

Static Filters

Research Topics in Database Management

Niv Dayan

What is a Filter?

What is a Filter?

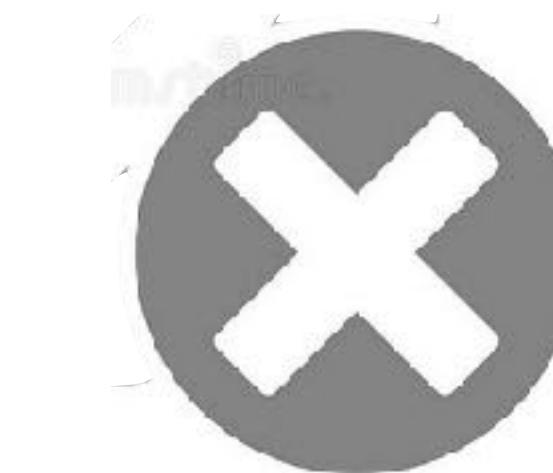
Does X exist?

Set

X Y Z

What is a Filter?

**No false
negatives**



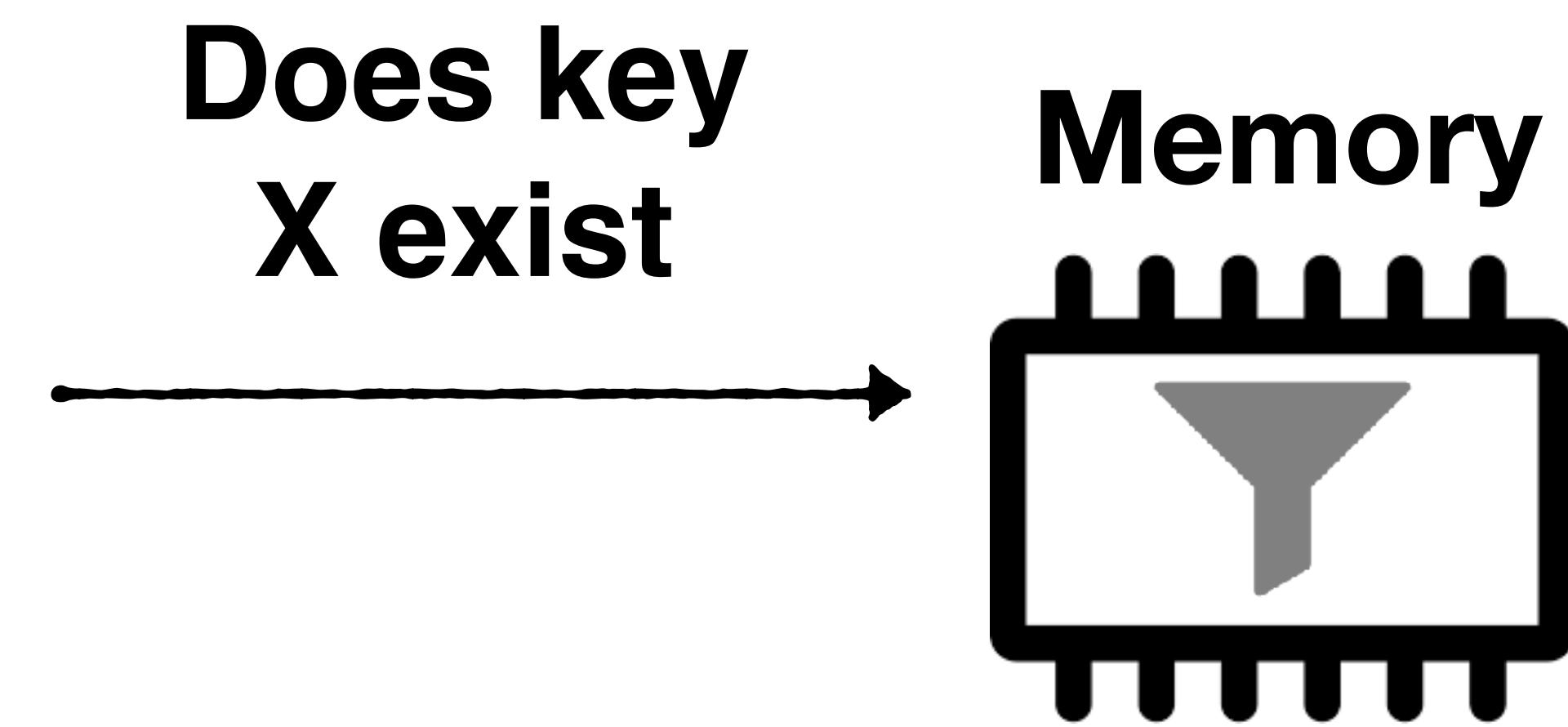
**false positives with
tunable probability**

Why use a Filter?

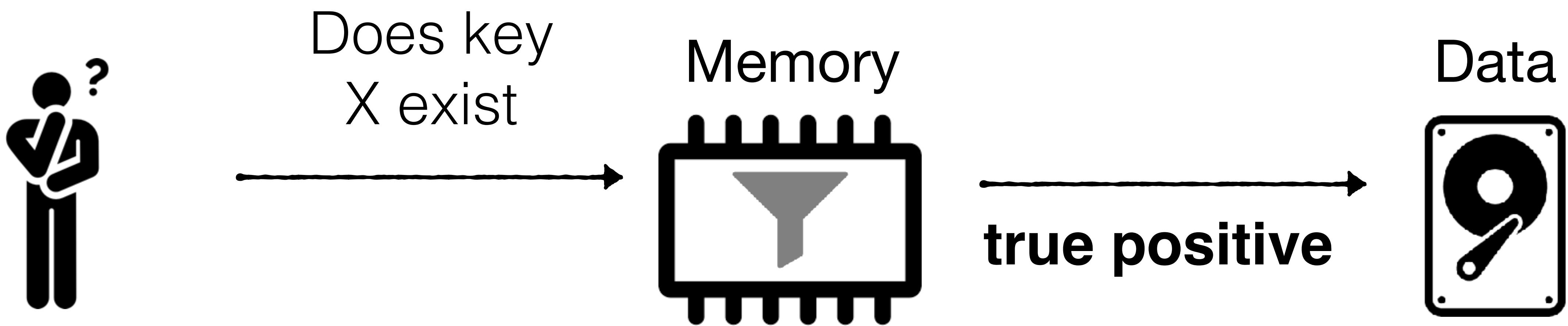
Data

Does key X exist

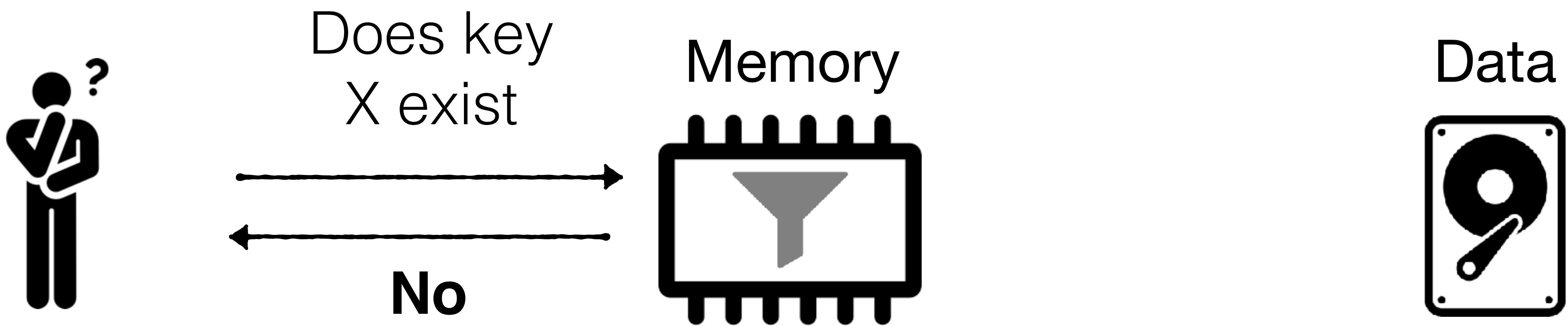
Data



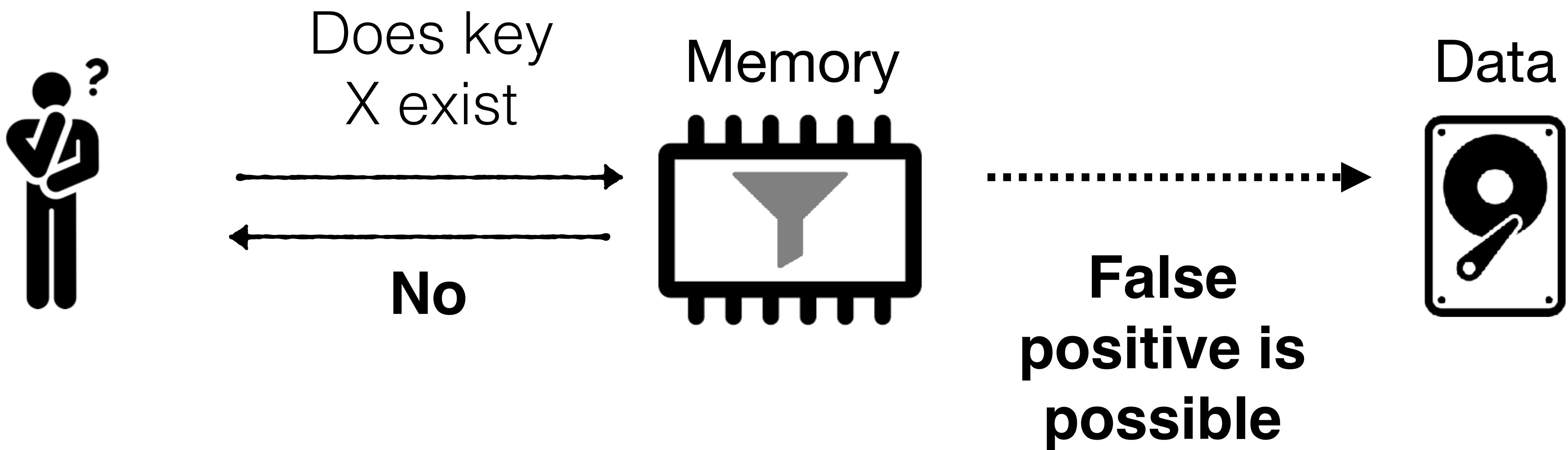
If key X exists



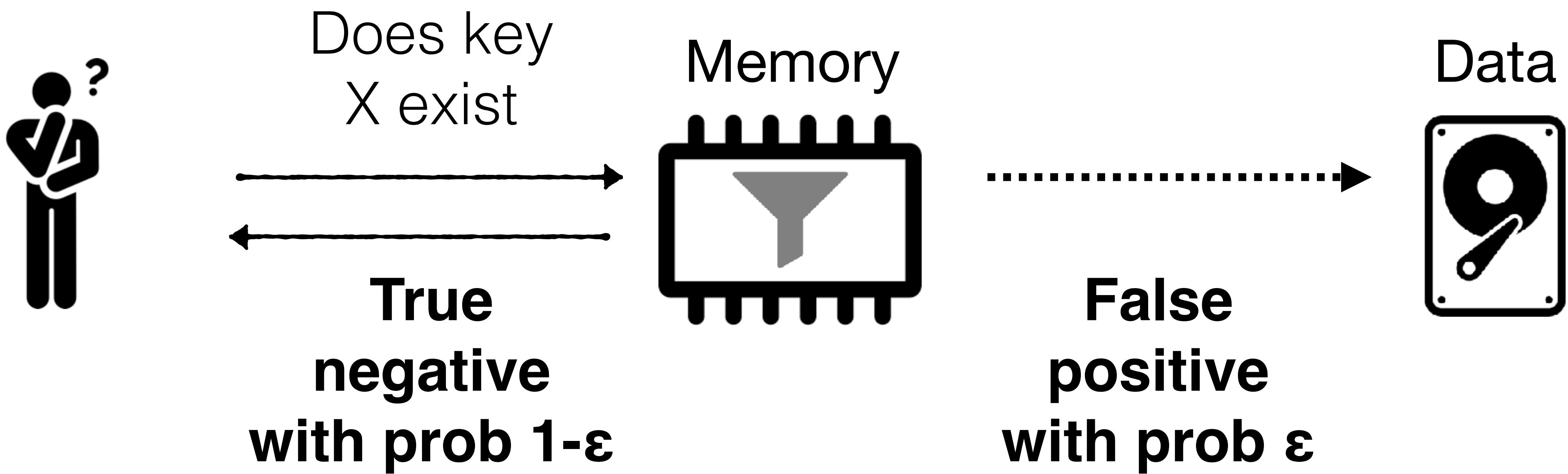
If key X does not exist



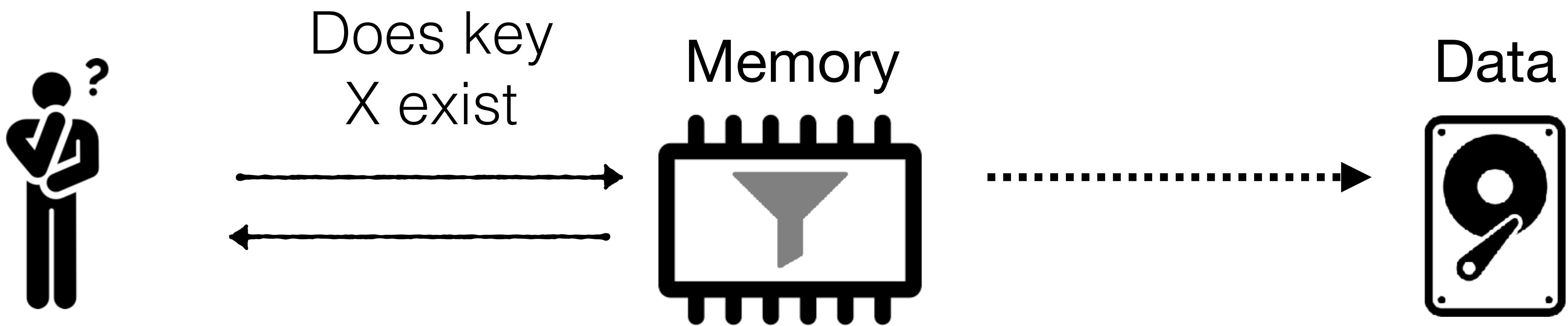
If key X does not exist



If key X does not exist



If key X does not exist

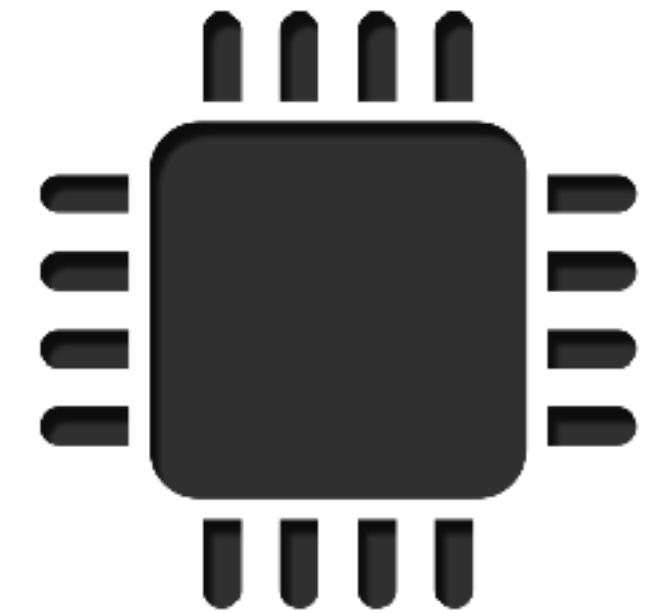


ϵ - false positive rate - FPR

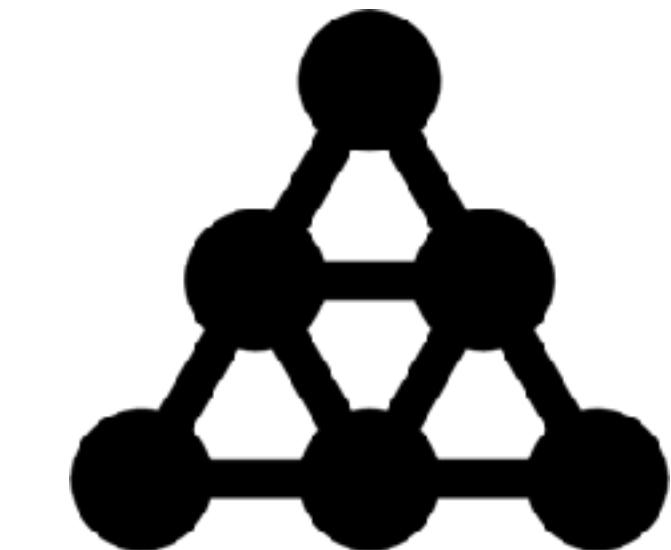
Why care about filters?

**Widely used in
systems**

Hardware
Optimizations



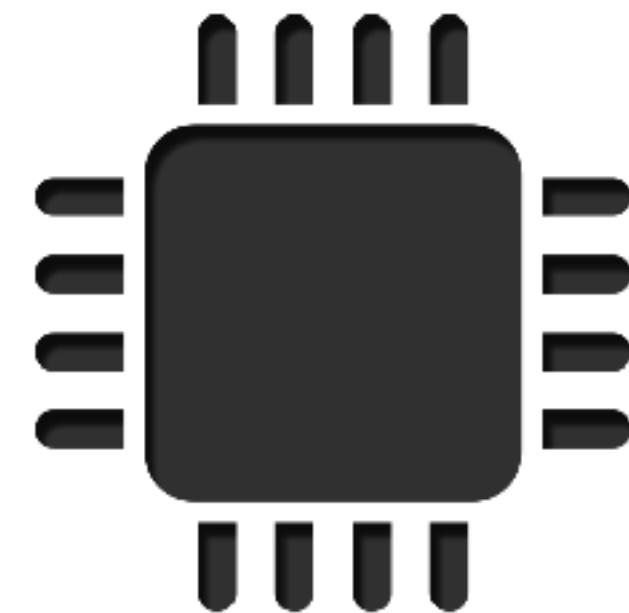
Algorithmic
Reasoning/
Techniques



Why care about filters?

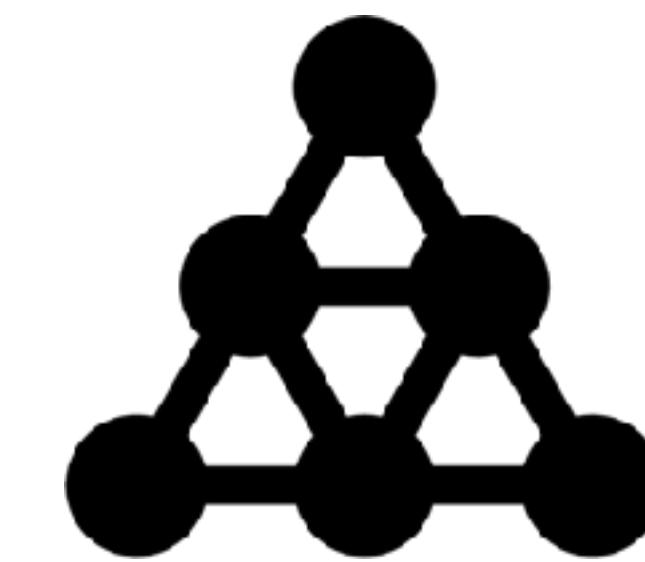
Widely used in
systems

**Hardware
Optimizations**



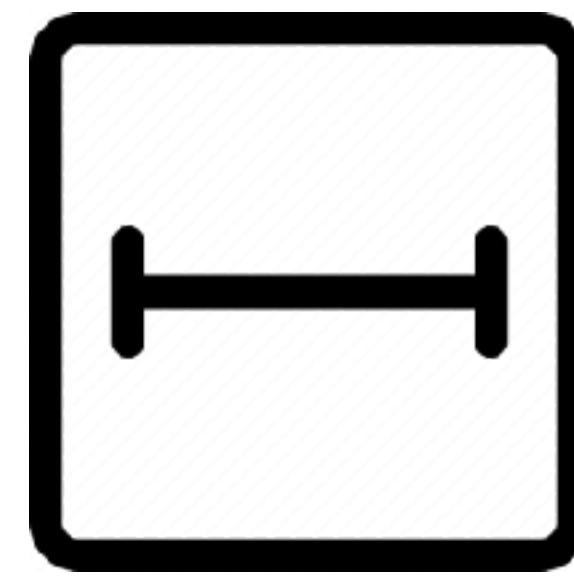
Means to learn

**Algorithmic
Reasoning/
Techniques**



Static Filters

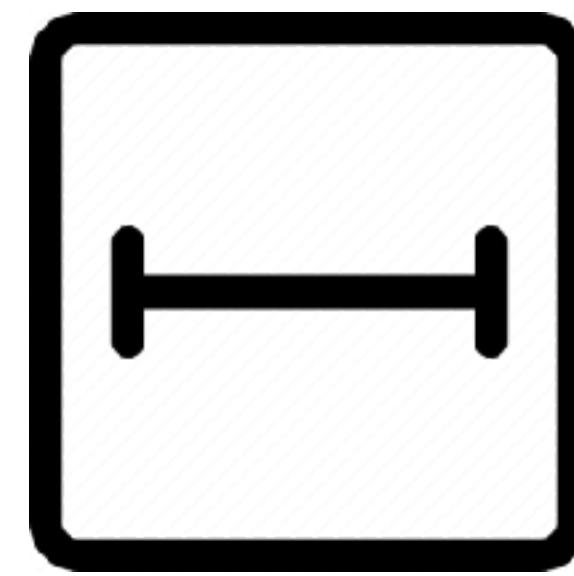
No deletes



No Resizing

Static Filters

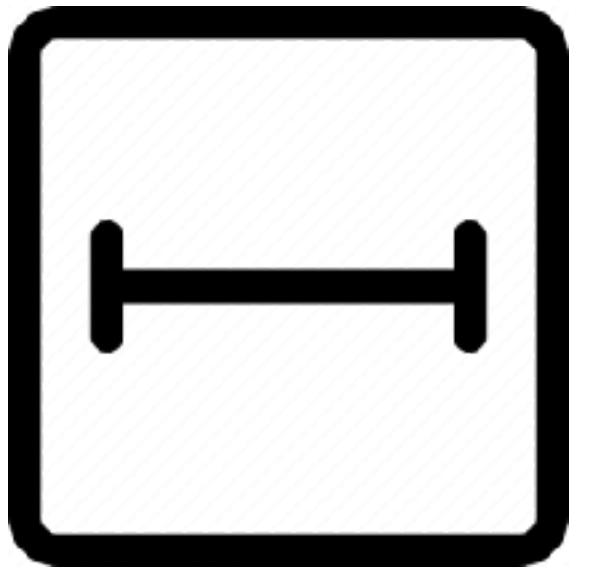
No deletes



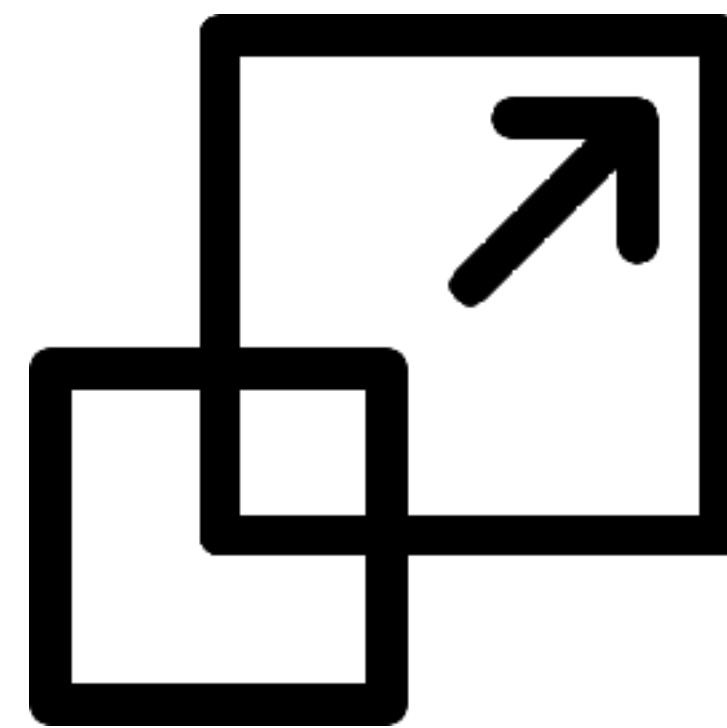
No Resizing

Modifications require rebuilding from scratch

Static Filters

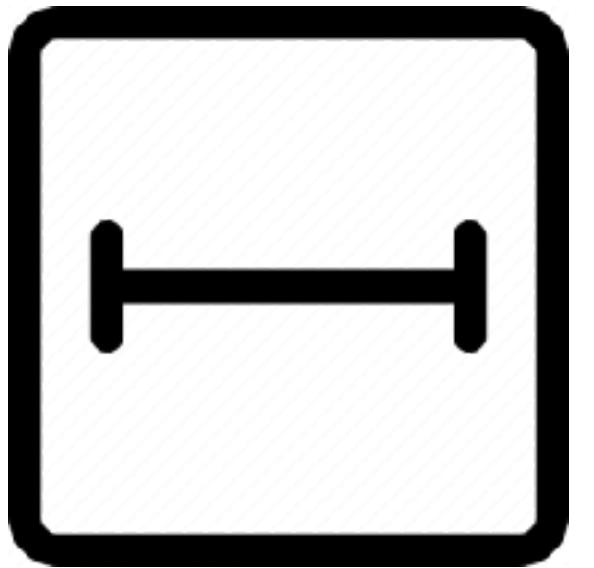


**Dynamic Filters
(next week)**



Delete + Resize

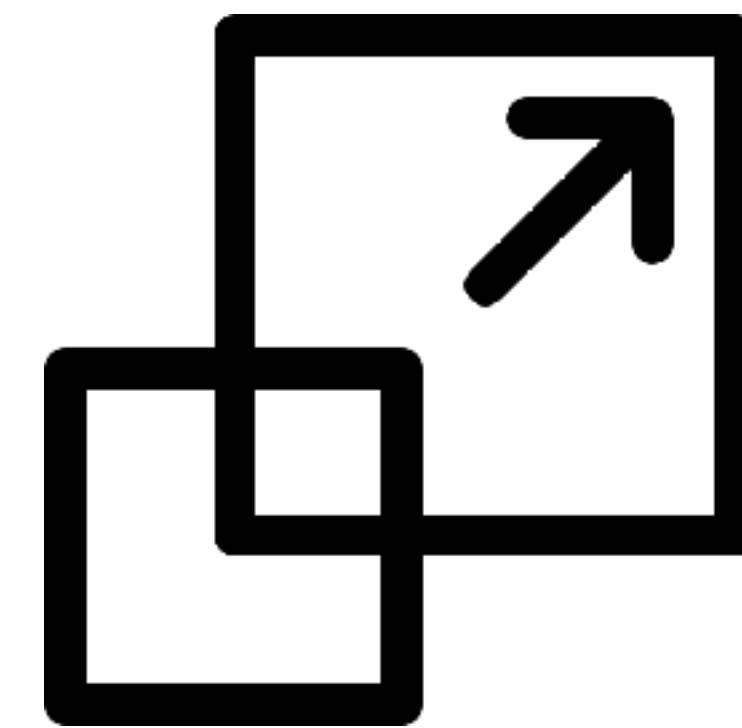
Static Filters



**Fastest
Queries**

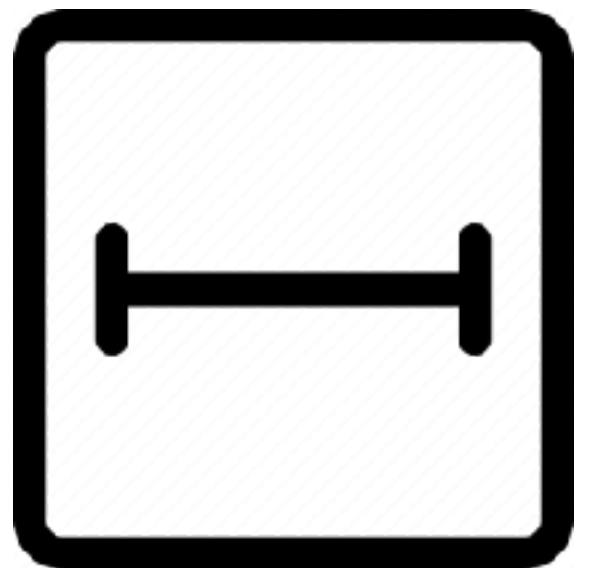
**Lowest
FPR**

Dynamic Filters



Delete + Resize

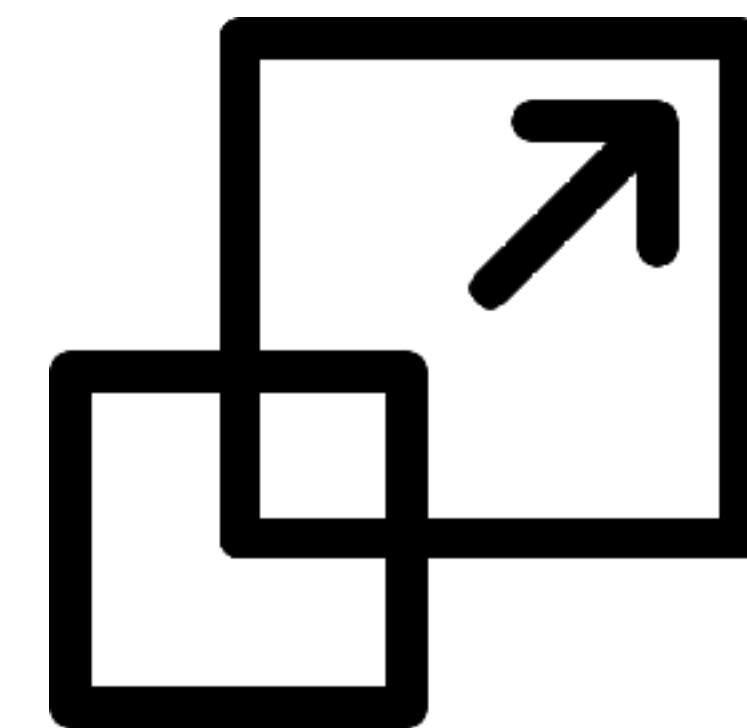
Static Filters



Fastest
Queries

Lowest
FPR

Dynamic Filters



Delete + Resize

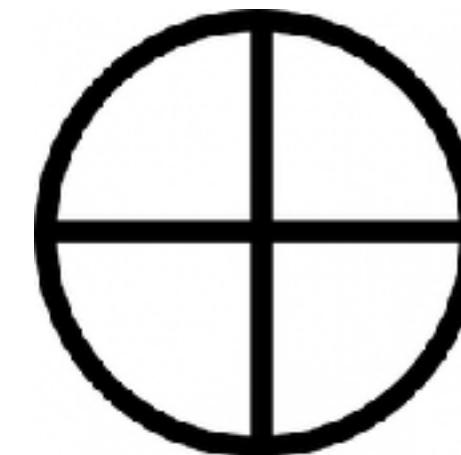
**But not both at
same time**

Static Filters

Bloom

**Fastest
Queries**

XOR



**Lowest
FPR**

Note

$$\begin{aligned}
 \mathcal{L} &= \oint E \cdot d\mathbf{t} \\
 f(\omega) &= \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx \quad \frac{dt}{dx} \\
 \nabla \cdot E &= 0 \quad \nabla \times H = \frac{1}{c} \frac{\partial E}{\partial t} \\
 \nabla \times E &= -\frac{1}{c} \frac{\partial H}{\partial t} \quad \nabla \cdot H = 0 \\
 i\hbar \frac{\partial}{\partial t} \Psi &= \hat{H} \Psi \\
 \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) &= -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f} \\
 H &= -\sum_{i=1}^n p(x_i) \log p(x_i) \\
 \frac{1}{2} G^2 S^2 \frac{\partial^2 V}{\partial S^2} + r S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} - r \cdot V &= 0 \\
 TC(Q, q_i, m_i) &= \sum_{i=1}^n \left[\frac{D_i}{m_i q_i} S_i + c_i D_i + \frac{q_i H_i}{2} \left(m_i \left(1 - \frac{D_i}{P_i} \right) - 1 + 2 \frac{D_i}{P_i} \right) \right] + \\
 \frac{5\delta^2 \omega}{P_{\text{ref}}} \begin{bmatrix} \frac{d \Delta p(s, \phi)}{d \phi} \\ \frac{d \Delta M(s, \phi)}{d \phi} \end{bmatrix} &= \begin{bmatrix} \delta - \mathcal{L} \\ -\beta \end{bmatrix} \begin{bmatrix} \Delta p(s, \phi) \\ \Delta M(s, \phi) \end{bmatrix} \\
 \int_0^{\pi} (\log \sin x)^2 dx &= \int_0^{\pi} (\log \cos x)^2 dx = \frac{\pi^2}{2} \left\{ \frac{1}{12} + (\log 2)^2 \right\}
 \end{aligned}$$

Today is more mathematical than usual

Note

$$\begin{aligned}
 \mathcal{L} &= \oint E \cdot d\mathbf{t} \\
 f(\omega) &= \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx \quad \frac{dt}{dx} \\
 \nabla \cdot E &= 0 \quad \nabla \cdot H = 0 \quad \nabla \times H = \frac{1}{c} \frac{\partial E}{\partial t} \\
 \nabla \times E &= -\frac{1}{c} \frac{\partial H}{\partial t} \quad \nabla \times H = \frac{1}{c} \frac{\partial E}{\partial t} \\
 i\hbar \frac{\partial}{\partial t} \Psi &= \hat{H} \Psi \\
 \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) &= -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f} \\
 H &= -\sum_{i=1}^n p(x_i) \log p(x_i) \\
 \frac{1}{2} G^2 S^2 \frac{\partial^2 V}{\partial S^2} + r S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} - r \cdot V &= 0 \\
 \frac{1}{2} G^2 S^2 \frac{\partial^2 V}{\partial S^2} + r S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} - r \cdot V &= 0 \\
 \text{TC}(Q, q_i, m_i) &= \sum_{i=1}^n \left[\frac{D_i}{m_i q_i} S_i + c_i D_i + \frac{q_i H_i}{2} \left(m_i \left(1 - \frac{D_i}{P_i} \right) - 1 + 2 \frac{D_i}{P_i} \right) \right] \\
 \frac{d \Delta_p(s, \phi)}{d \phi} &= \begin{bmatrix} 2 - \mathcal{L} \\ -\beta \end{bmatrix} \begin{bmatrix} \Delta_p(s, \phi) \\ \Delta M(s, \phi) \end{bmatrix} \\
 \int_0^{\pi/2} (\log \sin x)^2 dx &= \int_0^{\pi/2} (\log \cos x)^2 dx = \frac{\pi^2}{2} \left\{ \frac{11}{12} + (\log 2)^2 \right\}
 \end{aligned}$$

Today is more mathematical than usual

(Do not be intimidated)

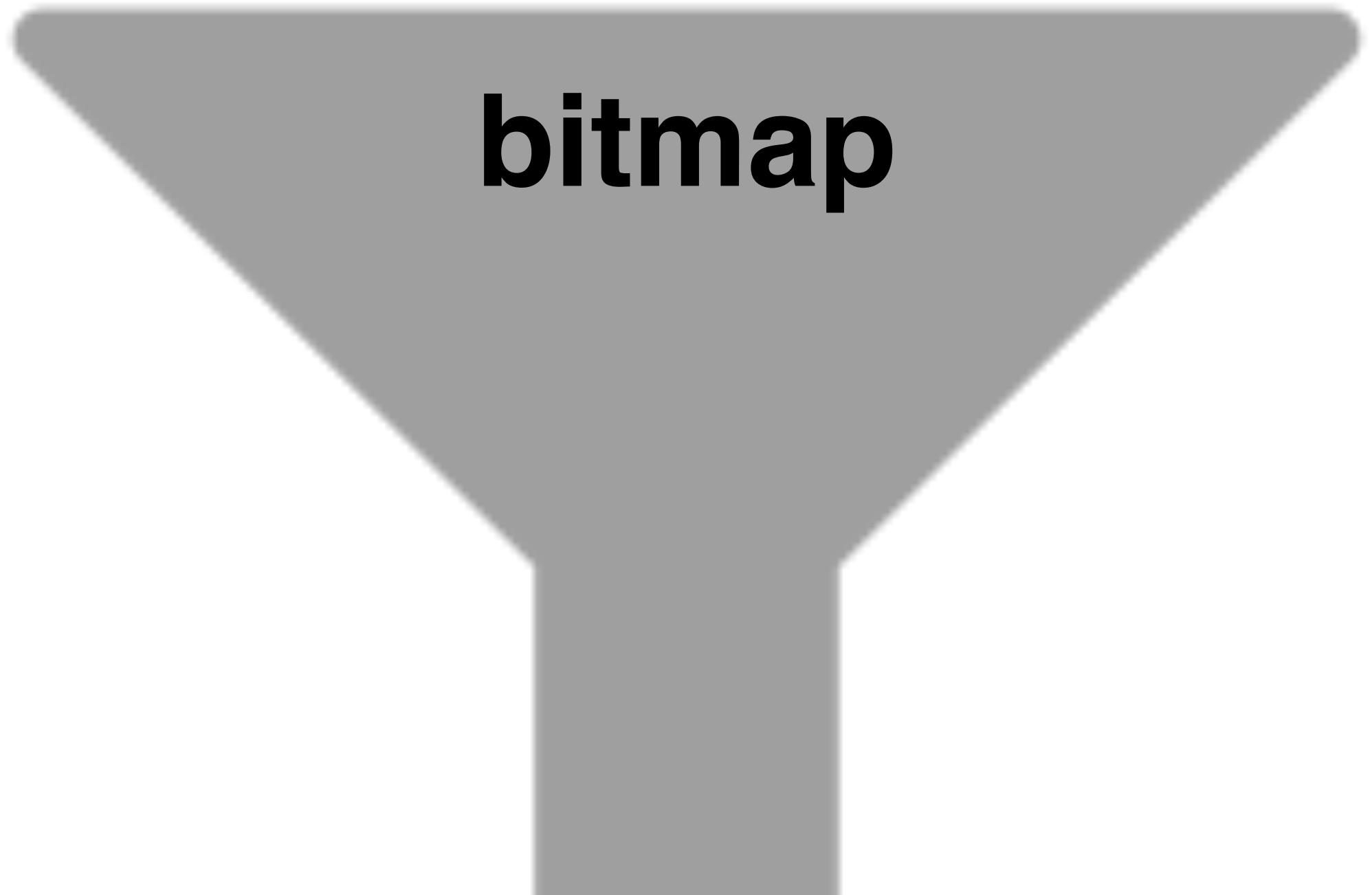
Bloom Filters

Bloom Filters

Space/time Trade-Offs in Hash Coding with Allowable Errors
Burton Howard Bloom. Communications of the ACM, 1970.

k hash functions

0 0 0 0 0 0 0 0 0

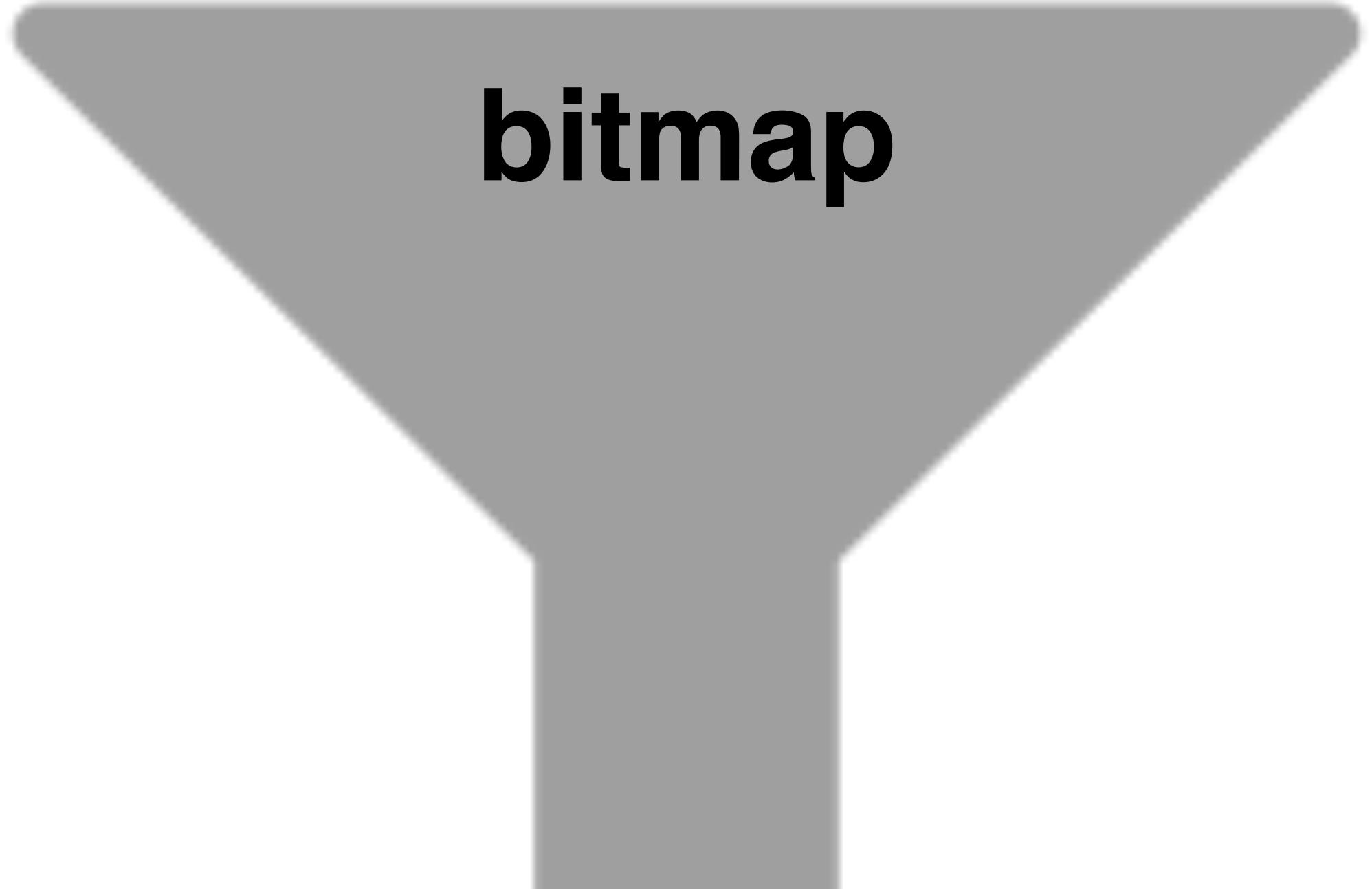


bitmap

k hash functions

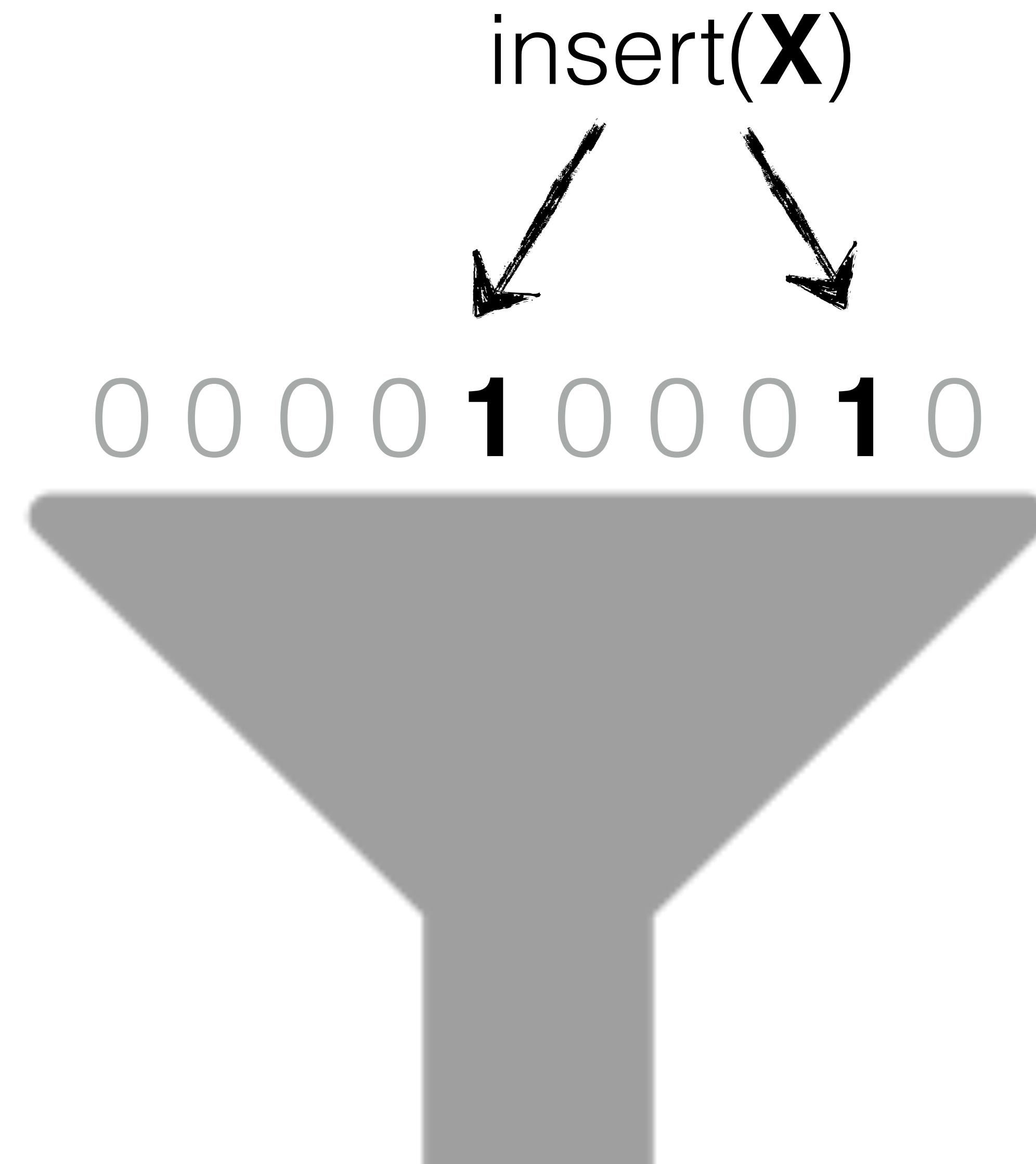
($k=2$ in this example)

