slots to own different entries?

X YX XY Y

Owns X Owns Y

1 2 3 4 5 6



How to assign slots to own different entries?

Peeling



Peeling

Slots 0 1 2 3 4 5 6 7

1, 4, 5 0, 1, 3 3, 4, 6 2, 3, 7



Peeling

Slots 0 1 2 3 4 5 6 7

0, 1, 3 3, 4, 6 2, 3, 71, 4, 5



Peeling

Slots 0 1 2 3 4 5 6 7

0, 1, 3 3, 4, 6 2, 3, 7

While not all keys have been assigned to a slot

1, 4, 5



Peeling

Slots 0 1 2 3 4 5 6 7

0, 1, 3 3, 4, 6 2, 3, 7

Assign some entry x to some slot y that only entry x maps to

1, 4, 5

While not all keys have been assigned to a slot



Peeling

Slots 0 1 2 3 4 5 6 7

0, 1, 3 3, 4, 6

Assign some entry x to some slot y that only entry x maps to

1, 4, 5

While not all keys have been assigned to a slot



Peeling

Slots 0 1 2 3 4 5 6 7

3, 4, 6

Assign some entry x to some slot y that only entry x maps to

1, 4, 5

While not all keys have been assigned to a slot



Peeling

Slots 0 1 2 3 4 5 6 7

3, 4, 6

Assign some entry x to some slot y that only entry x maps to
While not all keys have been assigned to a slot



Slots 0 1 2 3 4 5 6 7



Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Populate all unassigned slots with zeros



Find some entry whose only other candidate slots are populated

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

3,4,6

Populate all unassigned slots with zeros



Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

3,4,6

Xor its fingerprint with content at other slots and store

Populate all unassigned slots with zeros

1101



Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000

0000

0000

0000

3,4,6

Xor its fingerprint with content at other slots and store

⊕ ⊕ = 1101

Populate all unassigned slots with zeros

1101



Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Xor its fingerprint with content at other slots and store

1101

Populate all unassigned slots with zeros



Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Xor its fingerprint with content at other slots and store

1101

1,4,5

0001

Populate all unassigned slots with zeros



Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000

0000

0000 0000

Xor its fingerprint with content at other slots and store

1101

1,4,5

0001 =⊕ ⊕ 1100

Populate all unassigned slots with zeros



Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Xor its fingerprint with content at other slots and store

11011100

0,1,3

1001

Populate all unassigned slots with zeros



Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000

0000

0000 0000

Xor its fingerprint with content at other slots and store

1101

1100

0,1,3

1001 =⊕ ⊕ 0101

Populate all unassigned slots with zeros



Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Xor its fingerprint with content at other slots and store

110111000101

2,3,7

1111

Populate all unassigned slots with zeros



Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7

0000 0000

0000 0000

Xor its fingerprint with content at other slots and store

110111000101

2,3,7

1111= ⊕ ⊕1111

Populate all unassigned slots with zeros



Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Xor its fingerprint with content at other slots and store

110111000101 1111

Populate all unassigned slots with zeros



Slots 0000 0000 0000 0000

We’re 
done :)

110111000101 1111



Slots 0000 0000 0000 0000

Query(X) where FP(X) = 1001 

110111000101 1111



Slots 0000

0000

0000

0000

Query(X) where FP(X) = 1001 

1101

1100

0101 1111

⊕ ⊕ = 1100



Slots 0000

0000

0000

0000

Query(X) where FP(X) = 1001 

1101

1100

0101 1111

⊕ ⊕ = 1100

Not a fingerprint match so return negative



Construction can fail if there is no entry we can peel

0 1 2 3 4 5 6 7



0, 1, 3 1, 3, 6 3, 6, 0
Example:

Construction can fail if there is no entry we can peel

0 1 2 3 4 5 6 7



Construction can fail if there is no entry we can peel

0 1 2 3 4 5 6 7

No slot has one entry uniquely mapping to it



If we fail, we must restart from scratch.

0 1 2 3 4 5 6 7



free space is necessary to succeed with high probability

If we fail, we must restart from scratch.

0 1 2 3 4 5 6 7



free space is necessary to succeed with high probability

If we fail, we must restart from scratch.

What’s the interplay between free space and # number 
of hash functions?

0 1 2 3 4 5 6 7



What’s the interplay between free space and # number 
of hash functions?

0 1 2 3 4 5 6 7

Too few hash functions e.g., 1?



What’s the interplay between free space and # number 
of hash functions?

0 1 2 3 4 5 6 7

Too few hash functions e.g., 1?  Any collision makes us fail



What’s the interplay between free space and # number 
of hash functions?

0 1 2 3 4 5 6 7

Too few hash functions e.g., 1?  Any collision makes us fail

Too many hash functions e.g., n?



What’s the interplay between free space and # number 
of hash functions?

0 1 2 3 4 5 6 7

Too few hash functions e.g., 1?   Any collision makes us fail

Too many hash functions e.g., n?   Nothing is peelable 



Slide by Keith 
Schwarz of 

Stanford



# hash functions

Utilization



# hash functions

Utilization

Not enough placement flexibility



# hash functions

Utilization

Too many items hashing to each slot



# hash functions

Utilization

Optimal 0.81



Similar to finding the optimal # hash functions 
with Bloom filters :)

Optimal 0.81



≈ 2 -M/N · 0.69

Bloom Idealized

≈ 2 -M/N

XOR

≈ 2 -M/N ·0.81



≈ 2 -M/N · 0.69

Bloom Idealized

≈ 2 -M/N

XOR

≈ 2 -M/N ·0.81

Ribbon

≈ 2 -M/N ·0.92

Denser XOR filter



≈ 2 -M/N · 0.69

Idealized

≈ 2 -M/N

XOR

≈ 2 -M/N ·0.81

Ribbon

Denser XOR filter
In RocksDB since 2020

≈ 2 -M/N ·0.92

Bloom 



≈ 2 -M/N · 0.69 ≈ 2 -M/N

XOR

≈ 2 -M/N ·0.81

Ribbon

Approach ideal

≈ 2 -M/N ·0.92

Spatial Coupling
XOR filter w.Bloom 



Positive Query =  

Construction = 

Avg. Negative Query =

Operation Costs (in hash functions computed)



Positive Query =  

Construction = 

Avg. Negative Query =

Operation Costs (in hash functions computed)

O(N)



Positive Query =  

Avg. Negative Query =

Operation Costs (in hash functions computed)

3

3

Construction = O(N)



Positive Query =  

Avg. Negative Query =

Operation Costs (in hash functions computed)

3

3

Not as good as blocked Bloom filters 

Construction = O(N)



Lower FPRFaster

Blocked 
Bloom Spatial CouplingXOR Ribbon



And now: office hours :)