0 0 0 0 0 0 0 0 0

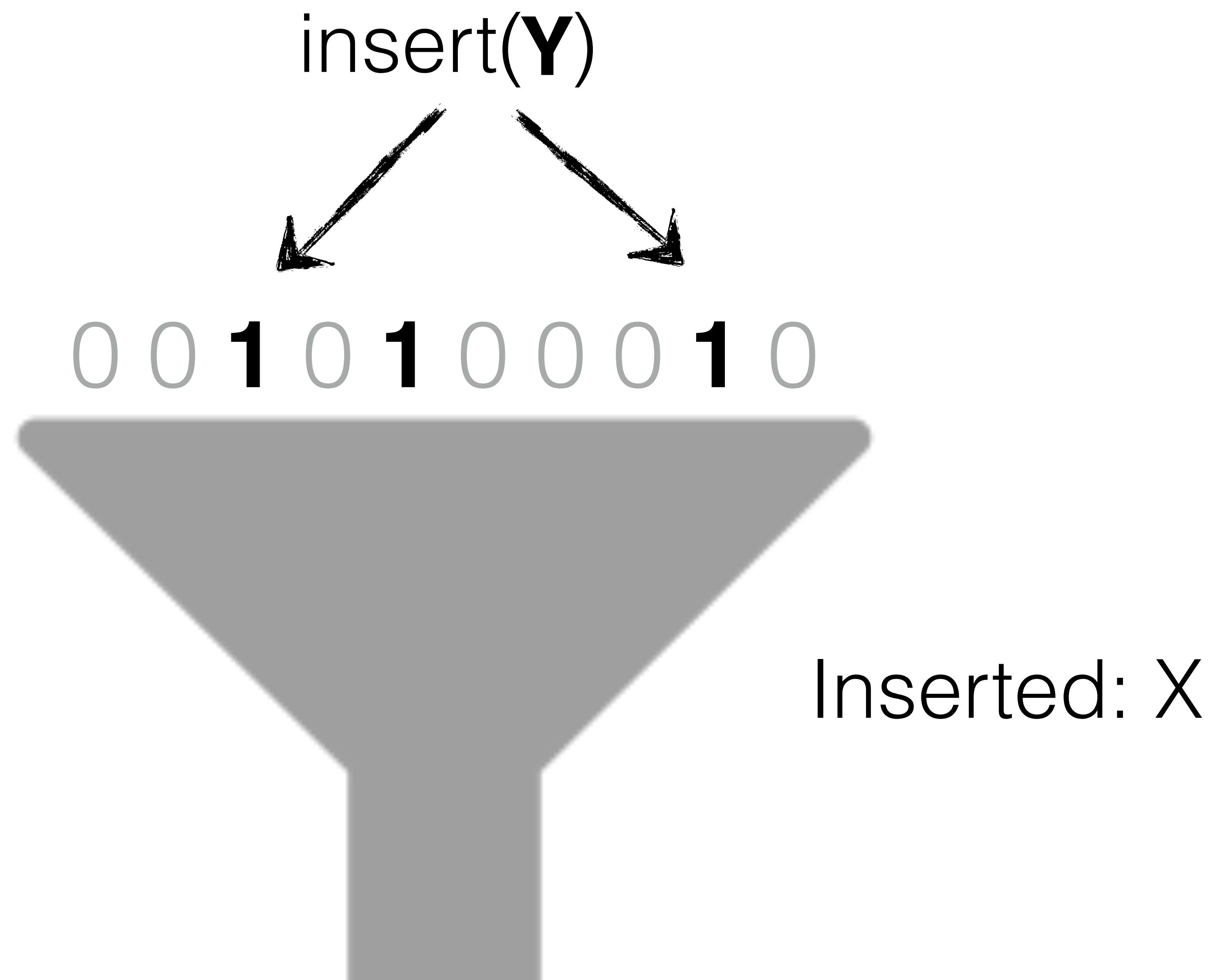


bitmap

insert: Set from 0 to 1 or keep 1



insert: Set from 0 to 1 or keep 1

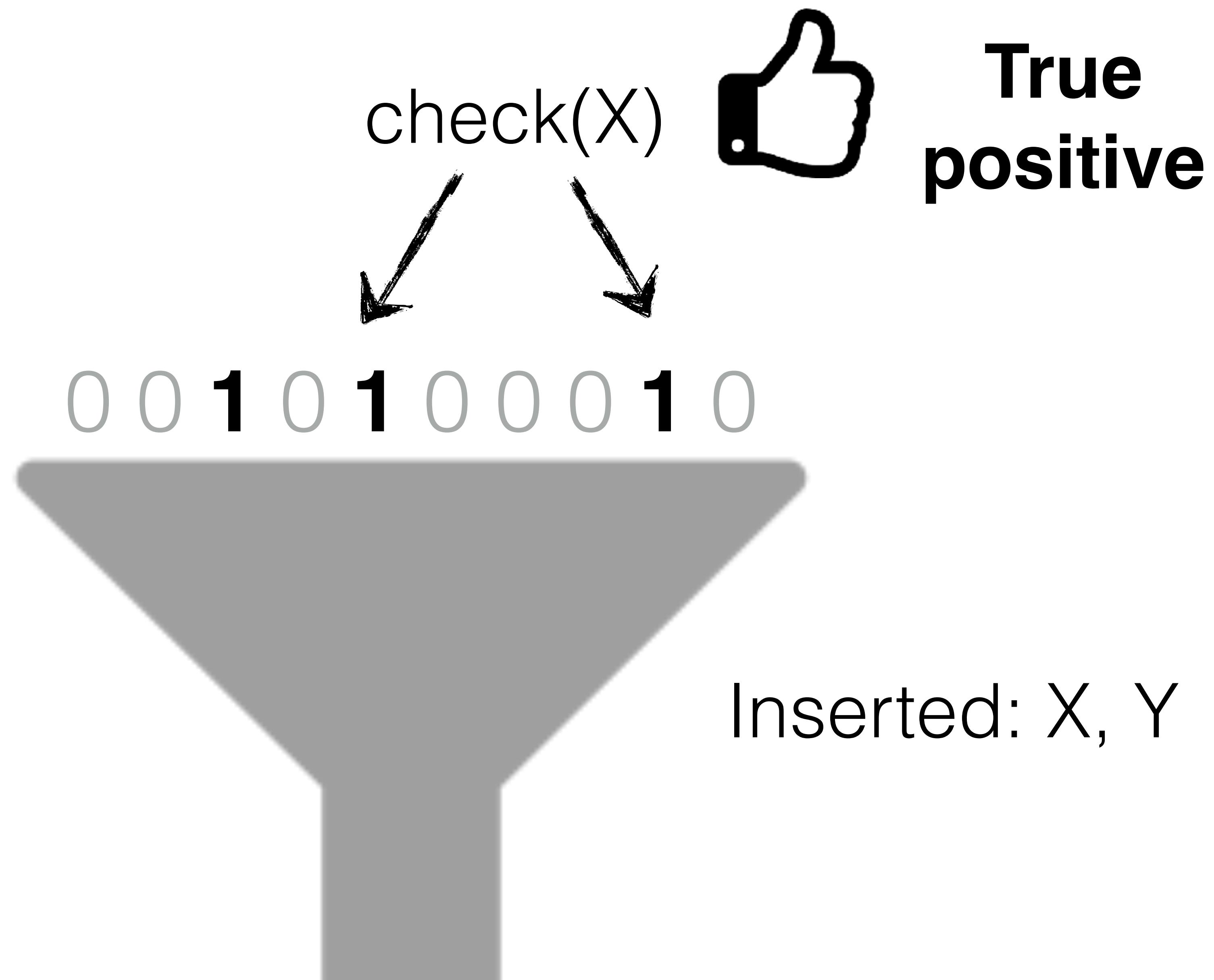


Queries: return positive if all hashed bits are 1s

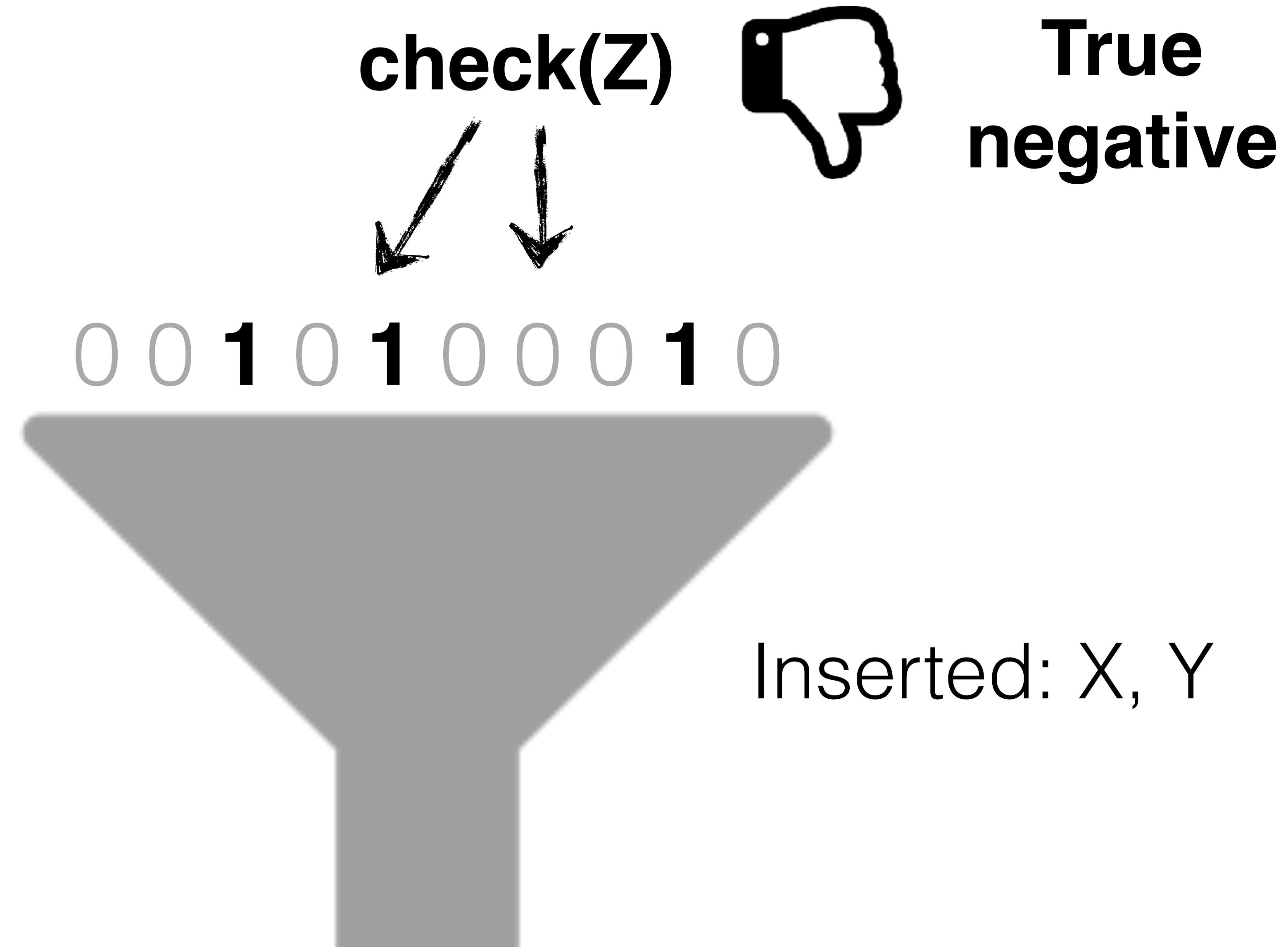
0 0 **1** 0 **1** 0 0 0 **1** 0

Inserted: X, Y

Queries: return positive if all hashed bits are 1s



Queries: return positive if all hashed bits are 1s



Queries: return positive if all hashed bits are 1s

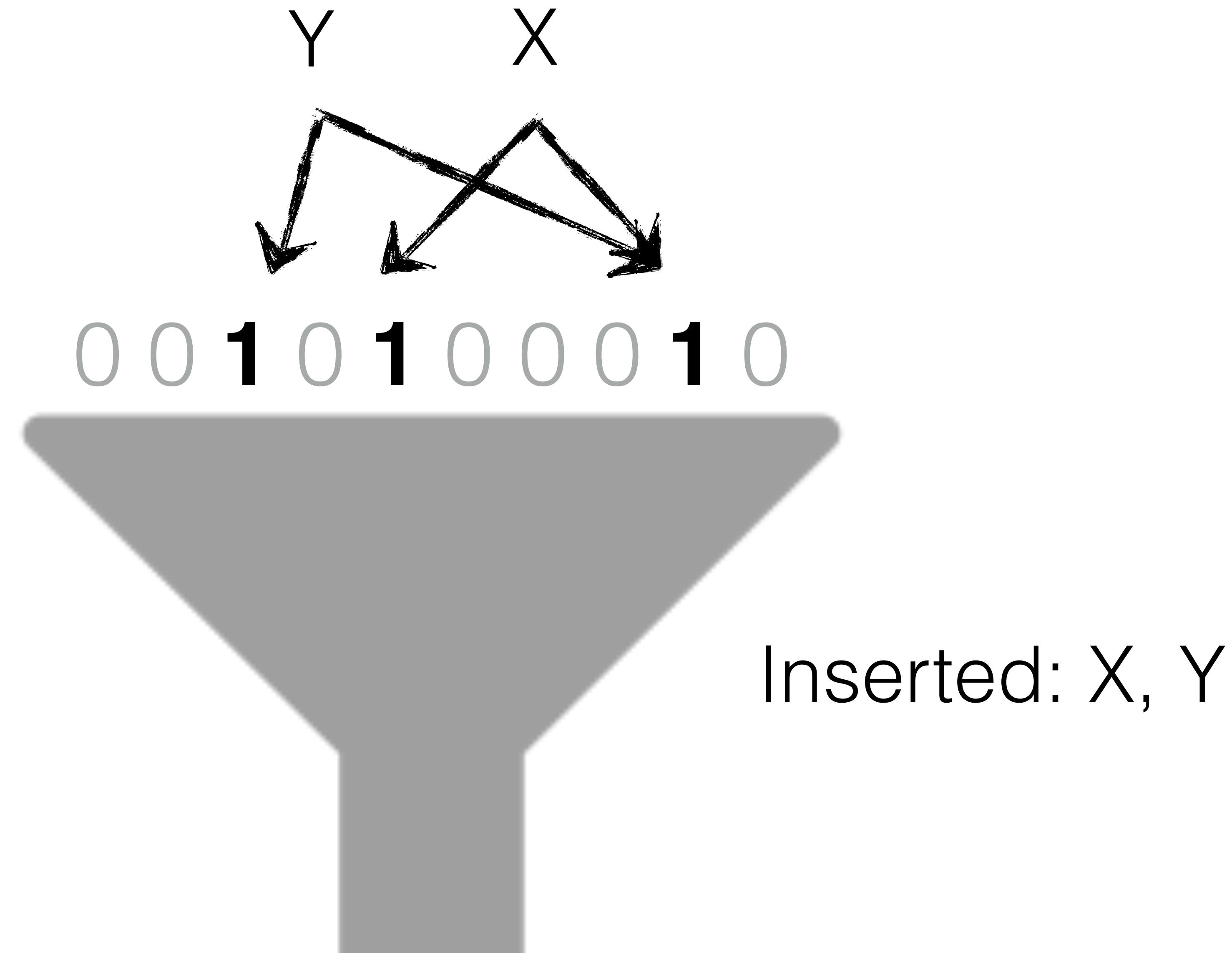
check(Q)

False
Positive

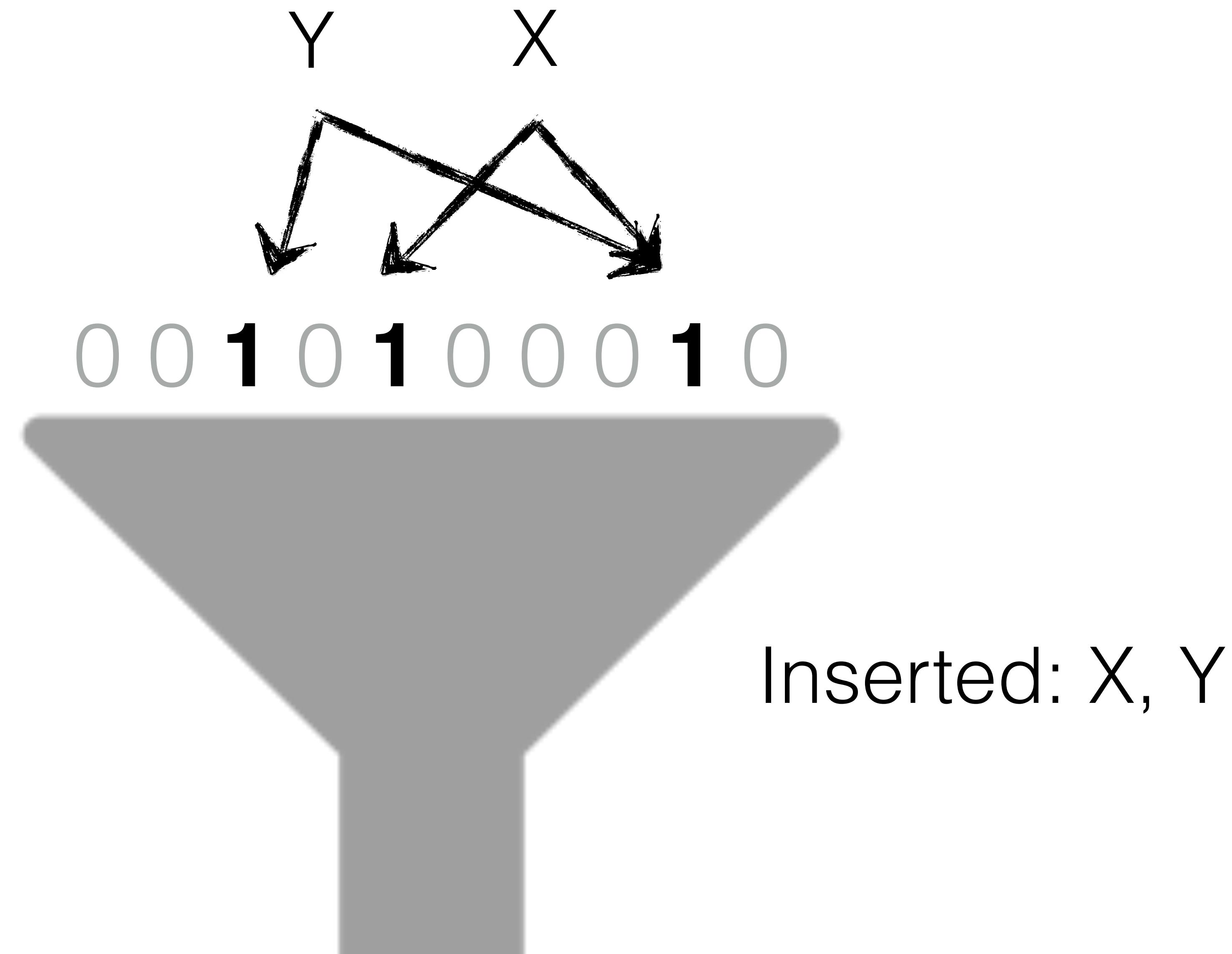
0 0 1 0 1 0 0 0 1 0

Inserted: X, Y

No deletes - can lead to false negatives



Thus, we consider it static



Construction contract

Construction contract

Know specs in advance:

N - # entries to insert

ϵ - desired FPR

Construction contract

Know specs in advance:

N - # entries to insert

ϵ - desired FPR

Allocate filter with: $N \cdot (\log_2(1/\epsilon) / \ln(2))$ bits

Construction contract

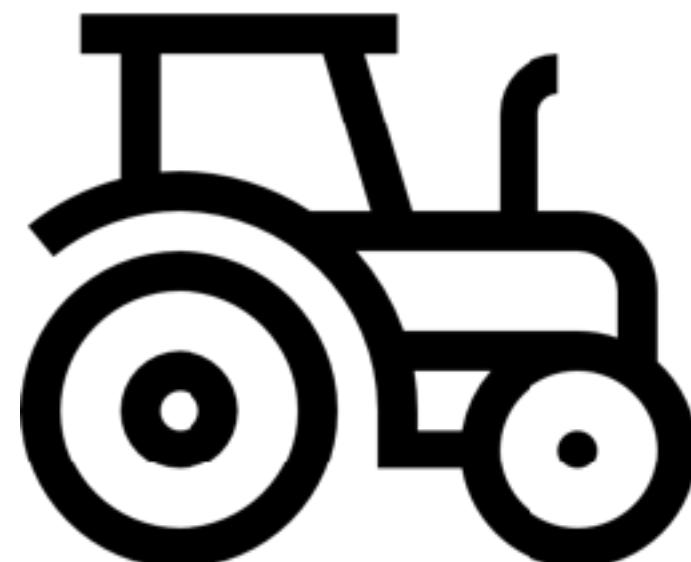
Know specs in advance:

N - # entries to insert

ϵ - desired FPR

Allocate filter with: $N \cdot (\log_2(1/\epsilon) / \ln(2))$ bits

Insert N elements



Construction contract

Know specs in advance:

N - # entries to insert

ϵ - desired FPR

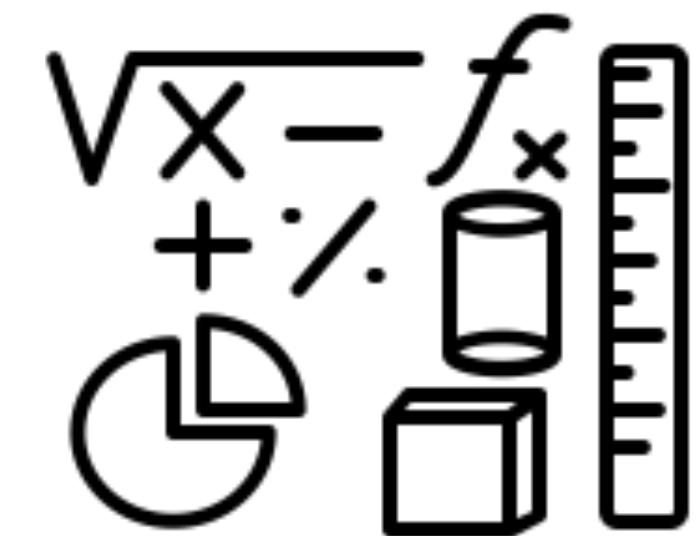
Allocate filter with: $N \cdot (\log_2(1/\epsilon) / \ln(2))$ bits

Insert N elements

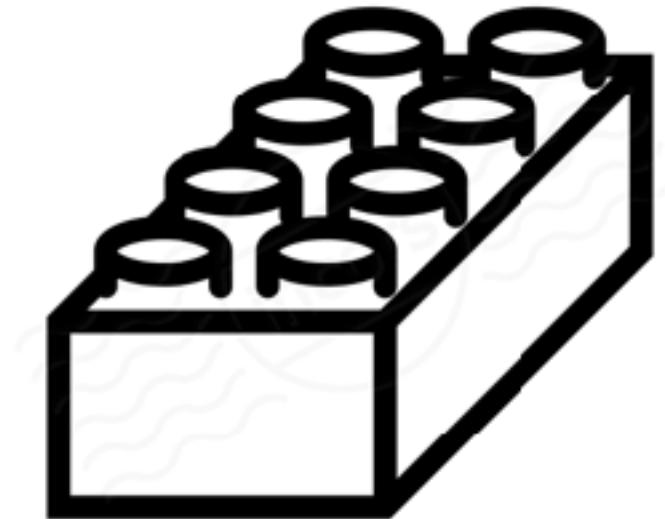
Guarantee FPR of ϵ

Bloom Filters

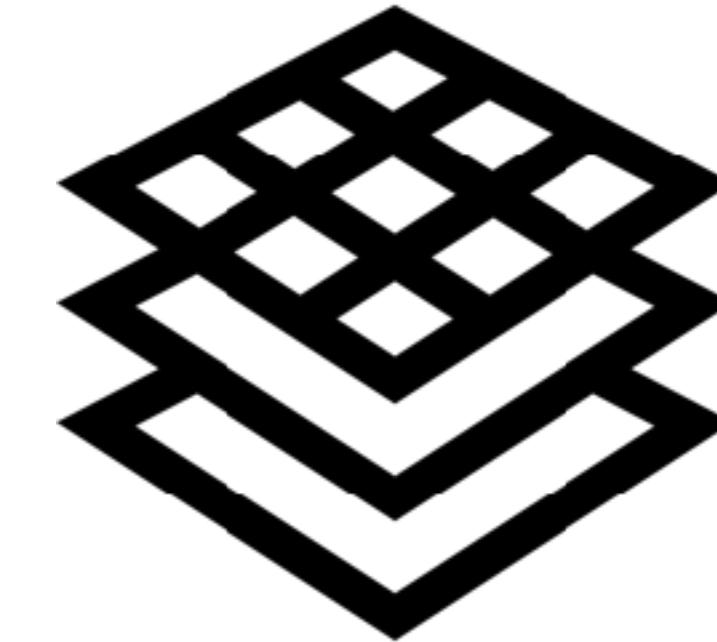
Analysis



Blocking

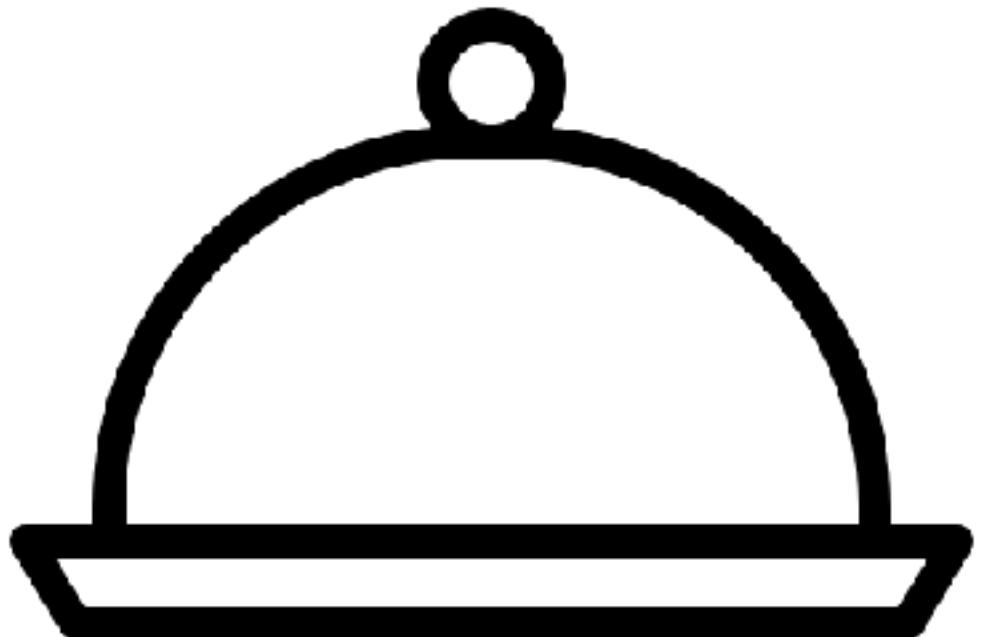


Sectorization



Analysis

In CSC443



Now: ground up

FPR Analysis

Network Applications of Bloom Filters: A Survey

Andrei Broder and Michael Mitzenmacher.

Allerton Conference, 2002

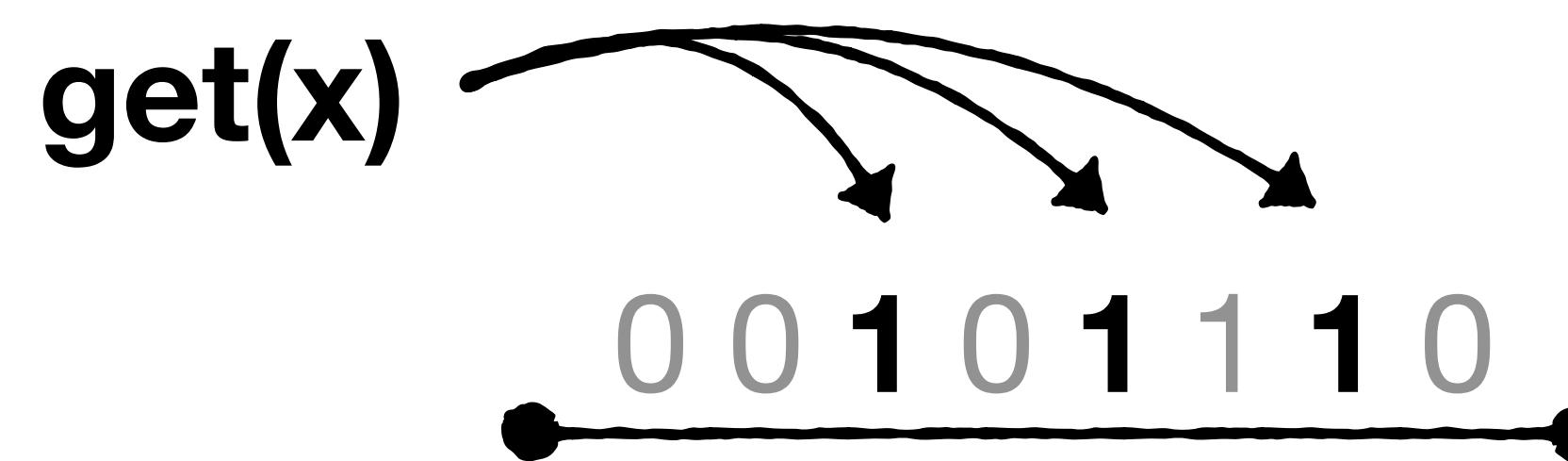
FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

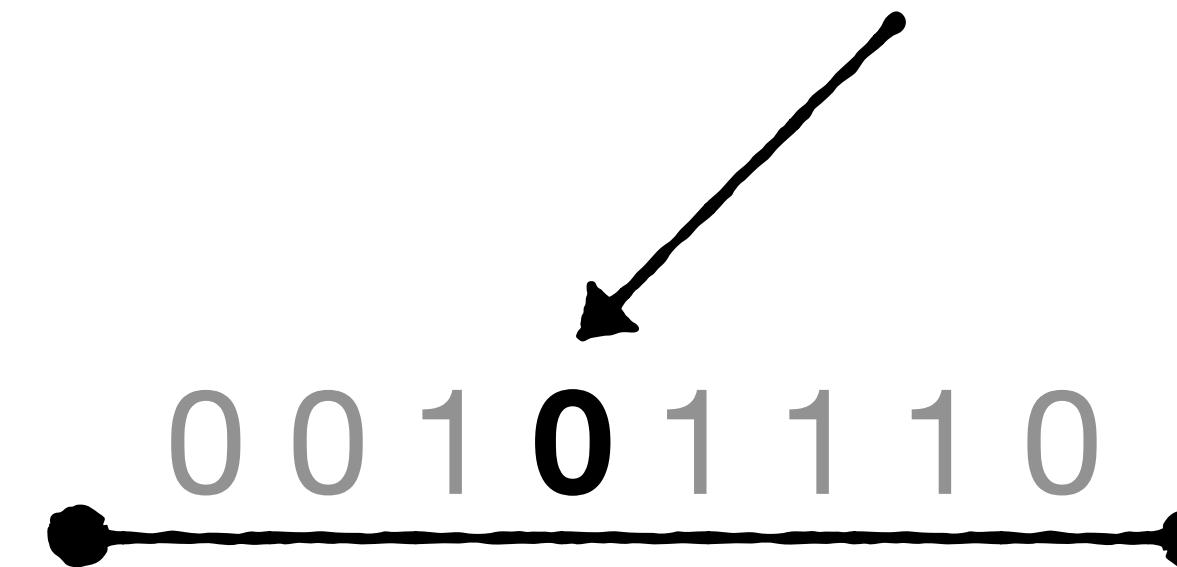


FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?



FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

Probability that some random bit is still not set after 1 insertion?

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

Probability that some random bit is still not set after 1 insertion?

Probability that some random bit is set after 1 hash function?

1/M

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

Probability that some random bit is still not set after 1 insertion?

Probability that some random bit is **not** set after 1 hash function?

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

Probability that some random bit is still not set after 1 insertion?

$$(1 - 1/M)^K$$

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

$$(1 - 1/M)^{KN}$$

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

$$(1 - 1/M)^{KN}$$

Known identity: $(1 - 1/M)^M = e^{-1}$ For any M

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

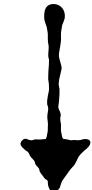
$$((1-1/M)^M)^{KN/M}$$

Known identity: $(1-1/M)^M = e^{-1}$ For any M

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?



Probability that some random bit is still not set after N insertions?

$$(e^{-1})^{KN/M}$$

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

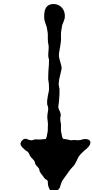
Probability that some random bit is still not set after N insertions?

$$e^{-KN/M}$$

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?



Probability that some random bit is ~~still not~~ set after N insertions?

$$1 - e^{-KN/M}$$

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

Probability that all k bits for a non-existing key are set?

Probability that some random bit is set after N insertions?

$$1 - e^{-KN/M}$$

FPR Analysis

M: Total number of bits
N: Total number of keys
K: # hash functions

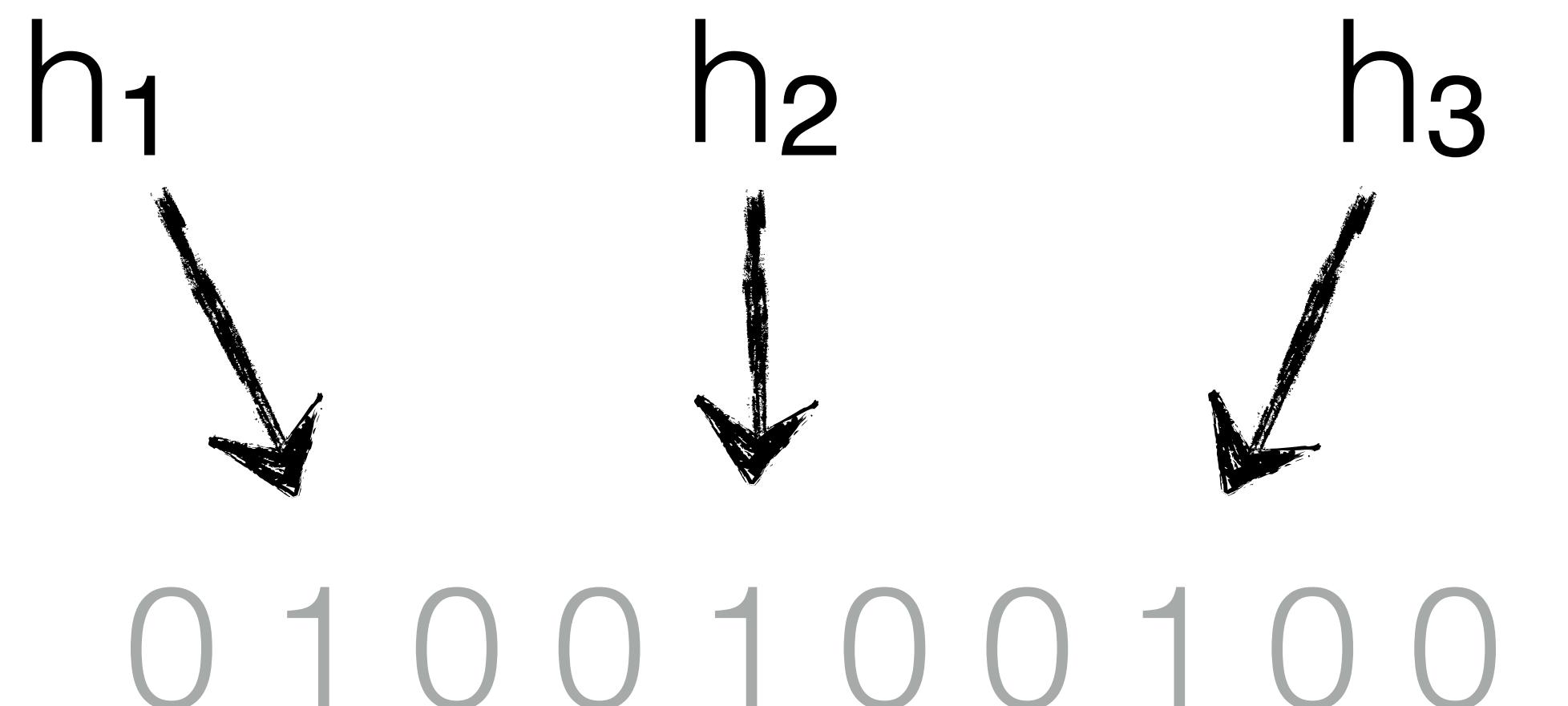
Probability that all k bits for a non-existing key are set?

$$(1 - e^{-KN/M})^K$$

How many hash functions should we use?

One is too few: false positive occurs whenever we hit a 1

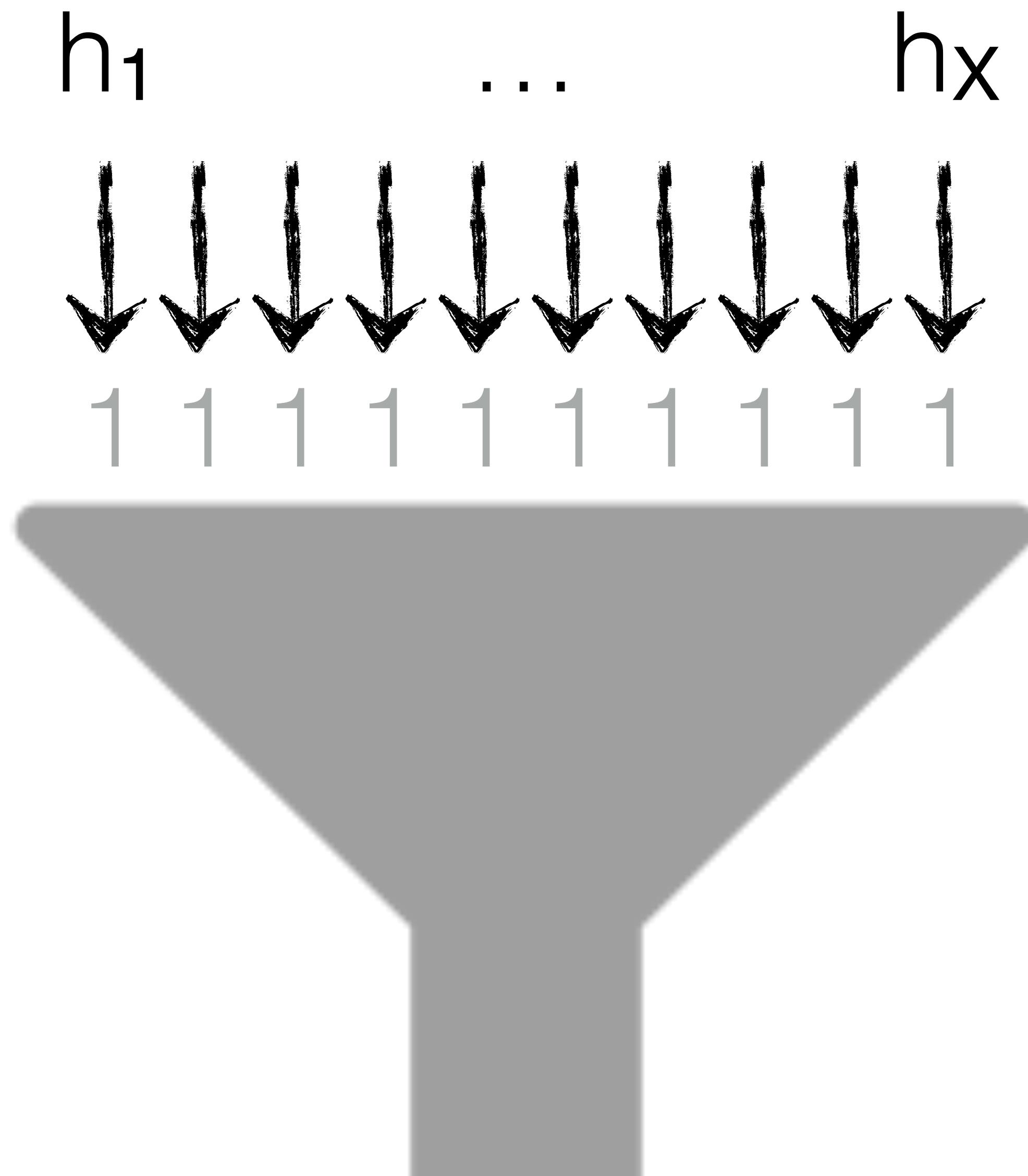
How many hash functions should we use?



One is too few: false positive occurs whenever we hit a 1

By adding hash functions, we initially decrease the false positive rate (FPR).

How many hash functions should we use?

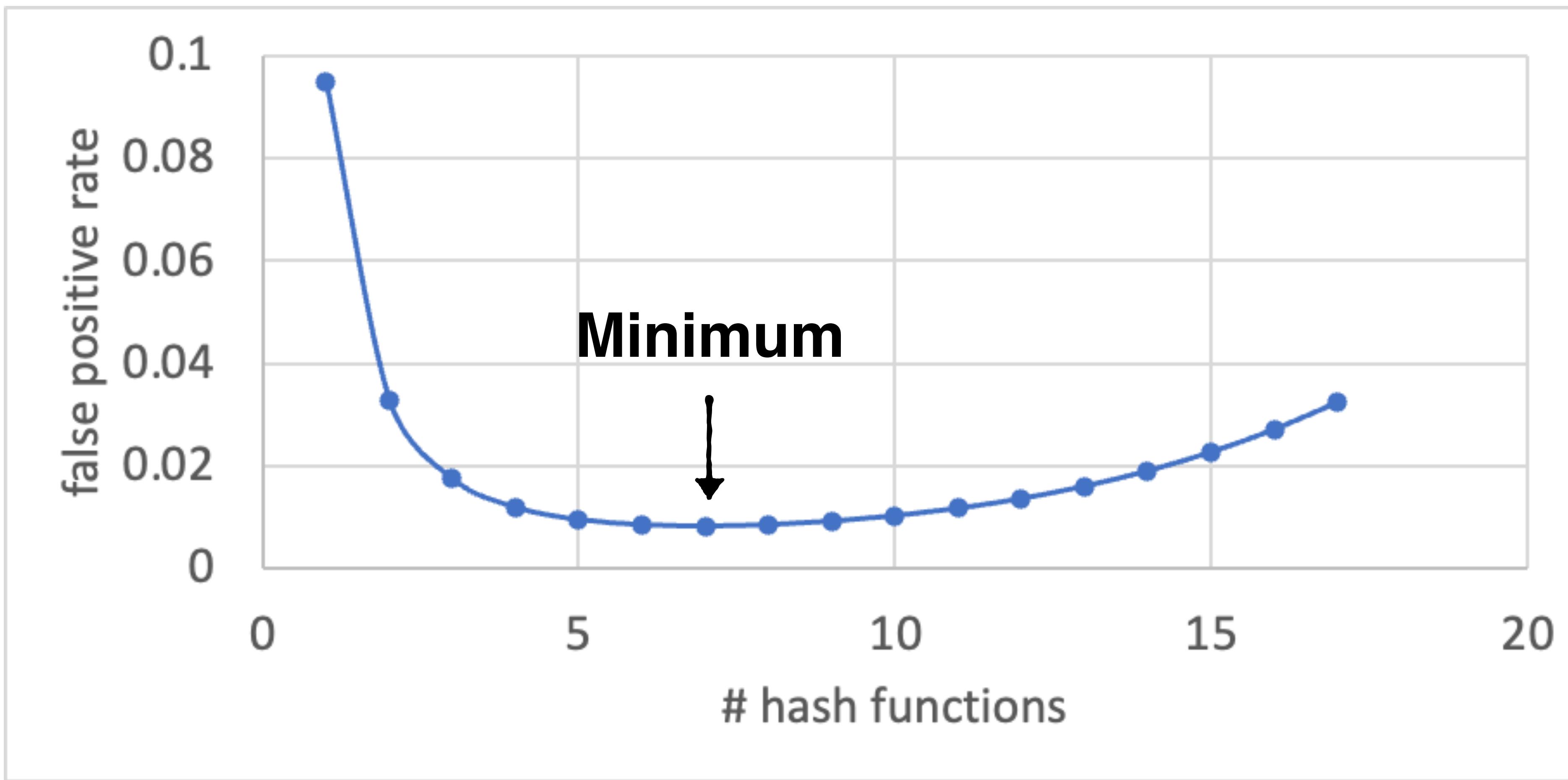


One is too few: false positive occurs whenever we hit a 1

By adding hash functions, we initially decrease the false positive rate (FPR).

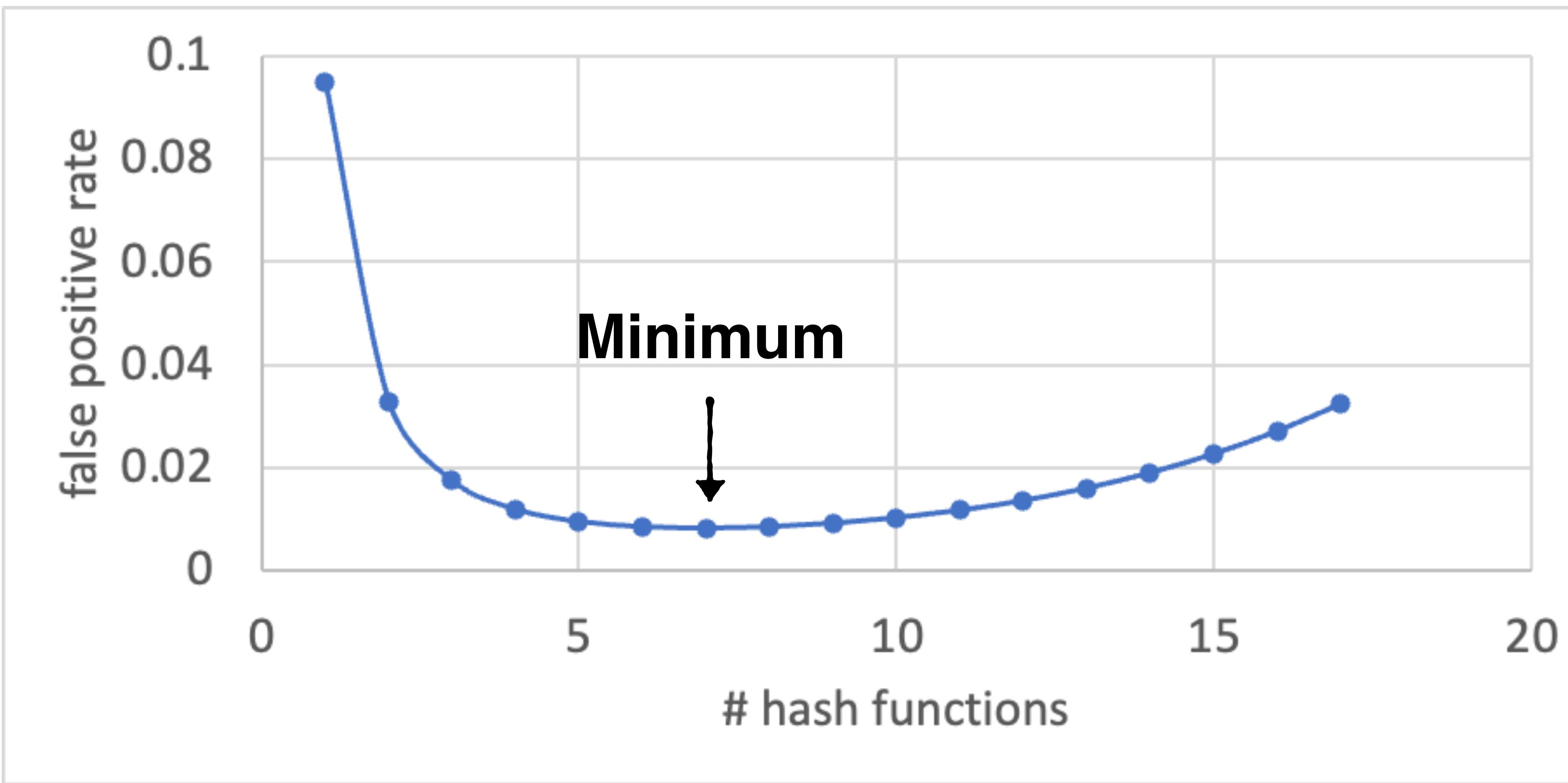
But too many hash functions wind up increasing the FPR.

How many hash functions should we use?



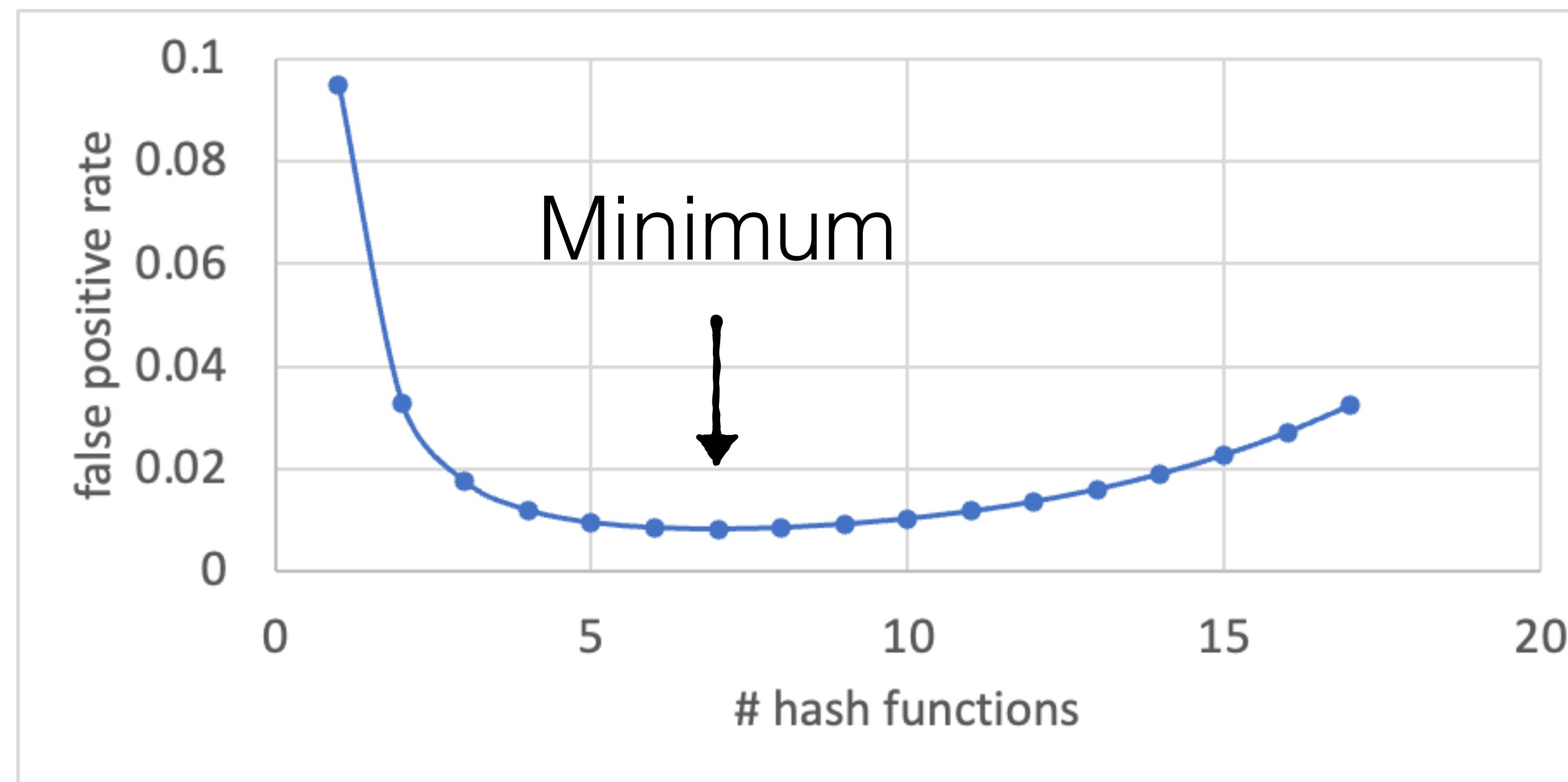
(Drawn for a filter using 10 bits per entry)

How many hash functions should we use?



Differentiate $(1-e^{-KN/M})^K$ with respect to K

How many hash functions should we use?



Differentiate $(1-e^{-KN/M})^K$ with respect to K

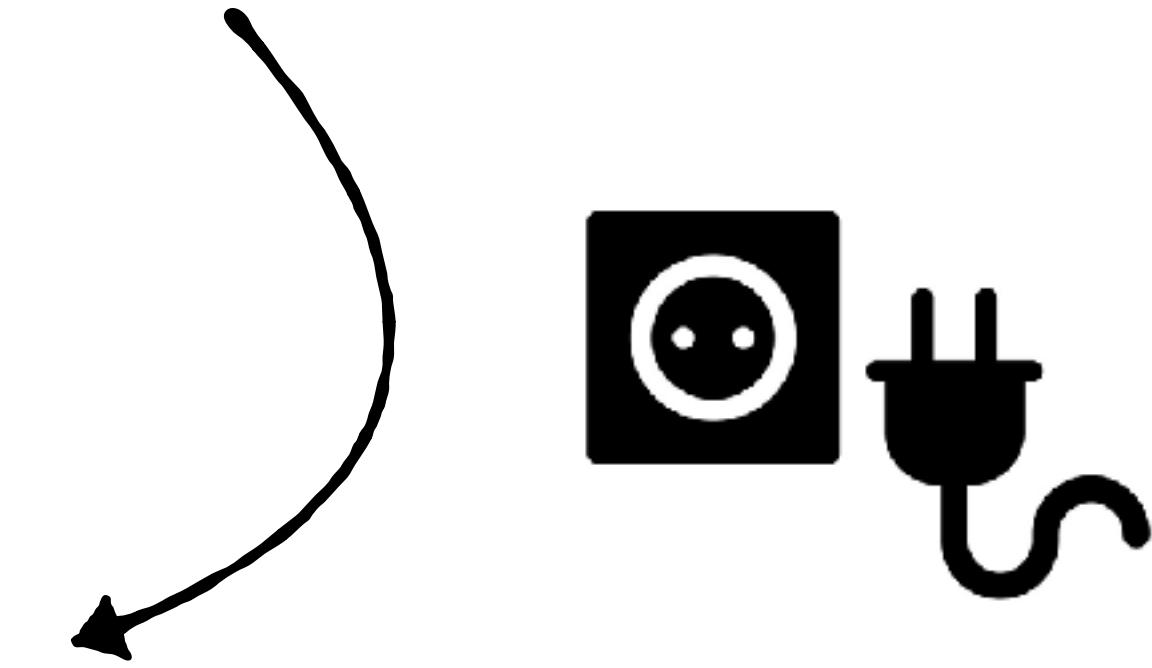
Optimal # hash functions $k = \ln(2) \cdot M/N$

(e.g. with Wolfram Alpha)

Optimal # hash functions $k = \ln(2) \cdot M/N$

**False
positives
rate**

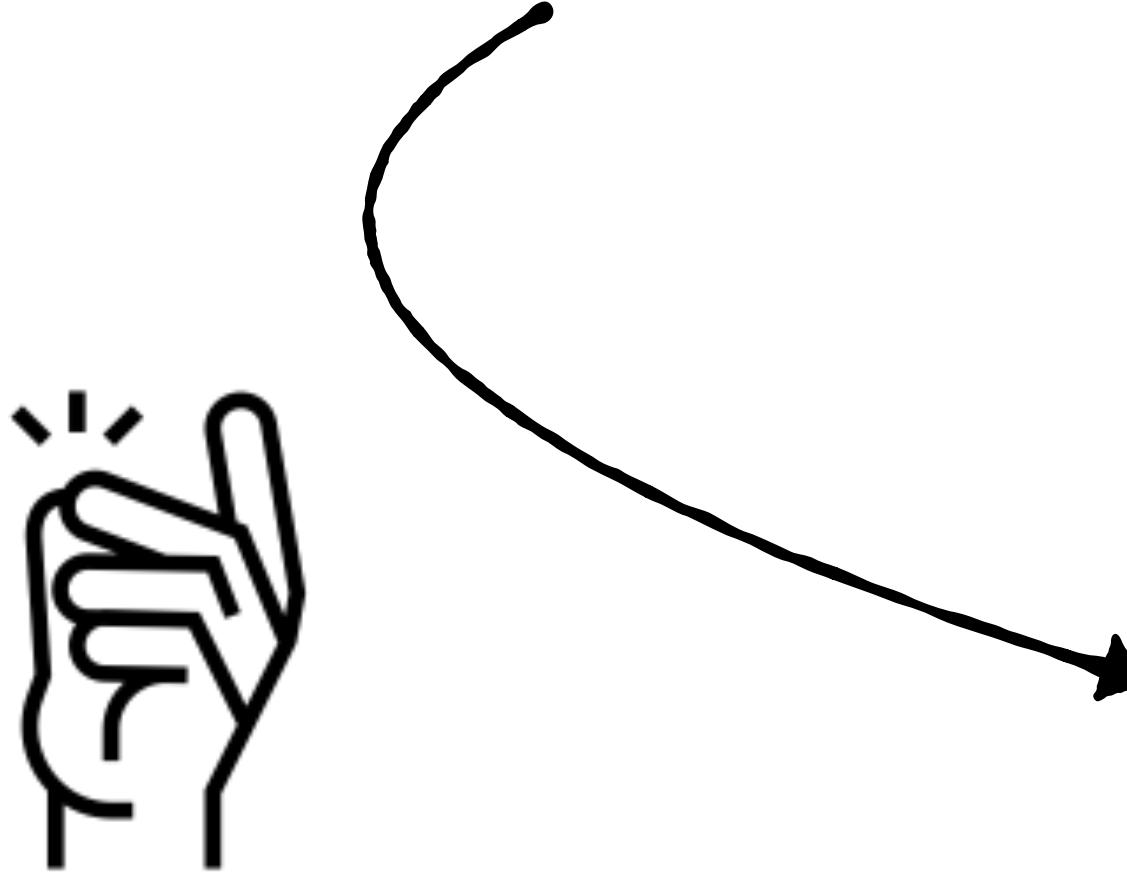
$$(1 - e^{-KN/M})^K$$



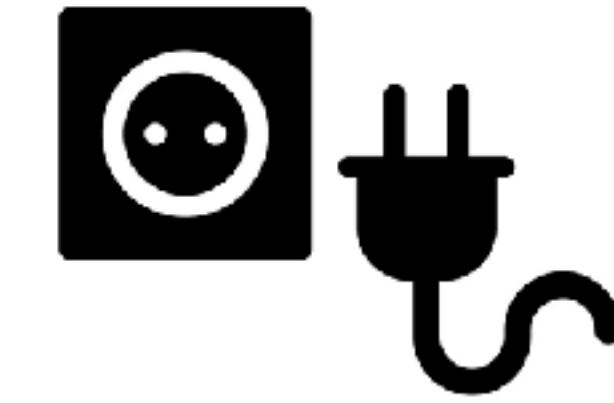
Optimal # hash functions $\mathbf{k = \ln(2) \cdot M/N}$

False
positives
rate

$$(1 - e^{-KN/M})^K$$

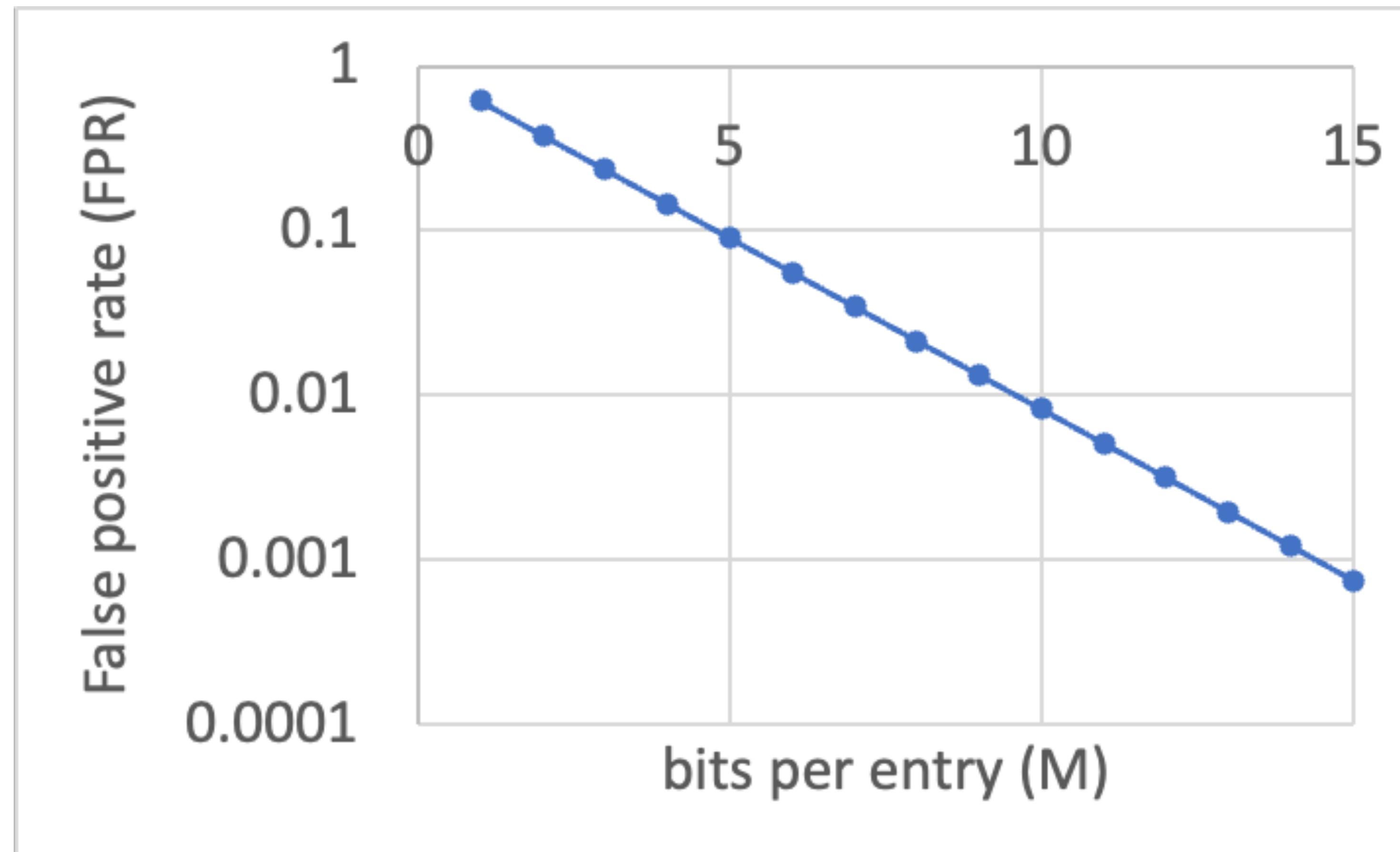


$$2^{-M/N} \cdot \ln(2)$$



assuming the optimal # hash functions,

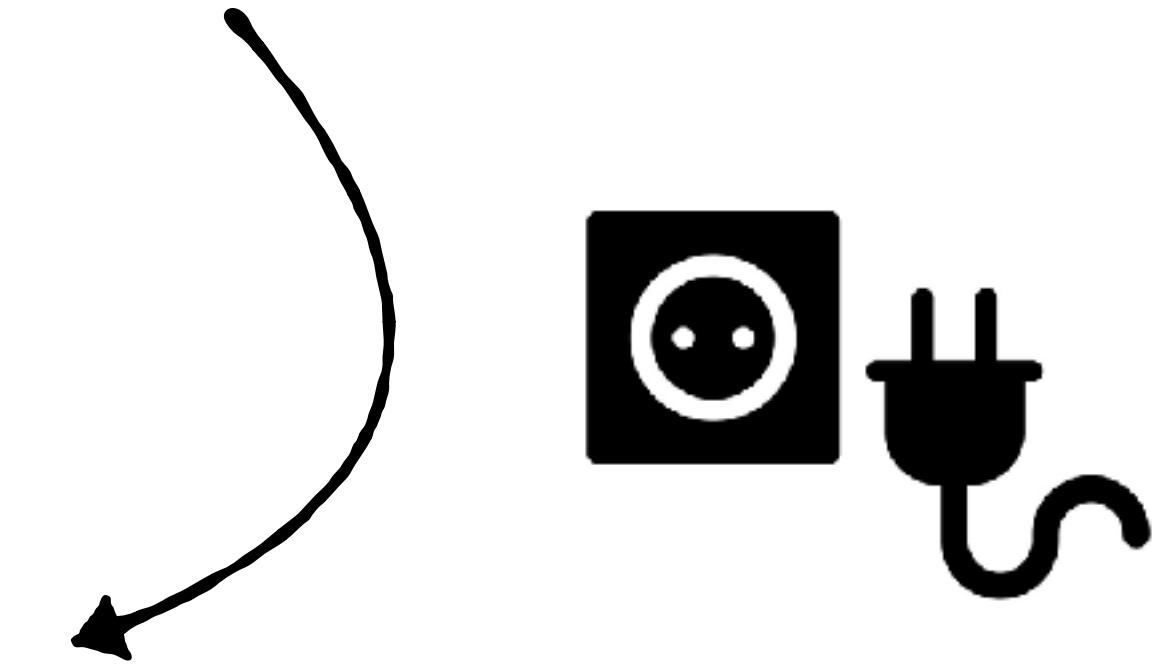
$$\text{false positive rate} = 2^{-M/N} \cdot \ln(2)$$



Optimal # hash functions $k = \ln(2) \cdot M/N$

**Some bit is
not set**

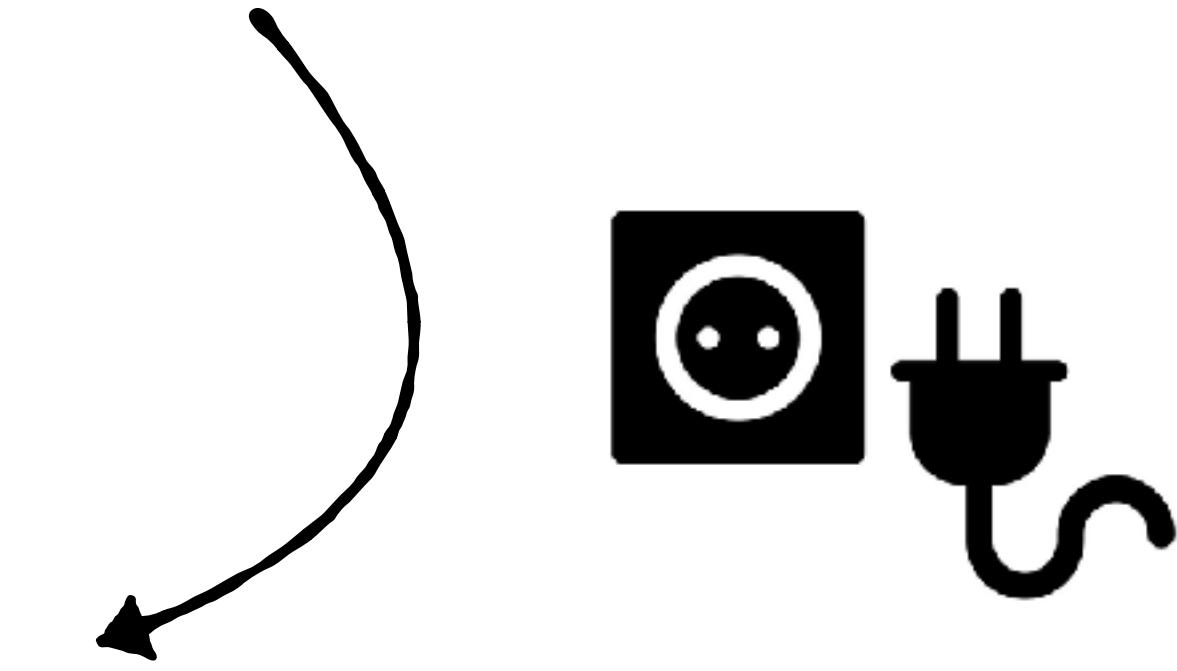
$$e^{-kN/M}$$



Optimal # hash functions $k = \ln(2) \cdot M/N$

Some bit is
not set

$$e^{-KN/M}$$

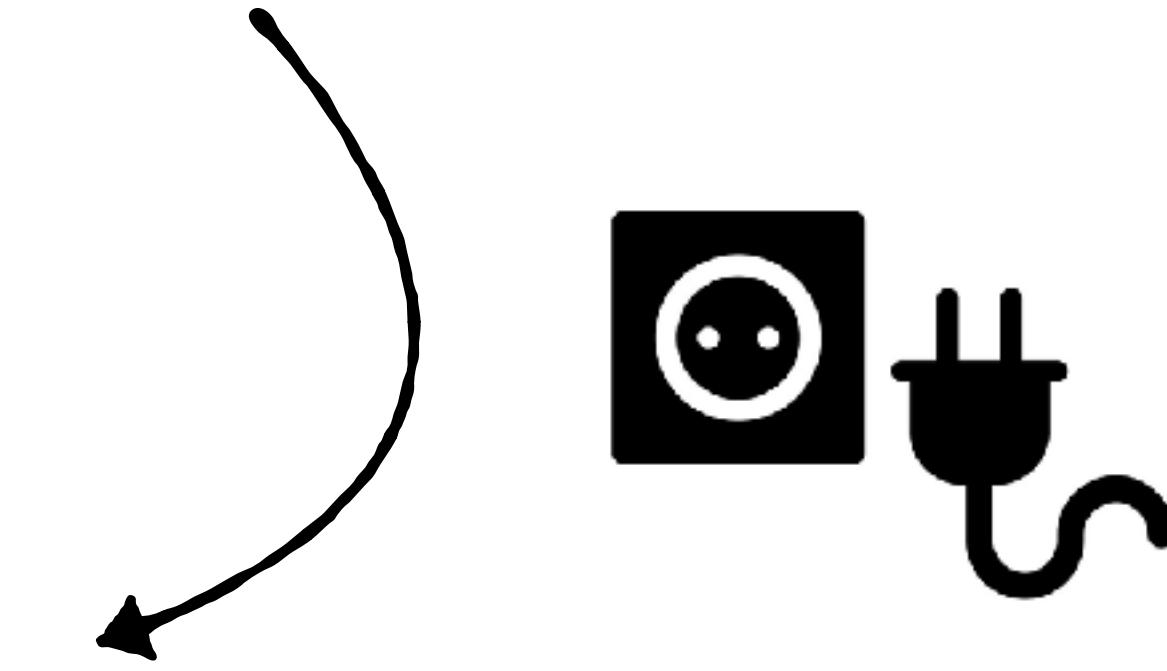


0.5

Optimal # hash functions $k = \ln(2) \cdot M/N$

Some bit is
not set

$$e^{-KN/M}$$



0.5

50% of all bits are zero once the filter is full

Operation Costs (in hash functions computed)

Insertion =

Positive Query =

Negative Query =

Operation Costs (in hash functions computed)

Insertion = $M/N \cdot \ln(2)$

Positive Query =

Negative Query =

Operation Costs (in hash functions computed)

Insertion = $M/N \cdot \ln(2)$

Positive Query = **$M/N \cdot \ln(2)$**

Negative Query =

Operation Costs (in hash functions computed)

Insertion = $M/N \cdot \ln(2)$

Positive Query = $M/N \cdot \ln(2)$

Negative Query =

(50% of bits are zeros)

Operation Costs (in hash functions computed)

Insertion = $M/N \cdot \ln(2)$

Positive Query = $M/N \cdot \ln(2)$

Avg. Negative Query = $1 + 1/2 (1 + 1/2 \cdot (\dots))$

(50% of bits are zeros)

Operation Costs (in hash functions computed)

Insertion = $M/N \cdot \ln(2)$

Positive Query = $M/N \cdot \ln(2)$

Avg. Negative Query = $1 + 1/2 + 1/4 + \dots = 2$

(50% of bits are zeros)

Operation Costs (in hash functions computed)

Insertion = $M/N \cdot \ln(2)$

Positive Query = $M/N \cdot \ln(2)$

Avg. Negative Query = 2

Full analysis from ground up :)

Operation Costs (in hash functions computed)

Insertion = $M/N \cdot \ln(2)$

Positive Query = $M/N \cdot \ln(2)$

Avg. Negative Query = 2

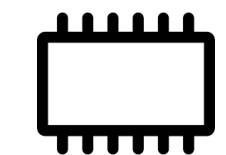
Is this ok for modern hardware?

Recall the memory hierarchy

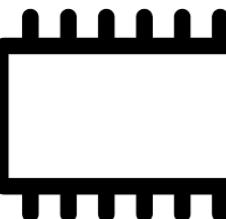
CPU Registers



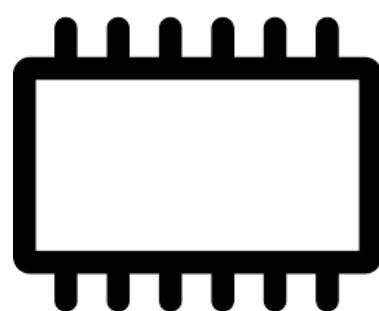
L1



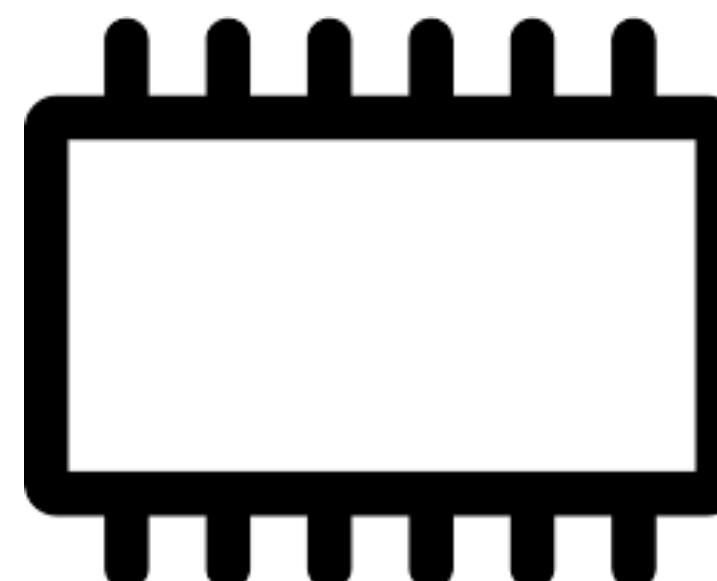
L2



L3



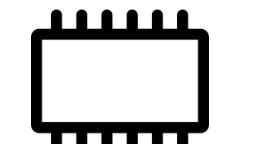
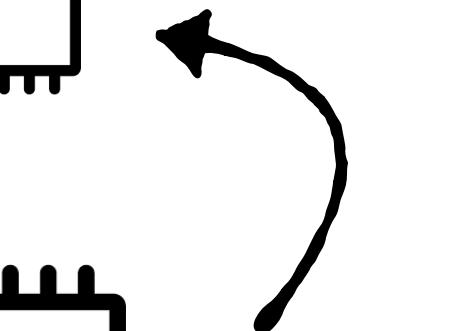
DRAM



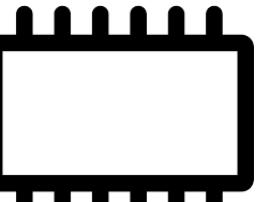
CPU Registers

⋮

L1

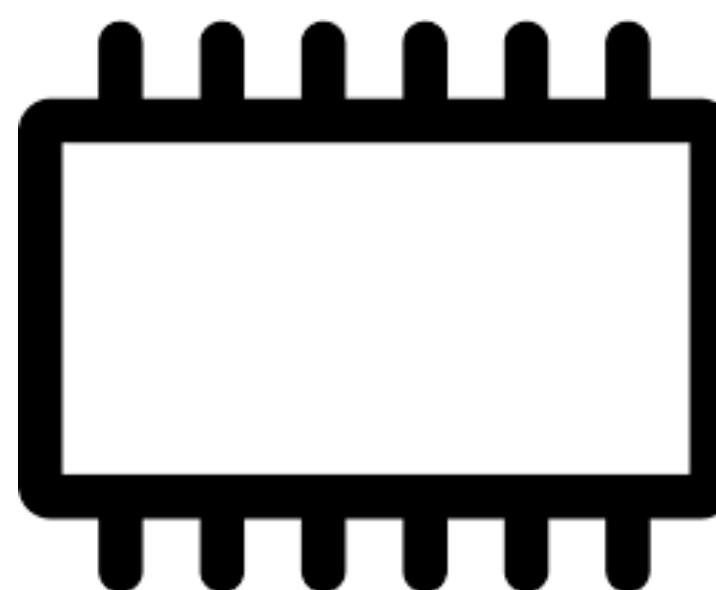


L2



L3

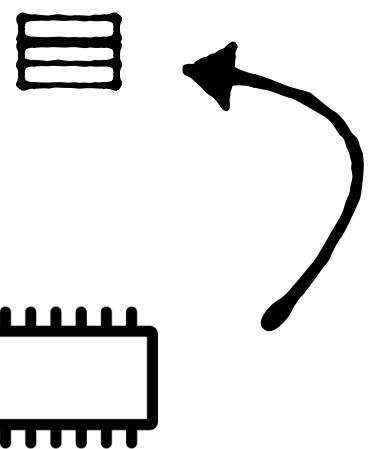
DRAM



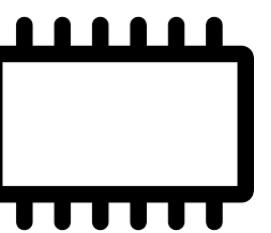
**Move data at “cache line” granularity
(e.g., 64B)**

CPU Registers

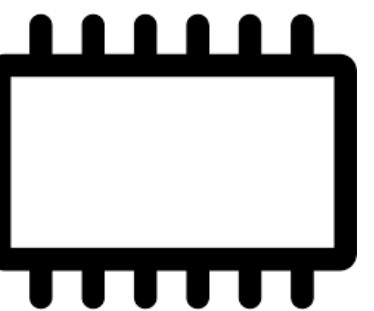
L1



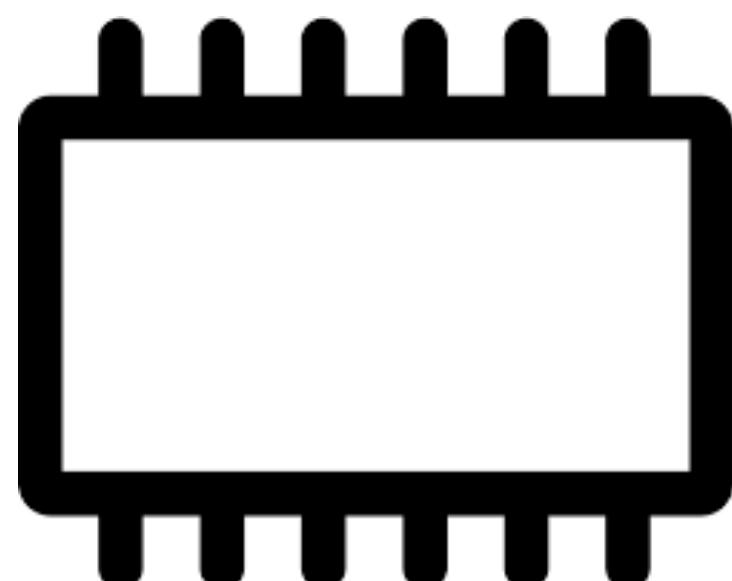
L2



L3



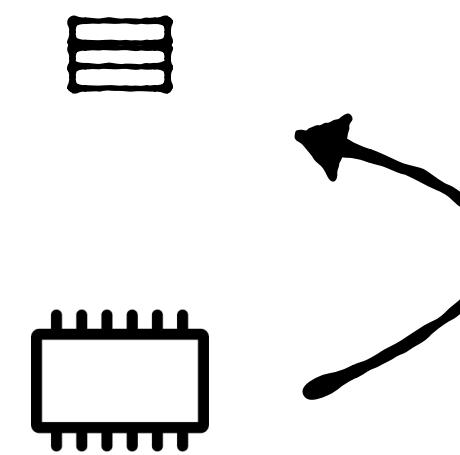
DRAM



**Move data at “word”
granularity
(e.g., 8B)**

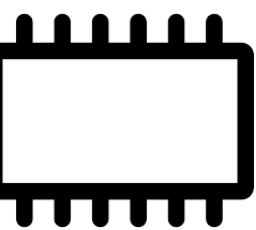
CPU Registers

L1



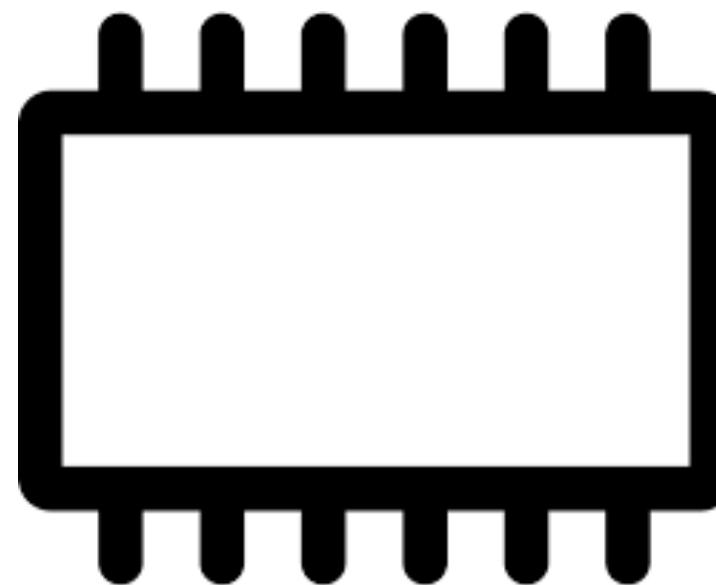
3-4 cycles

L2



L3

DRAM



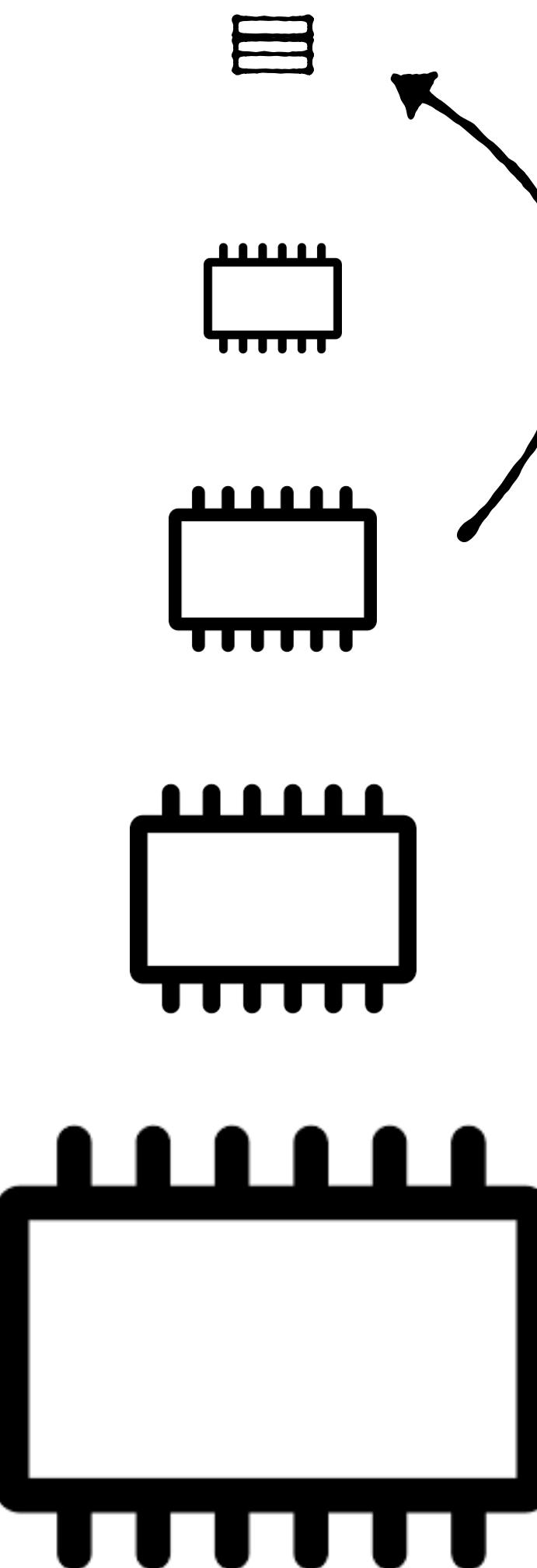
CPU Registers

L1

L2

L3

DRAM



10-12 cycles

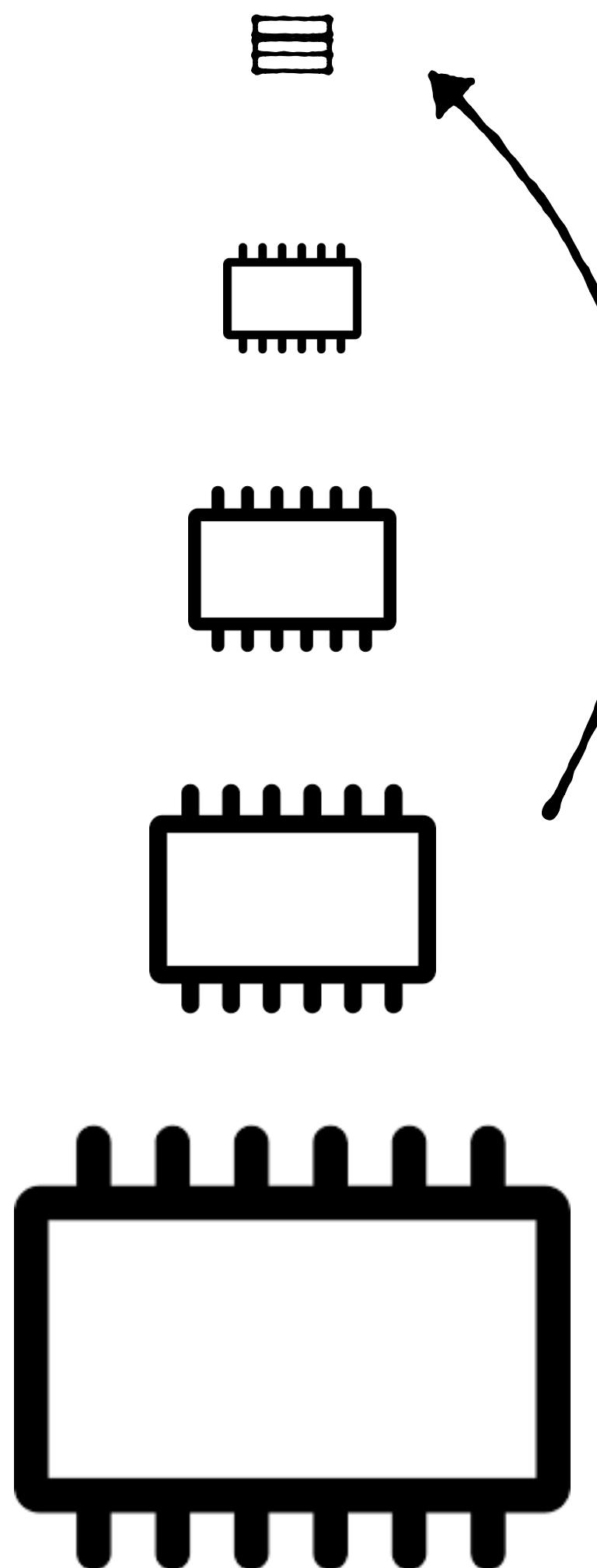
CPU Registers

L1

L2

L3

DRAM



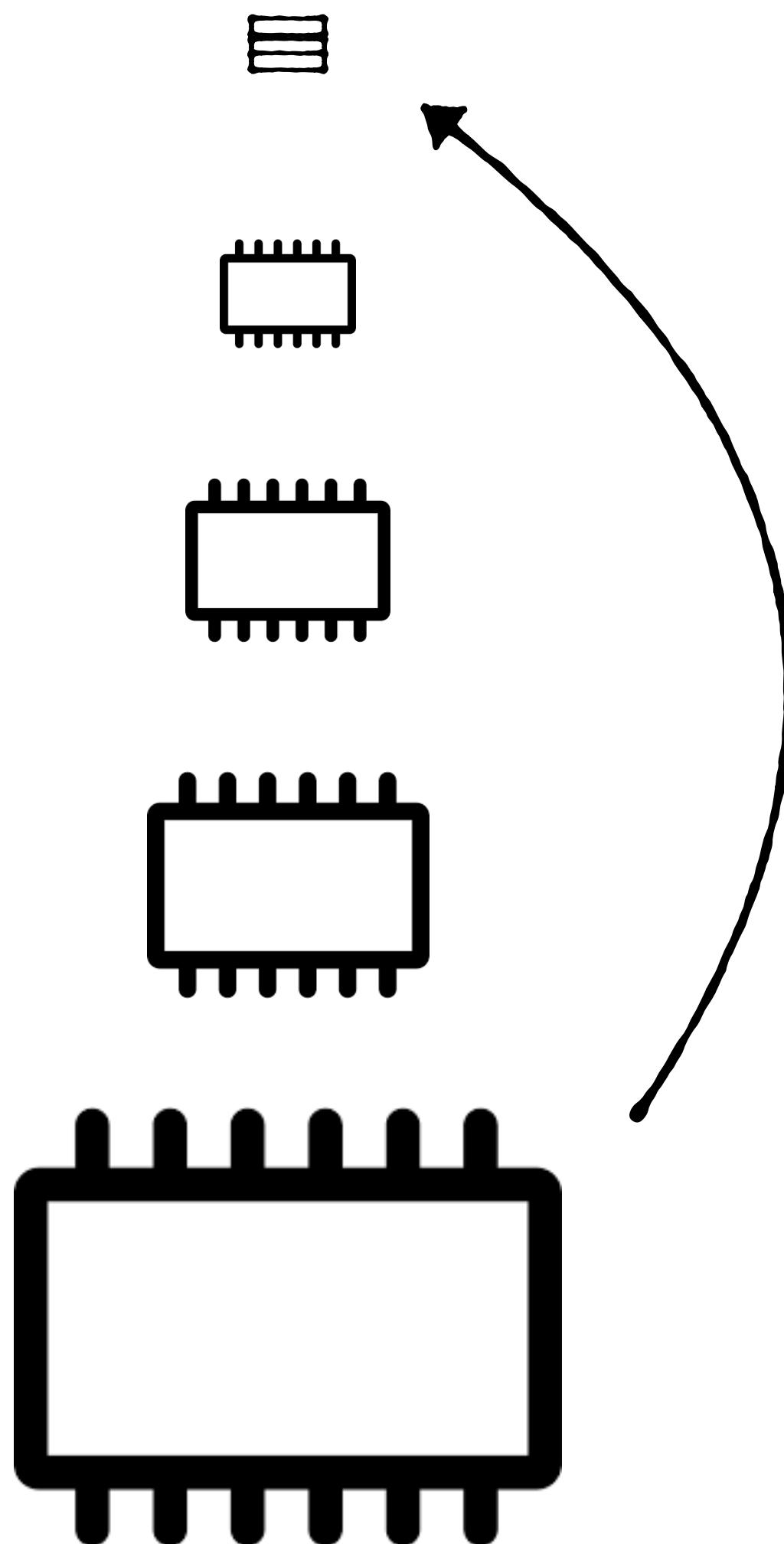
CPU Registers

L1

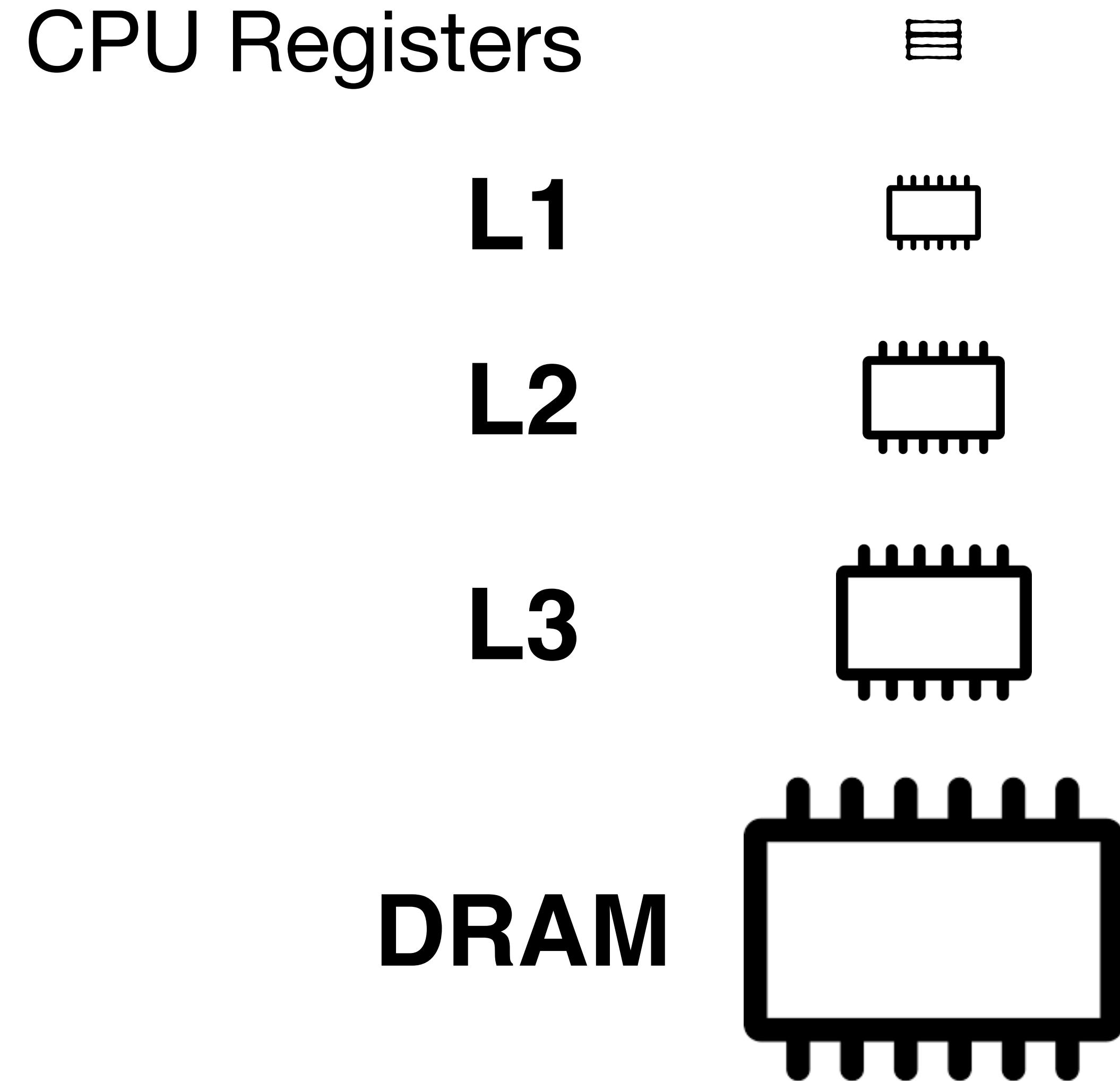
L2

L3

DRAM



Source: <http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/>
(Numbers from 2016)



Each hash function can lead to a cache miss

Insertion = $M/N \cdot \ln(2)$

Positive Query = $M/N \cdot \ln(2)$

Avg. Negative Query = 2

Each hash function can lead to a cache miss

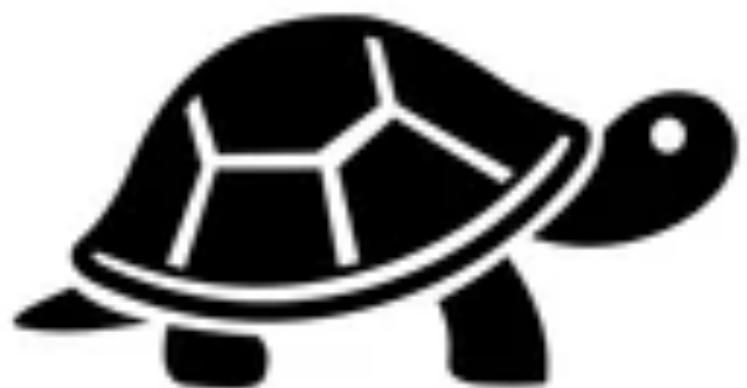
Insertion = $M/N \cdot \ln(2) \cdot 100$ ns

Positive Query = $M/N \cdot \ln(2) \cdot 100$ ns

Avg. Negative Query = $2 \cdot 100$ ns

Observation

**Basic Bloom filter
is slowest filter**



Observation

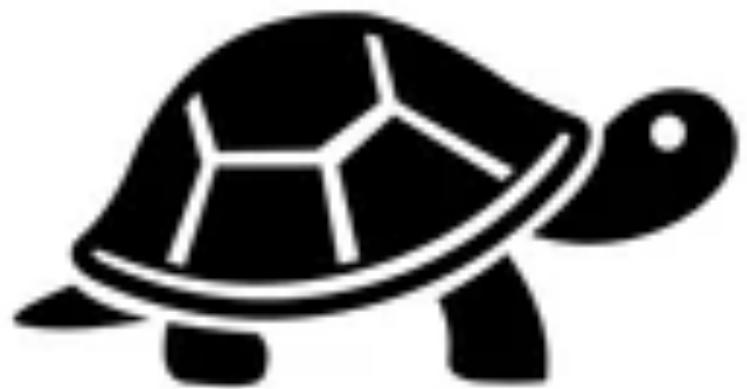
**Basic Bloom filter
is slowest filter**

**With hardware
optimizations, it is the
fastest**

Observation

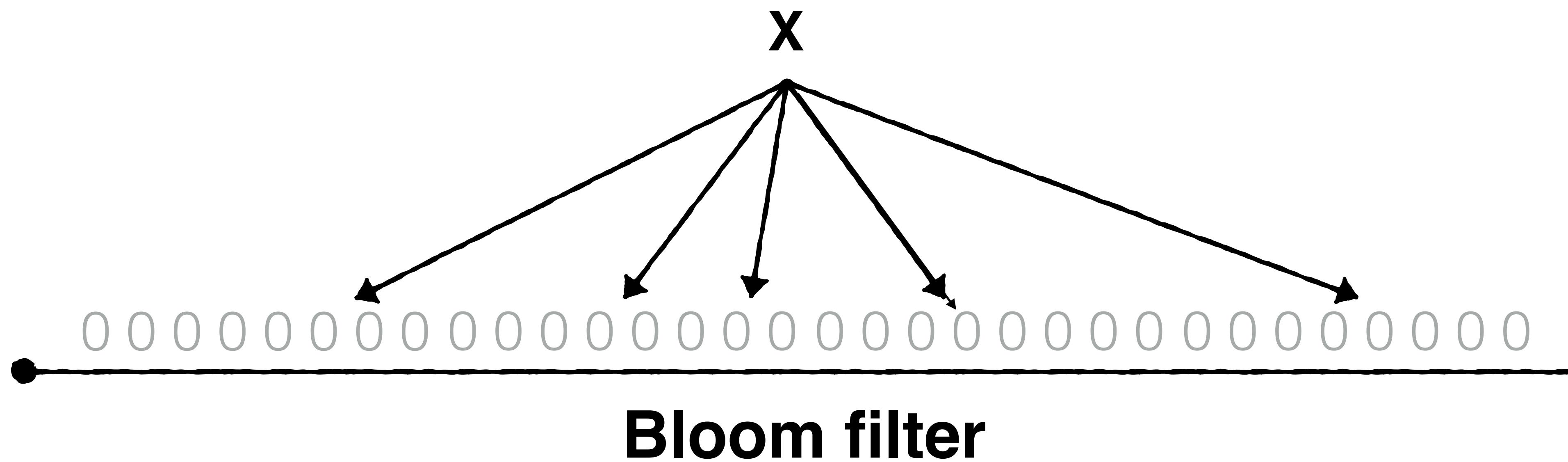
Basic Bloom filter
is slowest filter

With hardware
optimizations, it is the
fastest

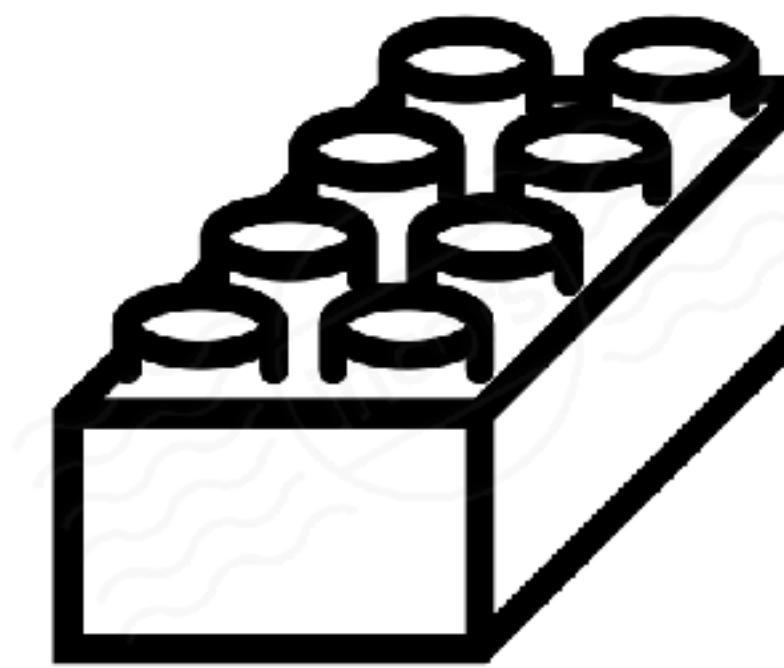


lends itself to hardware optimization

Alleviate random accesses?



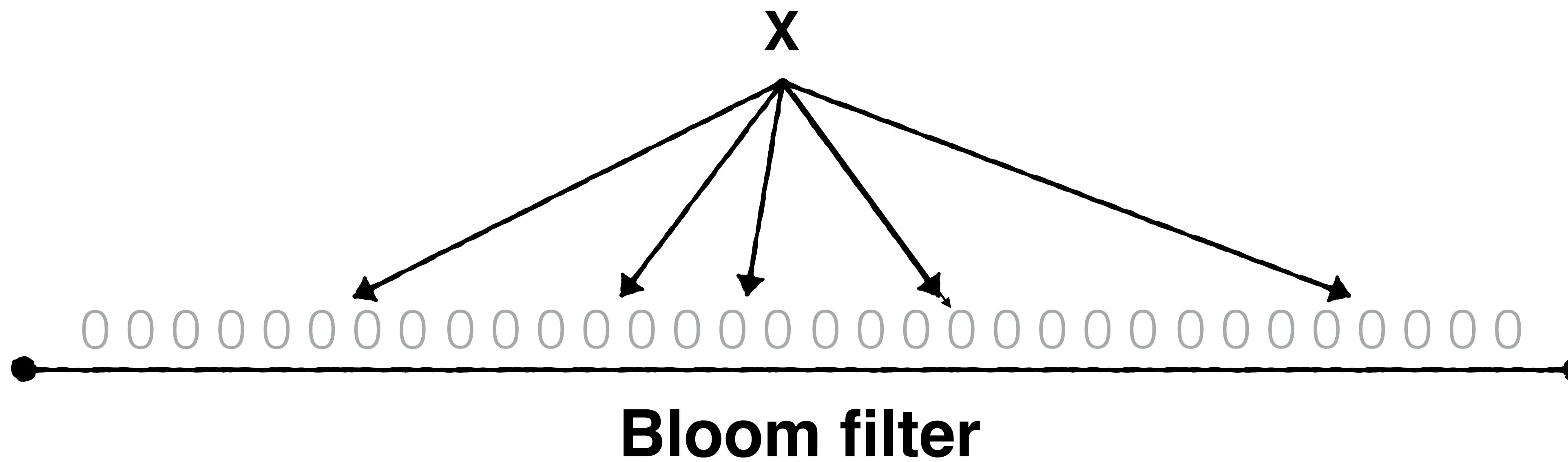
Blocked Bloom Filters



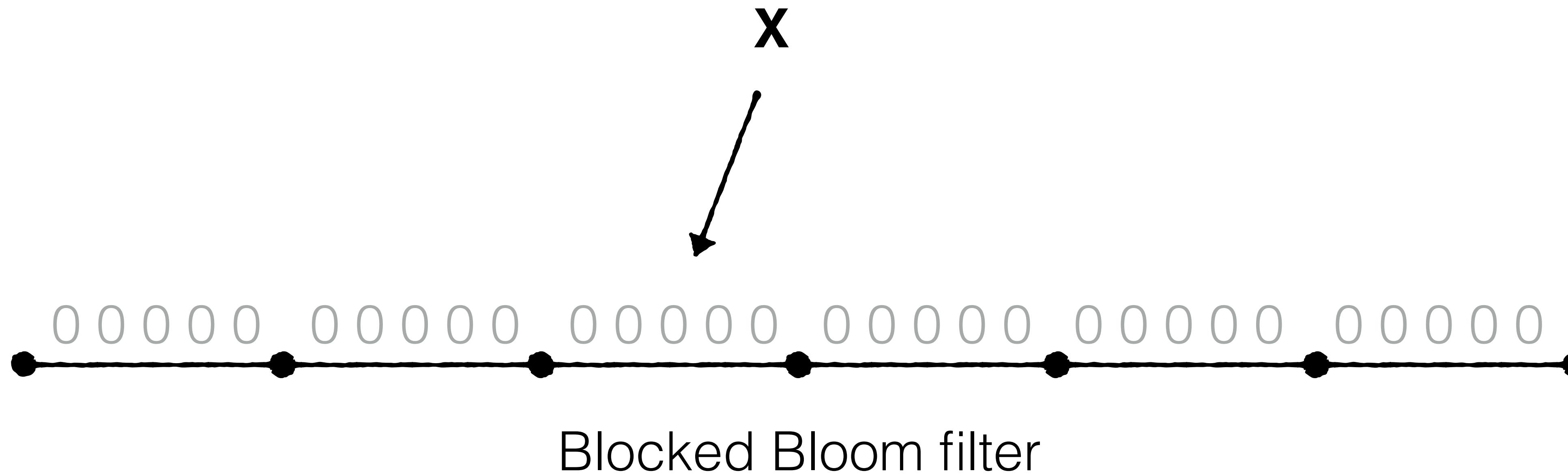
Cache-, Hash- and Space-Efficient Bloom Filters

Journal of Experimental Algorithms, 2010

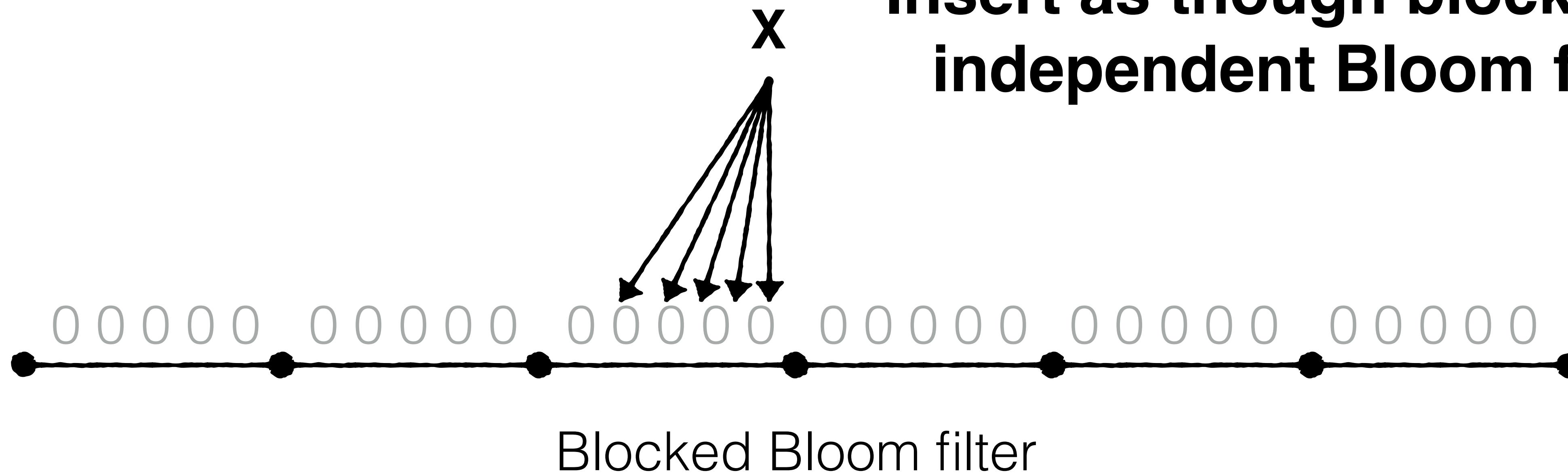
Felix Putze, Peter Sanders, Johannes Singler



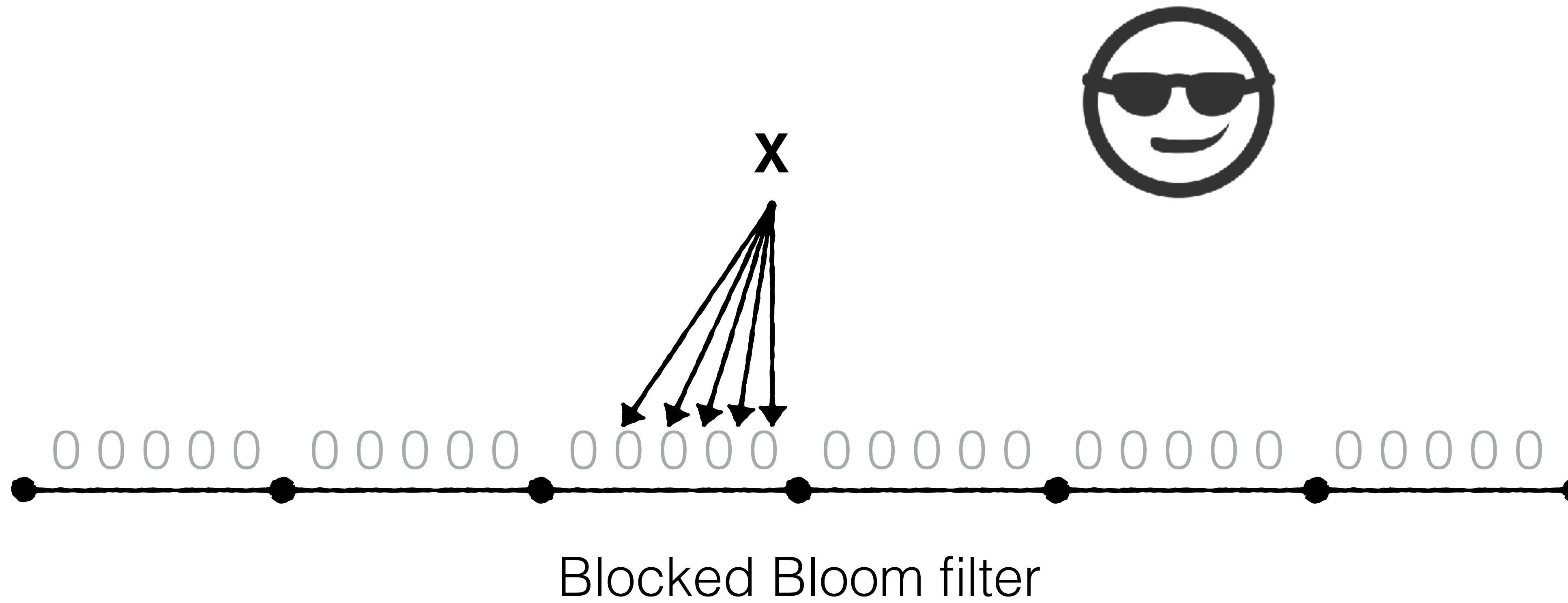
Hash to one block, sized as a cache line



**Insert as though block is an
independent Bloom filter**

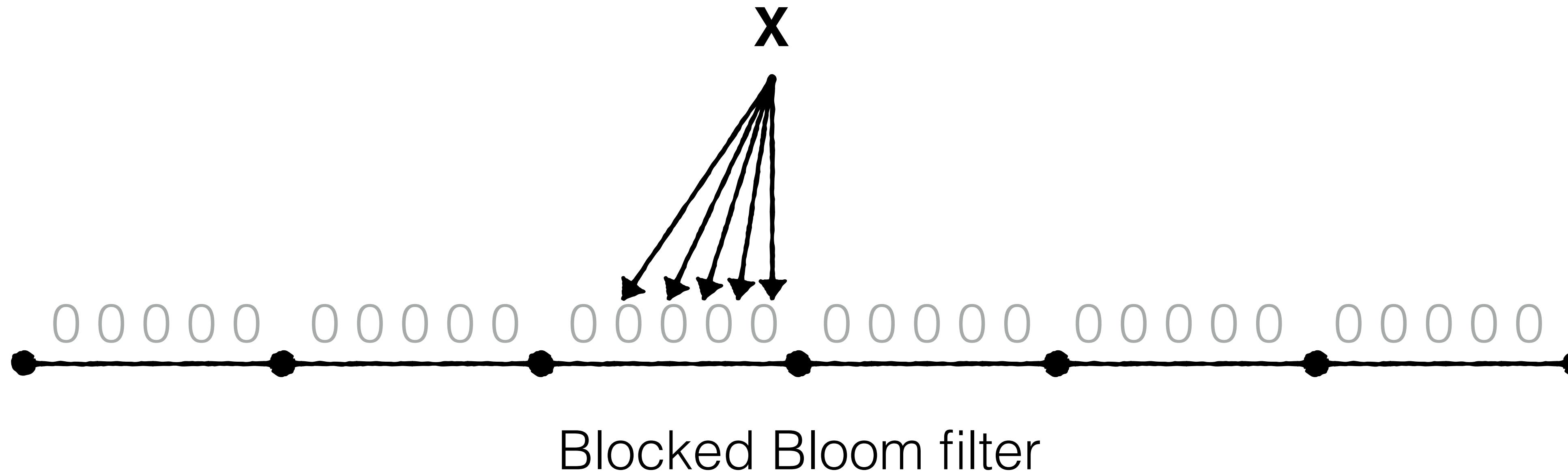


1 cache miss per query/insertion

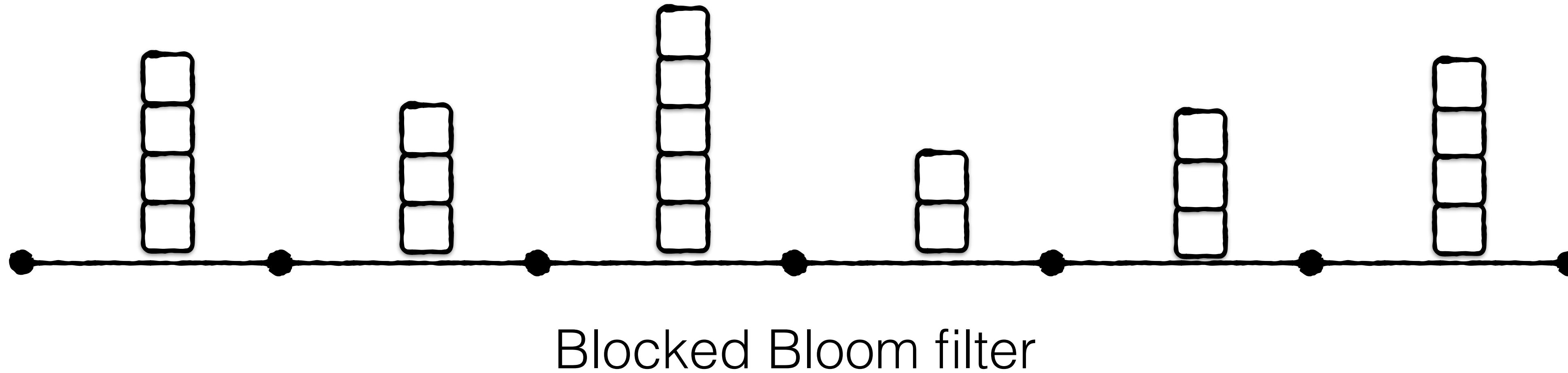


1 cache miss per query/insertion

Anything bad?

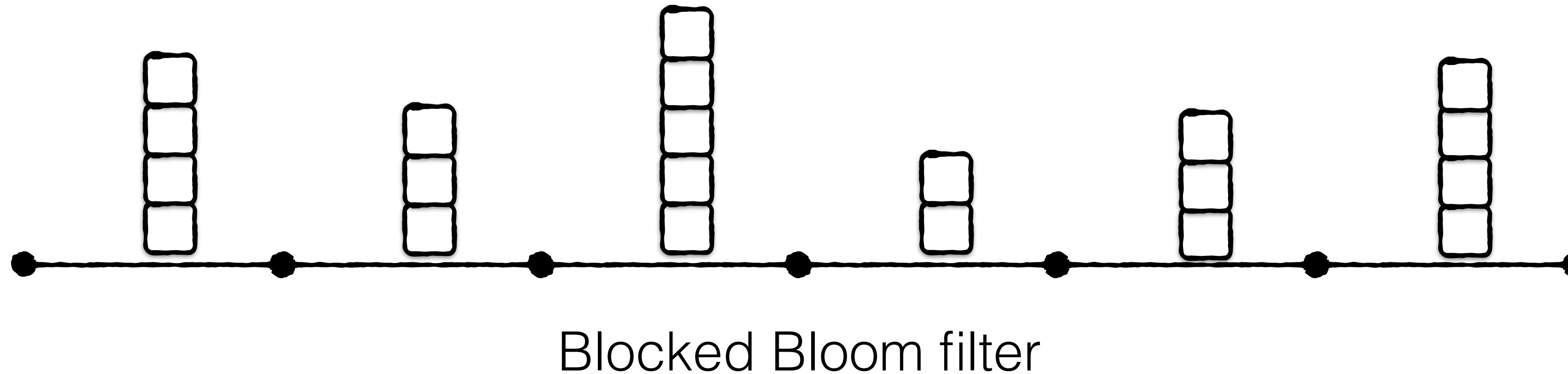


uneven distribution of entries across blocks



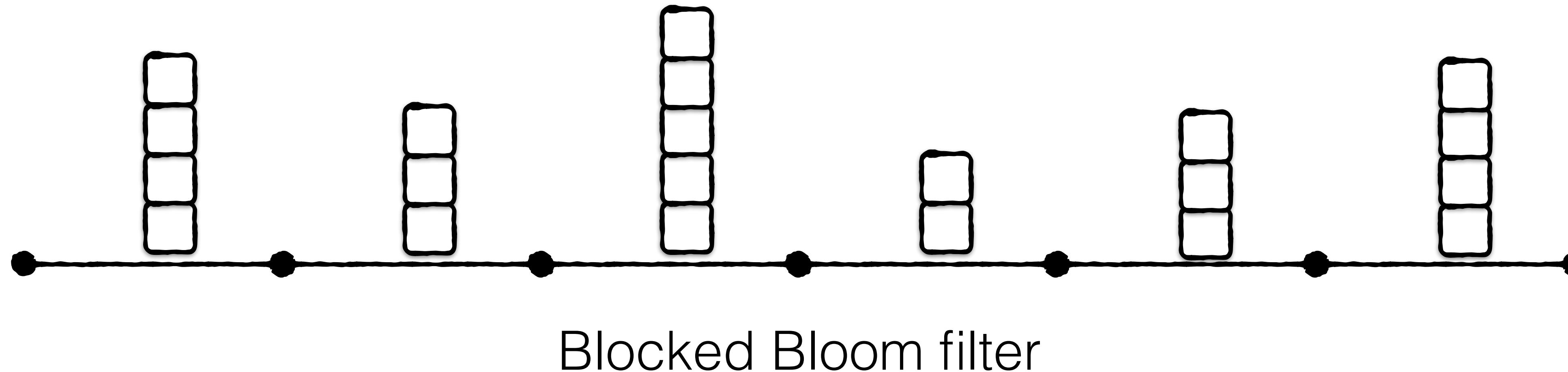
uneven distribution of entries across blocks

impact on FPR?



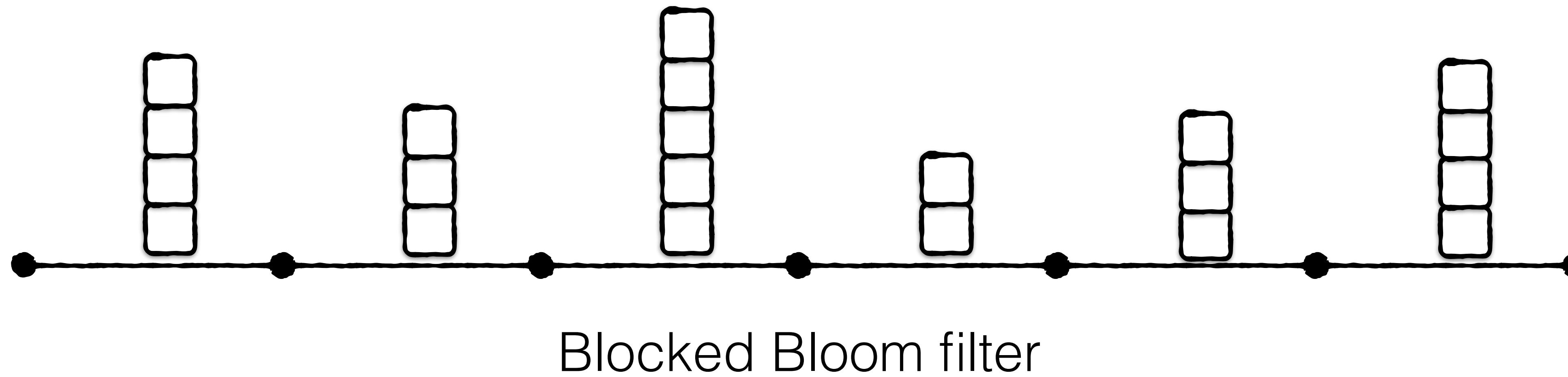
uneven distribution of entries across blocks
impact on FPR?

General analysis technique for hash tables



entries per block follows binomial distribution

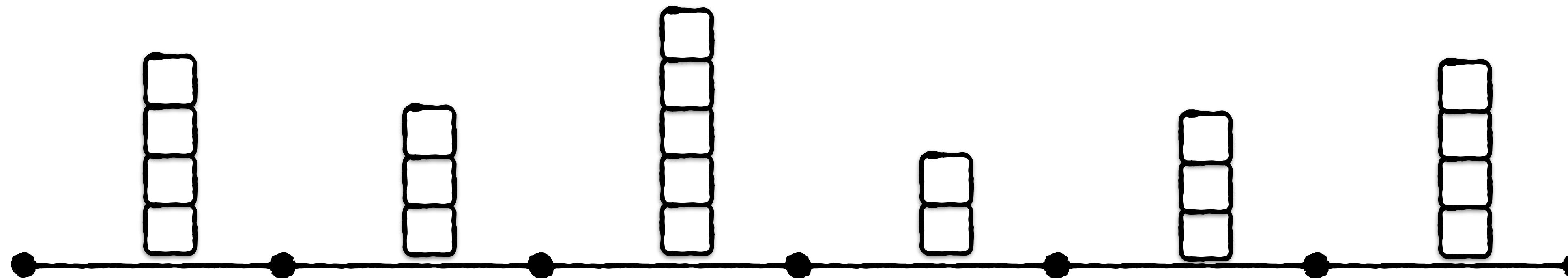
$$f(n, p, i) = \binom{n}{i} \cdot p^i \cdot (1 - p)^{n-i}$$



entries per block follows binomial distribution

$$f(n, p, i) = \binom{n}{i} \cdot p^i \cdot (1 - p)^{n-i}$$

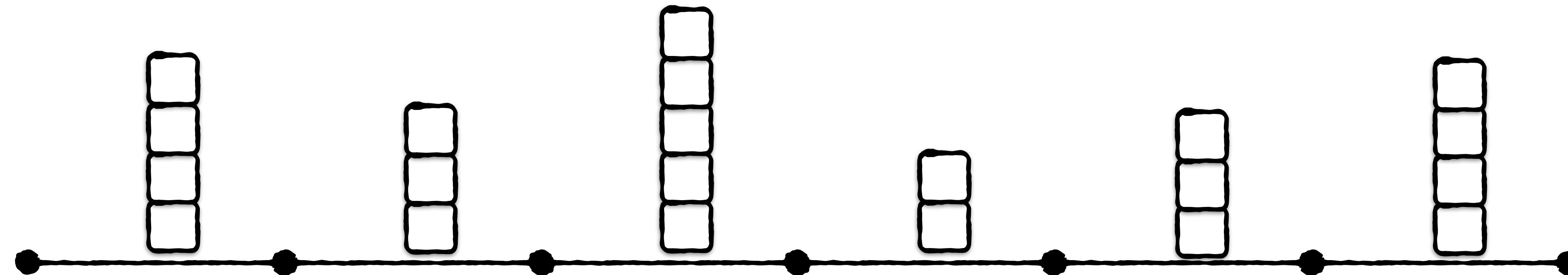
entries



entries per block follows binomial distribution

$$f(n, p, i) = \binom{n}{i} \cdot p^i \cdot (1 - p)^{n-i}$$

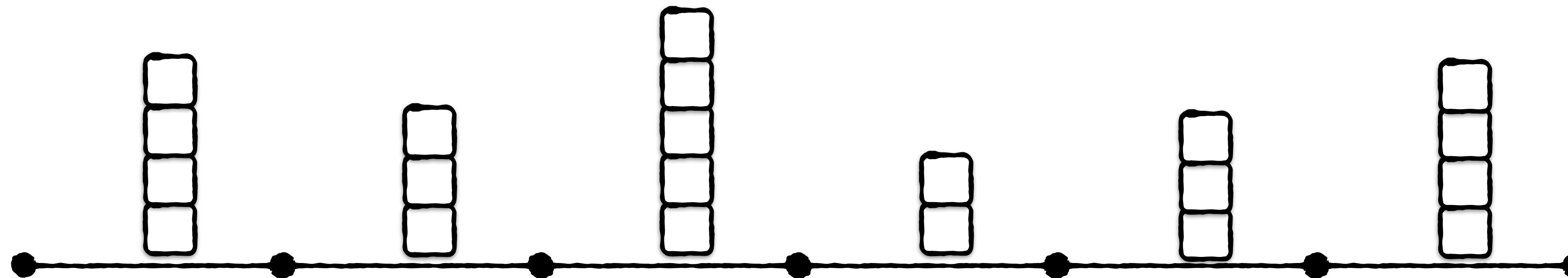
Prob of 1 entry falling into a given block, i.e., $1/n$



entries per block follows binomial distribution

$$f(n, p, i) = \binom{n}{i} \cdot p^i \cdot (1 - p)^{n-i}$$

i entries falling into our bucket

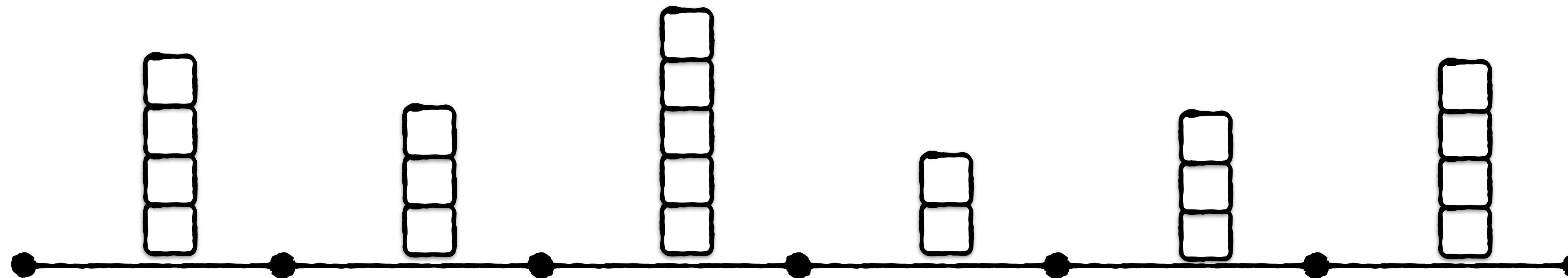


entries per block follows binomial distribution

$$f(n, p, i) = \binom{n}{i} \cdot p^i \cdot (1 - p)^{n-i}$$

↑

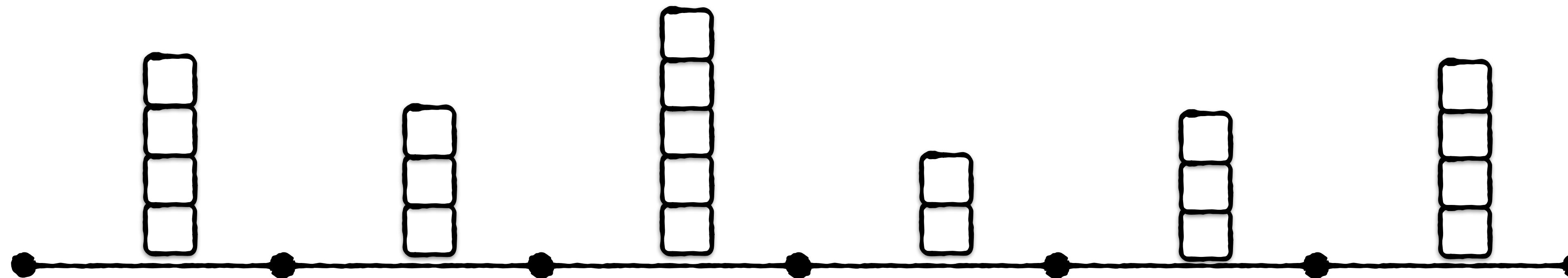
Ways of choosing i out of n entries



entries per block follows binomial distribution

$$f(n, p, i) = \binom{n}{i} \cdot p^i \cdot (1 - p)^{n-i}$$

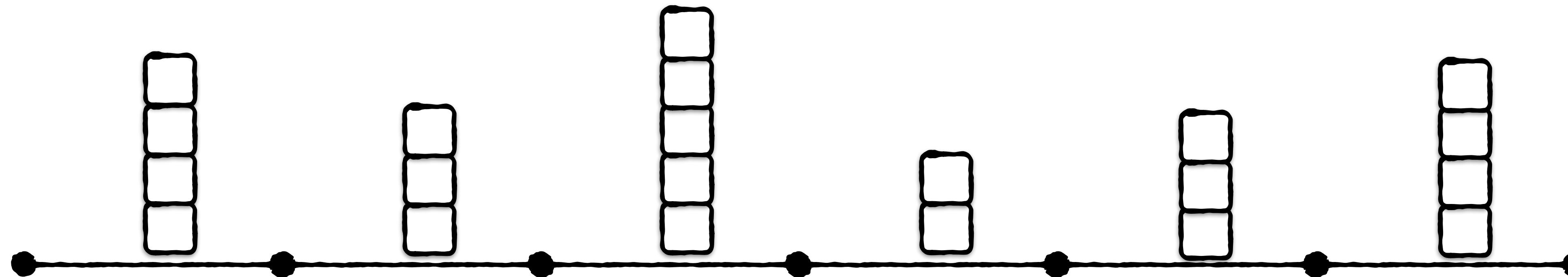
i entries falling into our block



entries per block follows binomial distribution

$$f(n, p, i) = \binom{n}{i} \cdot p^i \cdot (1 - p)^{n-i}$$

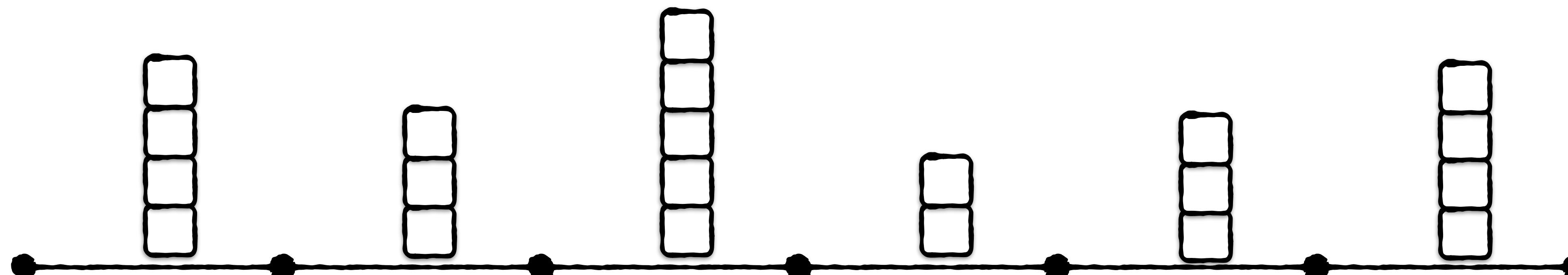
All other entries falling into other blocks



entries per block follows binomial distribution

$$f(n, p, i) = \binom{n}{i} \cdot p^i \cdot (1 - p)^{n-i}$$

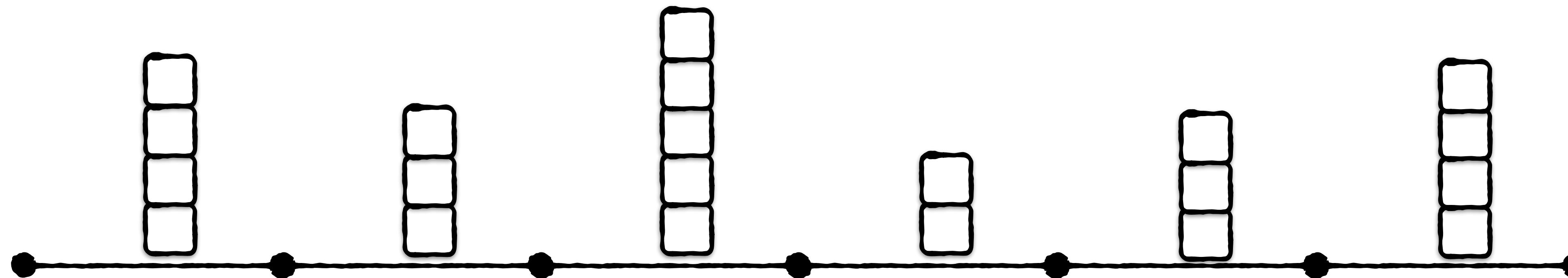
Cumbersome



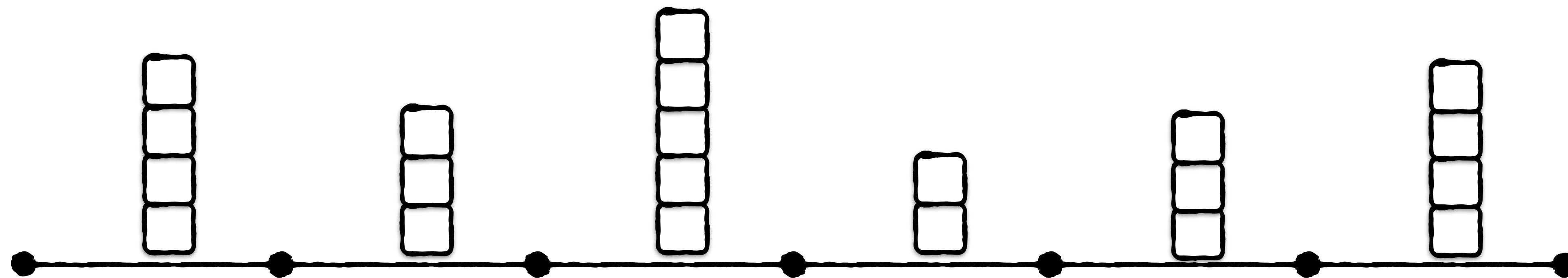
entries per block follows binomial distribution

$$f(n, p, i) = \binom{n}{i} \cdot p^i \cdot (1 - p)^{n-i}$$

For $n \rightarrow \infty$ & $p \rightarrow 0$, binomial converges to Poisson

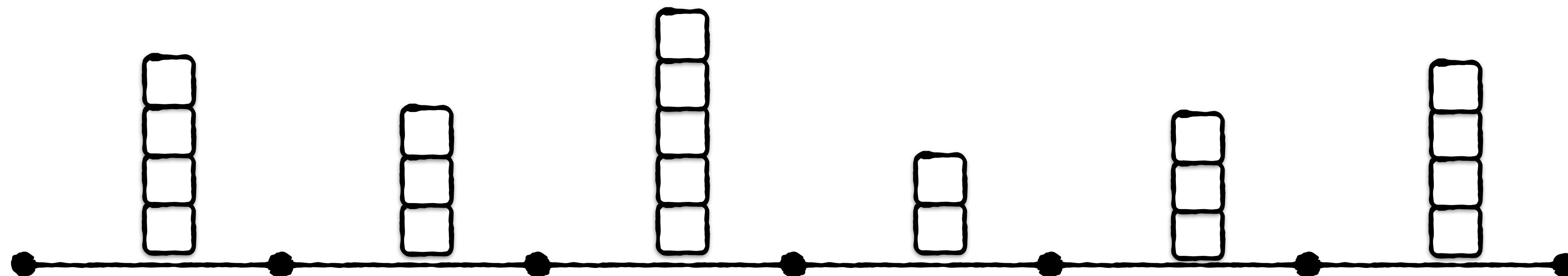


$$P[i \text{ entries fall into given block}] \sim \text{Poisson}(i, \lambda) = \frac{\lambda^i \cdot e^{-\lambda}}{i!}$$



$$P[i \text{ entries fall into given block}] \sim \text{Poisson}(i, \lambda) = \frac{\lambda^i \cdot e^{-\lambda}}{i!}$$

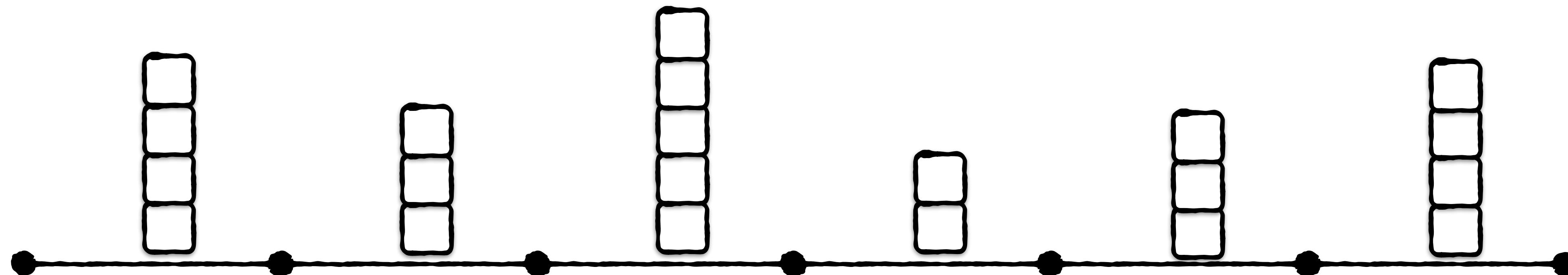
λ = avg. entries per block



$$P[i \text{ entries fall into given block}] \sim \text{Poisson}(i, \lambda) = \frac{\lambda^i \cdot e^{-\lambda}}{i!}$$

$$\lambda = \text{avg. entries per block} = \mathbf{B}/(\mathbf{M}/\mathbf{N})$$

Bits per cache
line (e.g., 256)

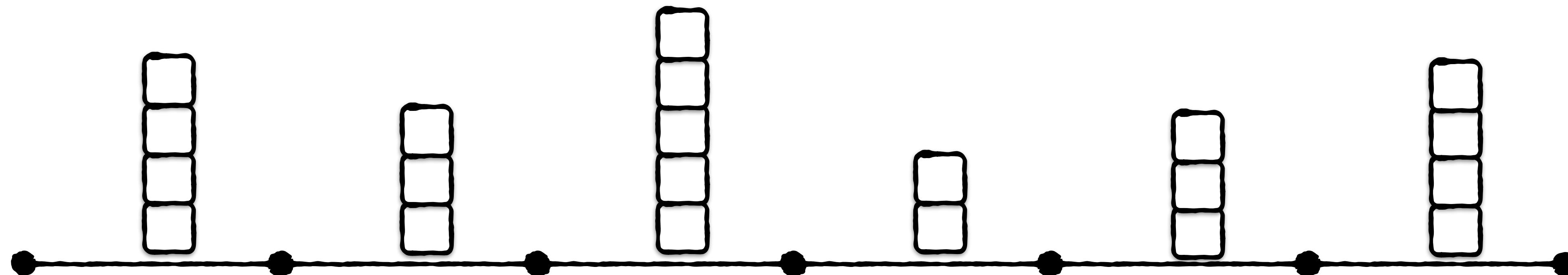


$$P[i \text{ entries fall into given block}] \sim \text{Poisson}(i, \lambda) = \frac{\lambda^i \cdot e^{-\lambda}}{i!}$$

$$\lambda = \text{avg. entries per block} = B / (\mathbf{M/N})$$

Bits per cache
line (e.g., 256)

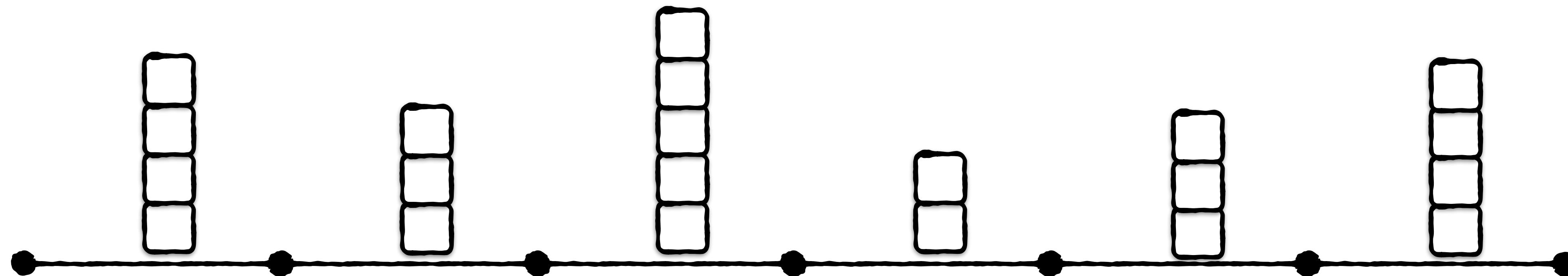
Bits per
entry (e.g., 8)



$$P[i \text{ entries fall into given block}] \sim \text{Poisson}(i, \lambda) = \frac{\lambda^i \cdot e^{-\lambda}}{i!}$$

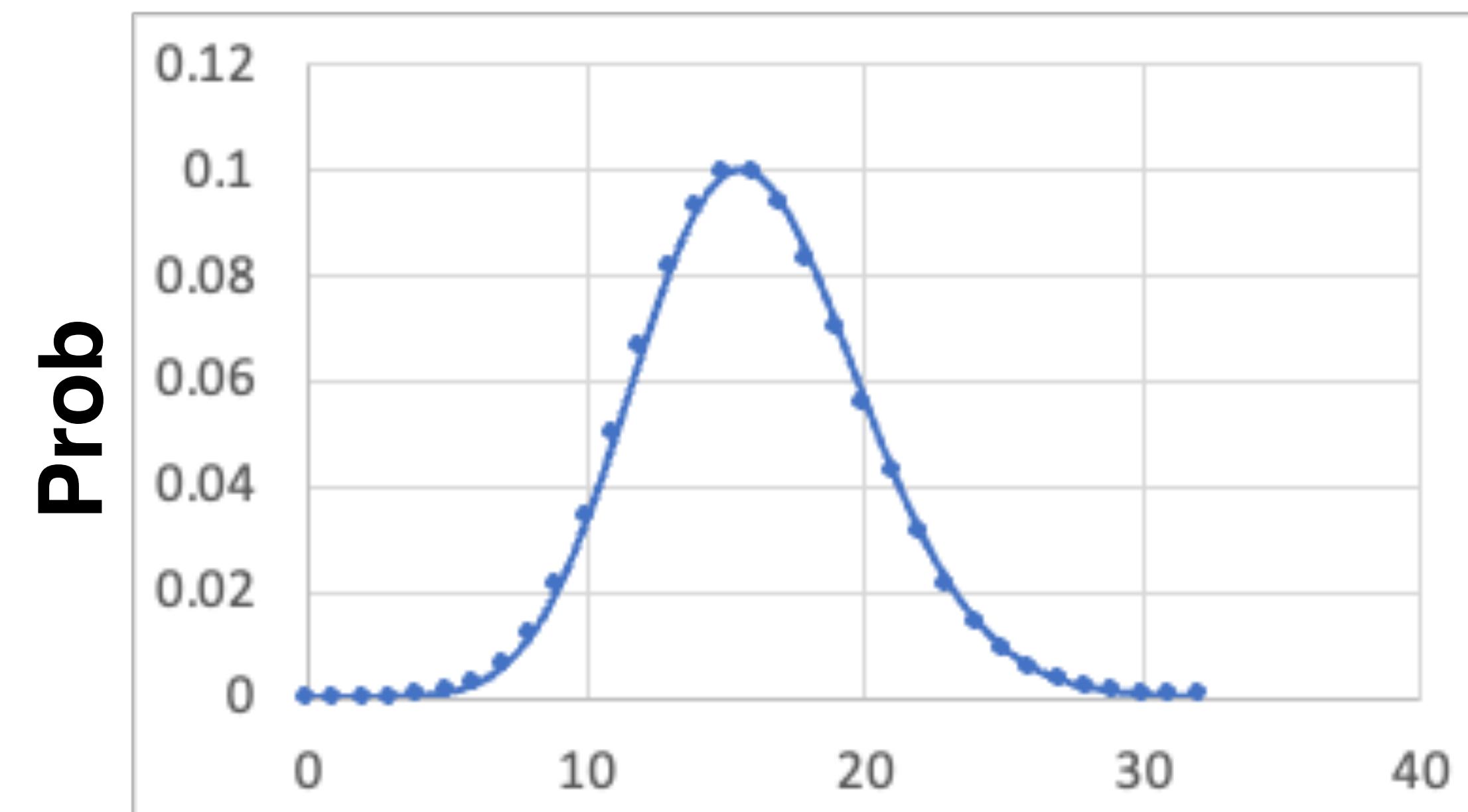
$$\lambda = \text{avg. entries per block} = B/(M/N)$$

$$256 / 8 = 32$$



$$P[i \text{ entries fall into given block}] \sim \text{Poisson}(i, \lambda) = \frac{\lambda^i \cdot e^{-\lambda}}{i!}$$

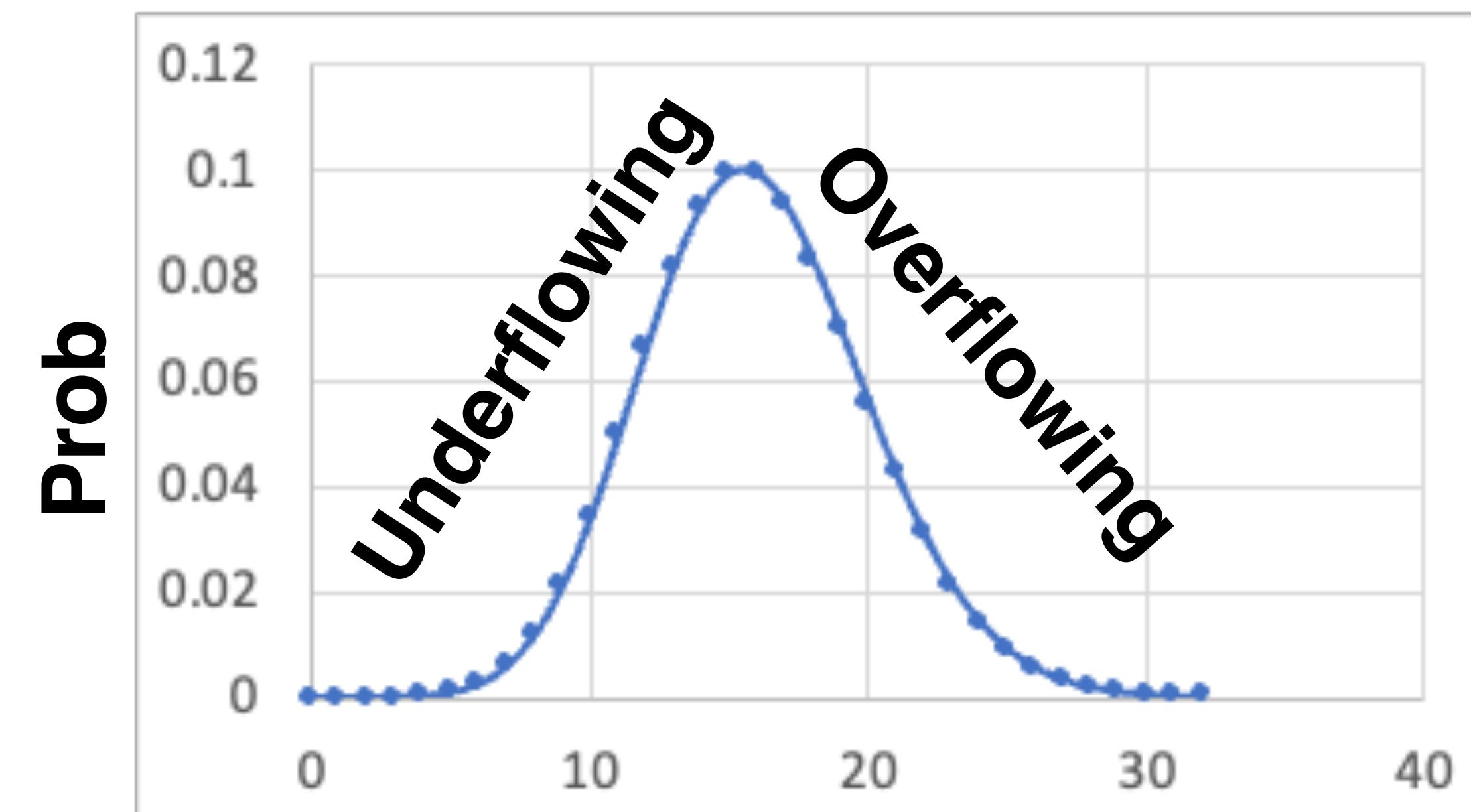
λ = avg. entries per block



Entries i per block with $\lambda = 16$

$$P[i \text{ entries fall into given block}] \sim \text{Poisson}(i, \lambda) = \frac{\lambda^i \cdot e^{-\lambda}}{i!}$$

λ = avg. entries per block



Entries i per block with $\lambda = 16$

entries in a block $\sim \text{Poisson}(i, B/(M/N))$

entries in a block \sim Poisson($i, B/(M/N)$)

FPR for filter \sim FPR(N, M, K) = $(1 - e^{-KN/M})^K$

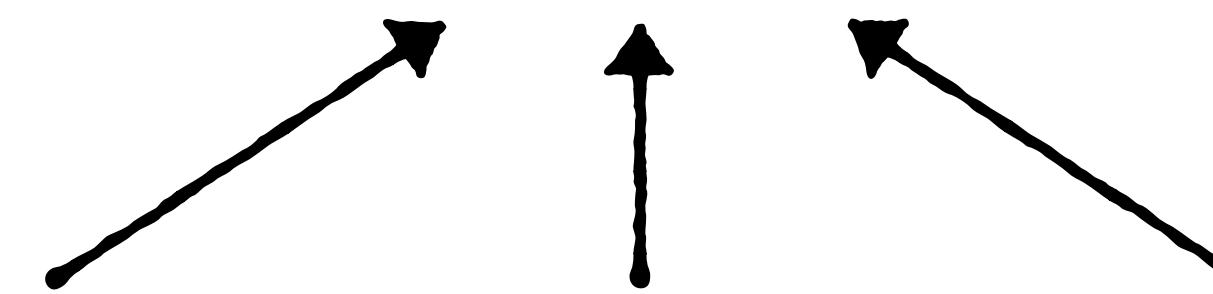
entries in a block \sim Poisson(i , $B/(M/N)$)

FPR for filter \sim $FPR(i, B, K)$

**i entries in
cache line**

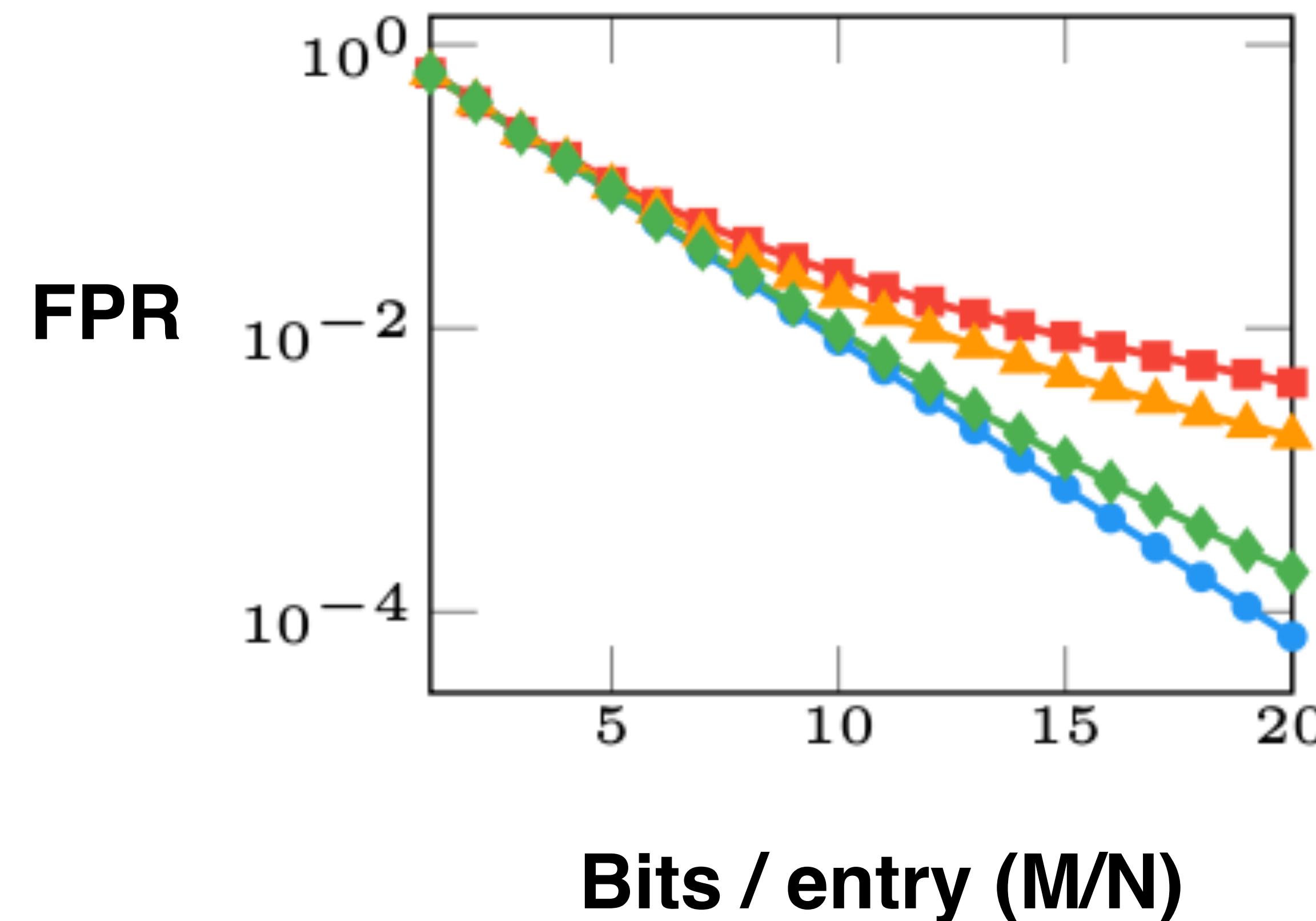
**B bits in
cache line**

**K hash
functions**

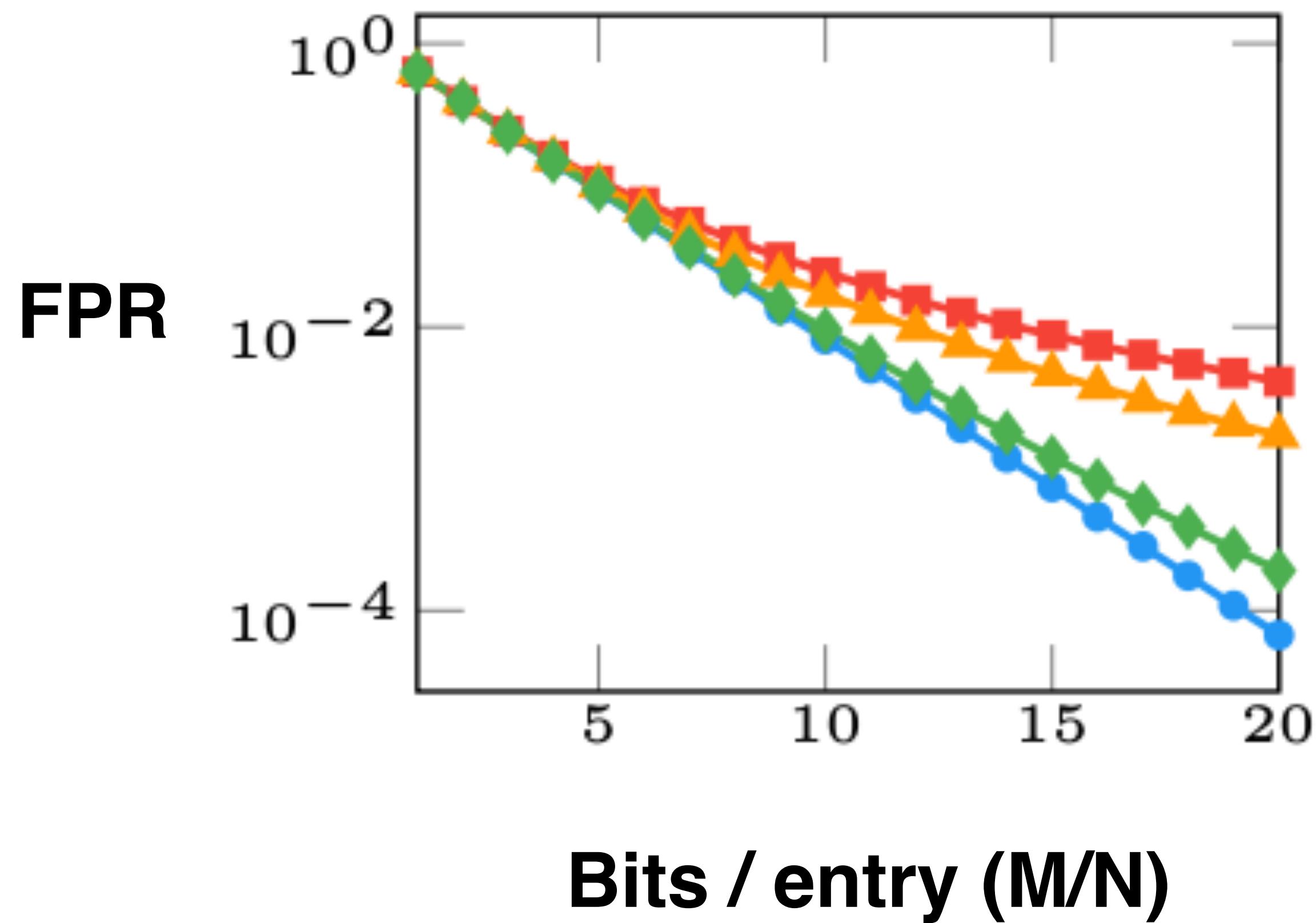


$$\text{Avg. FPR across all blocks} = \sum_{i=0}^{\infty} \text{Poisson}(i, B/(M/N)) \cdot \text{FPR}(i, B, K)$$

—●— Classic Bloom —■— 32-bit blocked
—▲— 64-bit blocked —◆— 512-bit blocked

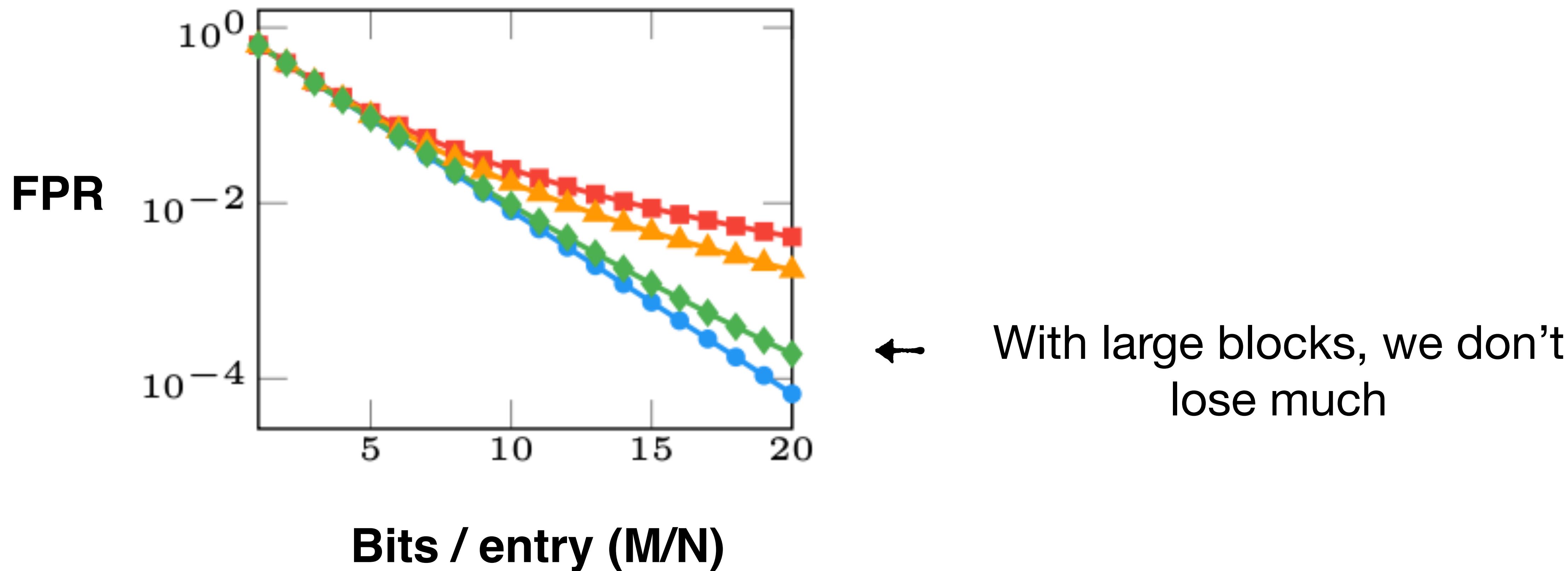


Classic Bloom 32-bit blocked
64-bit blocked 512-bit blocked

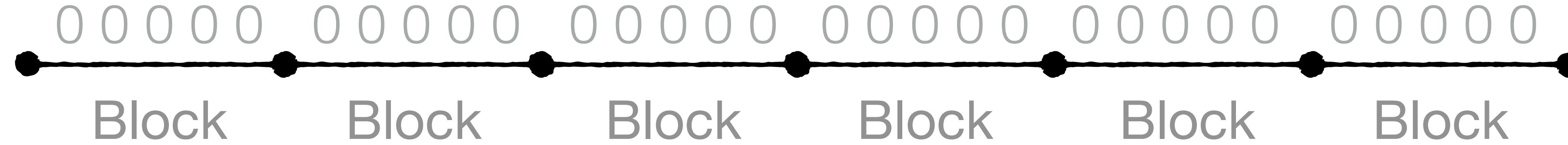


With smaller blocks, there is more variation in entries across blocks. Overflowing blocks blow up the FPR.

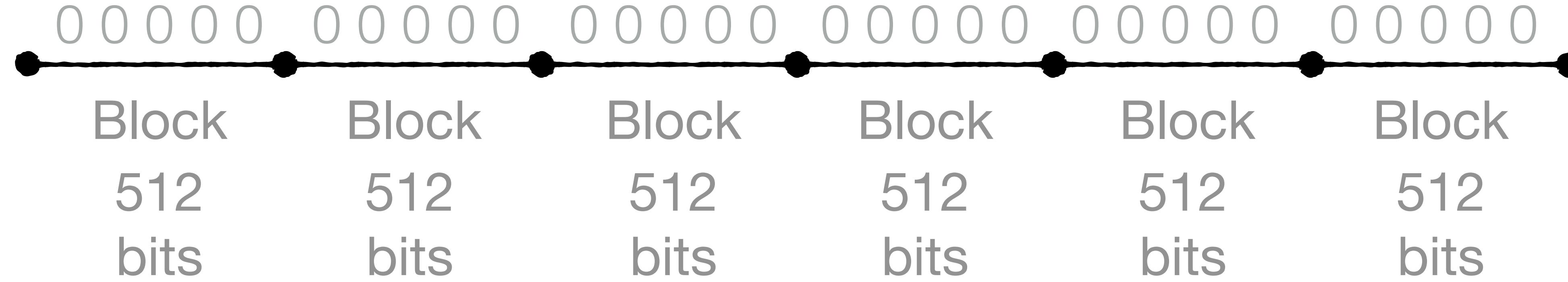
Classic Bloom 32-bit blocked
64-bit blocked 512-bit blocked



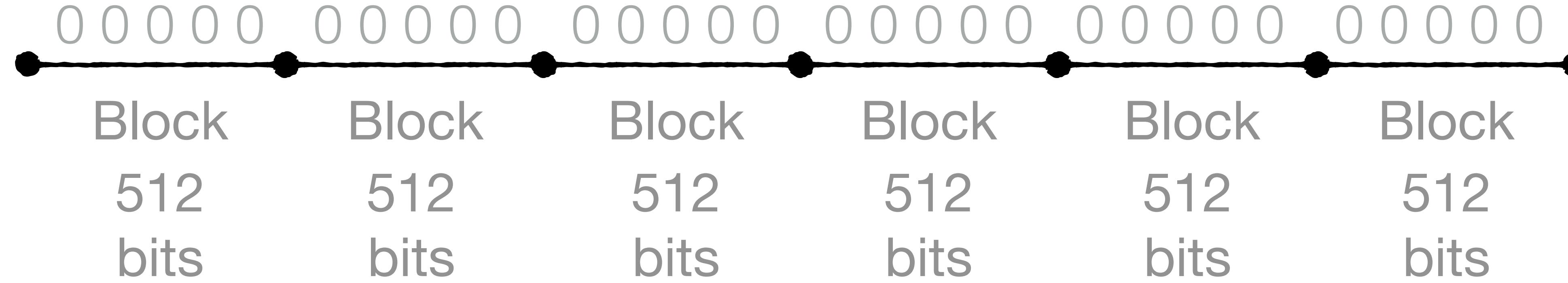
size blocks as cache lines



size blocks as cache lines

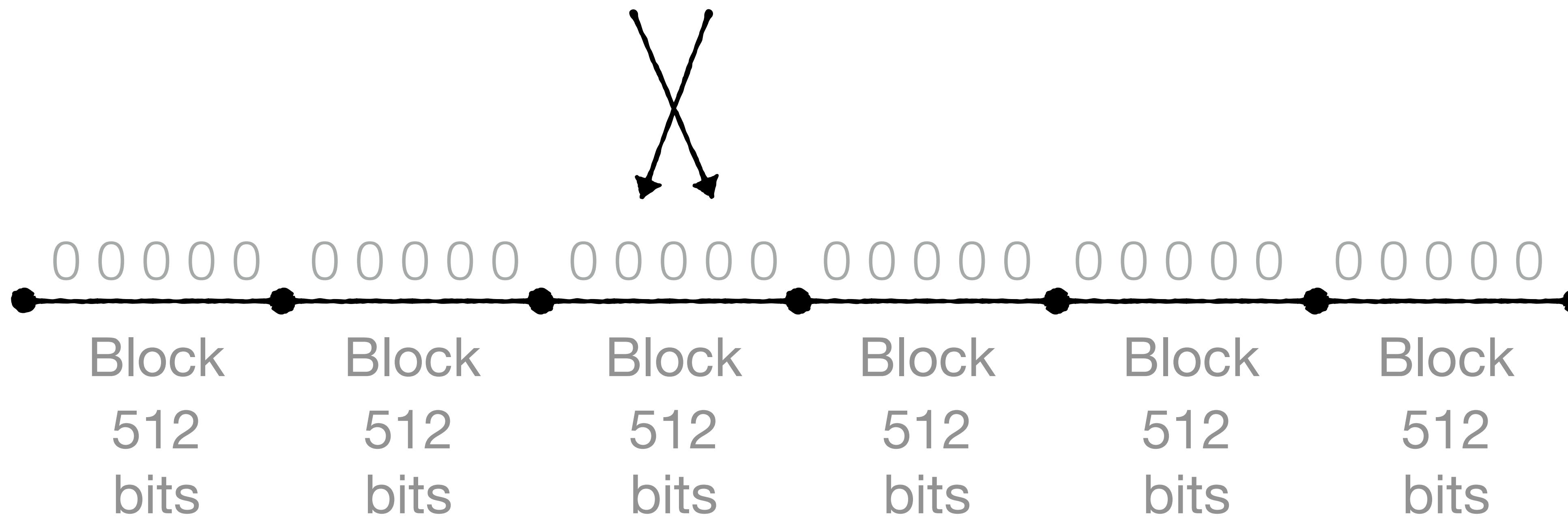


Any remaining issue?



Any remaining issue?

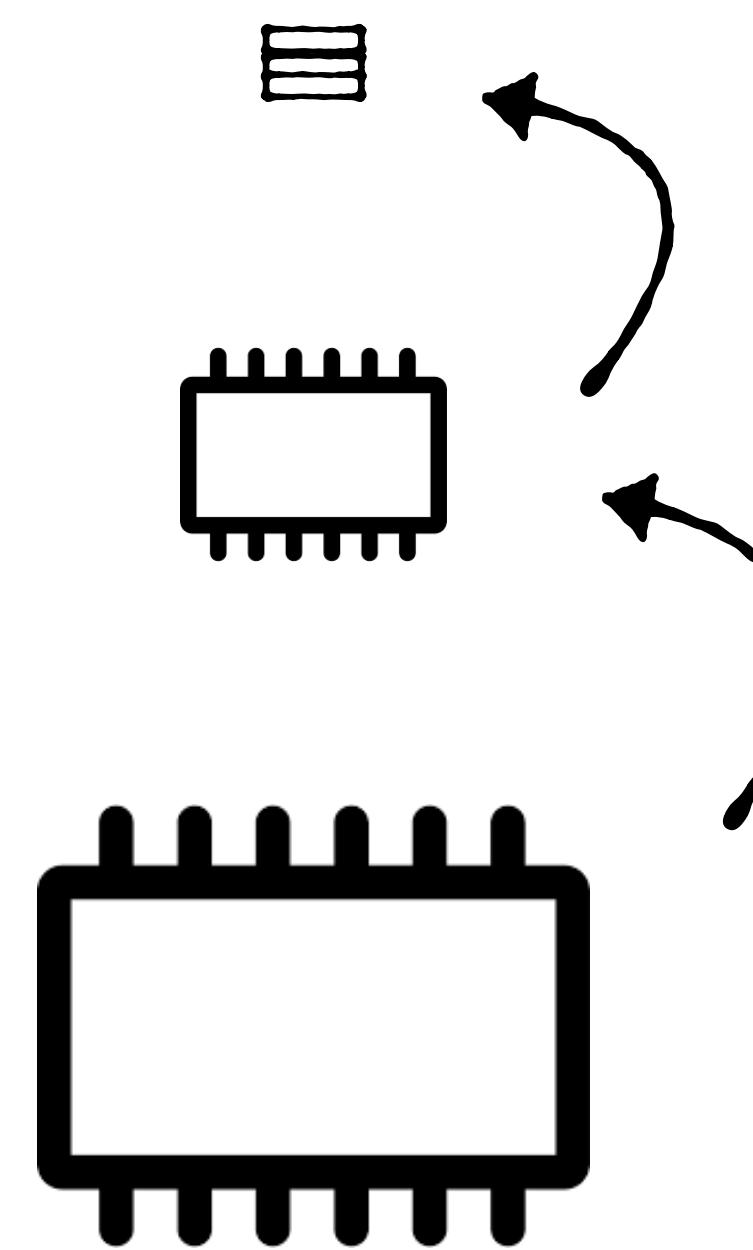
Random access within a cache line



CPU Registers

L1/L2/L3

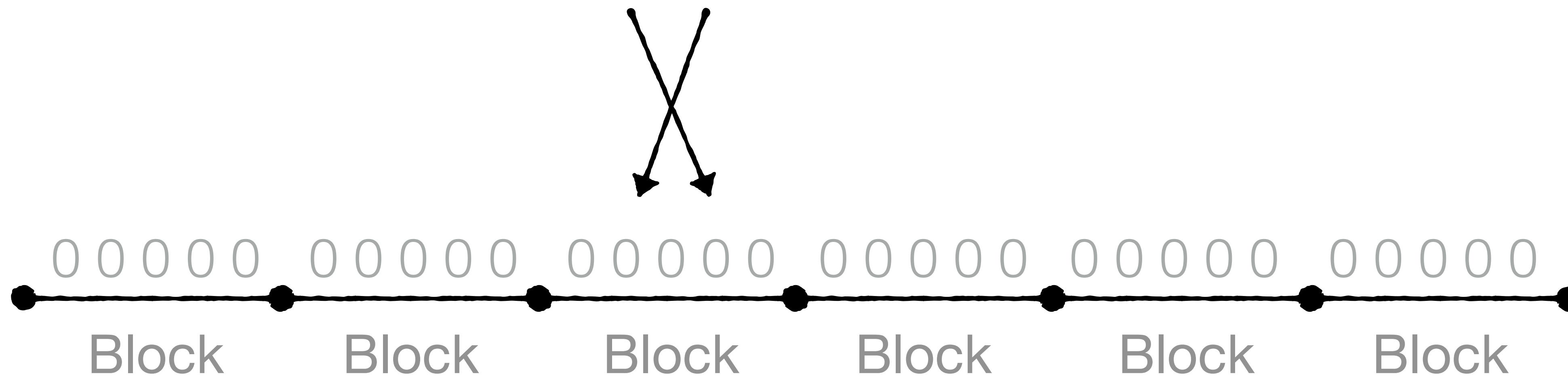
DRAM



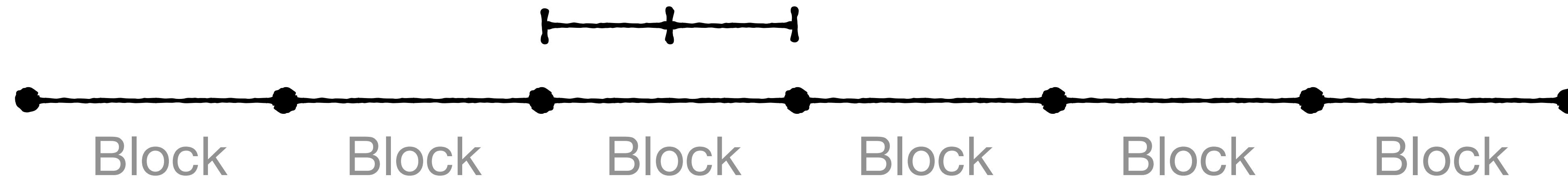
words (8B) 3-4 cycles

cache lines (64B)

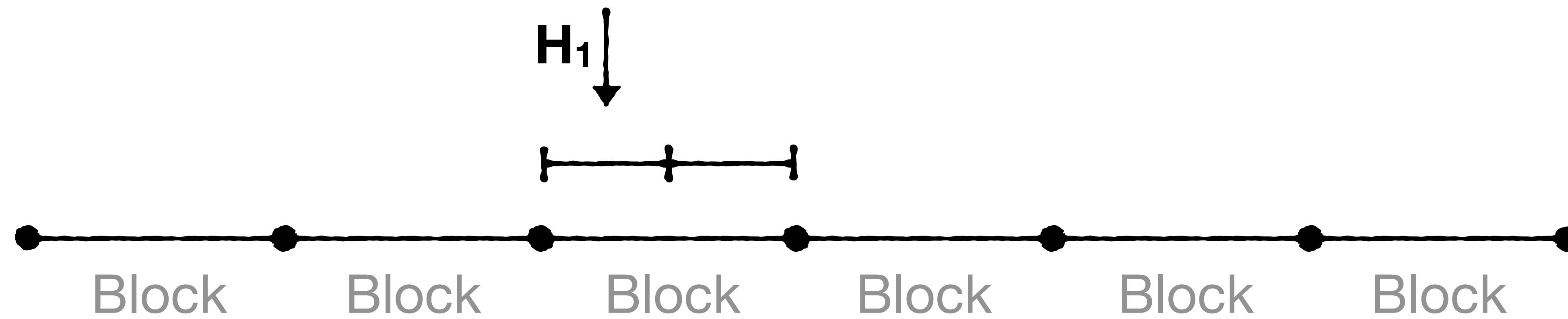
Each random access moves different word from L1 cache to register



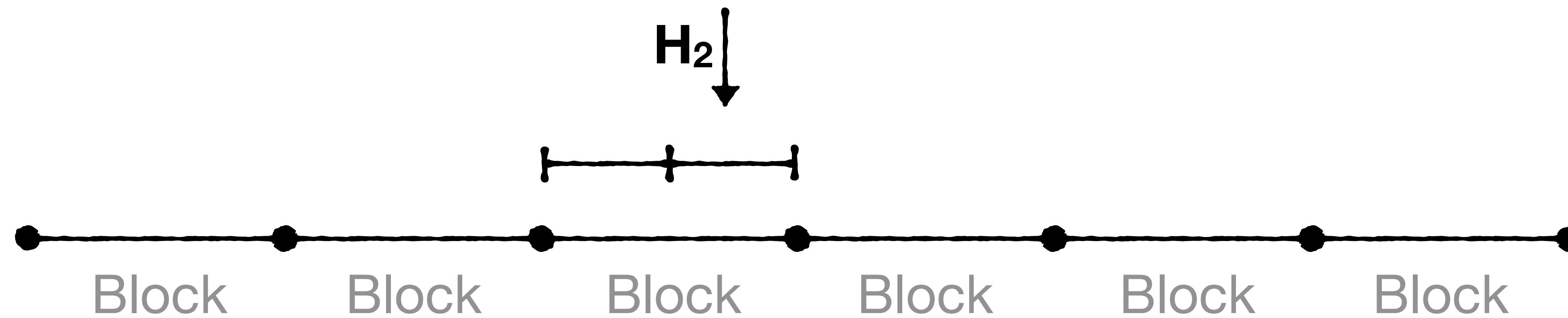
e.g., 4 hash functions, 2 words per block



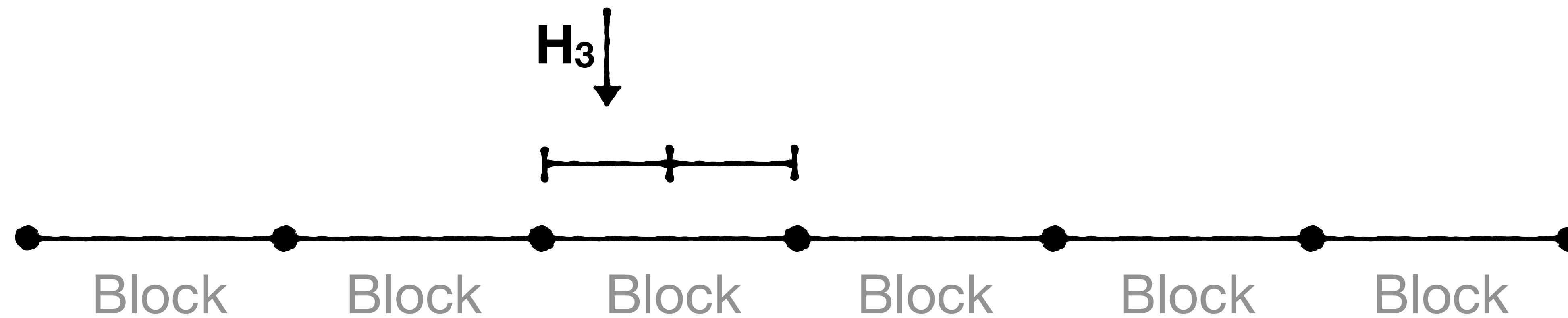
e.g., 4 hash functions, 2 words per block



e.g., 4 hash functions, 2 words per block

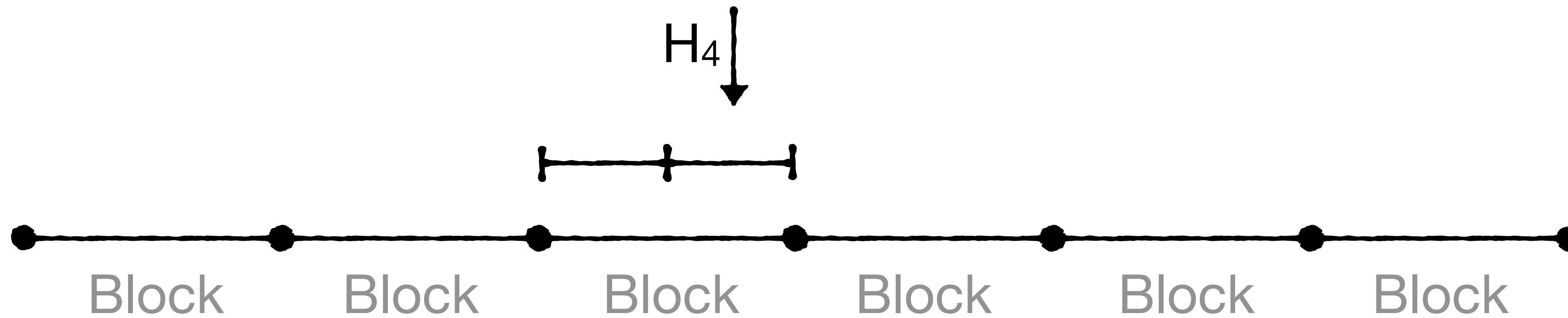


e.g., 4 hash functions, 2 words per block



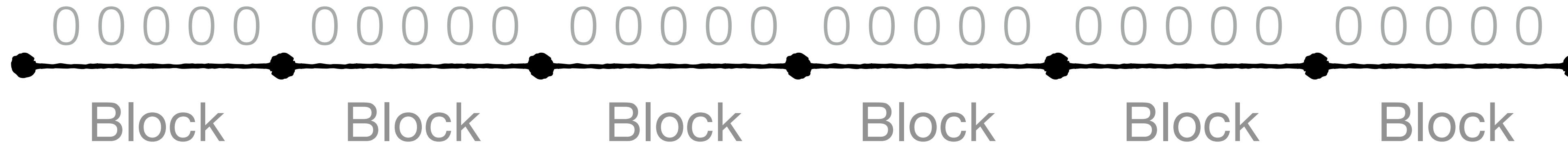
Solutions?

e.g., 4 hash functions, 2 words per block



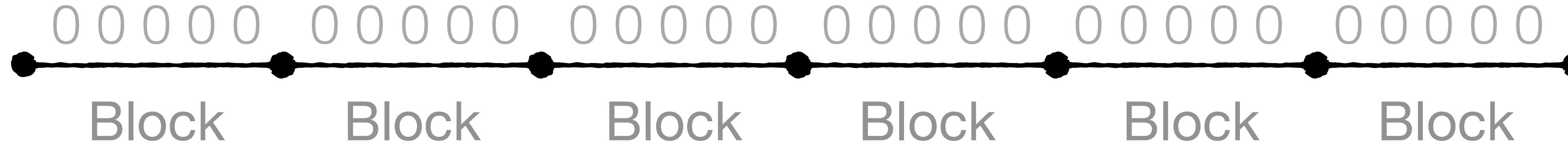
Split block Bloom filters. Jim Apple. Arxiv 2023.

Used in the Impala system as of 2016

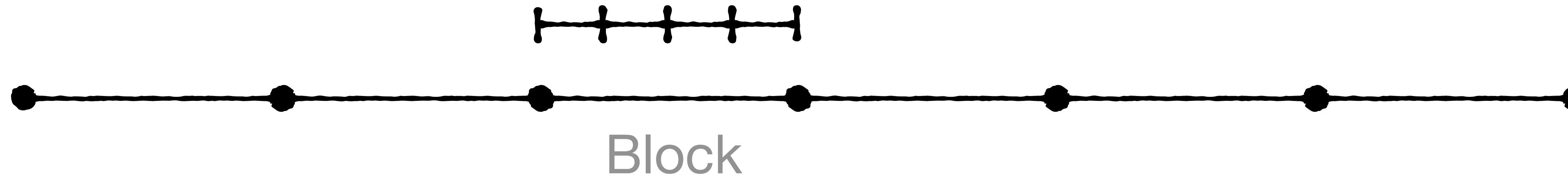


Split block Bloom filters. Jim Apple. Arxiv 2023.

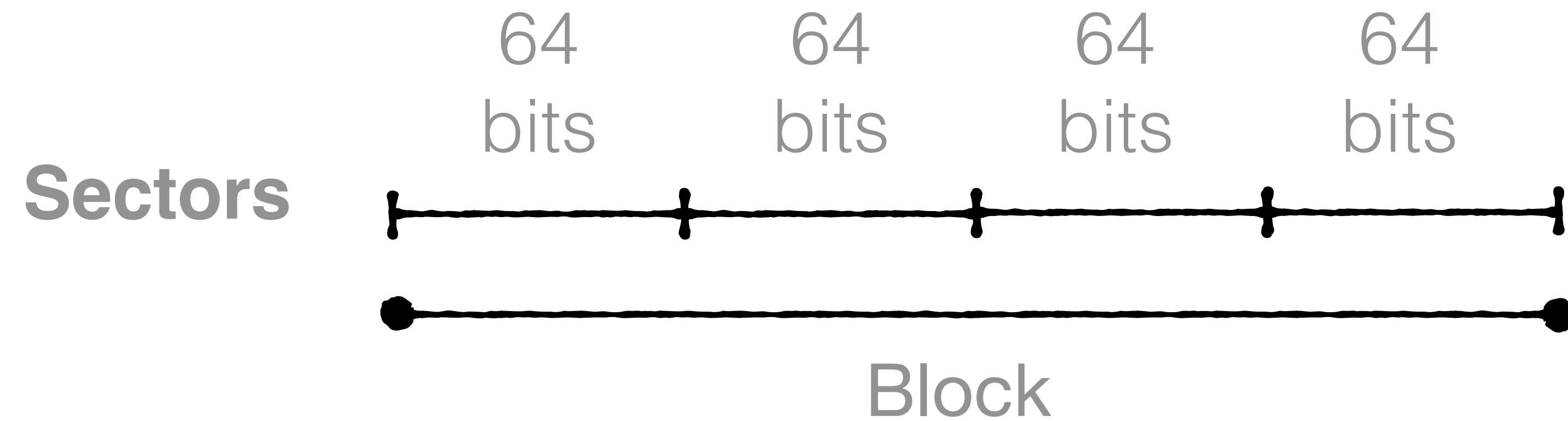
Performance-Optimal Filtering: Bloom Overtakes Cuckoo at High Throughput. Harald Lang, Thomas Neumann, Alfons Kemper, Peter Boncz. **VLDB 2019.**



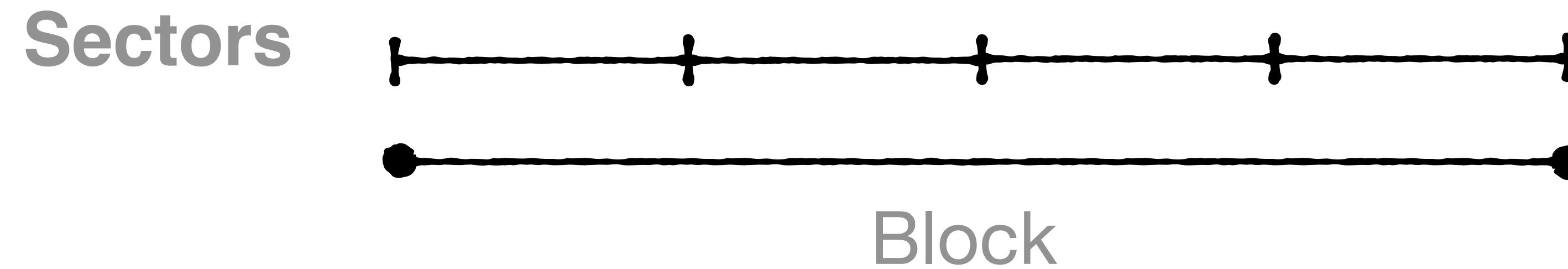
**Partition into s sectors, each the
size of a word (e.g., 64 bits)**



Example: $s = 4$ sectors

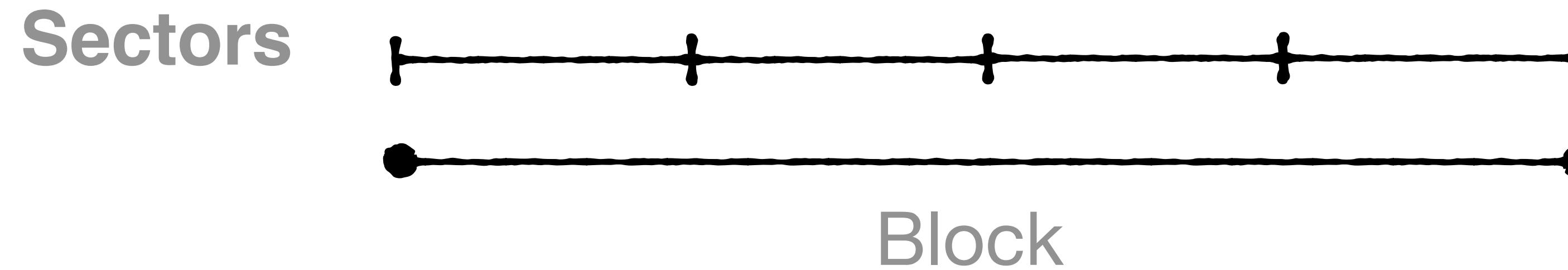


Insertion: hashes to k / s bits per sector sequentially



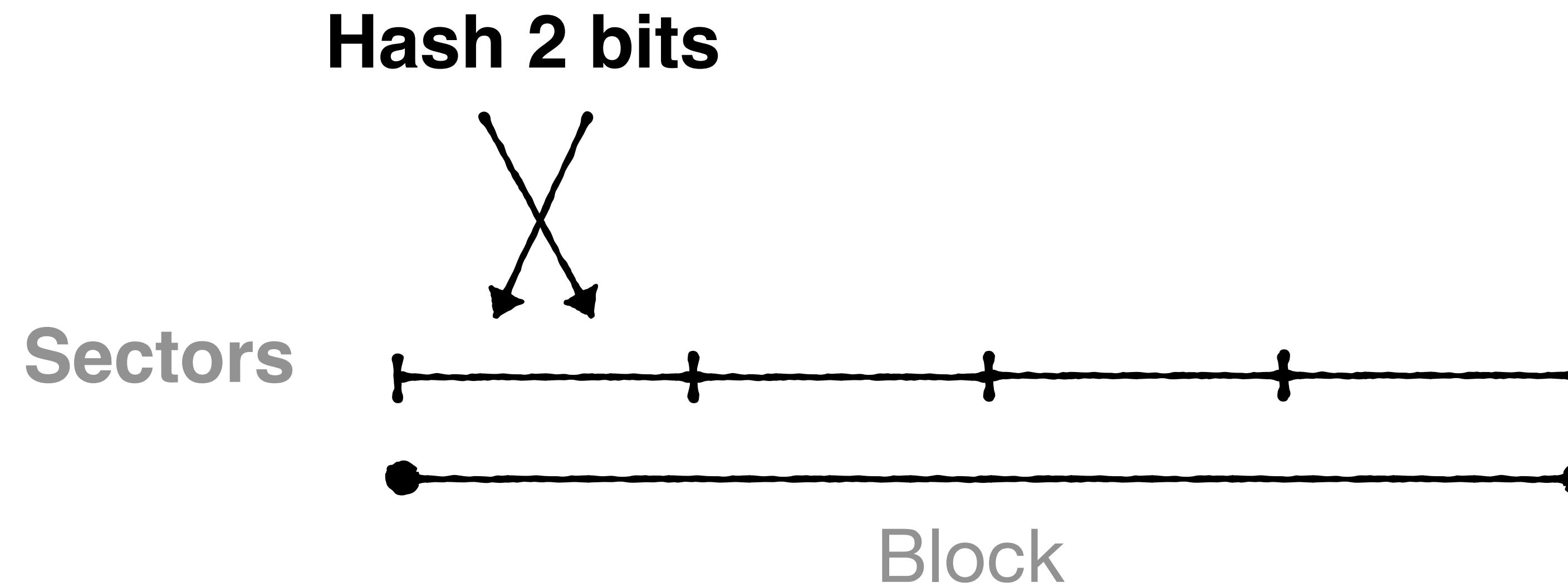
Insertion: hashes to k / s bits per sector sequentially

e.g., $s=4$ sectors and $k=8$ hashes



Insertion: hashes to k / s bits per sector sequentially

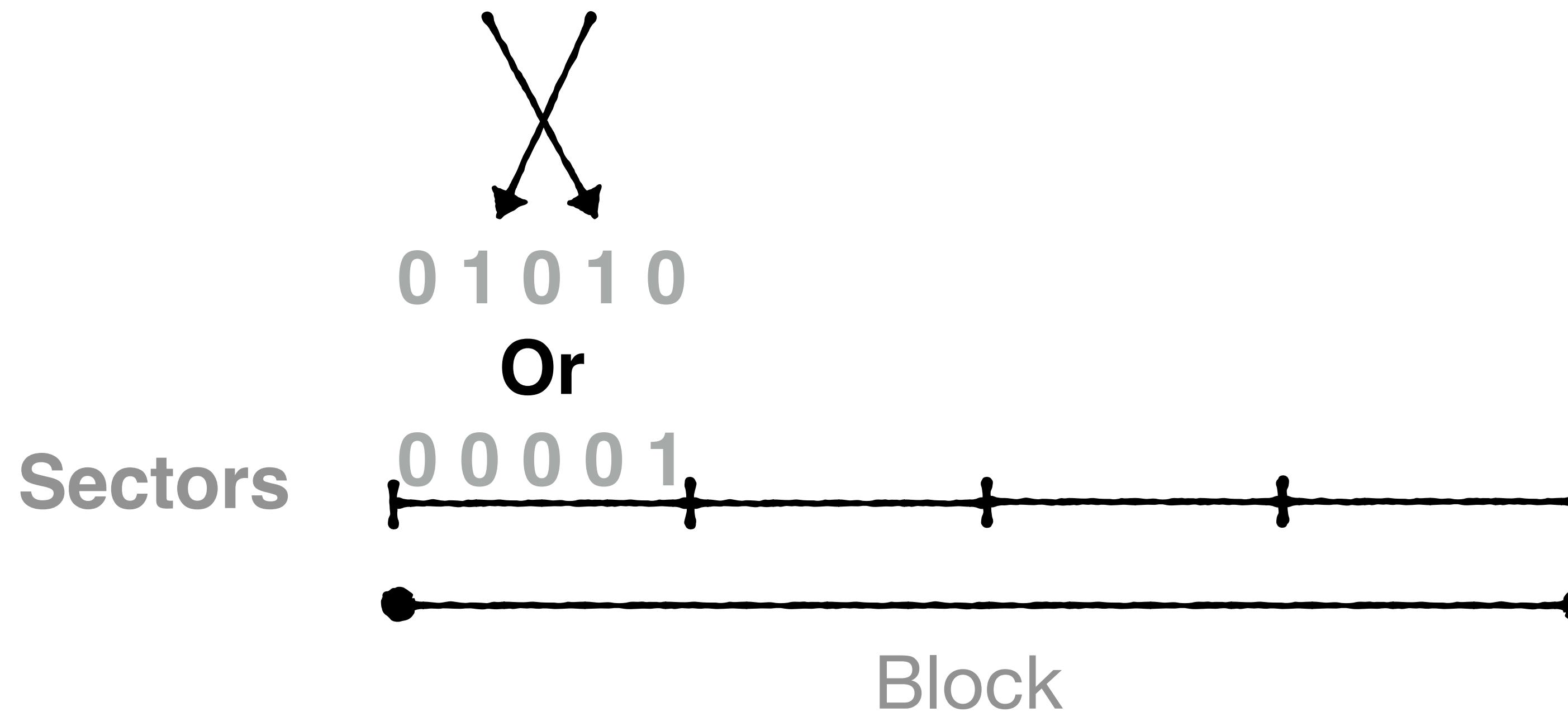
e.g., $s=4$ sectors and $k=8$ hashes



Insertion: hashes to k / s bits per sector sequentially

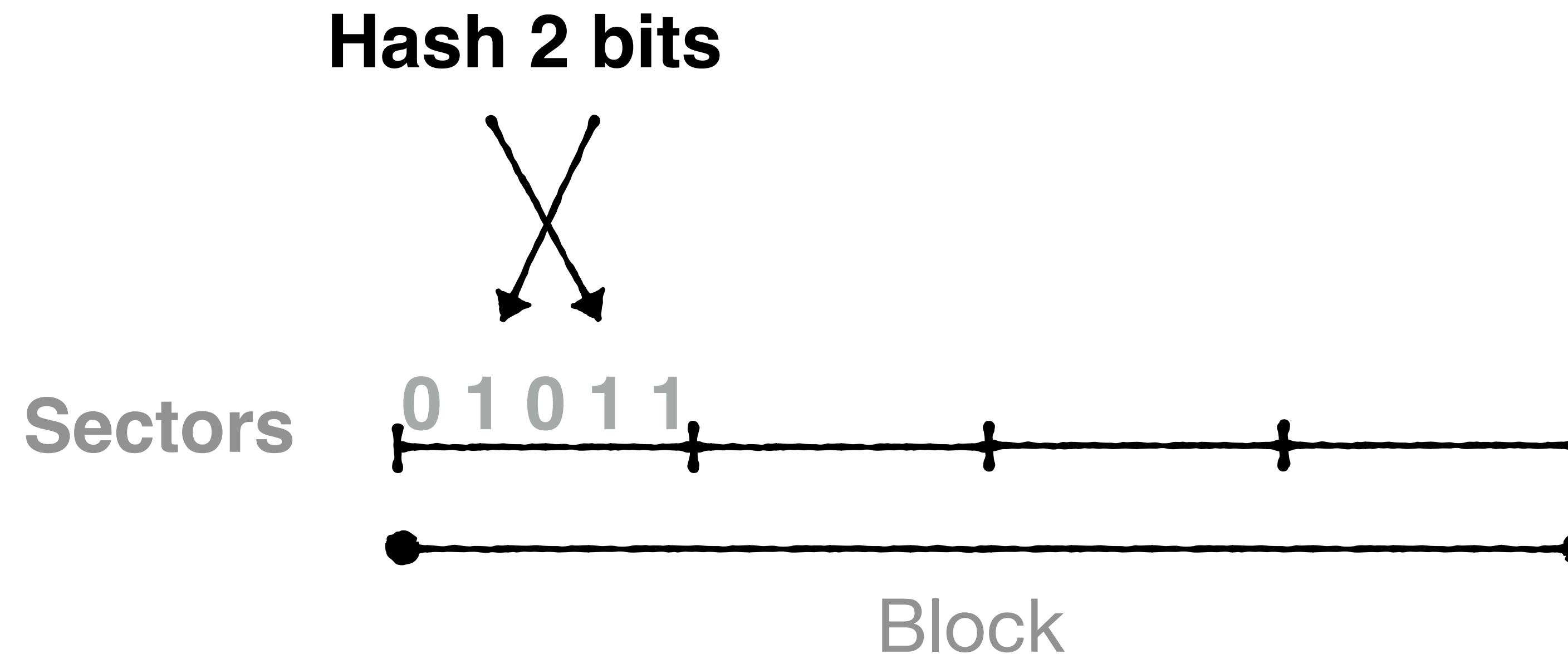
e.g., $s=4$ sectors and $k=8$ hashes

Hash 2 bits



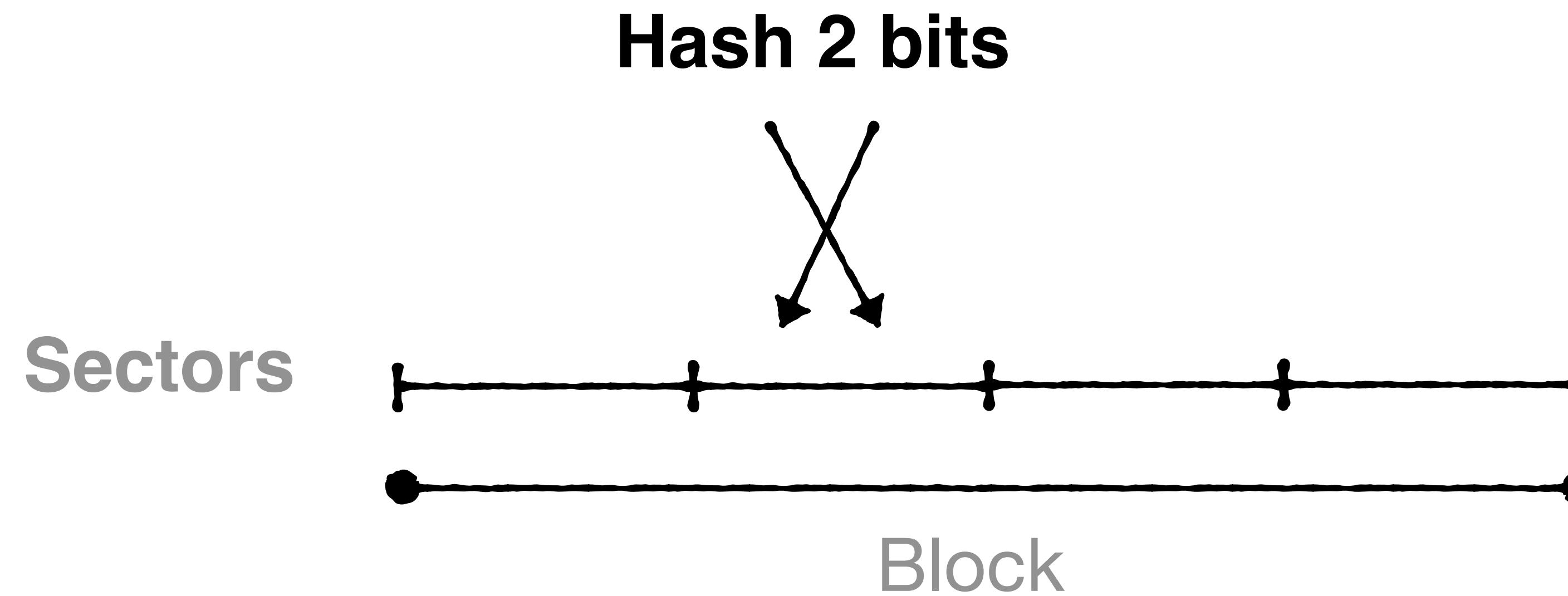
Insertion: hashes to k / s bits per sector sequentially

e.g., $s=4$ sectors and $k=8$ hashes



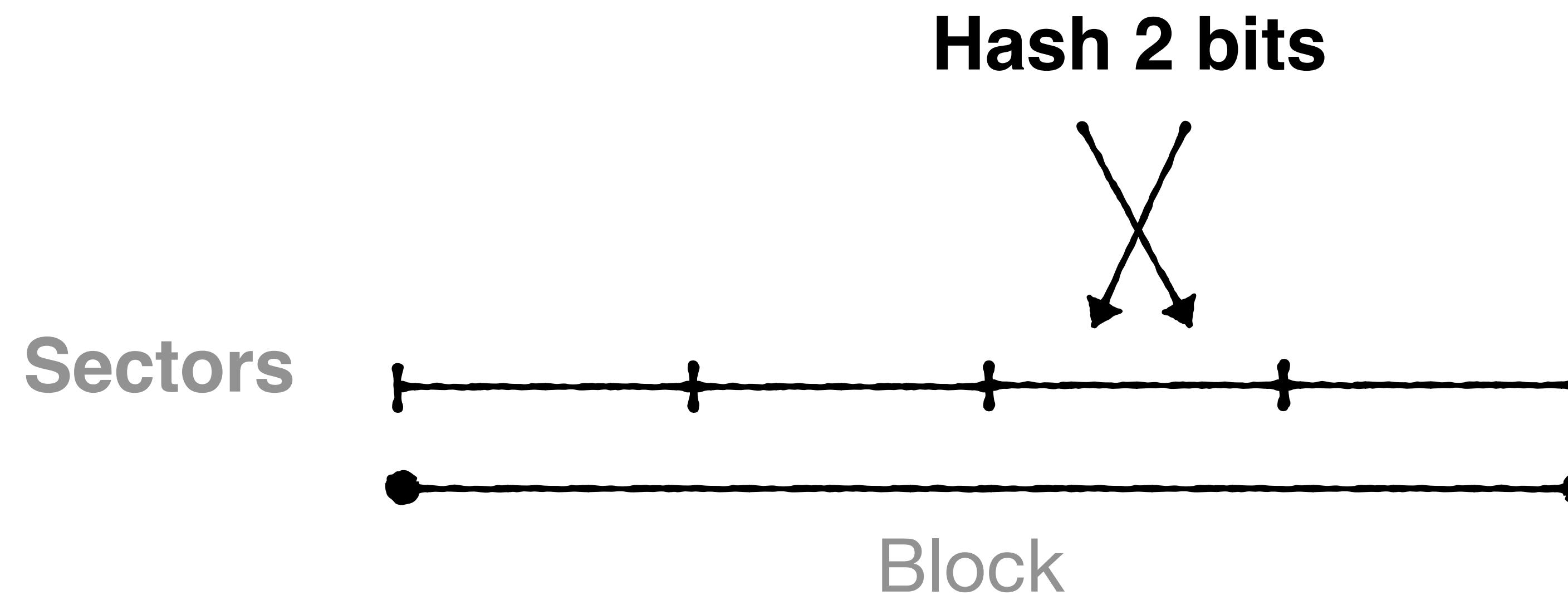
Insertion: hashes to k / s bits per sector sequentially

e.g., $s=4$ sectors and $k=8$ hashes



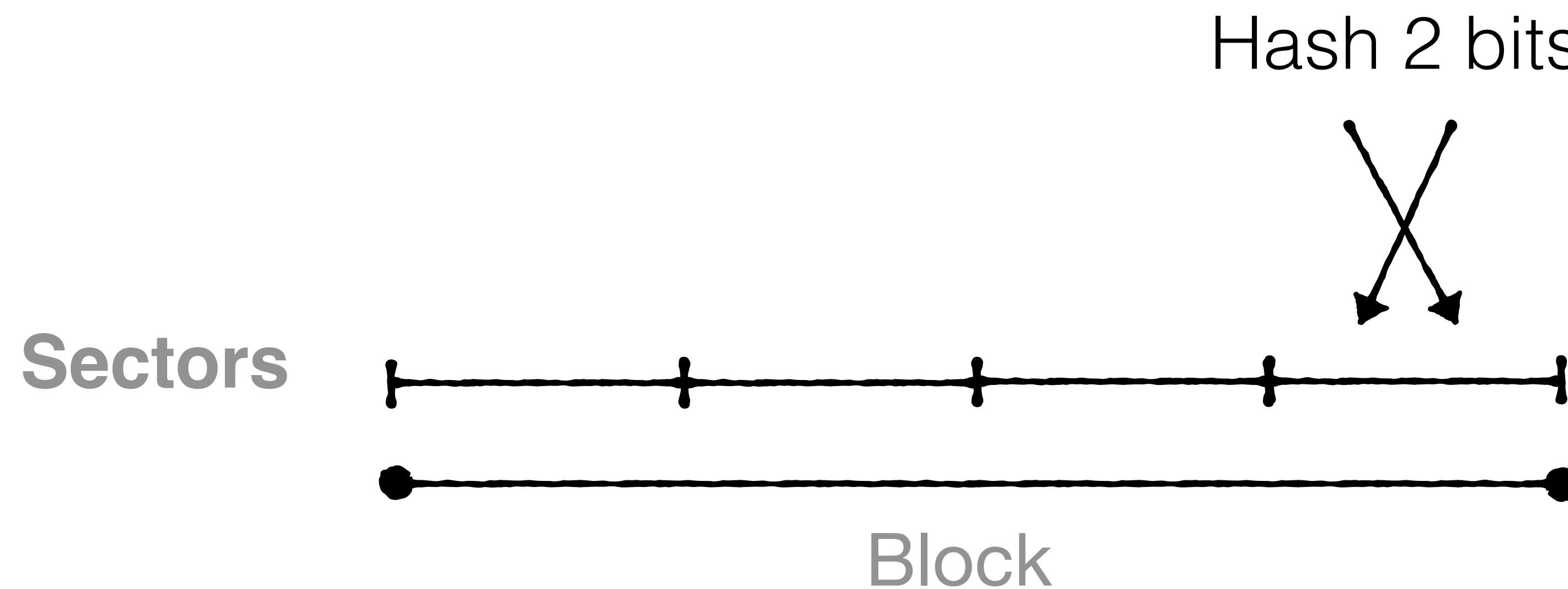
Insertion: hashes to k / s bits per sector sequentially

e.g., $s=4$ sectors and $k=8$ hashes



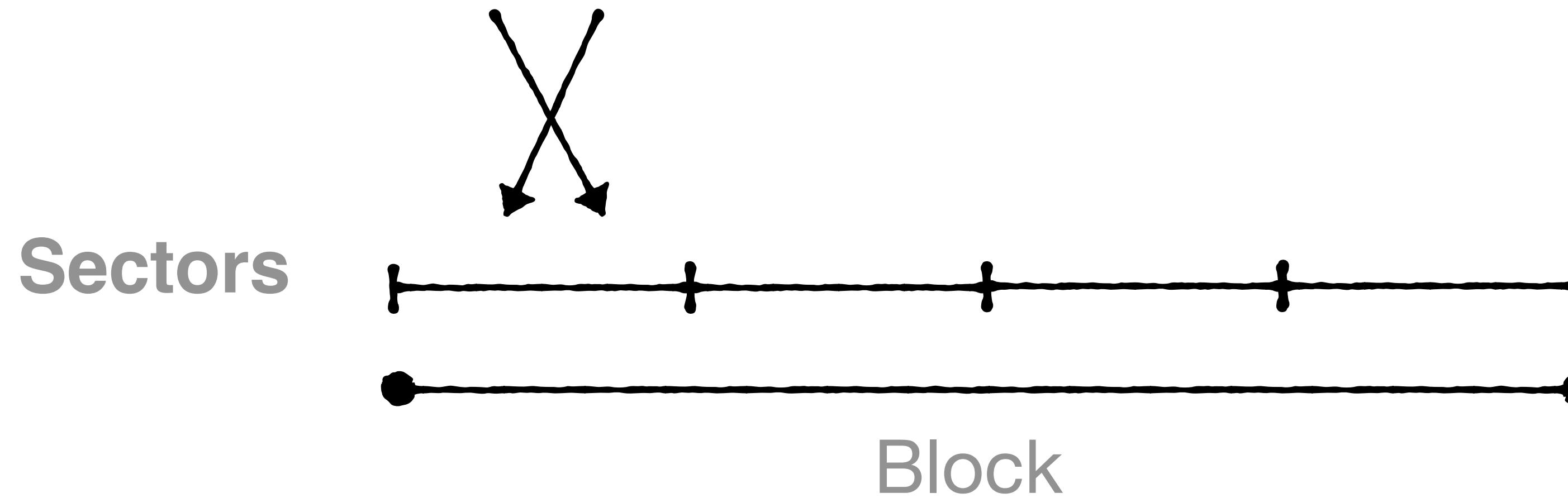
Insertion: hashes to k / s bits per sector sequentially

Read/written 4 rather than 8 registers



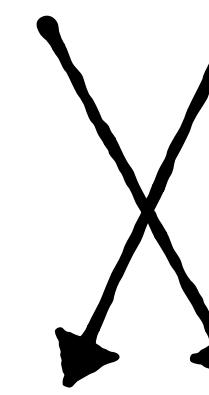
Query: check k / s hashes per sector sequentially

Hash 2 bits



Query: check k / s hashes per sector sequentially

Hash 2 bits

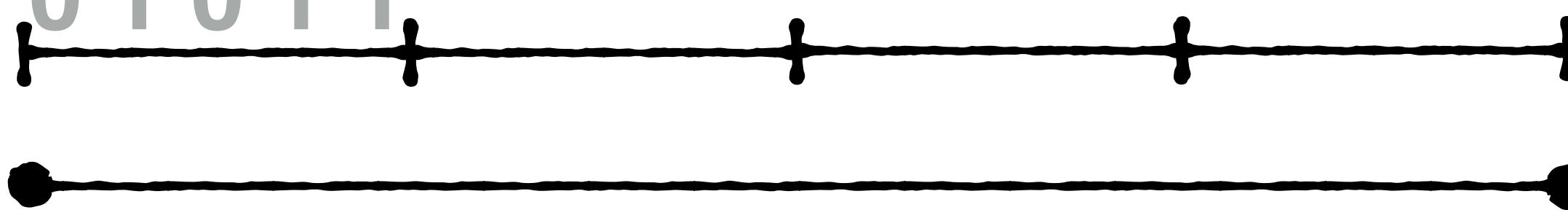


0 1 0 1 0

And

Sectors

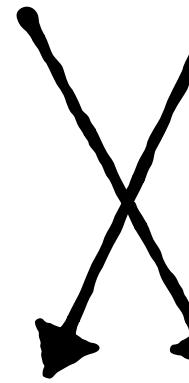
0 1 0 1 1



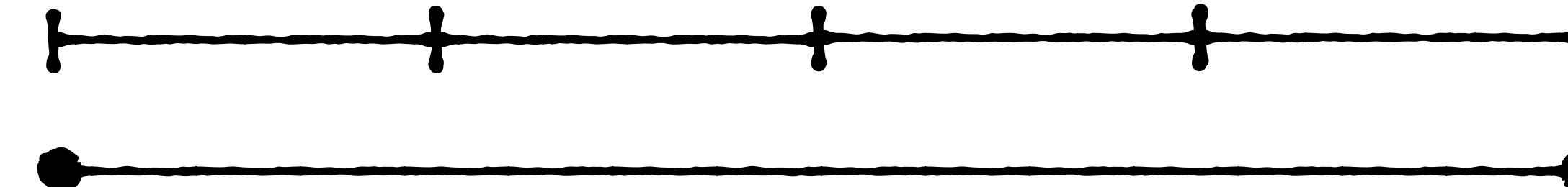
Block

Query: check k / s hashes per sector sequentially

Hash 2 bits


$$(01010 \text{ And } 01011) == 01010$$

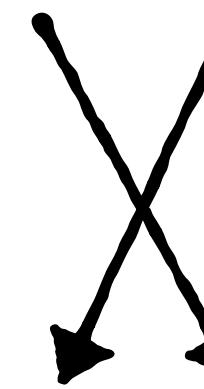
Sectors



Block

Query: check k / s hashes per sector sequentially

Hash 2 bits



if (0 1 0 1 0 And 0 1 0 1 1) != 0 1 0 1 0

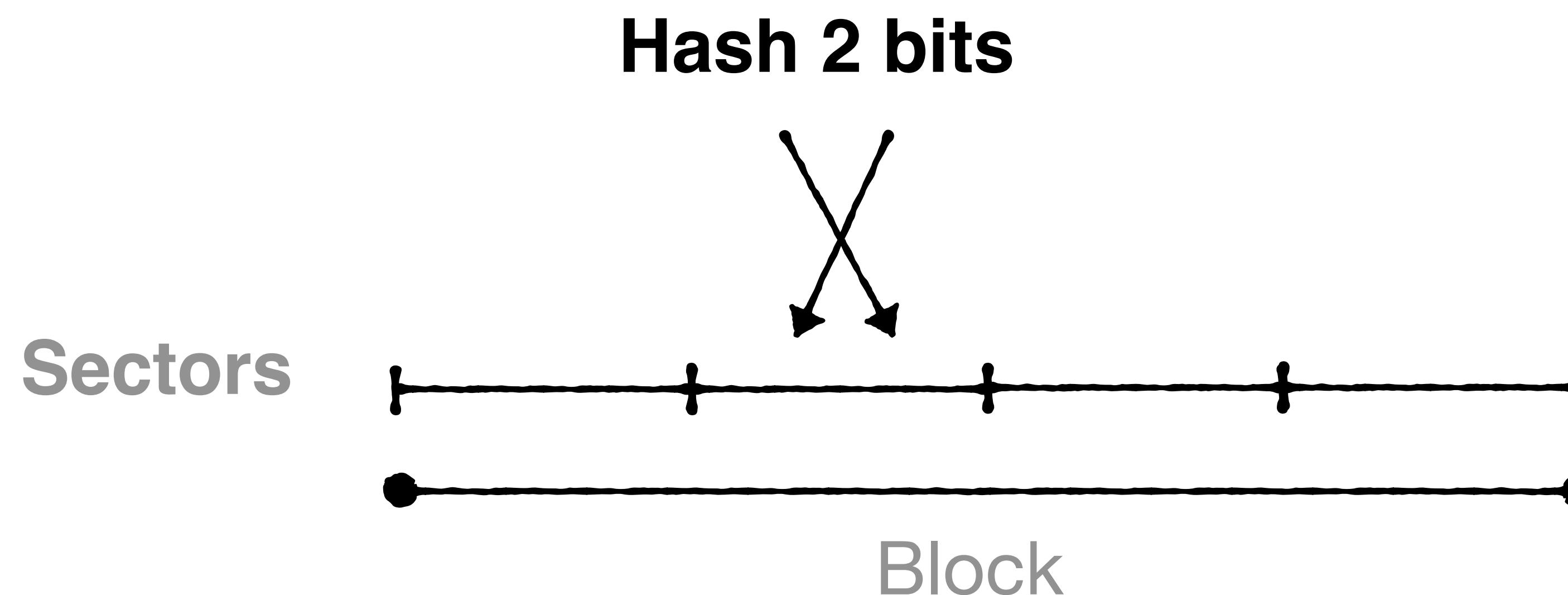
Return false

Sectors

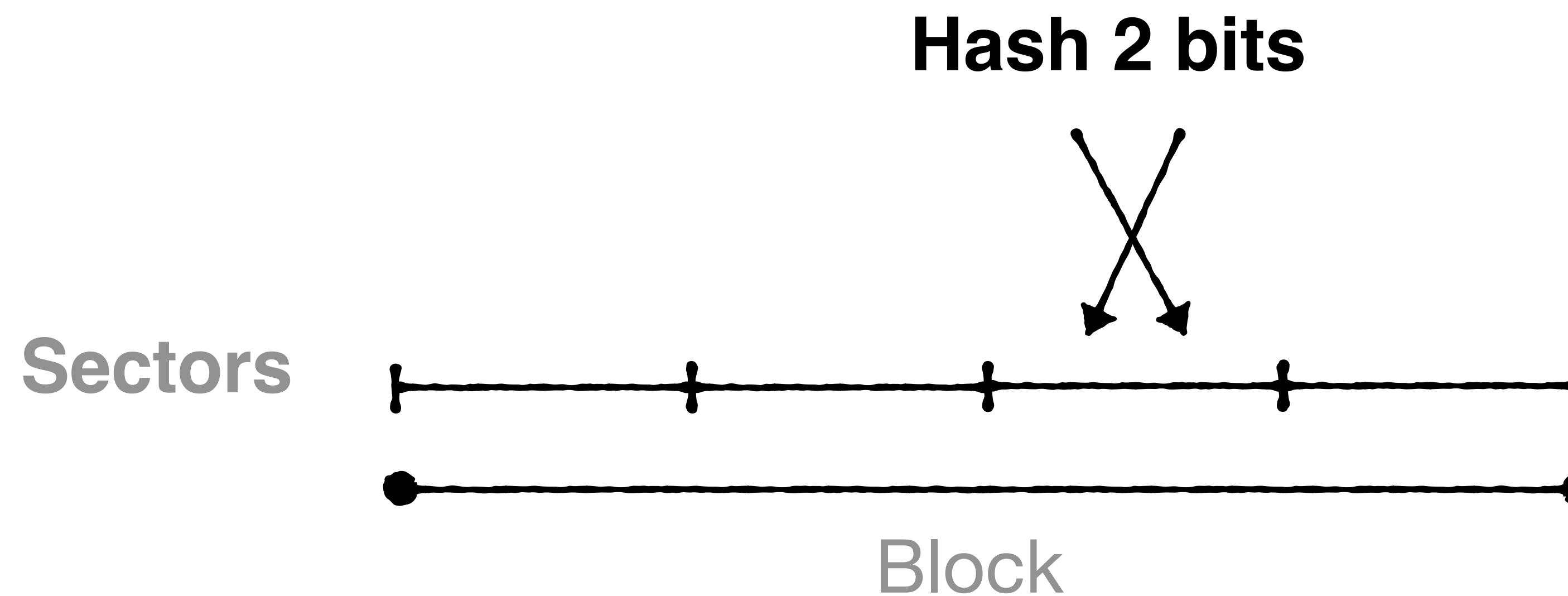


Block

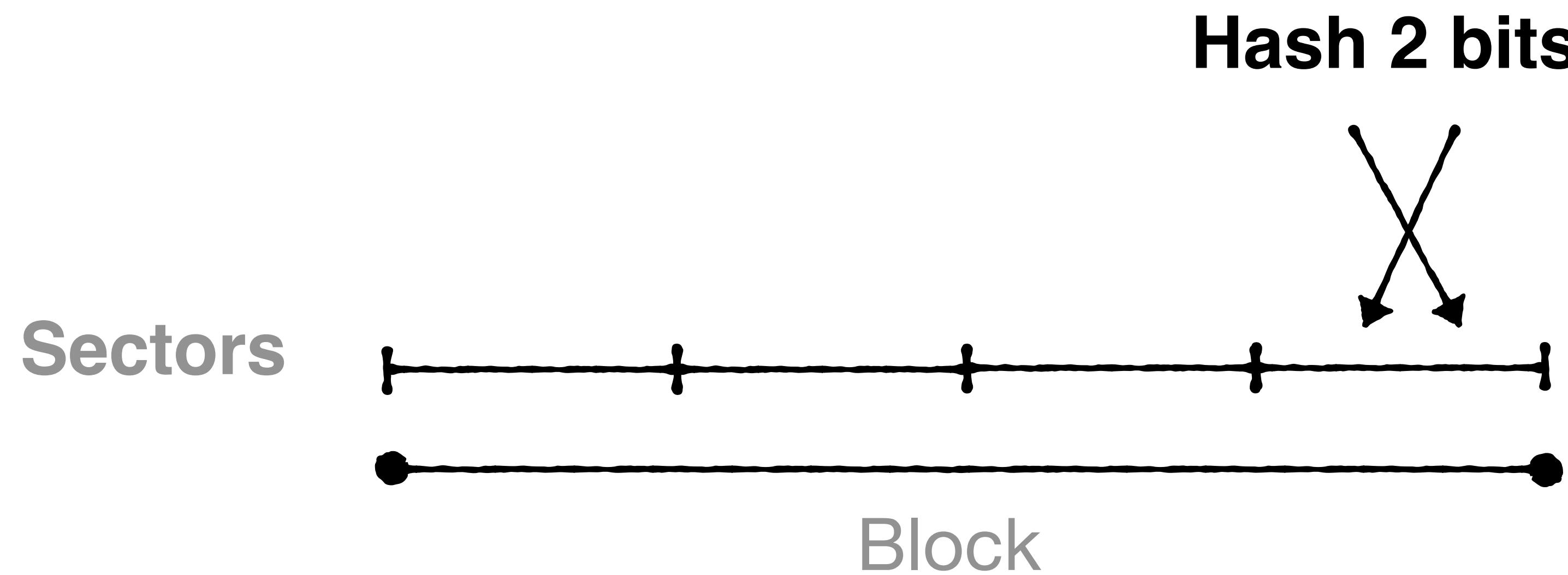
Query: check k / s hashes per sector sequentially



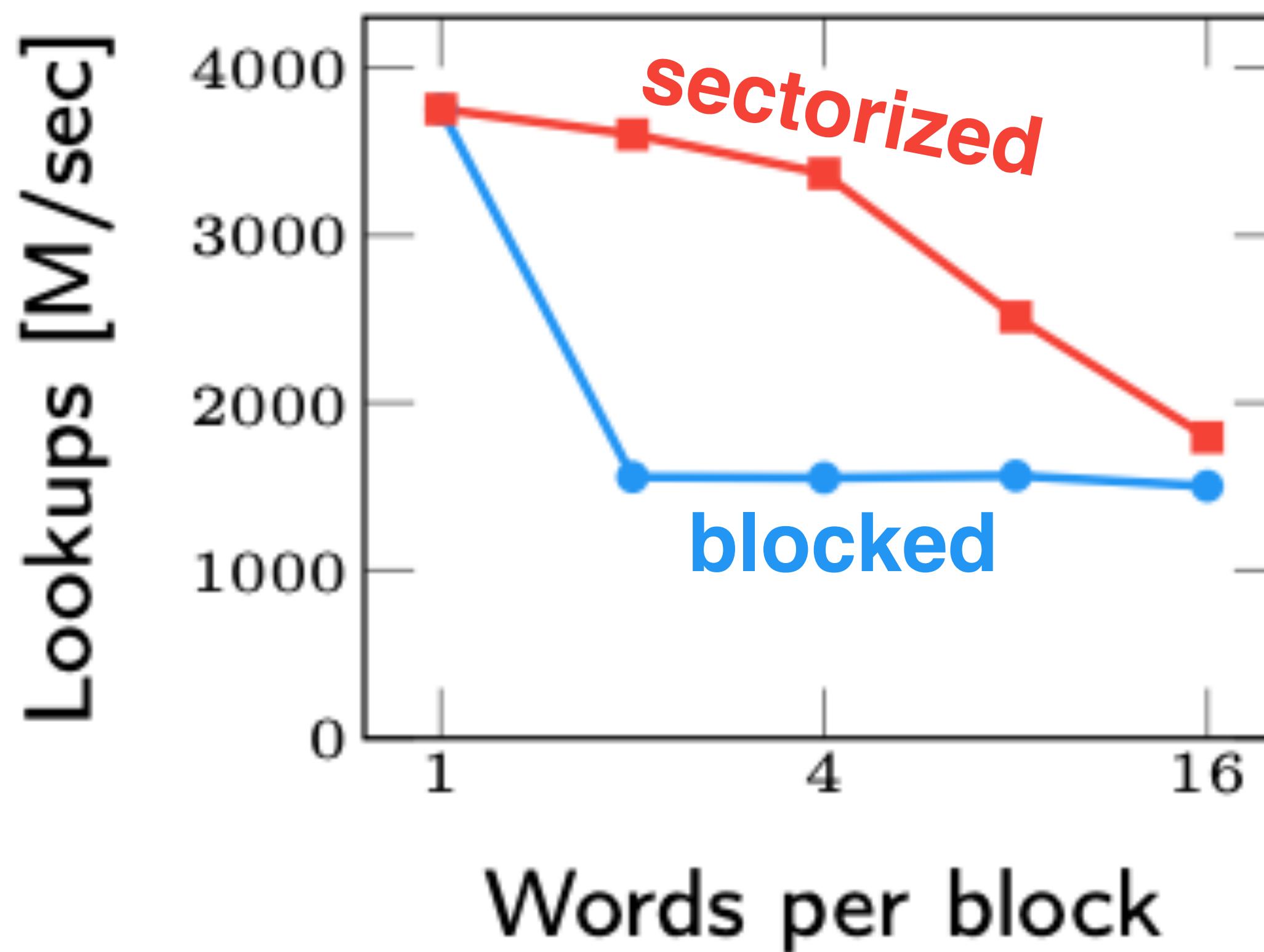
Query: check k / s hashes per sector sequentially



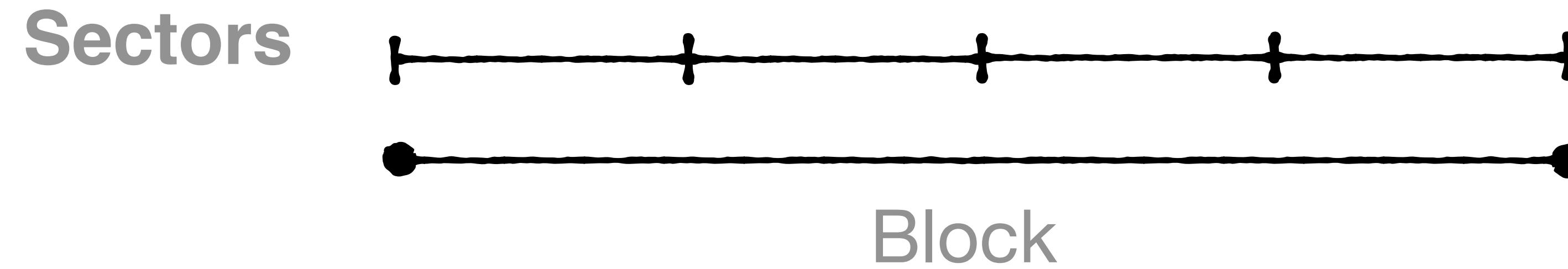
Query: check k / s hashes per sector sequentially



Query: check k / s hashes per sector sequentially



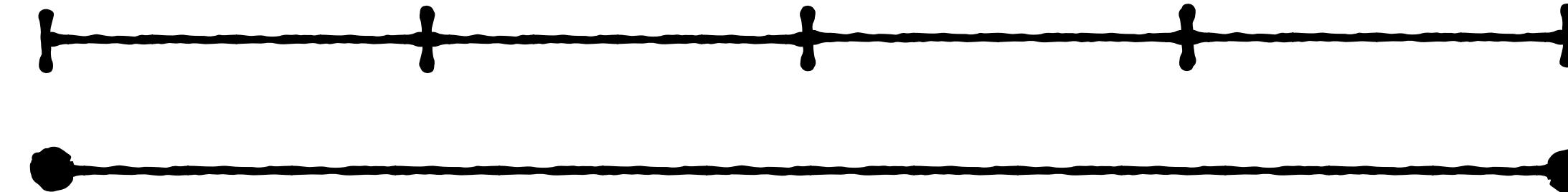
Further ways to optimize?



Further ways to optimize?

AVX - SIMD

Sectors

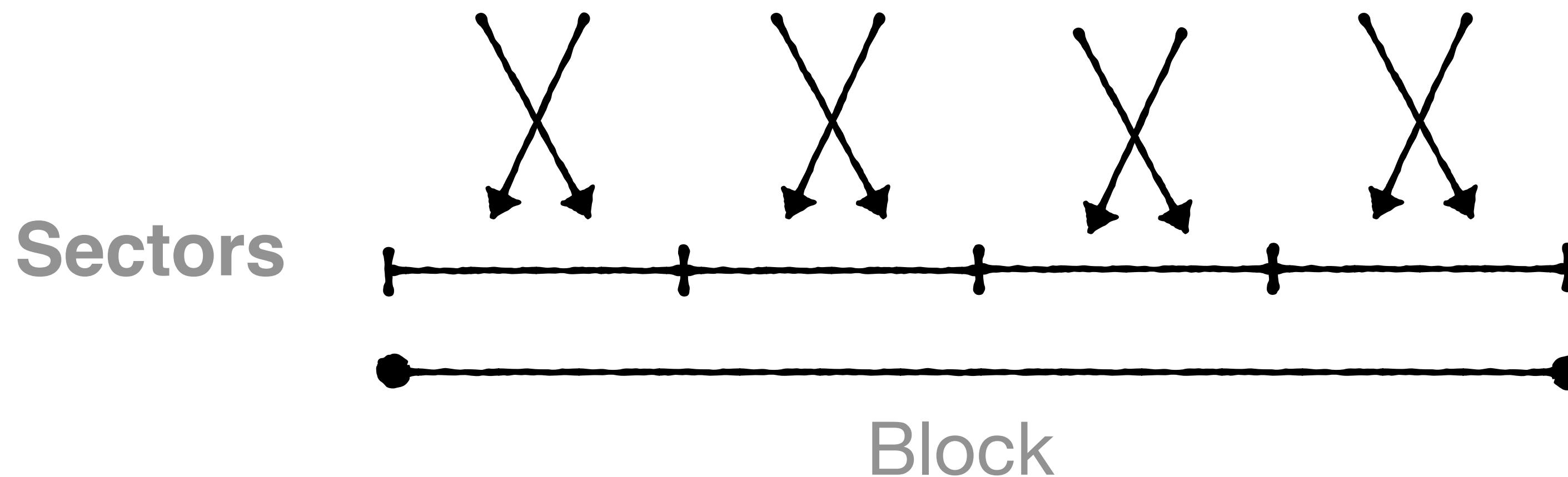


Block

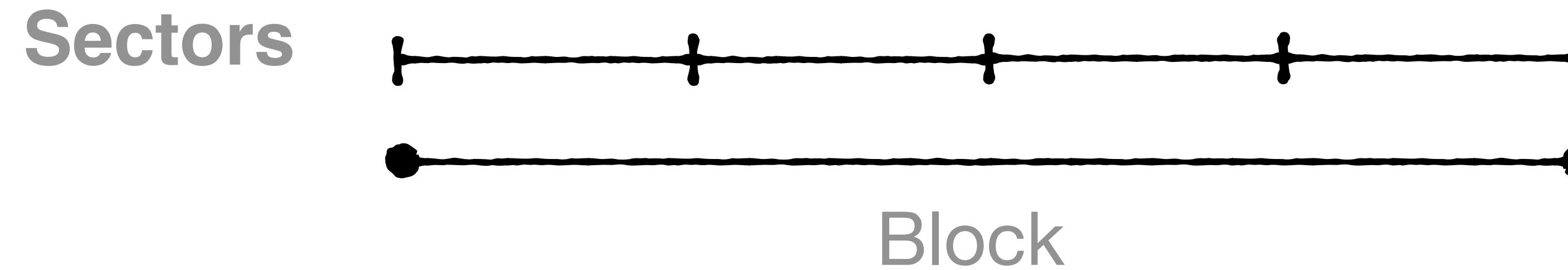
Further ways to optimize?

AVX - SIMD

Operate on each sector in parallel

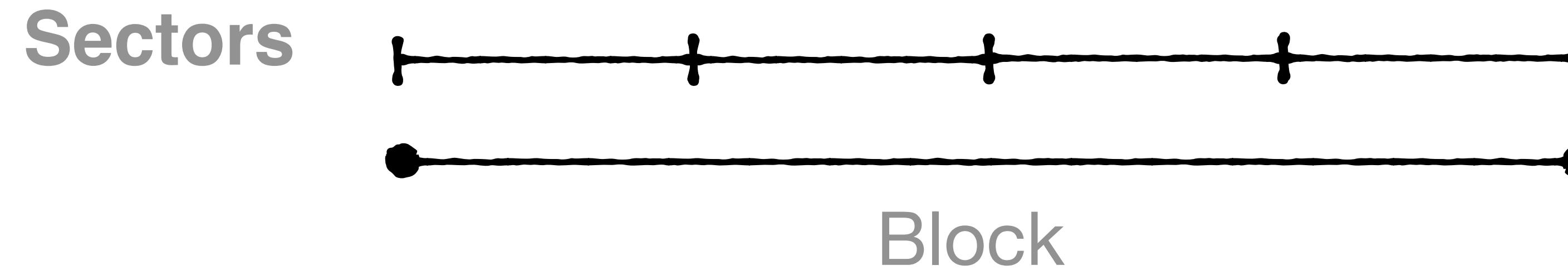


Problems with Sectorized Bloom filters?



Problems with Sectorized Bloom filters?

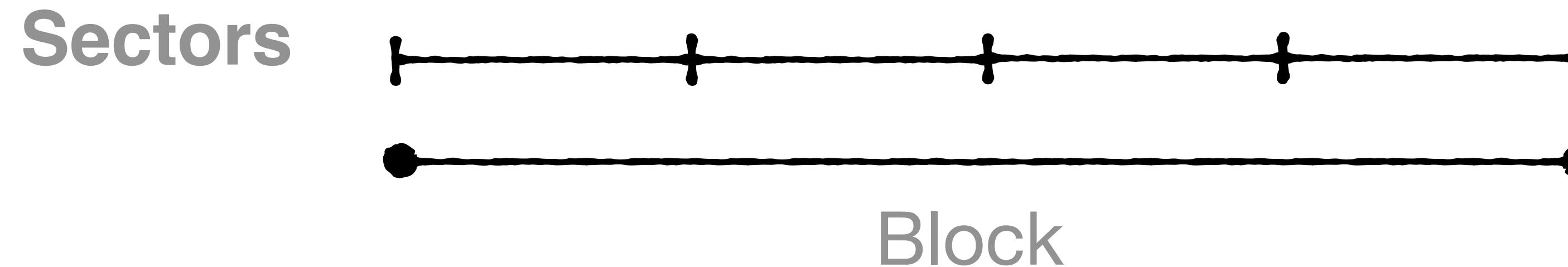
hashes must be multiple of # sectors



Problems with Sectorized Bloom filters?

hashes must be multiple of # sectors

Why is this bad?

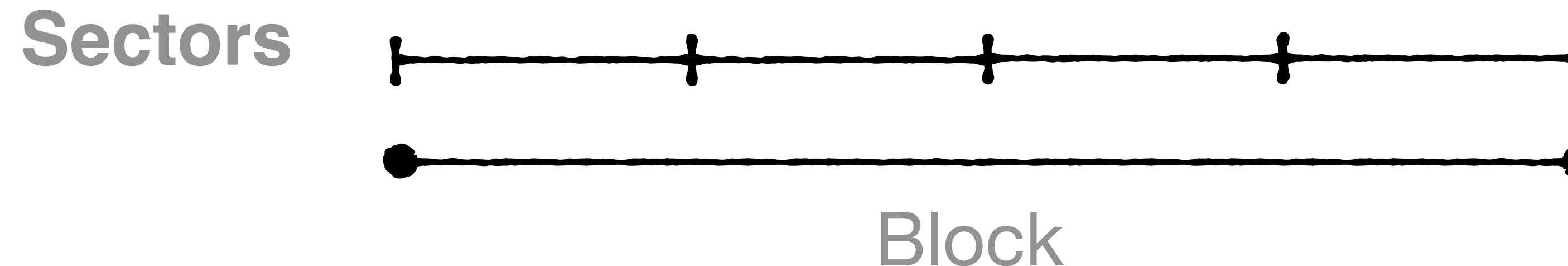


Problems with Sectorized Bloom filters?

hashes must be multiple of # sectors

Why is this bad?

Force using sub-optimal # hash functions



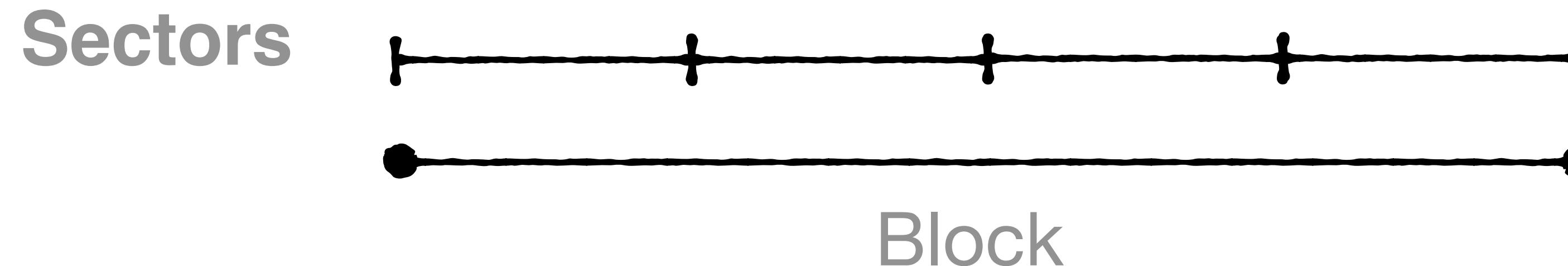
Problems with Sectorized Bloom filters?

hashes must be multiple of # sectors

Why is this bad?

Force using sub-optimal # hash functions

Harm FPR



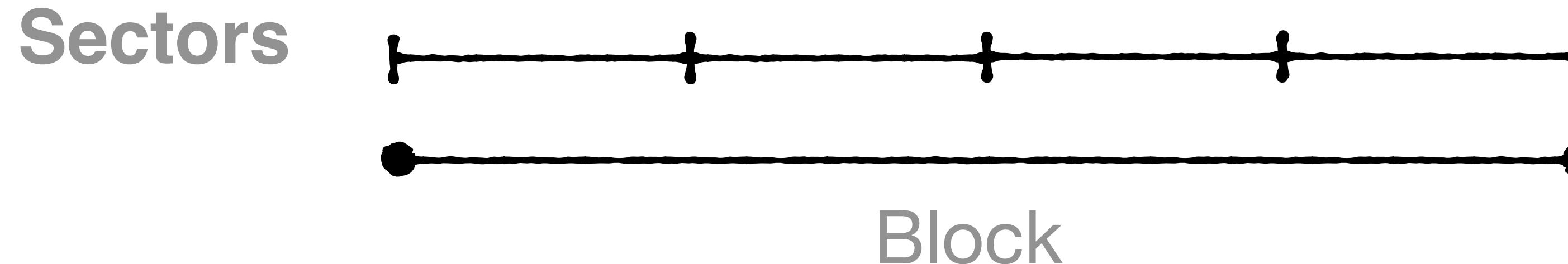
Problems with Sectorized Bloom filters?

hashes must be multiple of # sectors

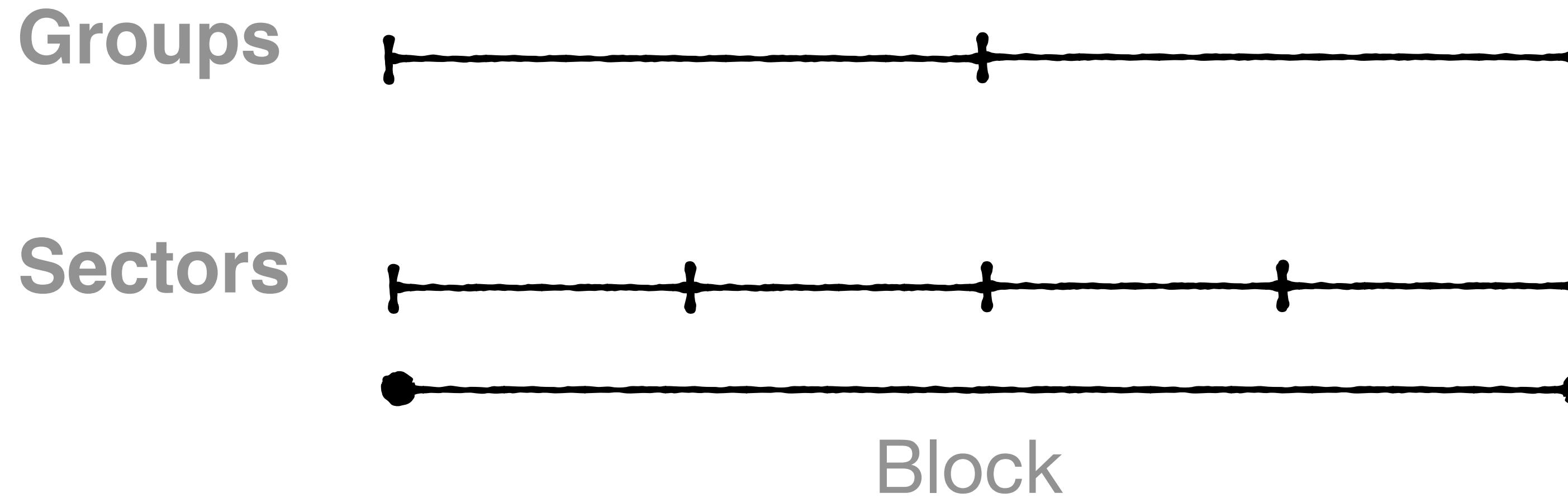
Why is this bad?

Force using sub-optimal # hash functions

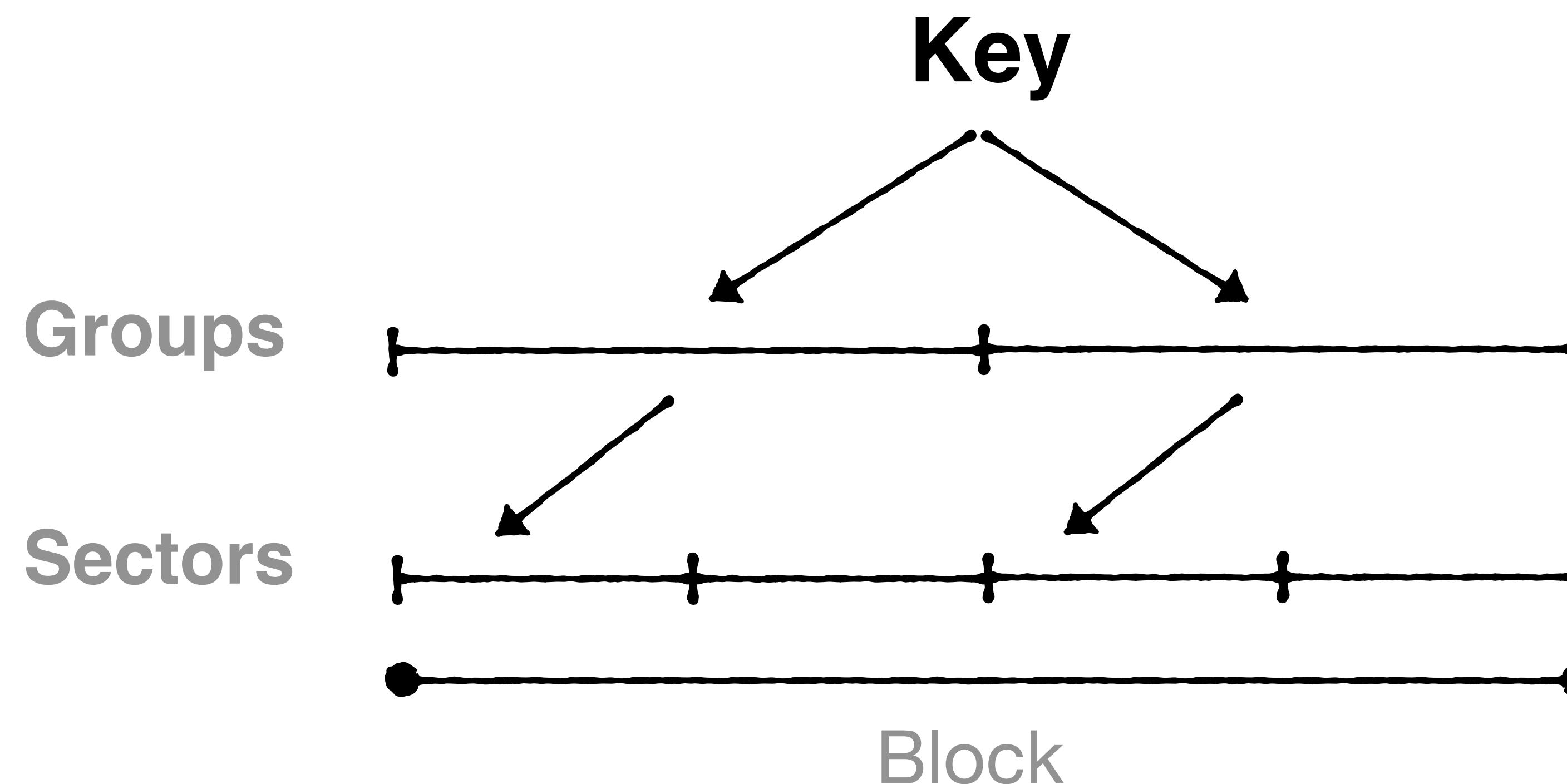
Harm FPR - solutions?



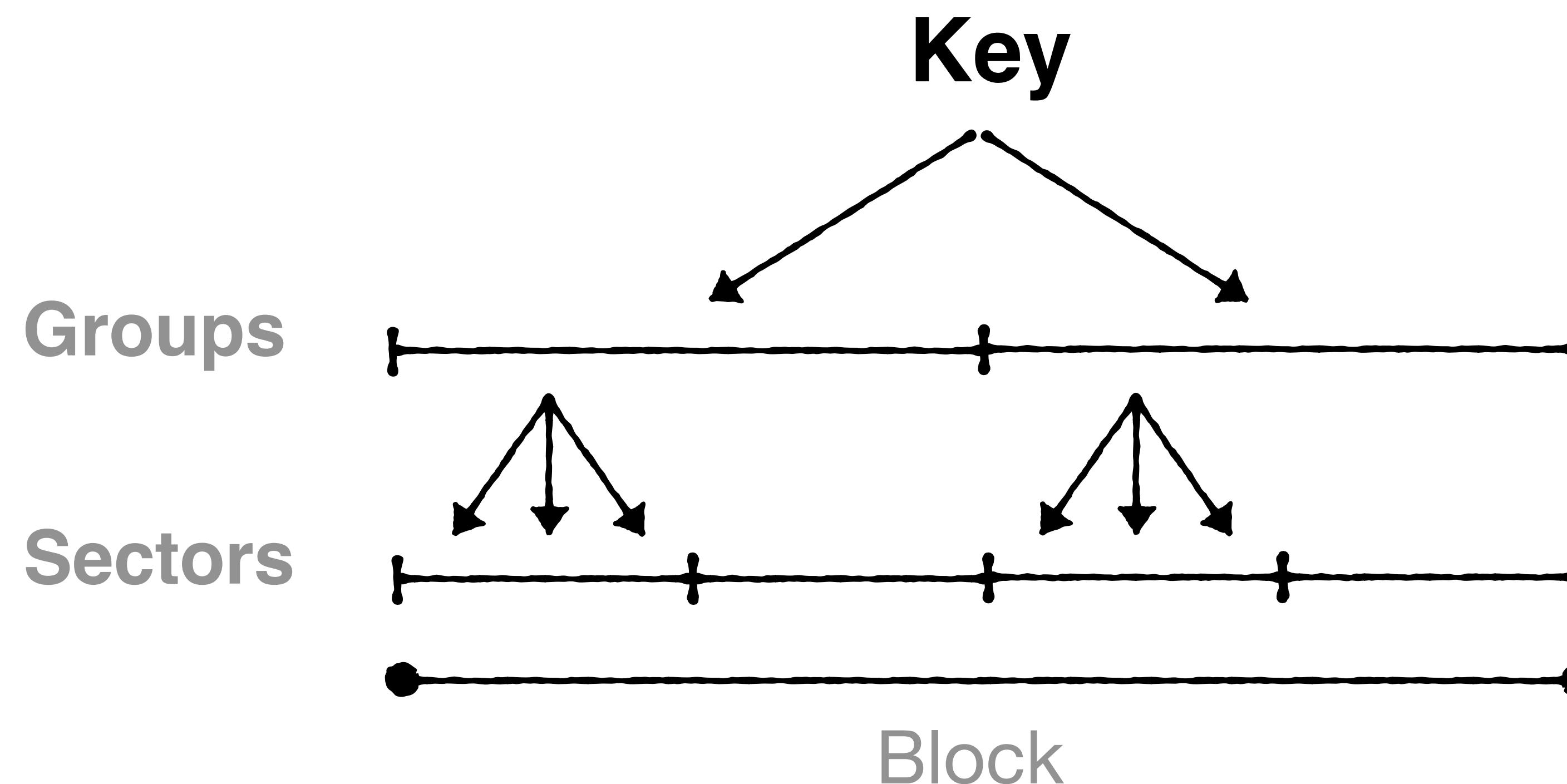
Divide sectors into Z groups



Map each key to one sector per group based on its hash

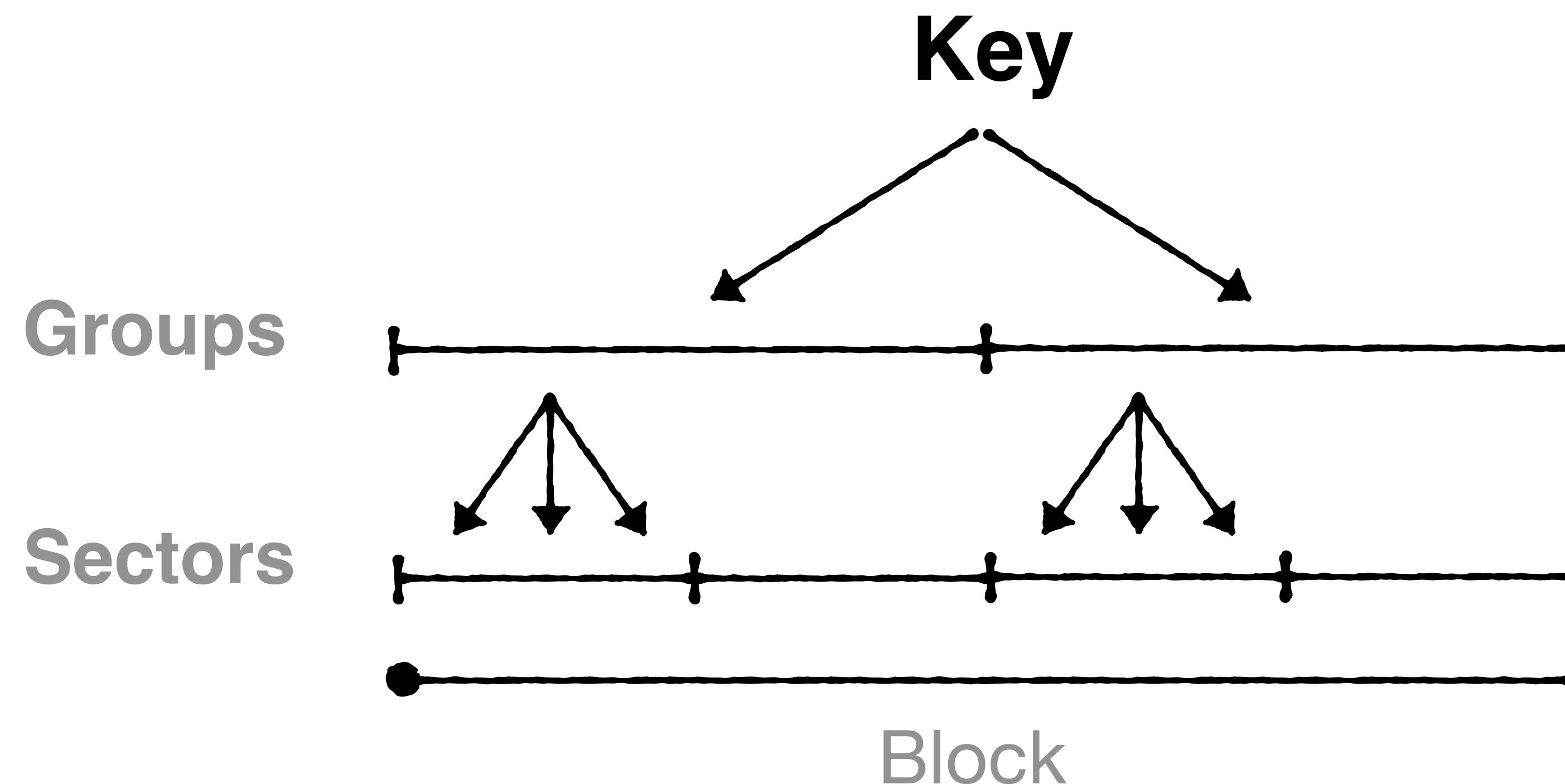


Hash bits only to relevant sector in each group

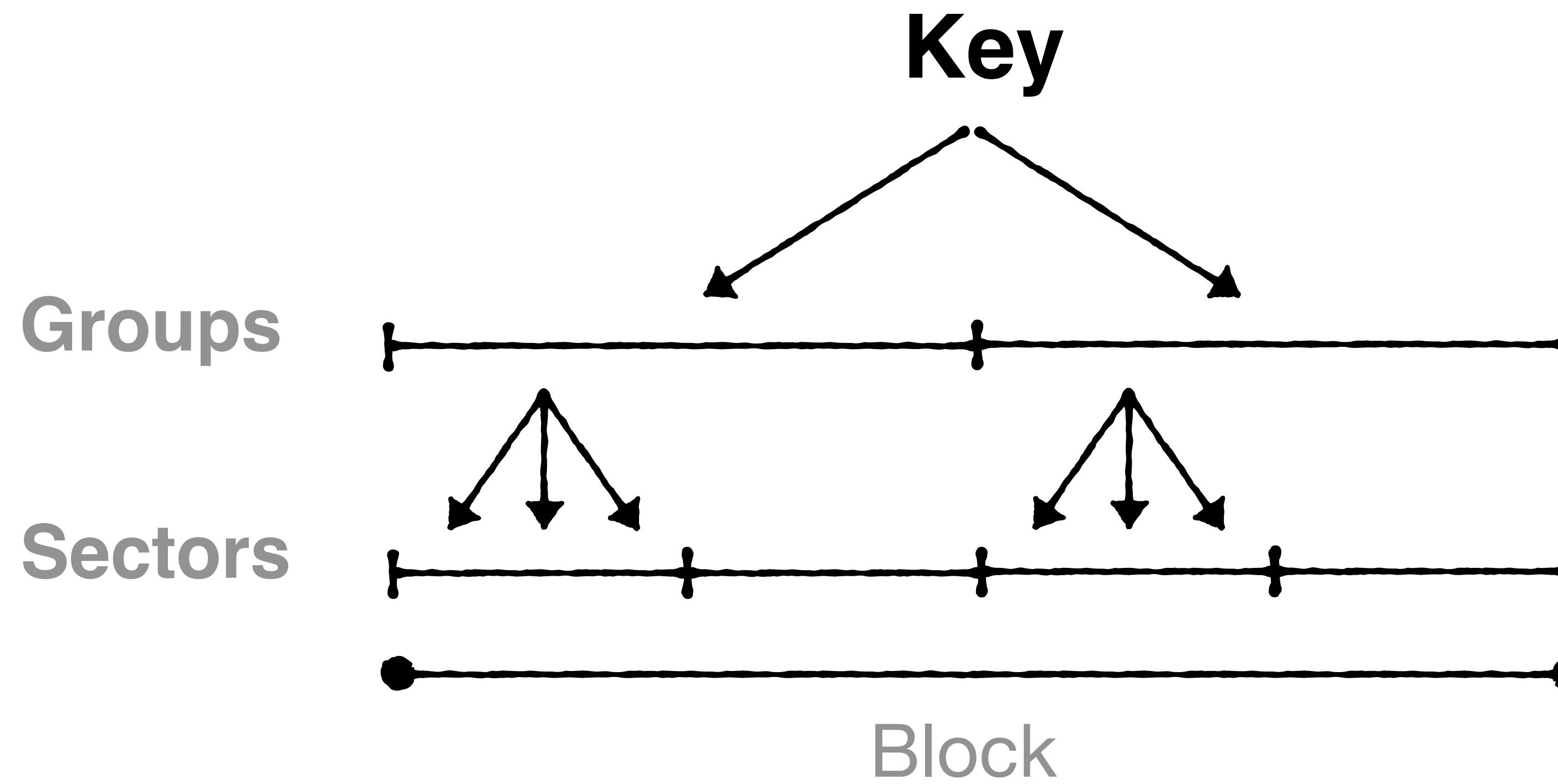


Hash bits only to relevant sector in each group

e.g., here we can use 6 hashes :)



Hash bits only to relevant sector in each group



Nearly best of both worlds :) faster & low FPR

Break

Bloom

FPR ε ≈ 2 $-M/N \cdot \ln(2)$

Bloom

Lower Bound

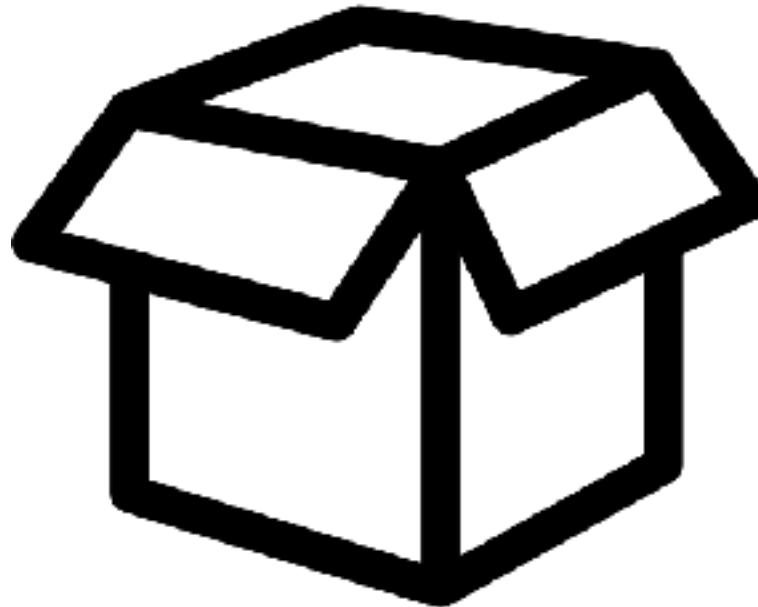
$FPR \varepsilon \approx 2^{-M/N} \cdot \ln(2)$

???

Lower Bound for Filter Memory

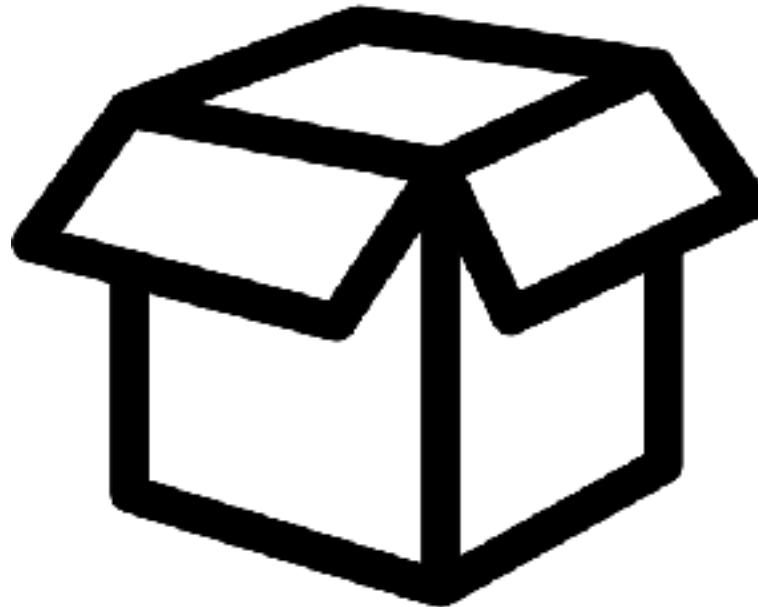
Lower Bound for Filter Memory

**Assume nothing
about implementation**



Lower Bound for Filter Memory

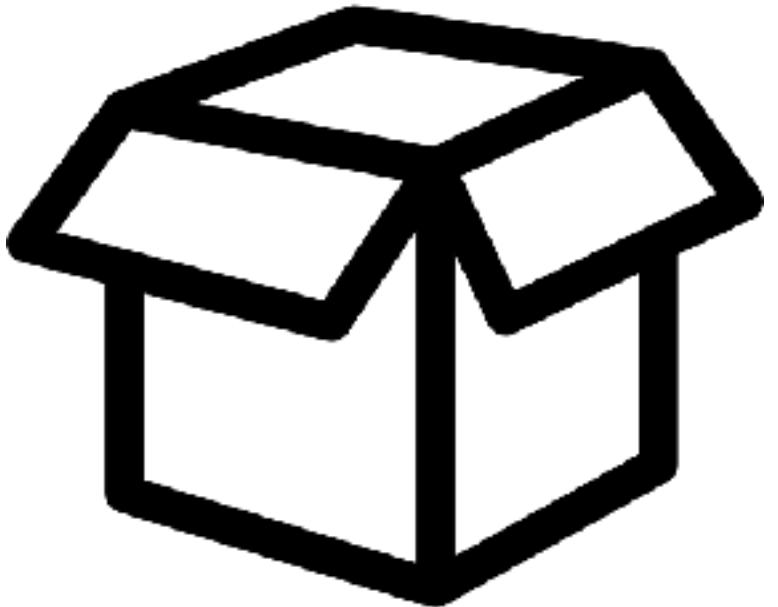
Assume nothing
about implementation



**Analyze with respect to
filter specification**

Lower Bound for Filter Memory

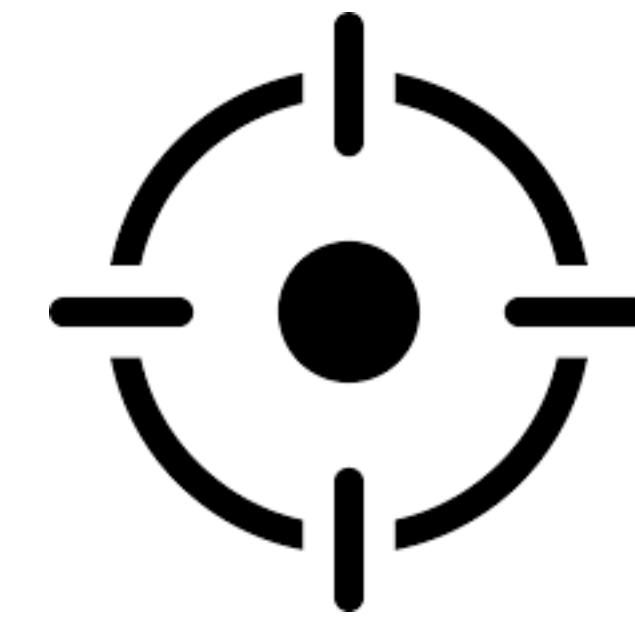
Assume nothing
about implementation



Analyze with respect to
filter specification

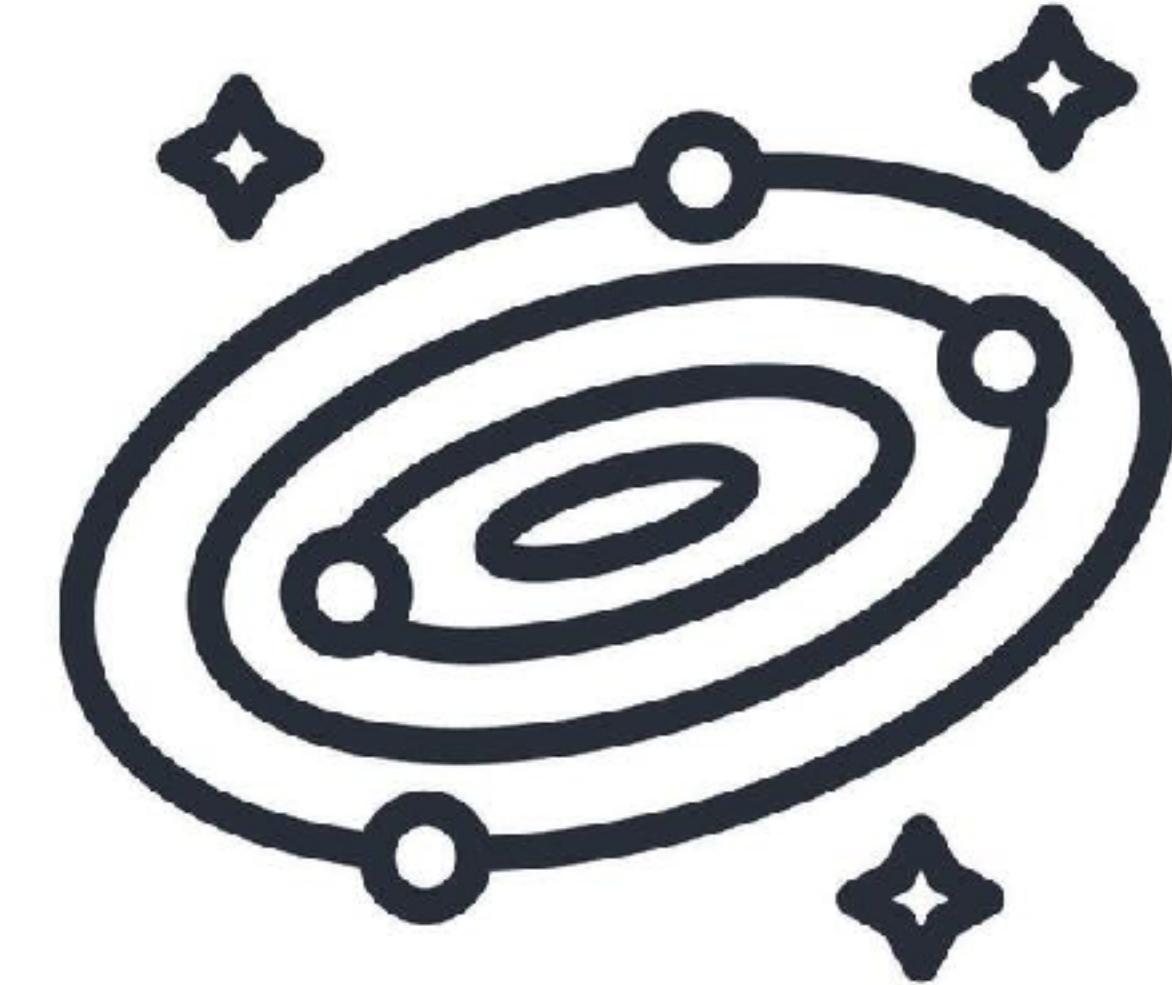
ϵ - FPR
N - # entries
U - Universe size

Lower Bound for **Exact Set**



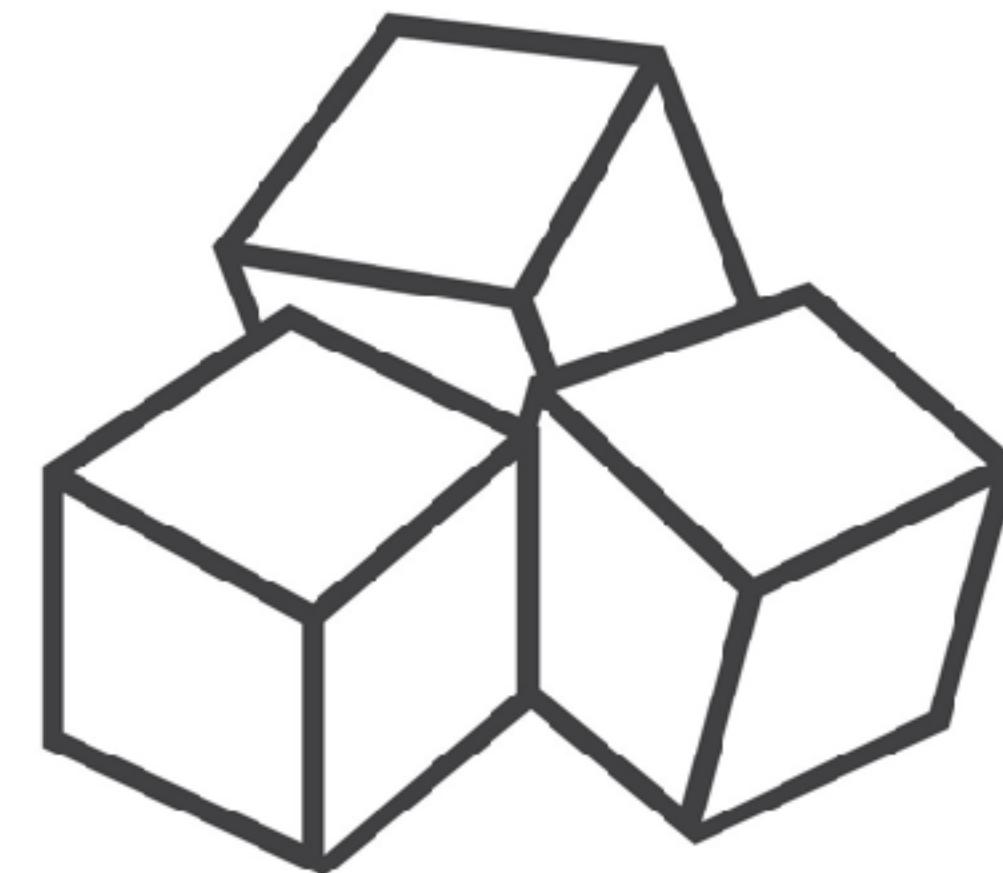
Lower Bound for Exact Set

Out of Universe U , store N entries



Lower Bound for Exact Set

(U choose N) combinations



Lower Bound for Exact Set

$\log_2(U \text{ choose } N)$ bits

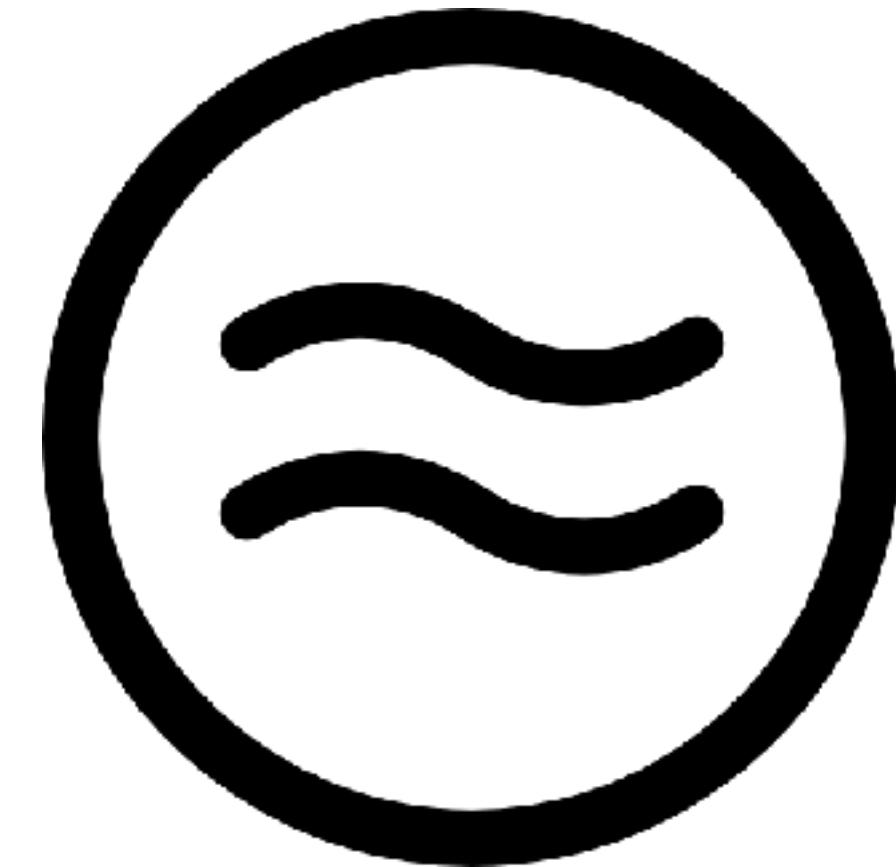
to encode a unique combination

Lower Bound for Exact Set

$$\log_2(U \text{ choose } N) \approx N \cdot \log_2(U / N) \text{ bits}$$

for large U

Lower Bound for **Filter - Approximate Set**



Lower Bound for **Filter**

$|Filter| + |Disambiguation| \geq |Exact\ Set|$

$|Filter| + |Disambiguation| \geq |Exact\ Set|$

Legend

ϵ - FPR
N - # entries
U - Universe size

$$|\text{Filter}| + |\text{Disambiguation}| \geq |\text{Exact Set}|$$

**What information must we add the filter
to turn it into an exact set?**

ϵ - FPR
N - # entries
U - Universe size

$$|\text{Filter}| + |\text{Disambiguation}| \geq N \cdot \log_2(U / N)$$

Plug in

ϵ - FPR
N - # entries
U - Universe size

$$|\text{Filter}| + |\text{Disambiguation}| \geq N \cdot \log_2(U / N)$$

Query filter U times

ϵ - FPR
N - # entries
U - Universe size

$$\mathbf{|Filter| + |Disambiguation| \geq N \cdot \log_2(U / N)}$$

Tells us all positive keys

$$N + \epsilon \cdot U$$

ϵ - FPR
N - # entries
U - Universe size

$$\lvert \text{IFilter} \rvert + \lvert \text{IDisambiguation} \rvert \geq N \cdot \log_2(U / N)$$

Tells us all positive keys

$$\epsilon \cdot U$$

ϵ - FPR
N - # entries
U - Universe size

$$|\text{IFilter}| + |\text{IDisambiguation}| \geq N \cdot \log_2(U / N)$$

**Of all positives $\epsilon \cdot U$, which
keys are true positives?**

ϵ - FPR
N - # entries
U - Universe size

$$\mathbf{IFilter} + \mathbf{IDisambiguation} \geq N \cdot \log_2(U / N)$$

$$\varepsilon \cdot U \text{ choose } N$$

ε - FPR
 N - # entries
 U - Universe size

$$\mathbf{IFilter} + \mathbf{IDisambiguation} \geq N \cdot \log_2(U / N)$$

$$\log_2(\epsilon \cdot U \text{ choose } N)$$

ϵ - FPR
N - # entries
U - Universe size

$$\mathbf{IFilter} + \mathbf{IDisambiguation} \geq N \cdot \log_2(U / N)$$

$$N \cdot \log_2((\epsilon \cdot U) / N)$$

ϵ - FPR
N - # entries
U - Universe size

$$|\text{Filter}| + N \cdot \log_2((\varepsilon \cdot U) / N) \geq N \cdot \log_2(U / N)$$

Legend

ε - FPR
N - # entries
U - Universe size

$$|\text{Filter}| \geq N \cdot \log_2(U / N) - N \cdot \log_2((\epsilon \cdot U) / N)$$

ϵ - FPR
N - # entries
U - Universe size

$$|\text{Filter}| \geq N \cdot \log_2(1 / \varepsilon)$$

ε - FPR
N - # entries
U - Universe size

$$\epsilon \geq 2^{-M/N}$$

ϵ - FPR
N - # entries
U - Universe size

Bloom

$\approx 2^{-M/N} \cdot \ln(2)$

Lower bound

$2^{-M/N}$

Bloom

$\approx 2^{-M/N} \cdot \mathbf{0.69}$

Lower bound

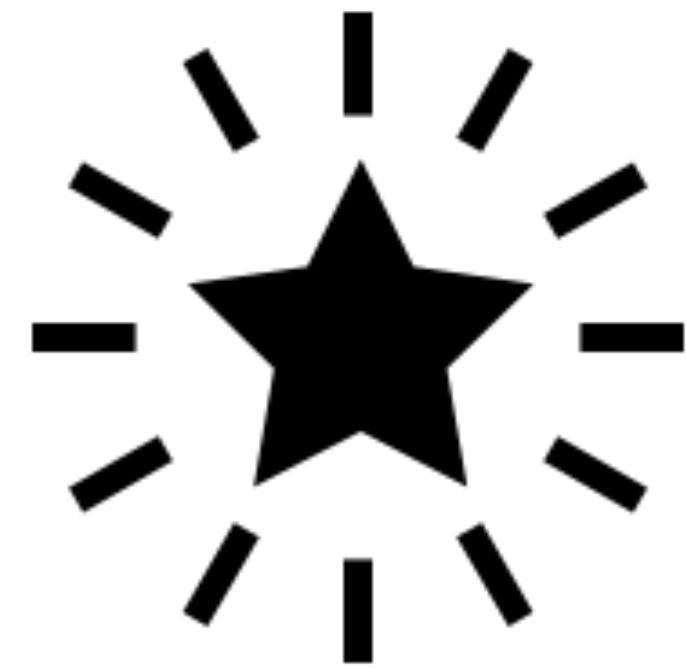
$2^{-M/N}$

Bloom

$\approx 2^{-M/N} \cdot 0.69$

???

Lower bound

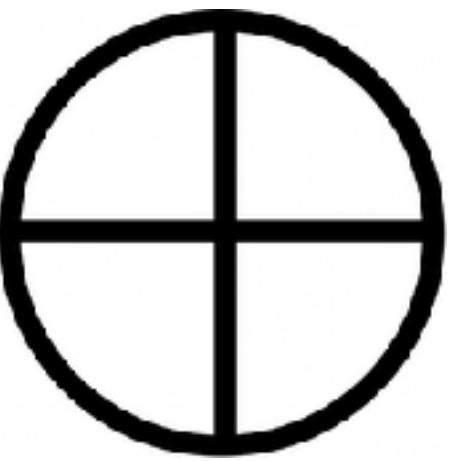


$2^{-M/N}$

Bloom

$\approx 2^{-M/N} \cdot 0.69$

XOR Filter

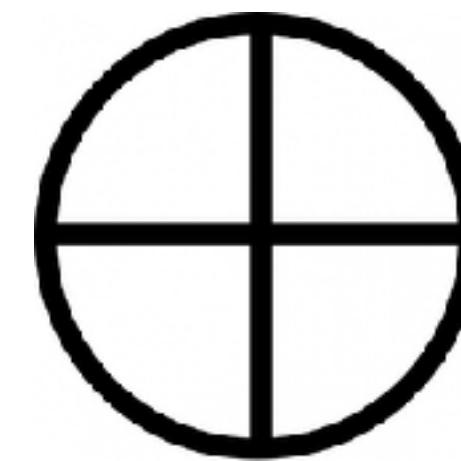


$\approx 2^{-M/N} \cdot 0.81$

Lower bound

$\approx 2^{-M/N}$

XOR Filter



Xor Filters: Faster and Smaller Than Bloom Filters

Thomas Mueller Graf, Daniel Lemire

Journal of Experimental Algorithmics, 2020

XOR Operator

Input 1	0	0	1	1
\oplus				
Input 2	0	1	0	1
$=$				
Parity	0	1	1	0

Parity can help recover any input

**Suppose we
lost input 2**

Input 1	0	0	1	1
Parity	0	1	1	0

Parity can help recover any input

**Suppose we
lost input 2**

Input 1	<table border="1"><tr><td>0</td><td>0</td><td>1</td><td>1</td></tr></table>	0	0	1	1
0	0	1	1		
	\oplus				
Parity	<table border="1"><tr><td>0</td><td>1</td><td>1</td><td>0</td></tr></table>	0	1	1	0
0	1	1	0		
	=				
Input 2	<table border="1"><tr><td>0</td><td>1</td><td>0</td><td>1</td></tr></table>	0	1	0	1
0	1	0	1		
	Recovered				

Parity can help recover any input

**Or suppose we
lost input 1**

Input 2

0	1	0	1
---	---	---	---

Parity

0	1	1	0
---	---	---	---

Parity can help recover any input

**Or suppose we
lost input 1**

Input 2	<table border="1"><tr><td>0</td><td>1</td><td>0</td><td>1</td></tr></table>	0	1	0	1
0	1	0	1		
Parity	<table border="1"><tr><td>0</td><td>1</td><td>1</td><td>0</td></tr></table>	0	1	1	0
0	1	1	0		
Input 1	<table border="1"><tr><td>0</td><td>0</td><td>1</td><td>1</td></tr></table>	0	0	1	1
0	0	1	1		

Recovered

XOR is commutative and associative

Input 1

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \hline \end{array}$$

\oplus

Input 2

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline \end{array}$$

\oplus

Input 3

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline \end{array}$$

=

Parity

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ \hline \end{array}$$

XOR is commutative and associative

Input 1	<table border="1"><tr><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td></tr></table>	0	0	0	0	1	1	1	1
0	0	0	0	1	1	1	1		
	\oplus								
Input 2	<table border="1"><tr><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td></tr></table>	0	0	1	1	0	0	1	1
0	0	1	1	0	0	1	1		
	\oplus								
Input 3	<table border="1"><tr><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></tr></table>	0	1	0	1	0	1	0	1
0	1	0	1	0	1	0	1		
	$=$								
Parity	<table border="1"><tr><td>0</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></tr></table>	0	1	1	0	1	0	0	1
0	1	1	0	1	0	0	1		

Parity can recover any input, as long as we also have all the other inputs

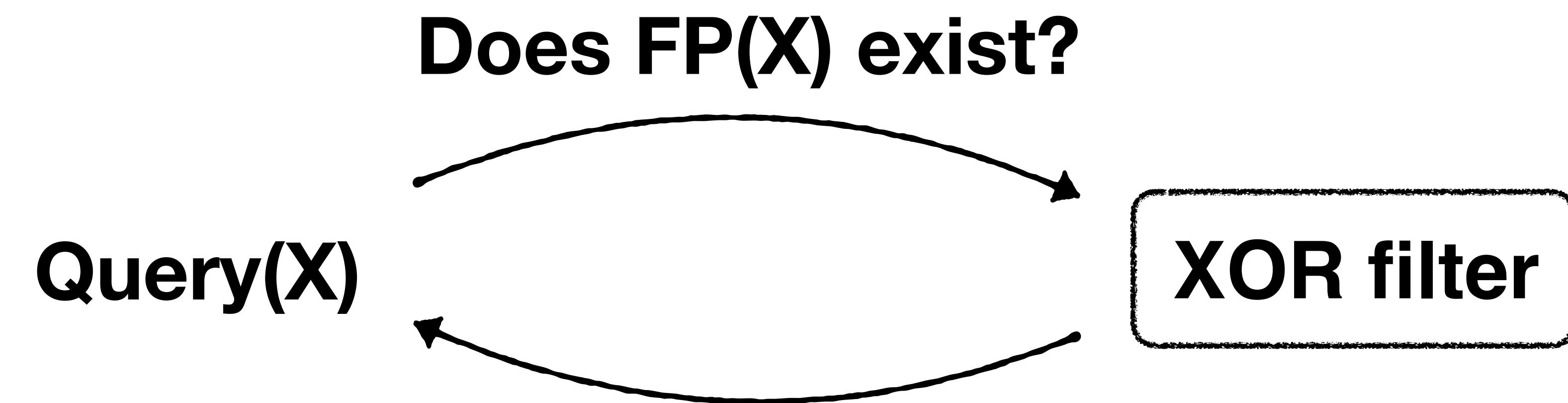
XOR filter stores a fingerprint for each key

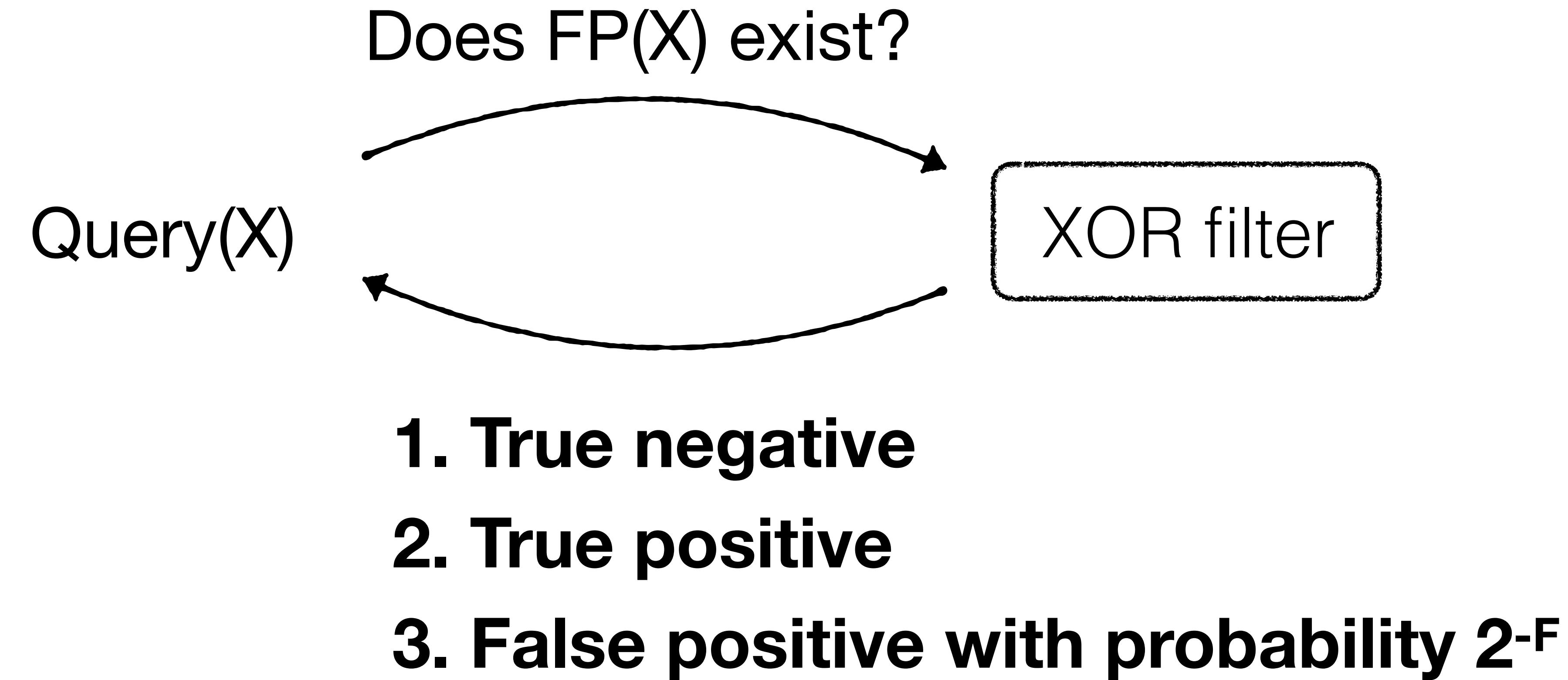
**FP() = **

XOR filter stores a fingerprint for each key

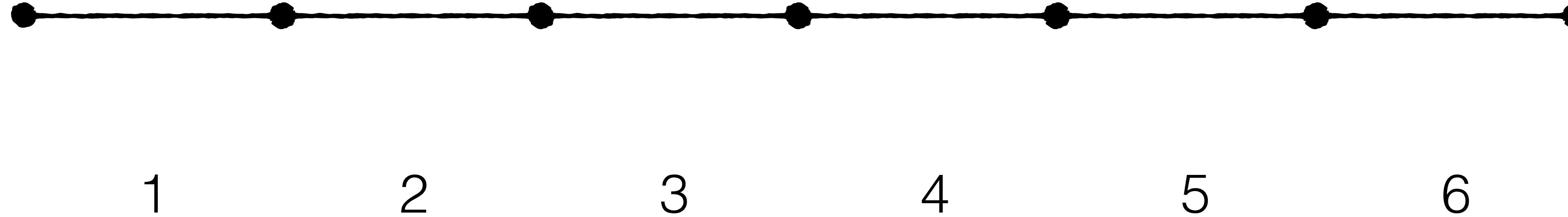
Example:

FP(X) =
F bits

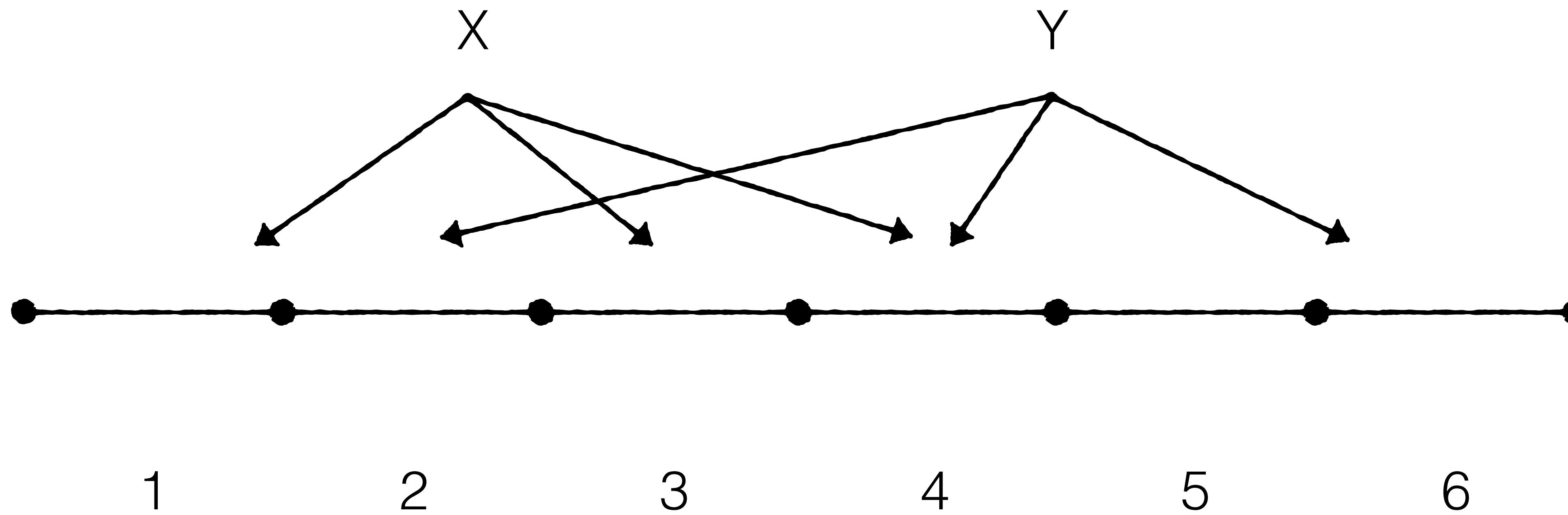




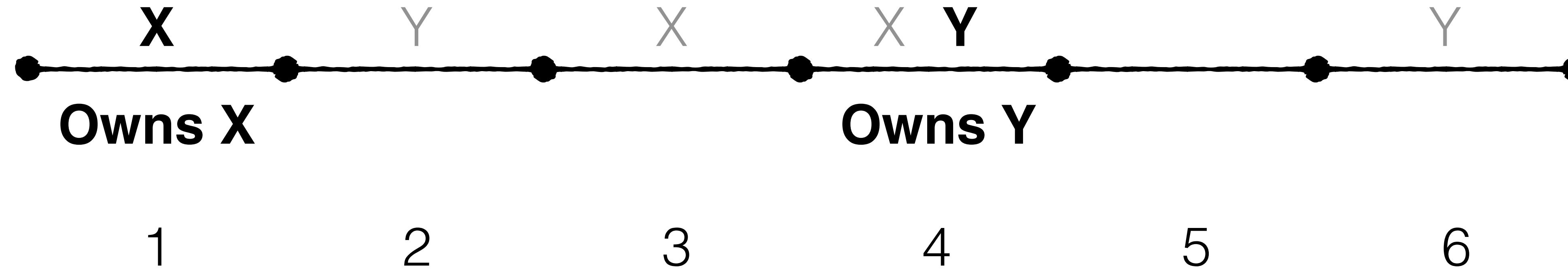
How does XOR filter store its fingerprints?



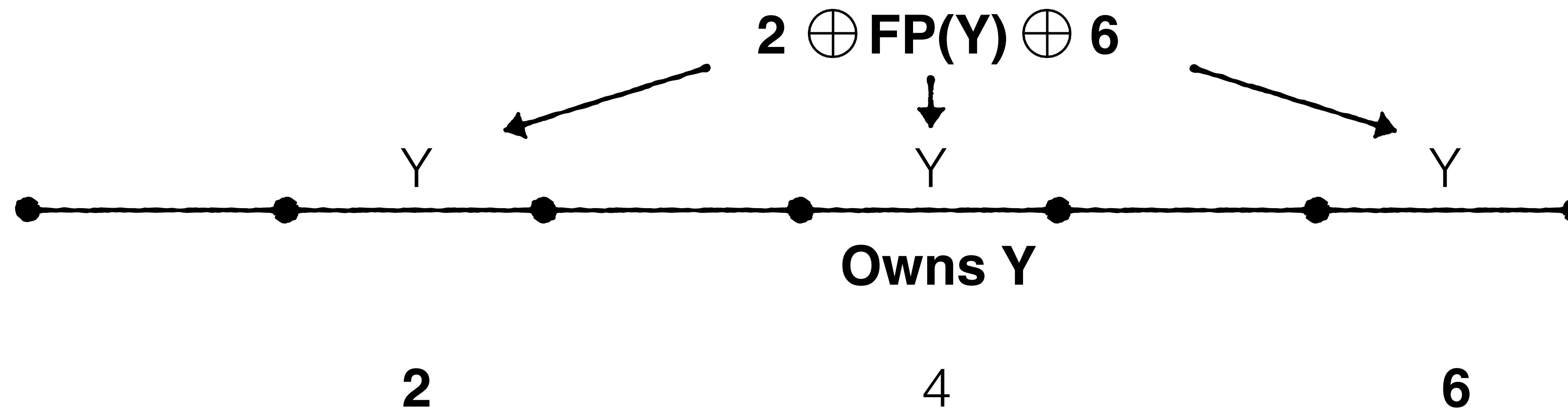
Hash each entry to three slots



Assign one slot to uniquely own each entry
(More on this shortly)



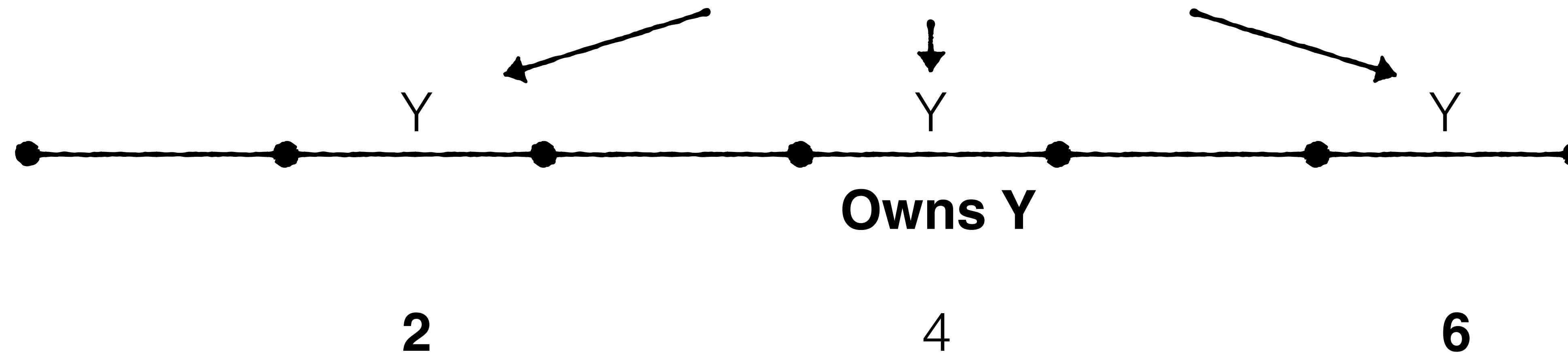
Each bucket stores XOR of fingerprint and other two slots



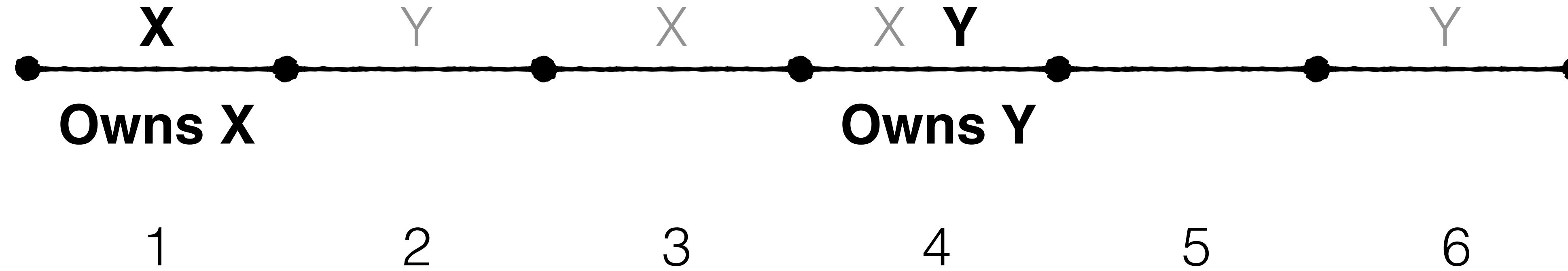
During queries, recover fingerprints by xoring three slots

get(Y) returns true if

$$\mathbf{FP(Y) = 2 \oplus 4 \oplus 6}$$



How to assign slots to own different entries?



How to assign slots to own different entries?

Peeling

Peeling

Slots

0

1

2

3

4

5

6

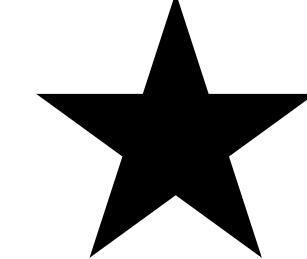
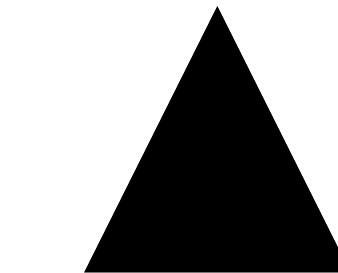
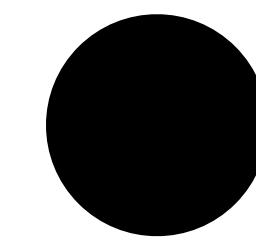
7

1, 4, 5

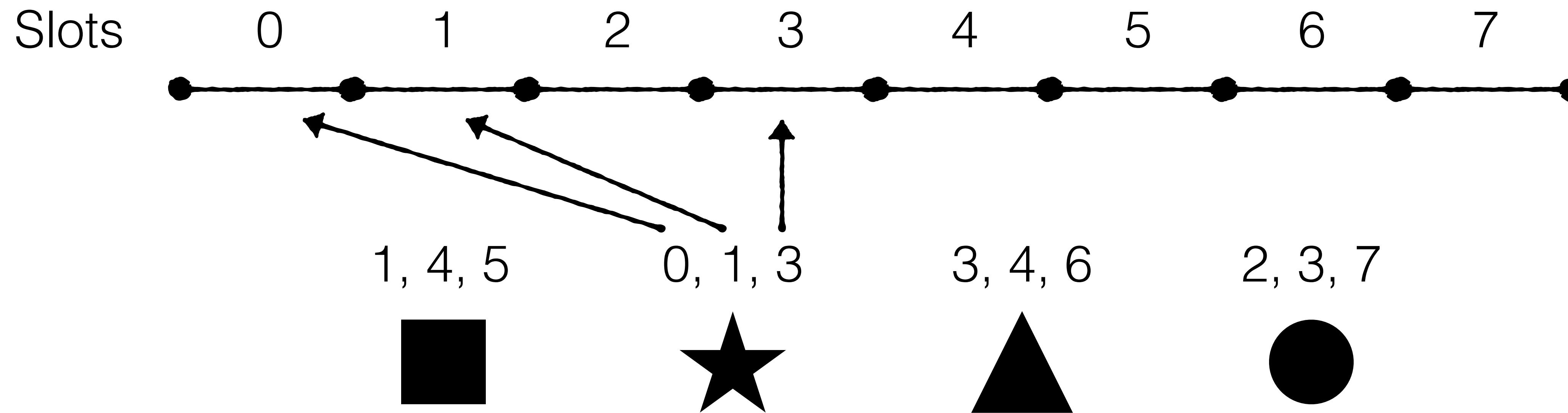
0, 1, 3

3, 4, 6

2, 3, 7

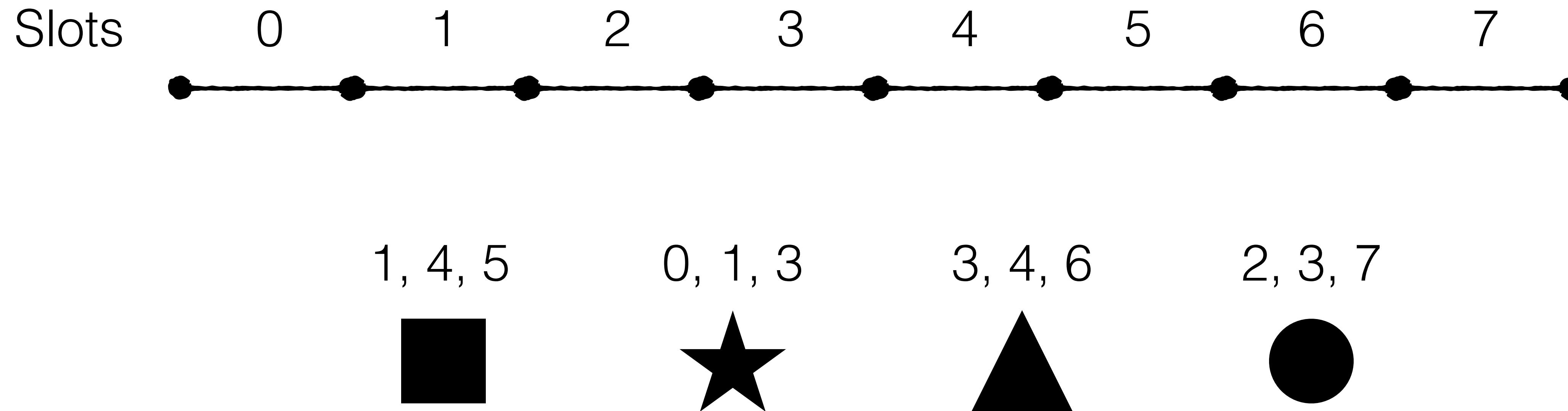


Peeling



Peeling

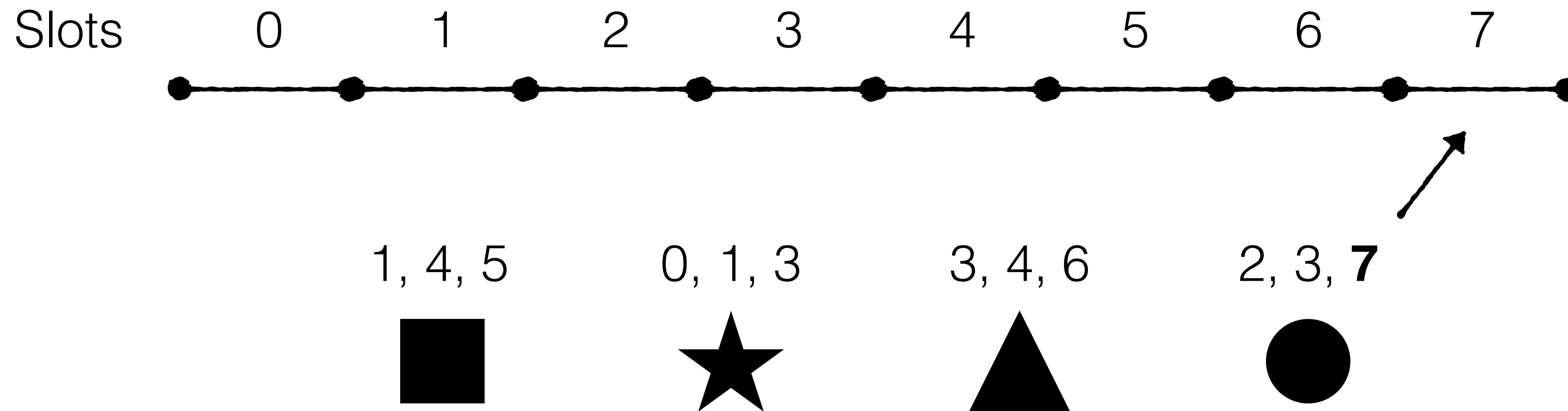
While not all keys have been assigned to a slot



Peeling

While not all keys have been assigned to a slot

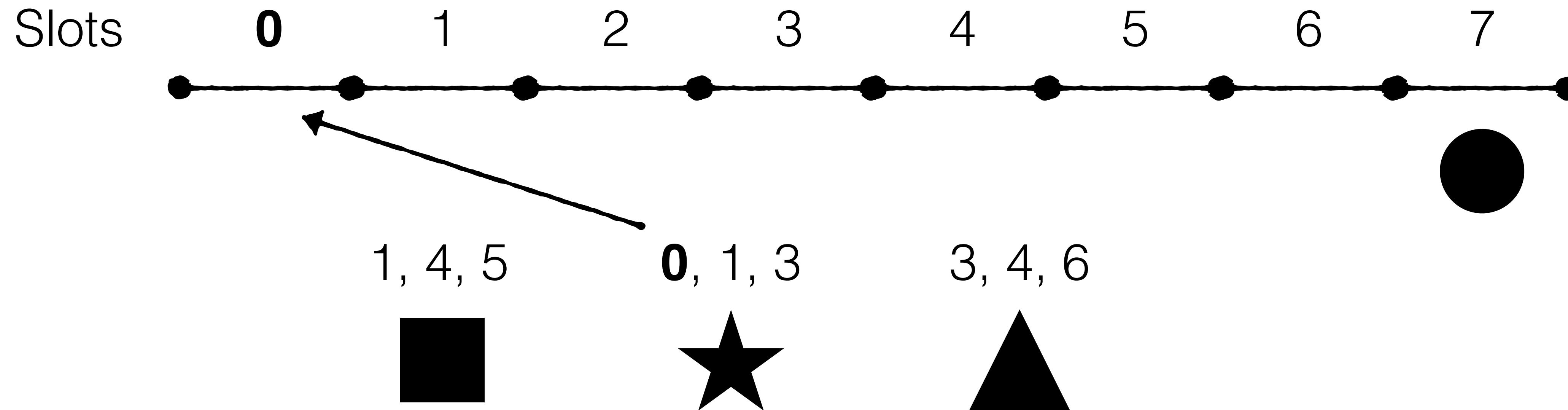
Assign some entry x to some slot y that only entry x maps to



Peeling

While not all keys have been assigned to a slot

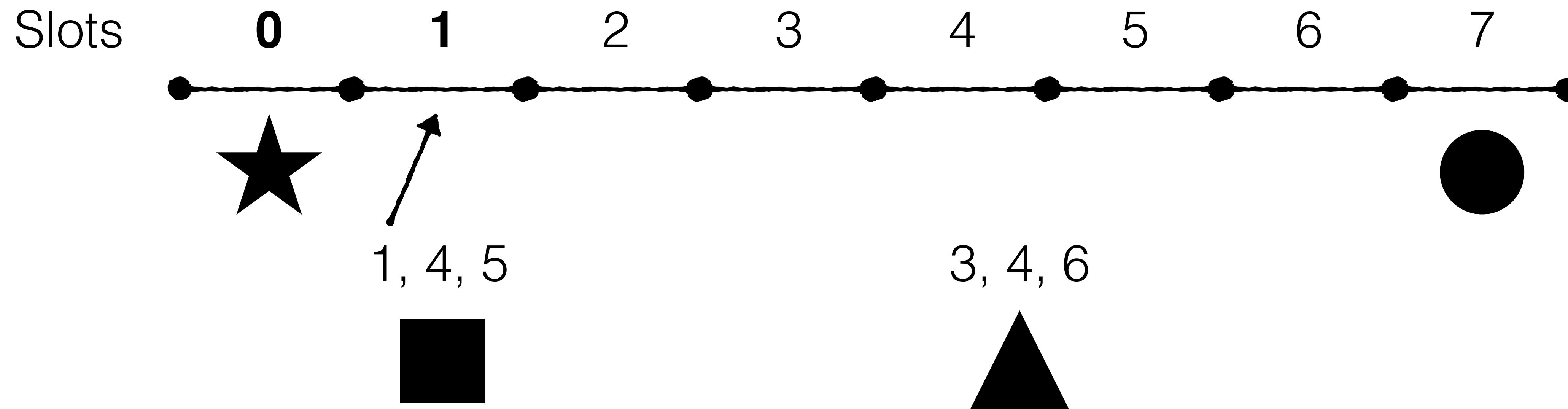
Assign some entry x to some slot y that only entry x maps to



Peeling

While not all keys have been assigned to a slot

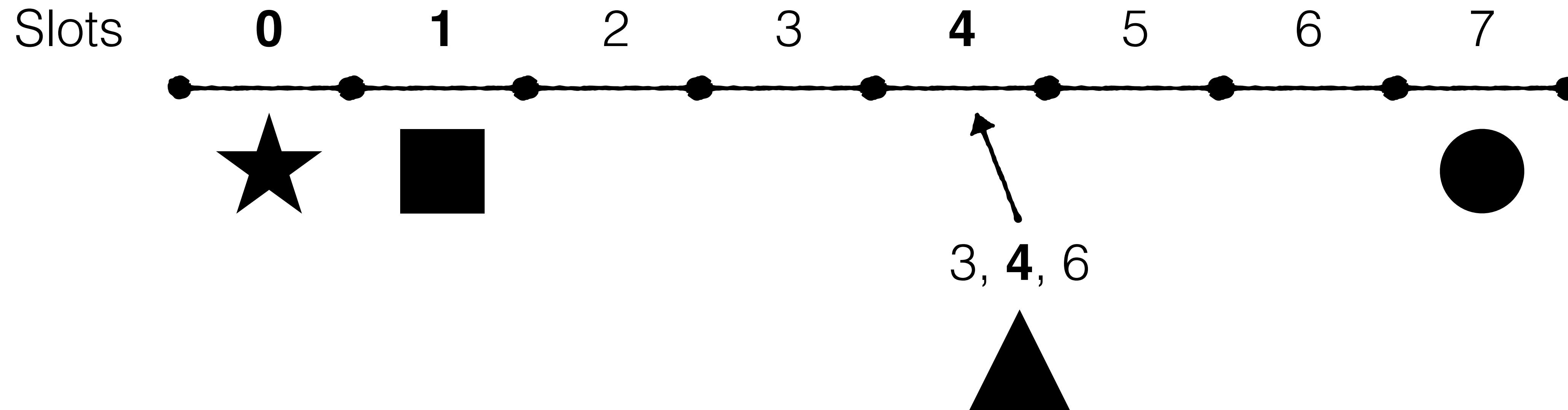
Assign some entry x to some slot y that only entry x maps to



Peeling

While not all keys have been assigned to a slot

Assign some entry x to some slot y that only entry x maps to



Slots

0

1

2

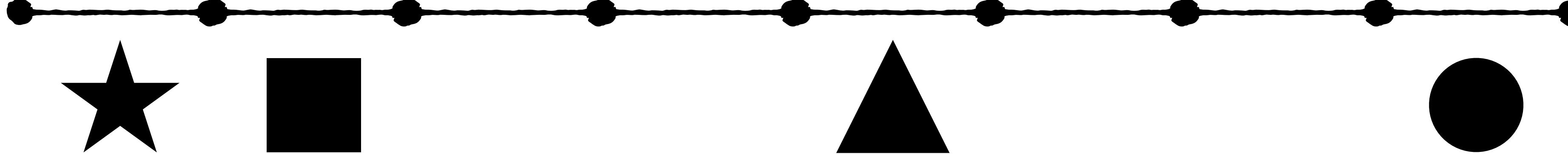
3

4

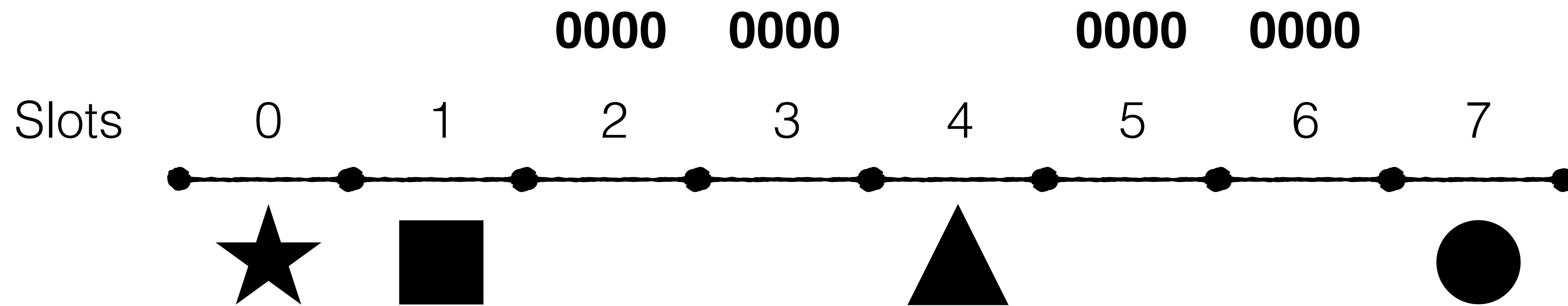
5

6

7

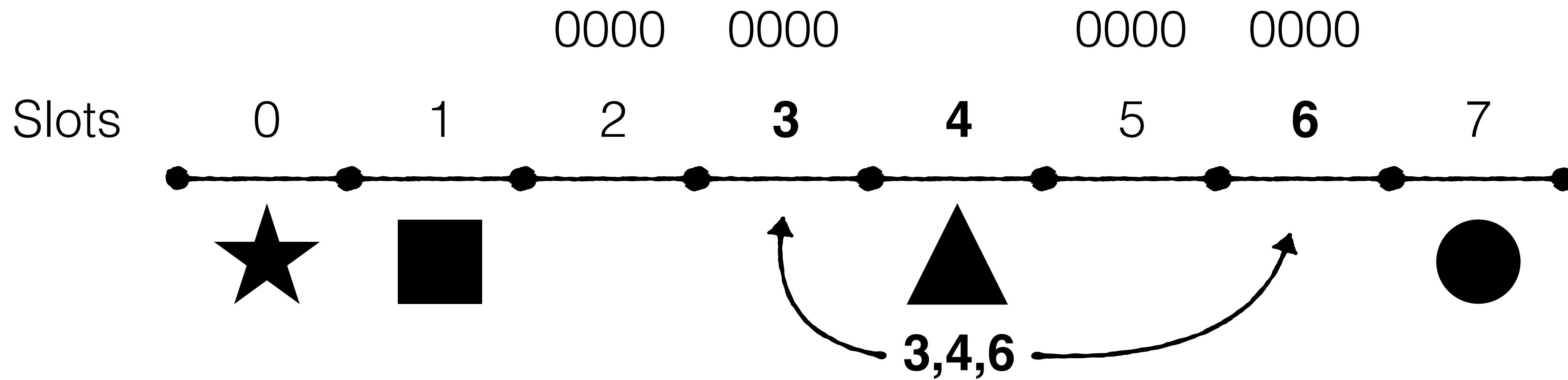


Populate all unassigned slots with zeros



Populate all unassigned slots with zeros

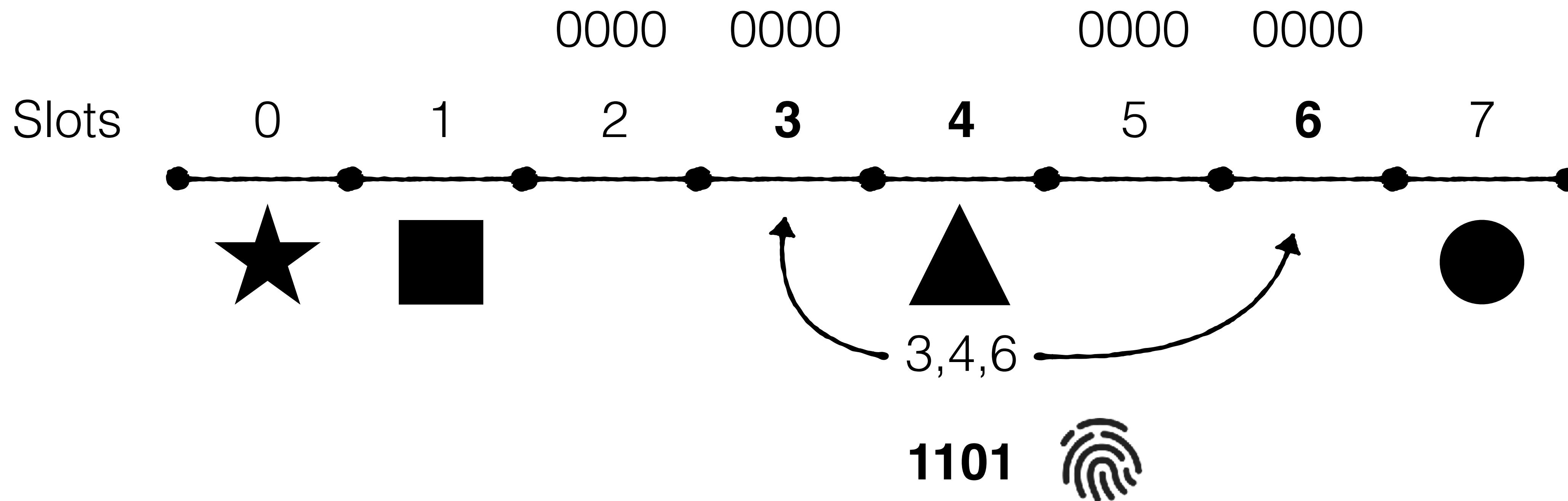
Find some entry whose only other candidate slots are populated



Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

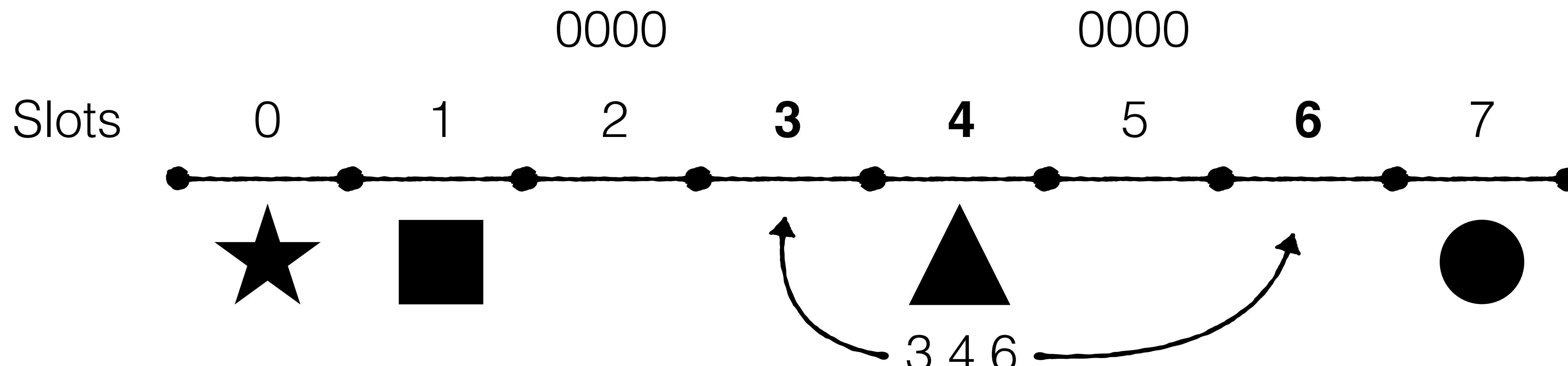
Xor its fingerprint with content at other slots and store



Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

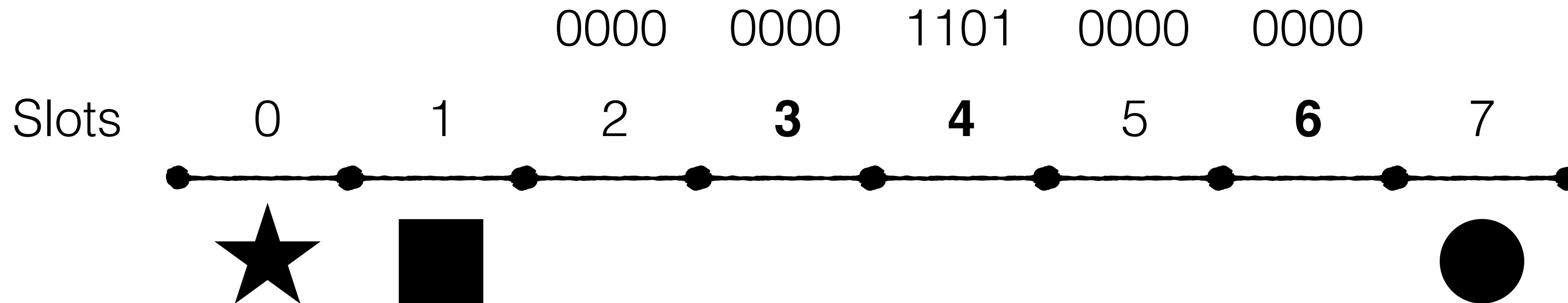


$$0000 \oplus \mathbf{1101} \oplus 0000 = \mathbf{1101}$$

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

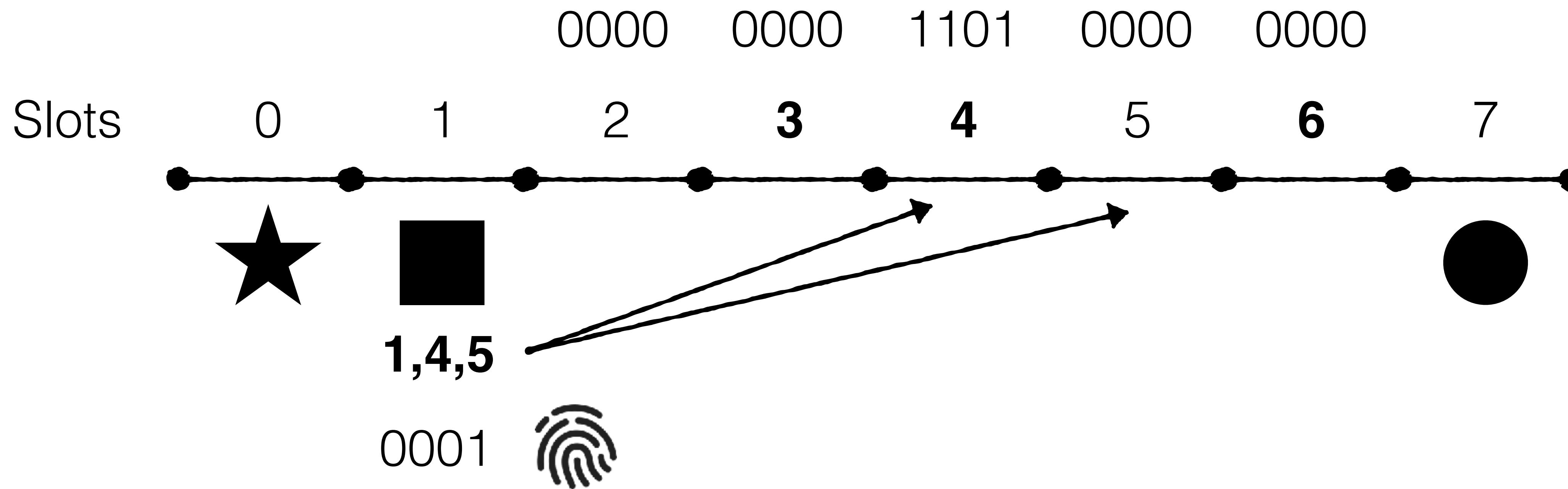
Xor its fingerprint with content at other slots and store



Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

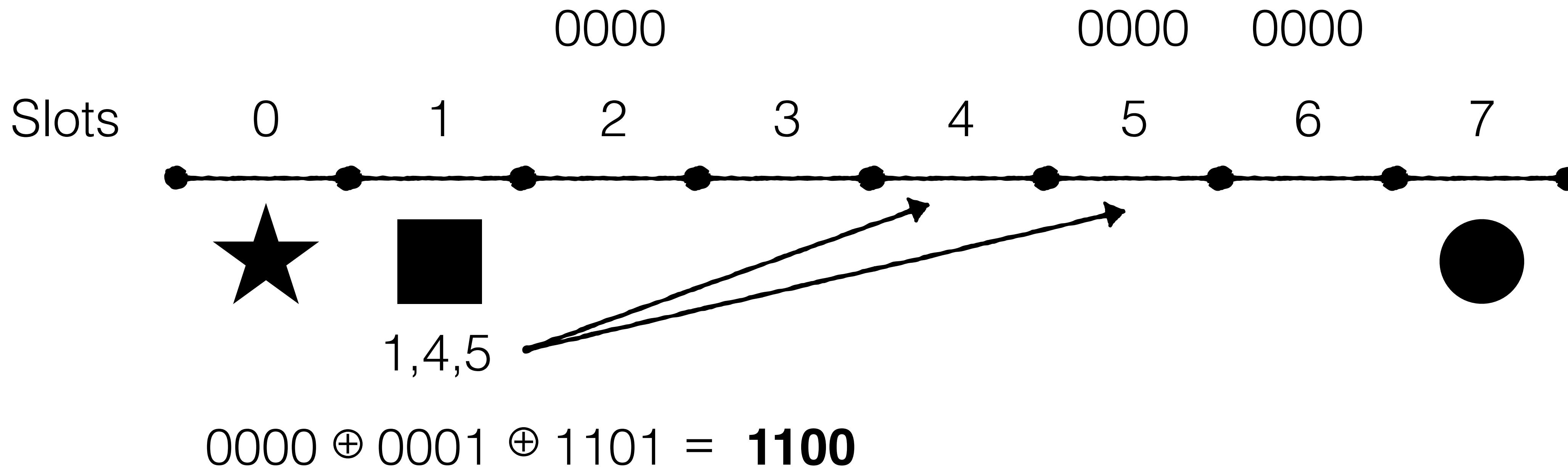
Xor its fingerprint with content at other slots and store



Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

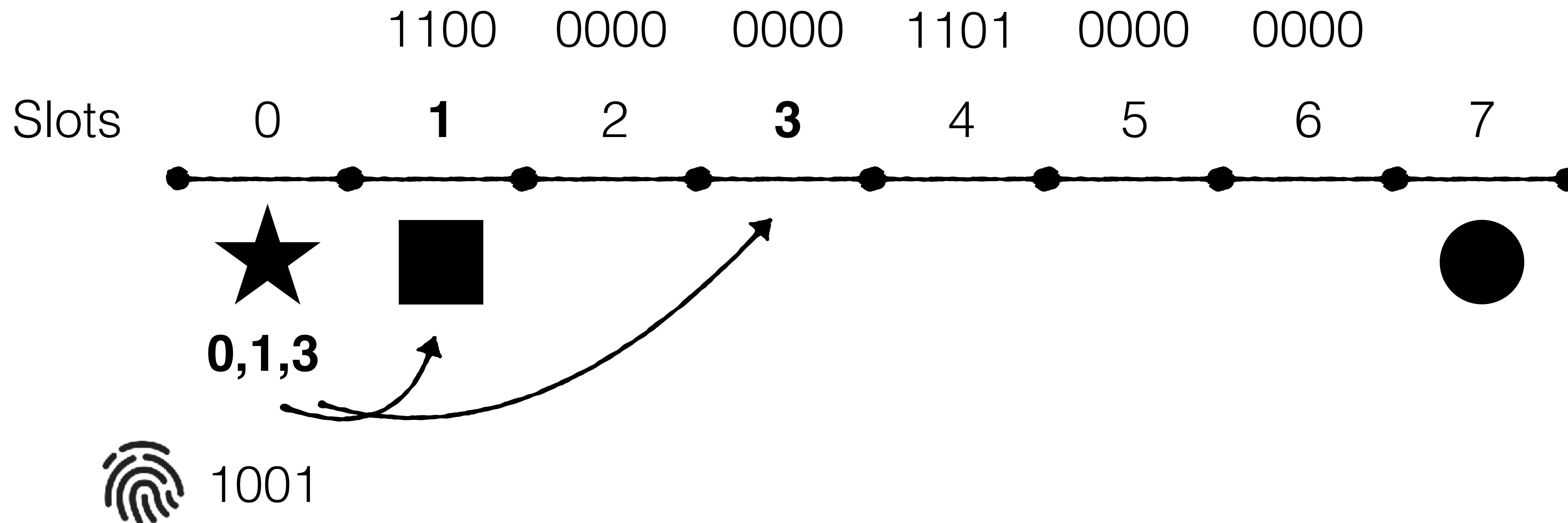
Xor its fingerprint with content at other slots and store



Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

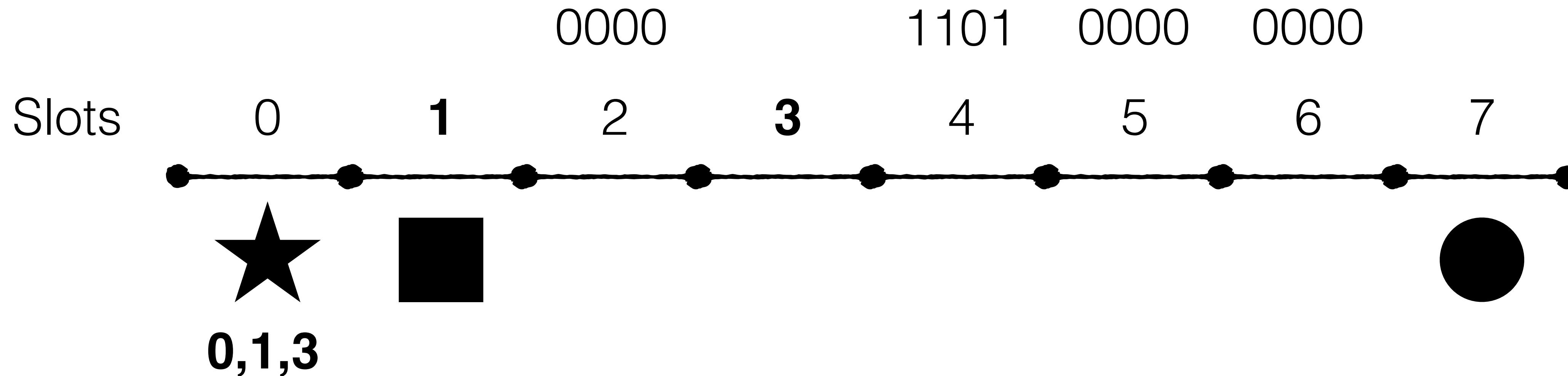
Xor its fingerprint with content at other slots and store



Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

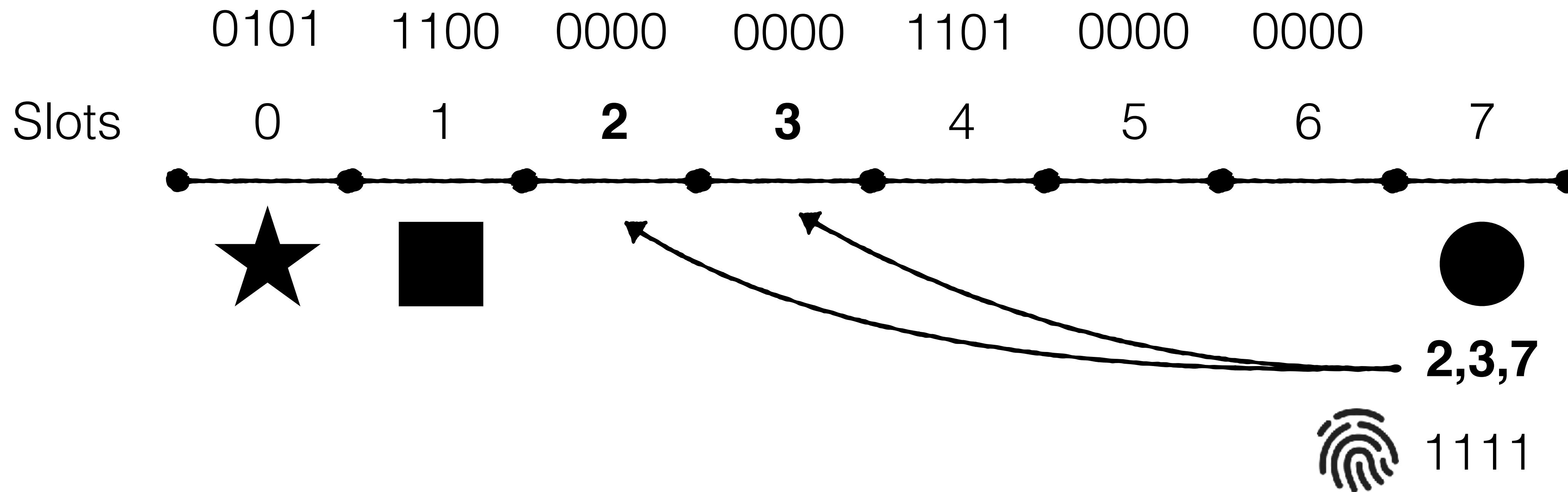


$$1100 \oplus 1001 \oplus 0000 = 0101$$

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

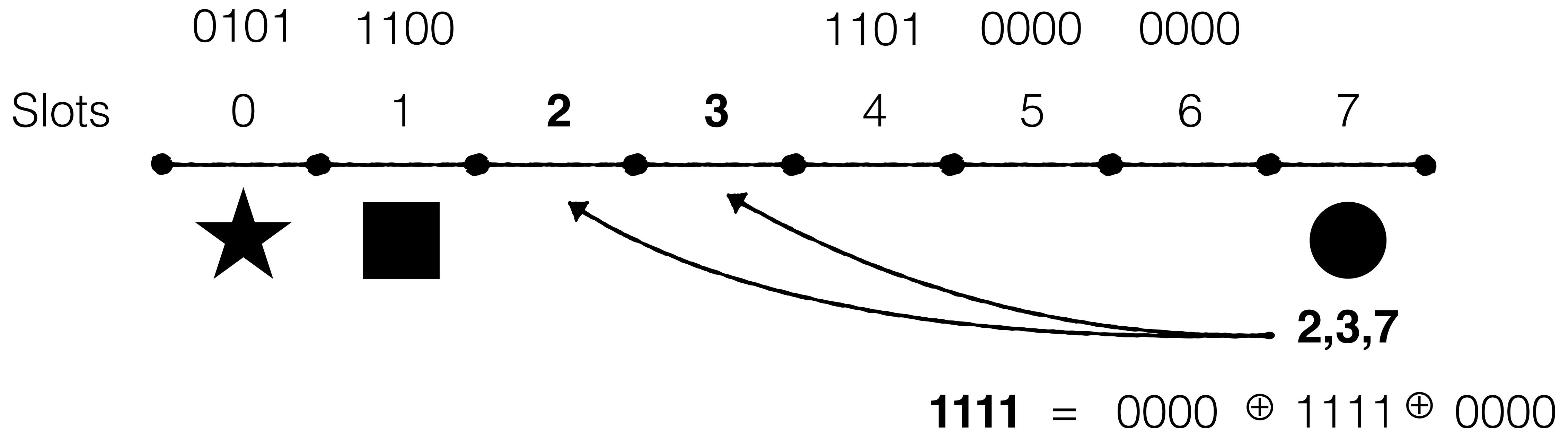
Xor its fingerprint with content at other slots and store



Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

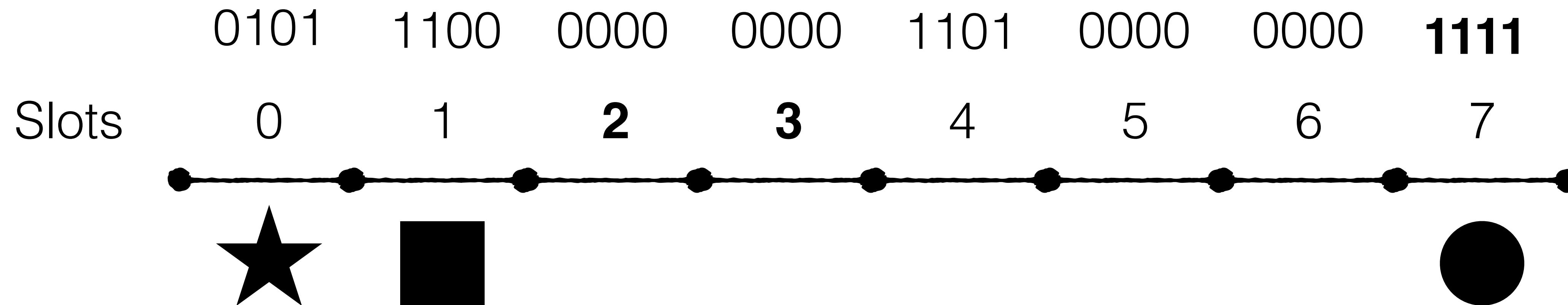
Xor its fingerprint with content at other slots and store



Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Xor its fingerprint with content at other slots and store

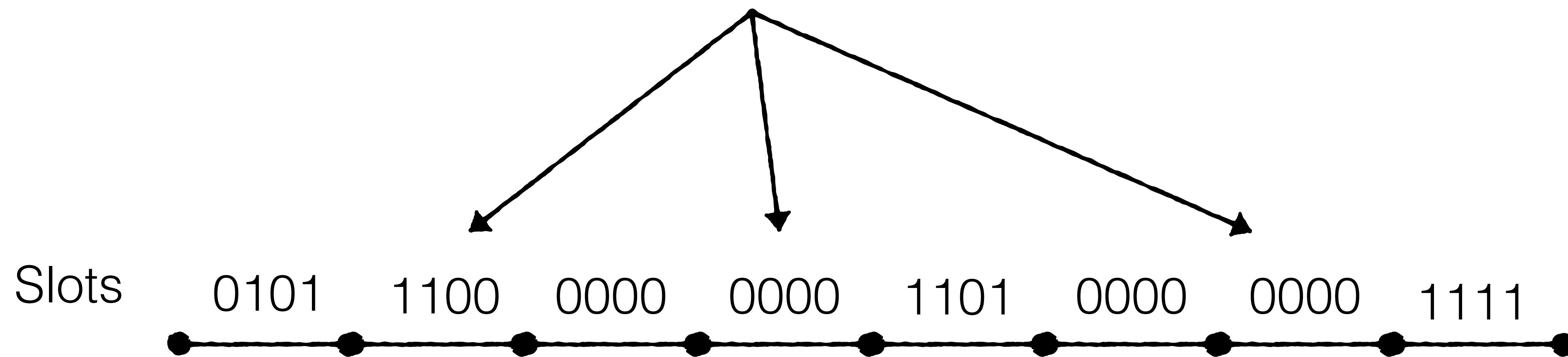


**We're
done :)**

Slots

0101 1100 0000 0000 1101 0000 0000 1111

Query(X) where $FP(X) = 1001$



Query(X) where $FP(X) = \mathbf{1001}$

$$1100 \oplus 0000 \oplus 0000 = \mathbf{1100}$$

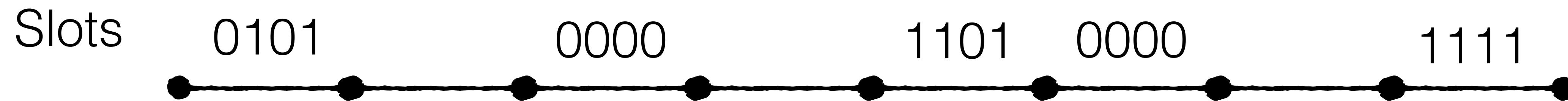
Slots

0101 0000 1101 0000 1111

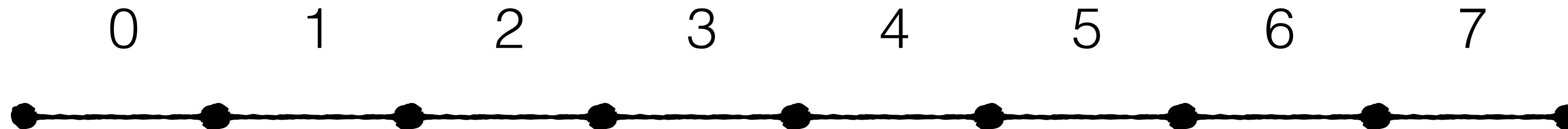
Not a fingerprint match so return negative

Query(X) where $FP(X) = \mathbf{1001}$

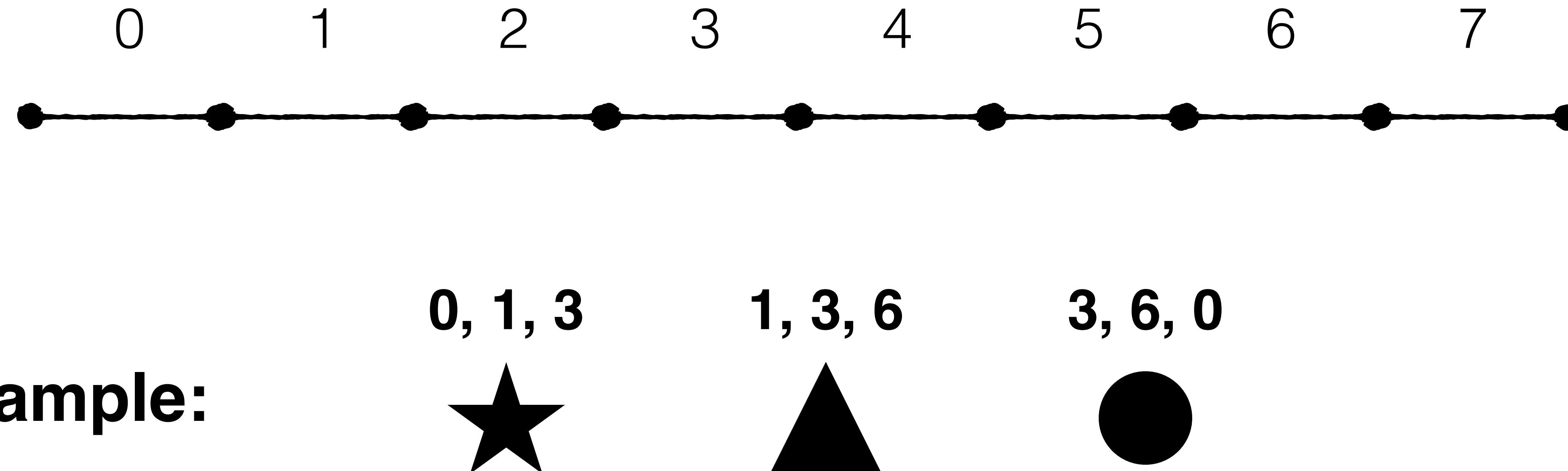
$$1100 \oplus 0000 \oplus 0000 = \mathbf{1100}$$



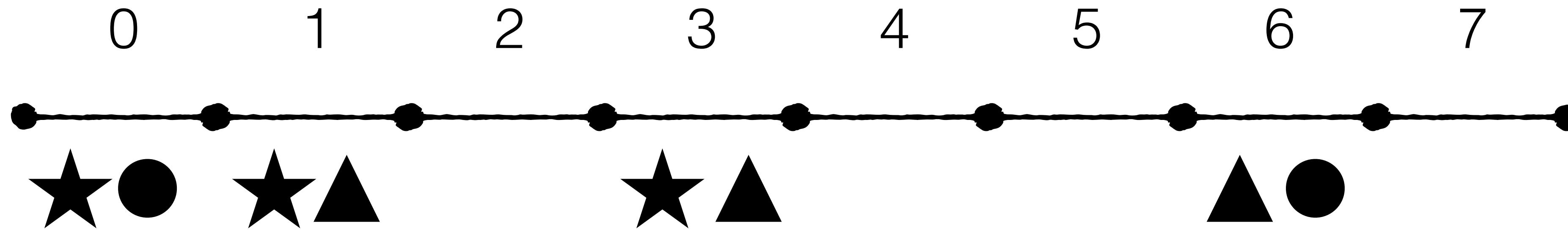
Construction can fail if there is no entry we can peel



Construction can fail if there is no entry we can peel

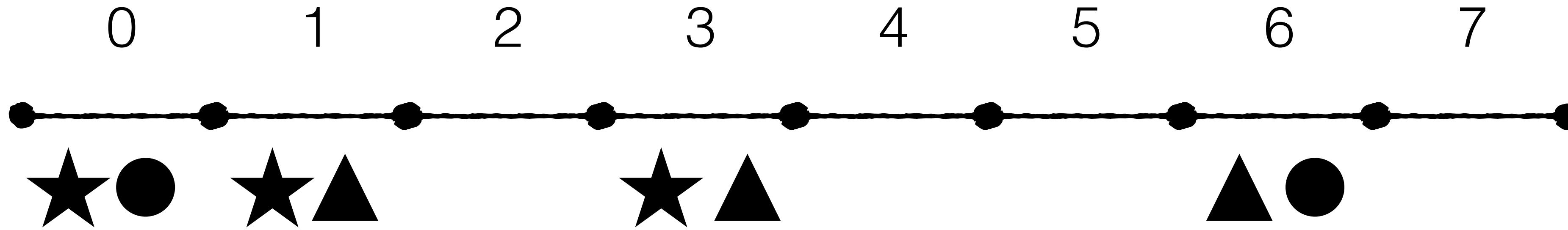


Construction can fail if there is no entry we can peel



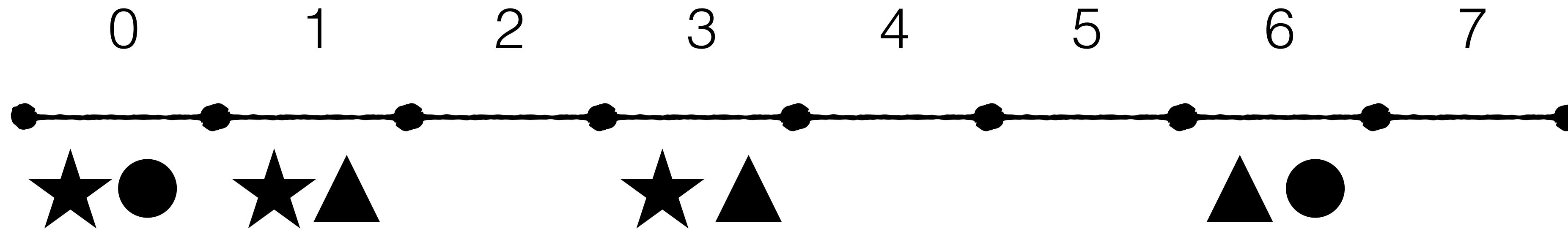
No slot has one entry uniquely mapping to it

If we fail, we must restart from scratch.



If we fail, we must restart from scratch.

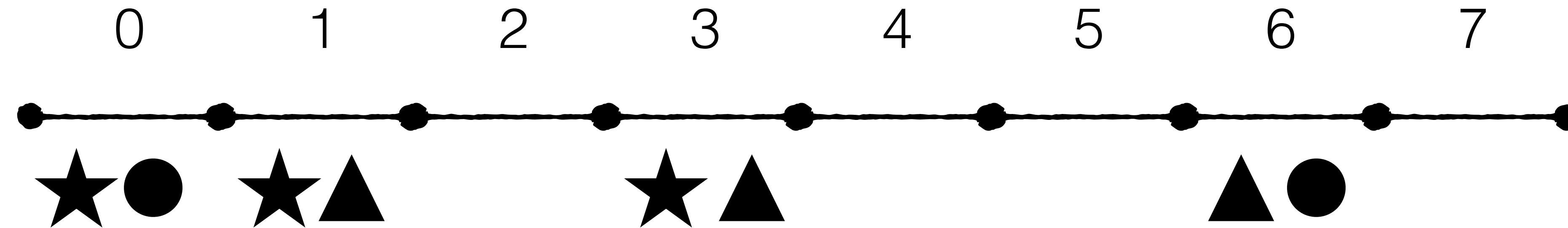
free space is necessary to succeed with high probability



If we fail, we must restart from scratch.

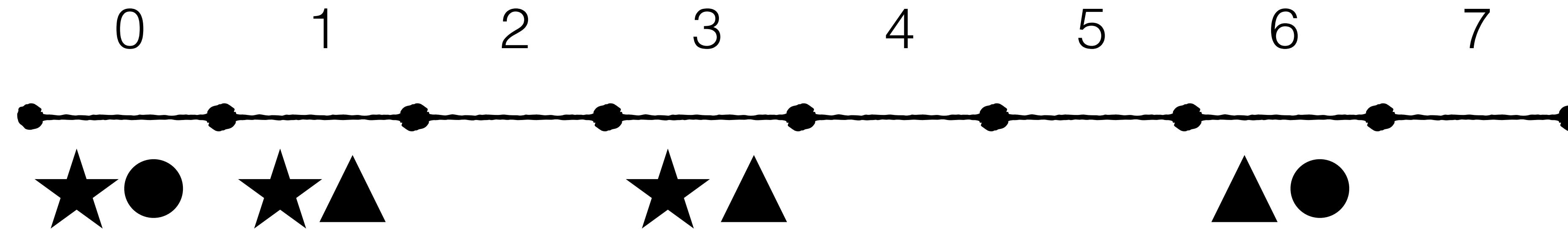
free space is necessary to succeed with high probability

What's the interplay between free space and # number of hash functions?



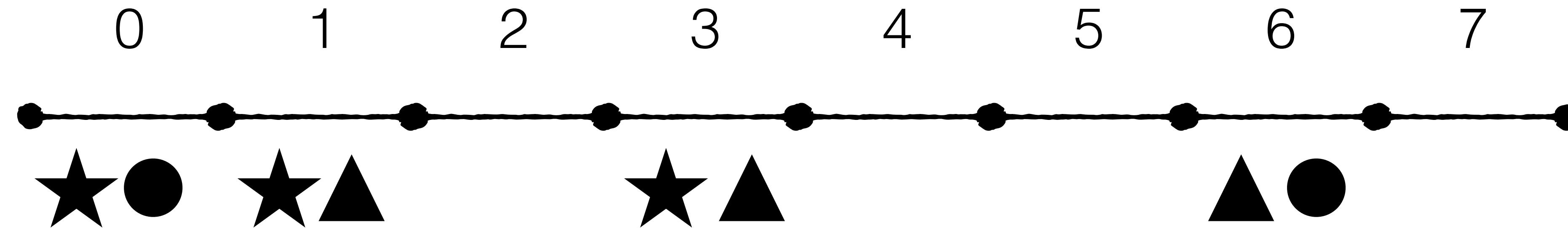
What's the interplay between free space and # number of hash functions?

Too few hash functions e.g., 1?



What's the interplay between free space and # number of hash functions?

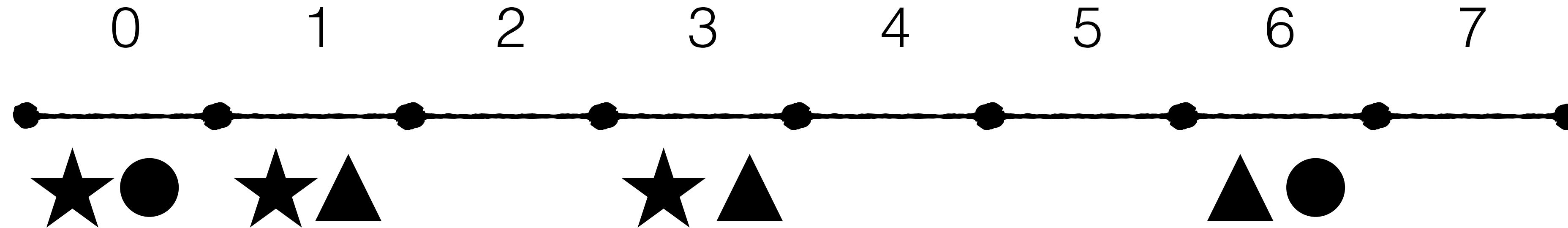
Too few hash functions e.g., 1? **Any collision makes us fail**



What's the interplay between free space and # number of hash functions?

Too few hash functions e.g., 1? Any collision makes us fail

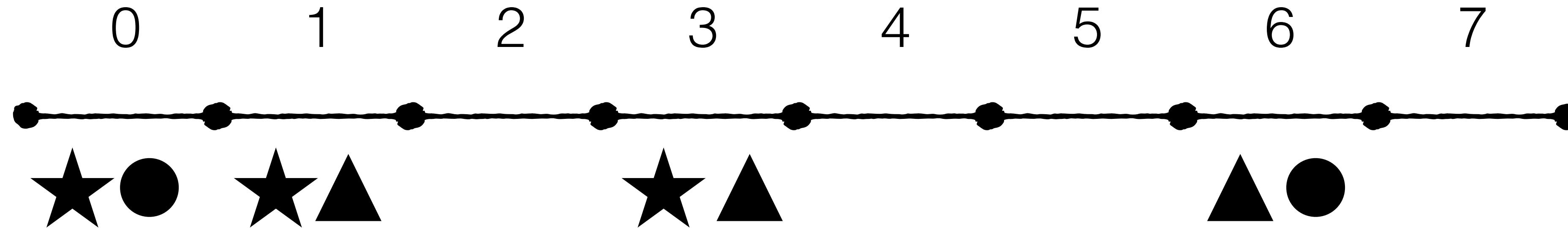
Too many hash functions e.g., n?

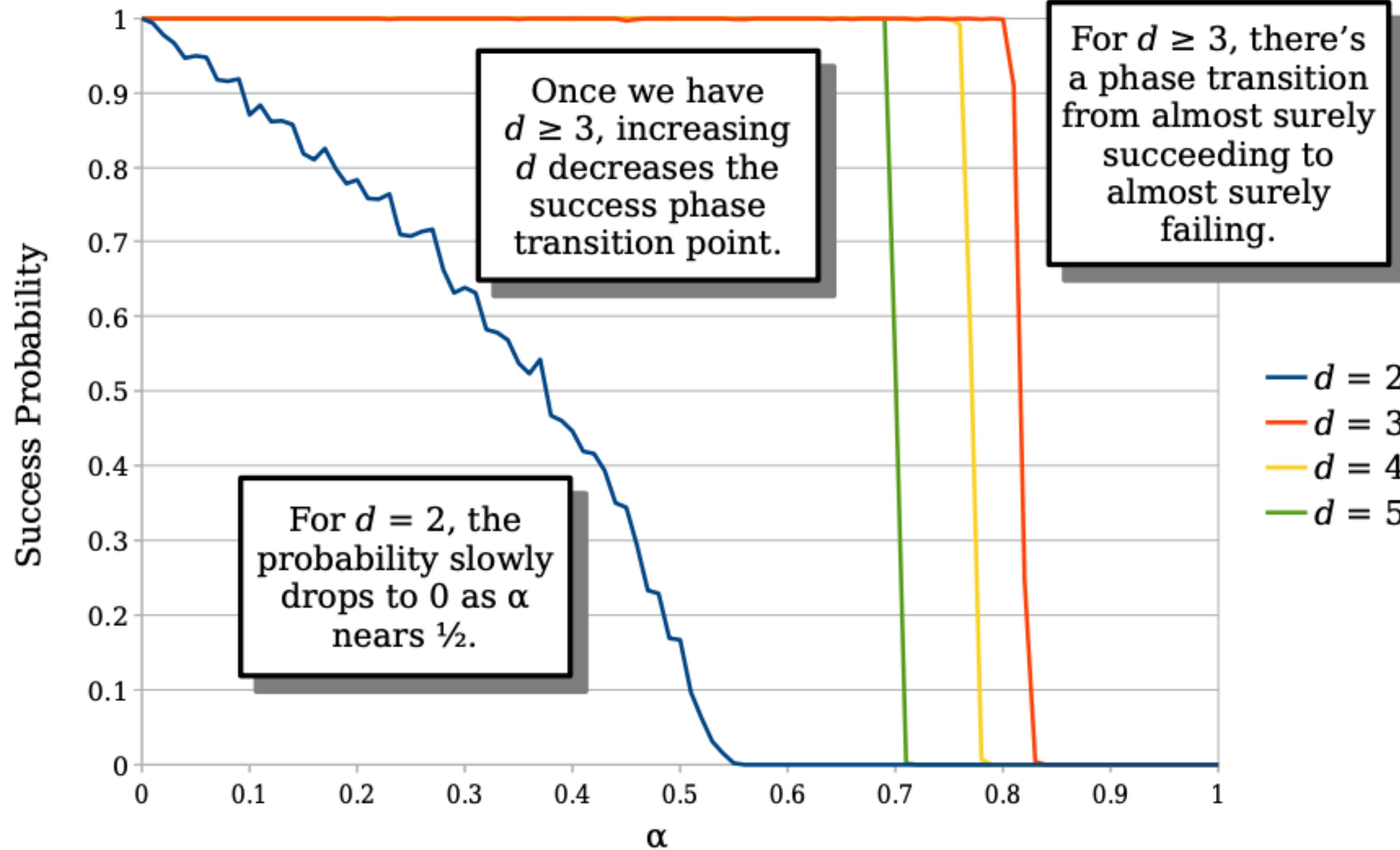


What's the interplay between free space and # number of hash functions?

Too few hash functions e.g., 1? Any collision makes us fail

Too many hash functions e.g., n? **Nothing is peelable**

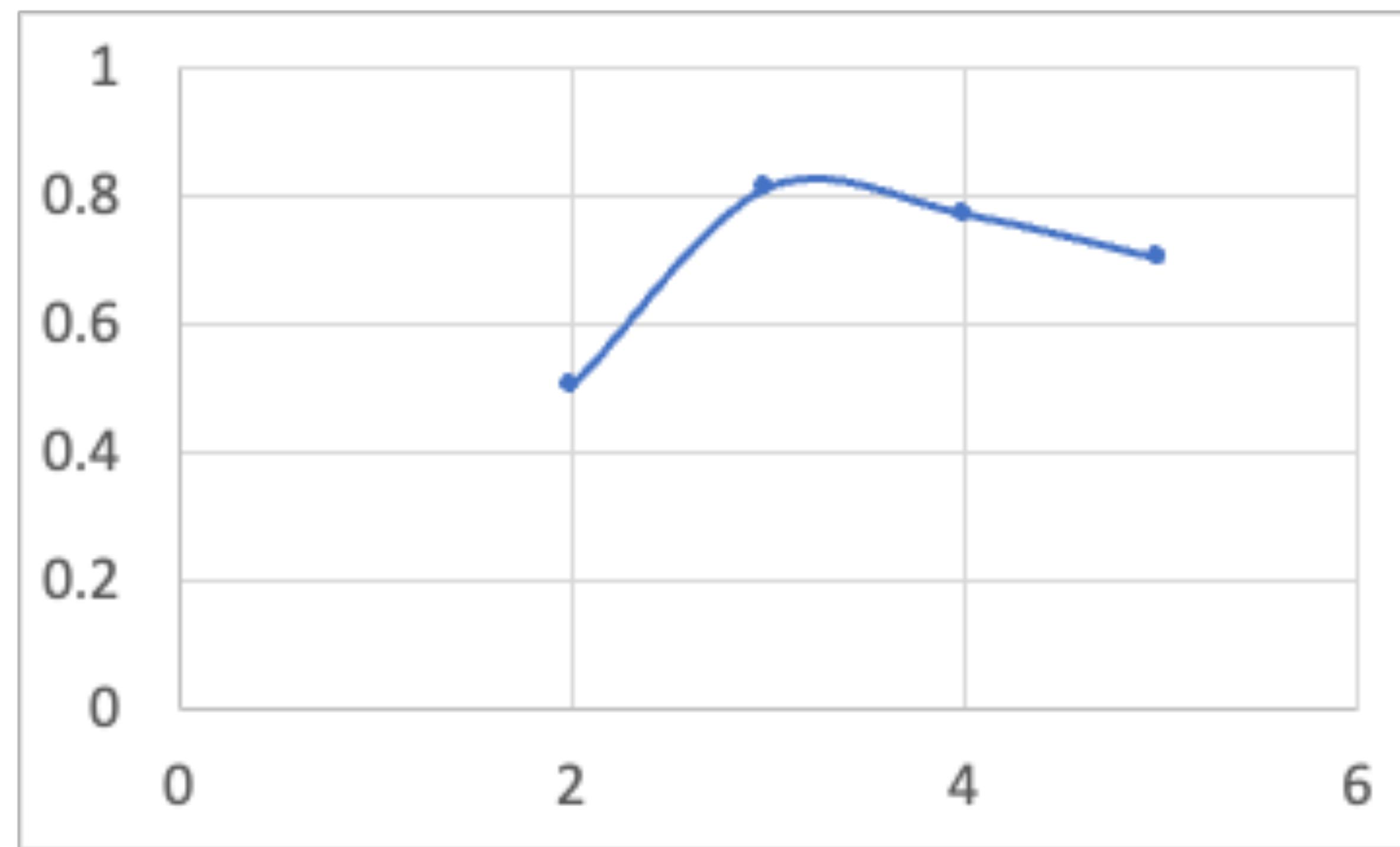




Create a table of m slots and place $n = \alpha m$ items into it.
Each item has d hashes.
What is the probability that the peeling algorithm succeeds?

Slide by Keith Schwarz of Stanford

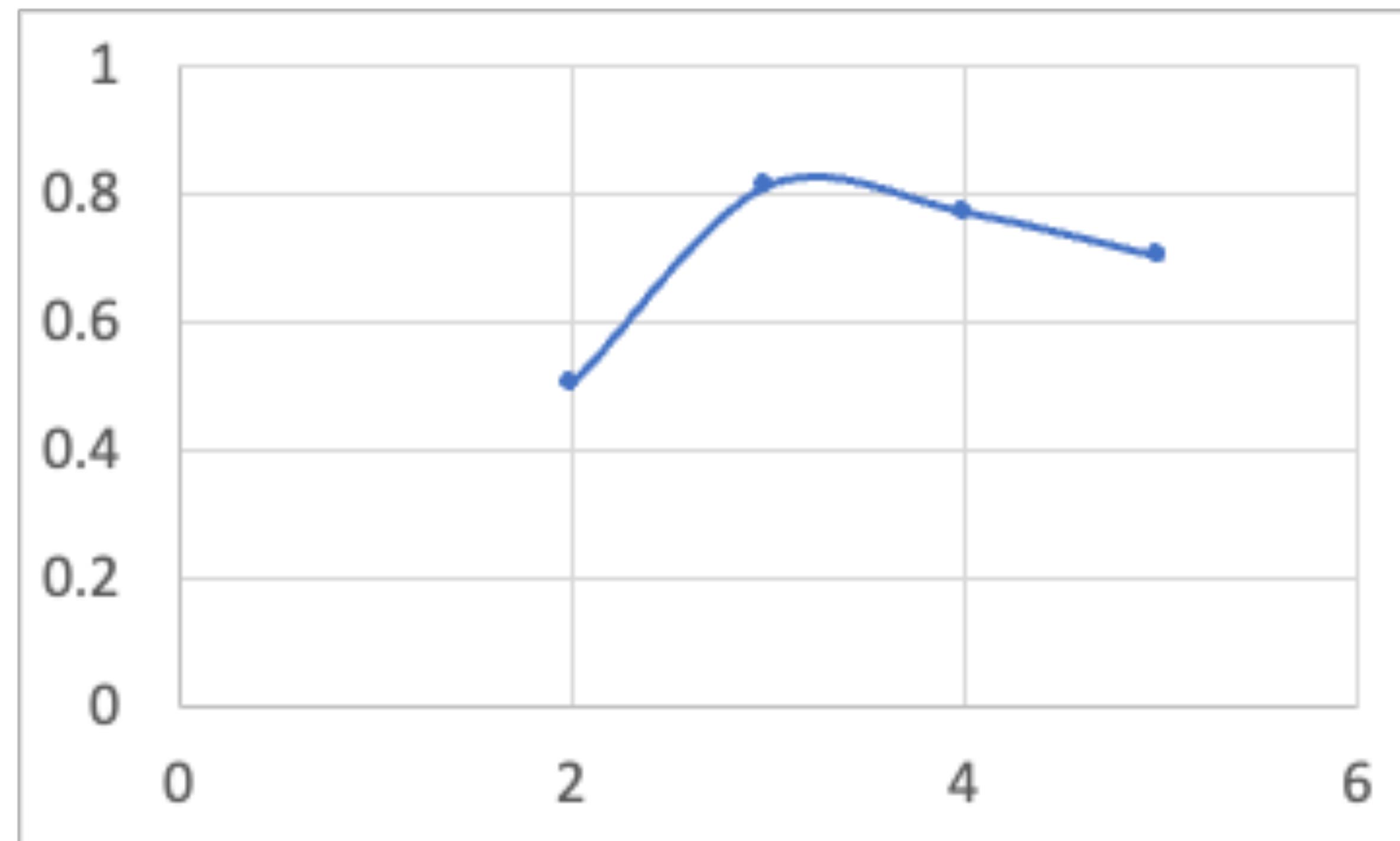
Utilization



hash functions

Not enough placement flexibility

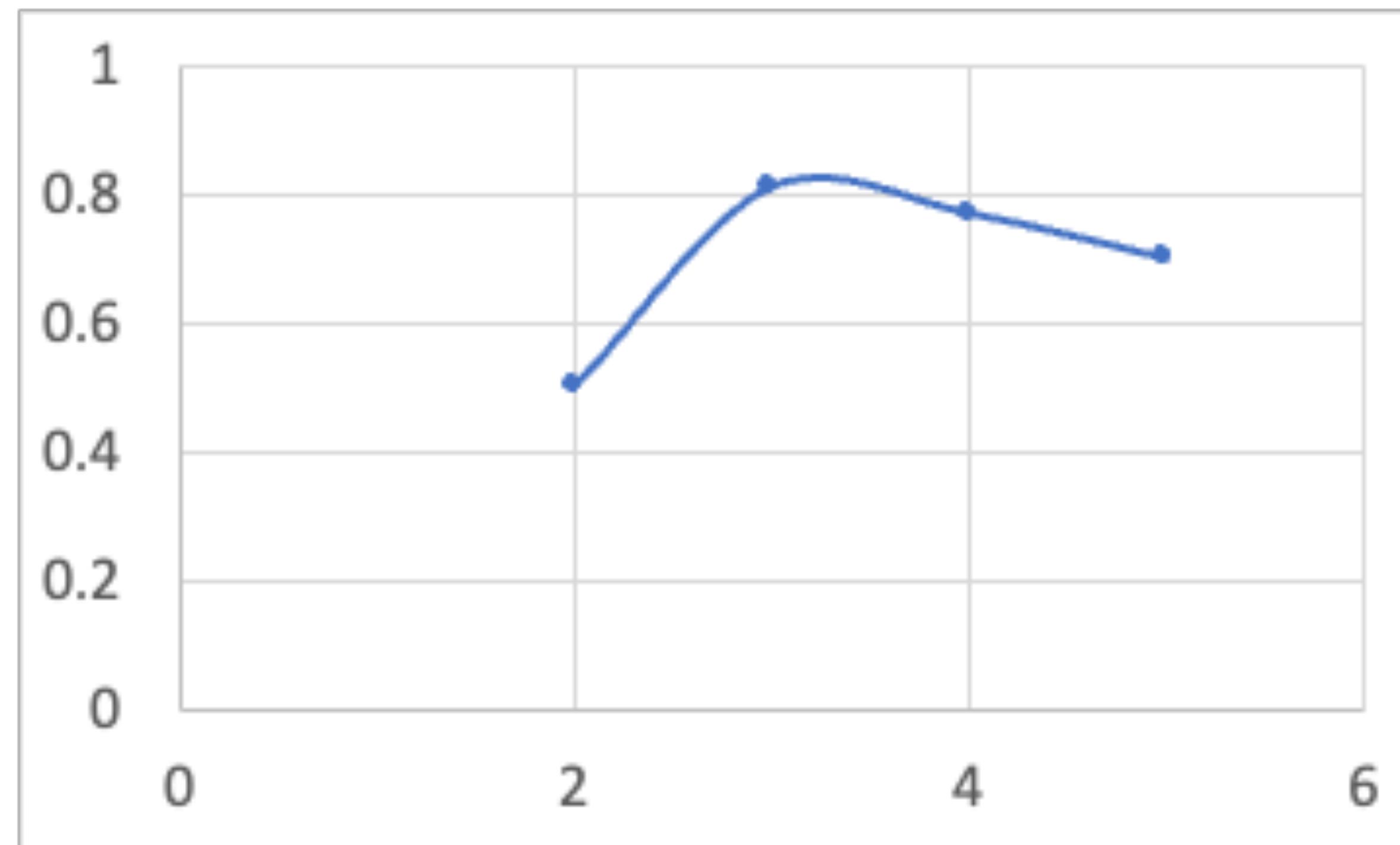
Utilization



hash functions

Too many items hashing to each slot

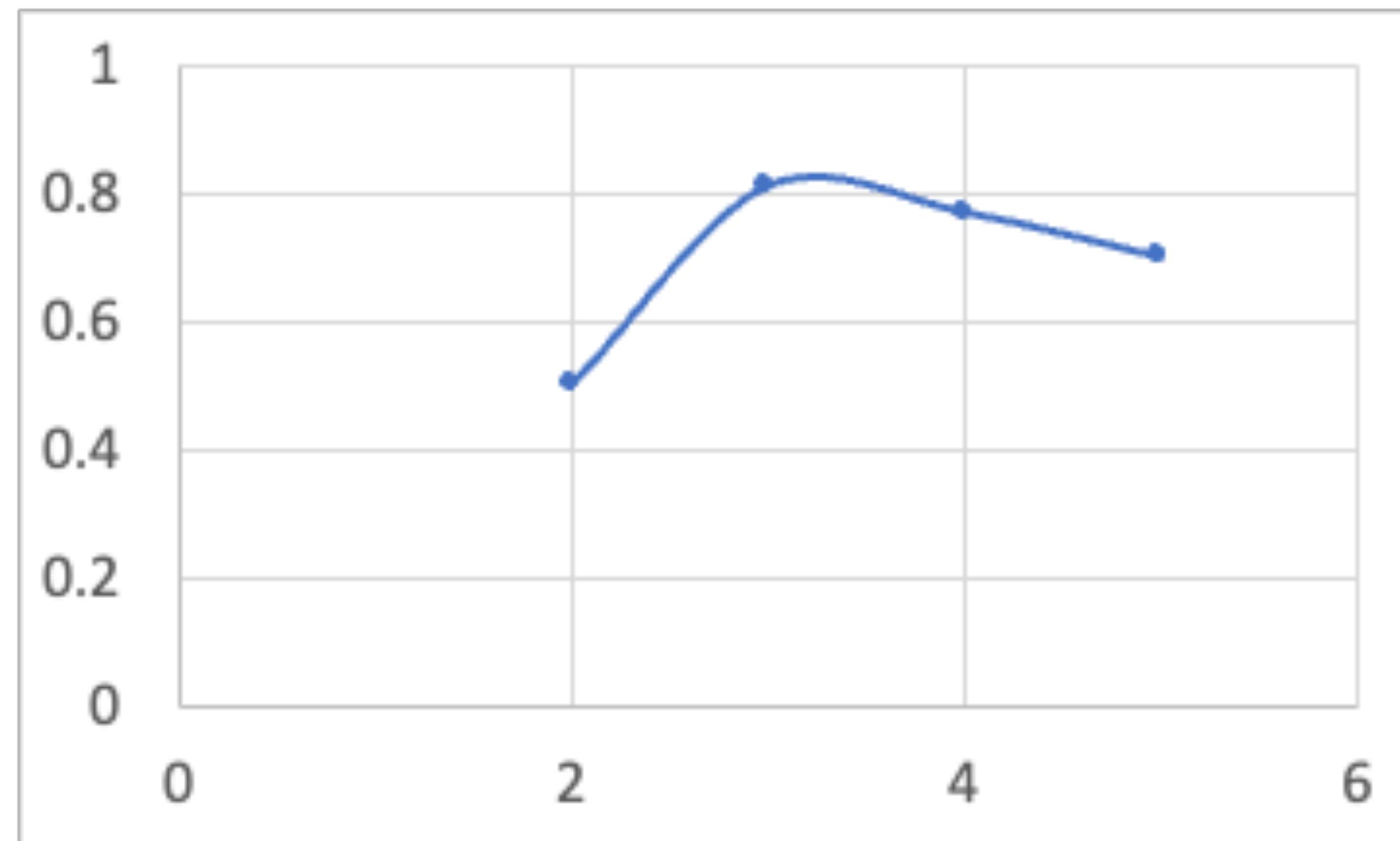
Utilization



hash functions

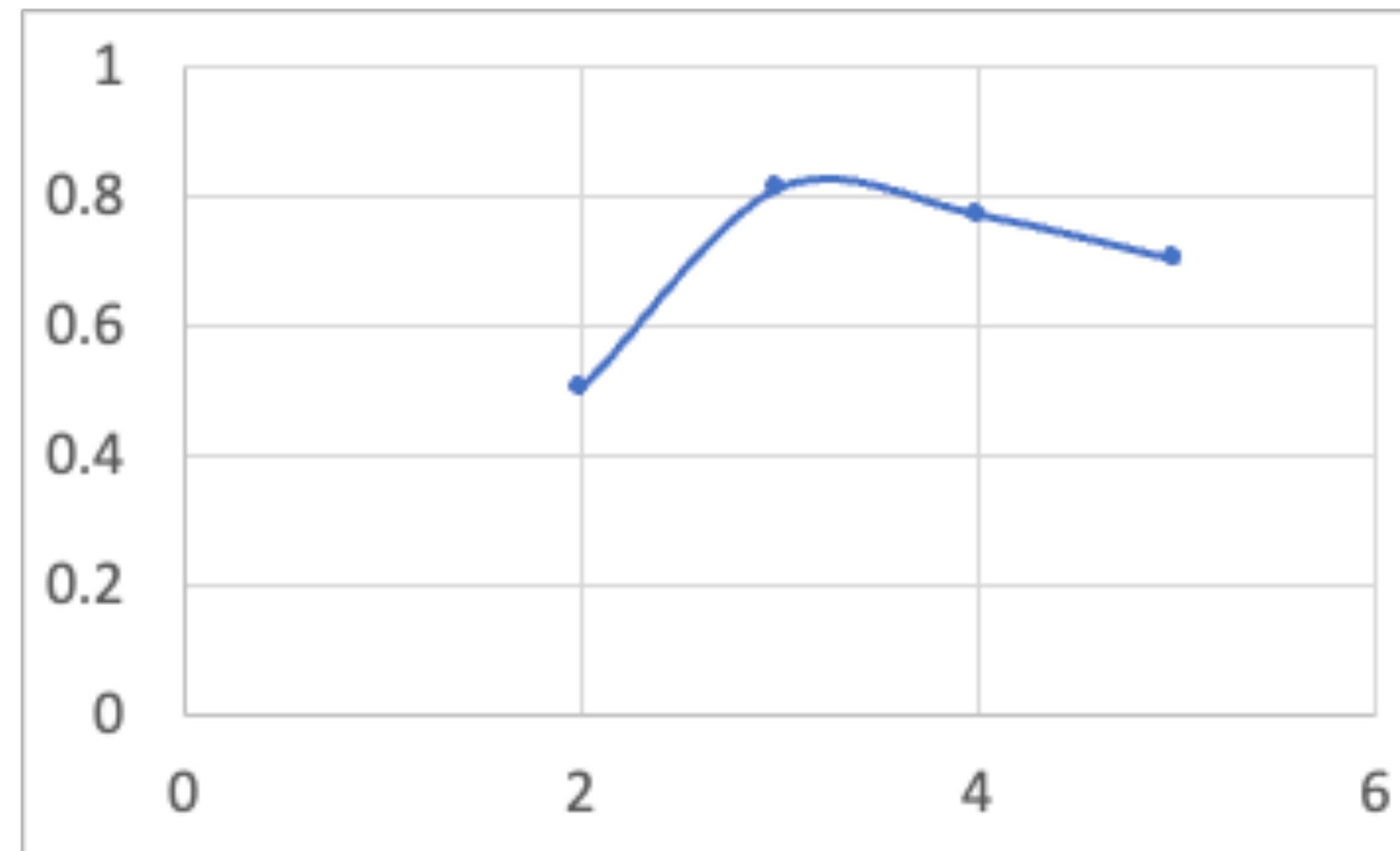
Optimal 0.81

Utilization



hash functions

Optimal 0.81

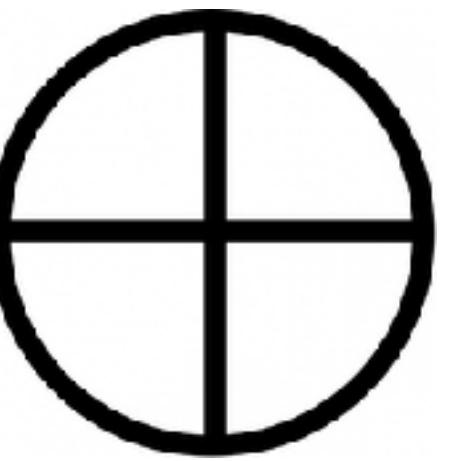


**Similar to finding the optimal # hash functions
with Bloom filters :)**

Bloom

$\approx 2^{-M/N} \cdot 0.69$

XOR



$\approx 2^{-M/N} \cdot 0.81$

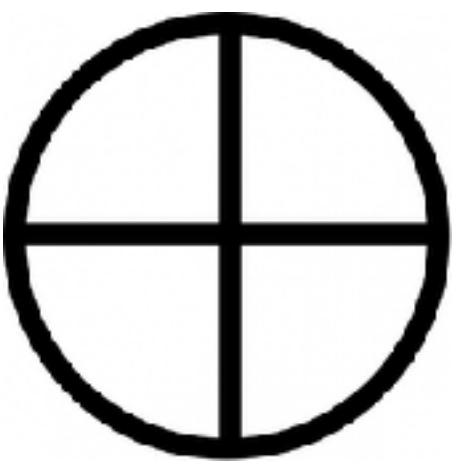
Idealized

$\approx 2^{-M/N}$

Bloom

$\approx 2^{-M/N} \cdot 0.69$

XOR



$\approx 2^{-M/N} \cdot 0.81$

Ribbon

$\approx 2^{-M/N} \cdot 0.92$

Idealized

$\approx 2^{-M/N}$

Denser XOR filter

Bloom

$\approx 2^{-M/N} \cdot 0.69$

XOR



$\approx 2^{-M/N} \cdot 0.81$

Ribbon

$\approx 2^{-M/N} \cdot 0.92$

Idealized

$\approx 2^{-M/N}$

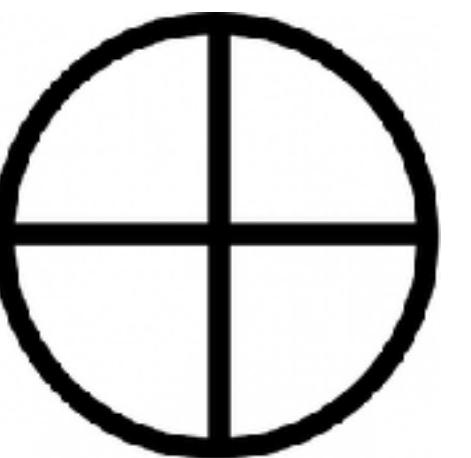
Denser XOR filter

In RocksDB since 2020

Bloom

$\approx 2^{-M/N} \cdot 0.69$

XOR



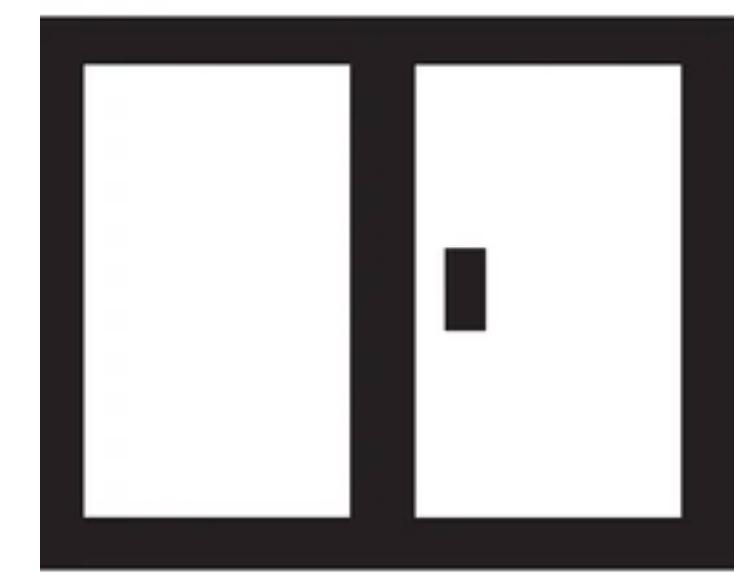
$\approx 2^{-M/N} \cdot 0.81$

Ribbon



$\approx 2^{-M/N} \cdot 0.92$

XOR filter w. Spatial Coupling



$\approx 2^{-M/N}$

Approach ideal

Operation Costs (in hash functions computed)

Construction =

Positive Query =

Avg. Negative Query =

Operation Costs (in hash functions computed)

Construction = **$O(N)$**

Positive Query =

Avg. Negative Query =

Operation Costs (in hash functions computed)

Construction = $O(N)$

Positive Query = 3

Avg. Negative Query = 3

Operation Costs (in hash functions computed)

Construction = $O(N)$

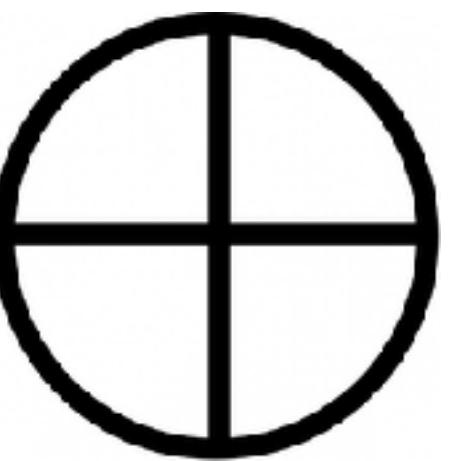
Positive Query = 3

Avg. Negative Query = 3

Not as good as blocked Bloom filters

Blocked
Bloom

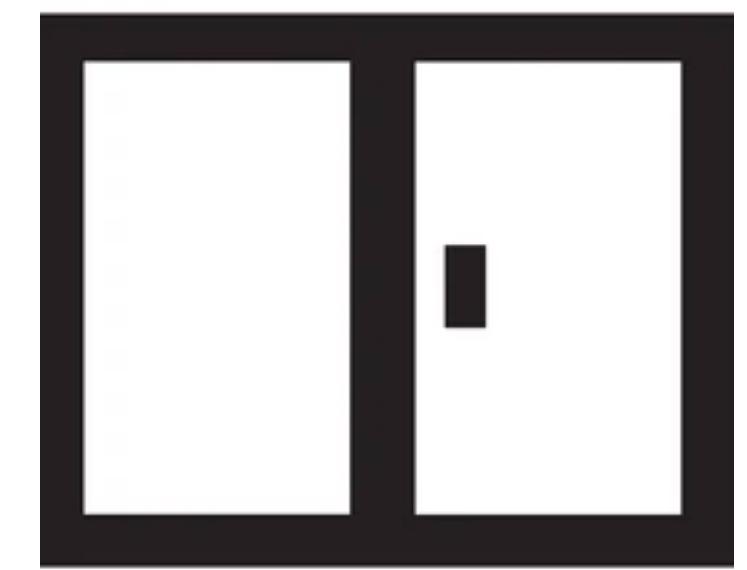
XOR



Ribbon



Spatial Coupling



Faster

Lower FPR

And now: office hours :)