
Static Filters

Niv Dayan

Research Topics in Database Management

level

What is a Filter?

level

Does X exist? X Y Z
Set

What is a Filter?

level

X Y Z
Set

No false
negatives

false positives with
tunable probability

What is a Filter?

Does X exist?

level

Why use a Filter?

Data

level

Data
Does key X exist

DataDoes key
X exist Memory

DataDoes key
X exist

Memory

true positive

If key X exists

No

If key X does not exist

DataDoes key
X exist

Memory

No

If key X does not exist

DataDoes key
X exist

Memory

False
positive is
possible

False
positive

with prob ε

True
negative

with prob 1-ε

DataDoes key
X exist

Memory

If key X does not exist

ε - false positive rate - FPR

DataDoes key
X exist

Memory

If key X does not exist

Why care about filters?

Widely used in
systems

Hardware
Optimizations

Algorithmic
Reasoning/
Techniques

Why care about filters?

Widely used in
systems

Hardware
Optimizations

Algorithmic
Reasoning/
Techniques

Means to learn

Static Filters

No deletes No Resizing

Modifications require rebuilding from scratch

No deletes No Resizing

Static Filters

Static Filters Dynamic Filters
(next week)

Delete + Resize

Dynamic Filters

Delete + ResizeFastest
Queries

Lowest
FPR

Static Filters

Dynamic Filters

But not both at
same time

Fastest

Queries

Lowest
FPR

Static Filters

Delete + Resize

Fastest
Queries

Bloom XOR

Static Filters

Lowest
FPR

Note

Today is more mathematical than usual

Note

Today is more mathematical than usual

(Do not be intimidated)

Bloom Filters

Bloom Filters

Space/time Trade-Offs in Hash Coding with Allowable Errors
Burton Howard Bloom. Communications of the ACM, 1970.

bitmap a

k hash functions a

0 0 0 0 0 0 0 0 0 0

bitmap a

k hash functions a

0 0 0 0 0 0 0 0 0 0

(k=2 in this example) a

insert(X)

0 0 0 0 1 0 0 0 1 0

insert: Set from 0 to 1 or keep 1

insert()

0 0 1 0 1 0 0 0 1 0

insert: Set from 0 to 1 or keep 1

Inserted: X

Y

Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

Inserted: X, Y

Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

check(X) True
positive

Inserted: X, Y

Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

check(Z) True
negative

Inserted: X, Y

Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

check(Q) False
Positive

Inserted: X, Y

No deletes - can lead to false negatives

Y

0 0 1 0 1 0 0 0 1 0

X

Inserted: X, Y

Thus, we consider it static

Y

0 0 1 0 1 0 0 0 1 0

X

Inserted: X, Y

Construction contract

 N - # entries to insert
 ε - desired FPR

Know specs in advance:

Construction contract

 N - # entries to insert
 ε - desired FPR

Construction contract

Allocate filter with: N · (log2(1/ε) / ln(2)) bits

Know specs in advance:

 N - # entries to insert
 ε - desired FPR

Construction contract

Insert N elements

Know specs in advance:

Allocate filter with: N · (log2(1/ε) / ln(2)) bits

 N - # entries to insert
 ε - desired FPR

Construction contract

Insert N elements

Guarantee FPR of ε

Know specs in advance:

Allocate filter with: N · (log2(1/ε) / ln(2)) bits

Bloom Filters

Analysis Blocking Sectorization

Analysis

In CSC443 Now: ground up

FPR Analysis

Network Applications of Bloom Filters: A Survey
Andrei Broder and Michael Mitzenmacher.

Allerton Conference, 2002

FPR Analysis M: Total number of bits
N: Total number of keys
K: # hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

Probability that all k bits for a non-existing key are set?

get(x)

0 0 1 0 1 1 1 0

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

0 0 1 0 1 1 1 0

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

Probability that some random bit is still not set after 1 insertion?

hash functions

FPR Analysis

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

Probability that some random bit is still not set after 1 insertion?

M: Total number of bits
N: Total number of keys
K:

1/M
Probability that some random bit is set after 1 hash function?

hash functions

FPR Analysis

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

Probability that some random bit is still not set after 1 insertion?

M: Total number of bits
N: Total number of keys
K:

1-1/M
Probability that some random bit is not set after 1 hash function?

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

(1-1/M)K

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

Probability that some random bit is still not set after 1 insertion?

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

(1-1/M)KN

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

(1-1/M)KN

(1-1/M)M = e-1Known identity: For any M

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

((1-1/M)M) KN/M

(1-1/M)M = e-1Known identity: For any M

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

(e-1) KN/M

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

e-KN/M

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

1-e-KN/M

Probability that all k bits for a non-existing key are set?

Probability that some random bit is still not set after N insertions?

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

1-e-KN/M

Probability that all k bits for a non-existing key are set?

Probability that some random bit is set after N insertions?

hash functions

FPR Analysis M: Total number of bits
N: Total number of keys
K:

(1-e-KN/M)K

Probability that all k bits for a non-existing key are set?

hash functions

0 1 0 0 0 0 0 0 0 0

How many hash functions should we use?

h1 One is too few: false positive
occurs whenever we hit a 1

0 1 0 0 1 0 0 1 0 0

h1 h2 h3 One is too few: false positive
occurs whenever we hit a 1

By adding hash functions, we
initially decrease the false

positive rate (FPR).

How many hash functions should we use?

1 1 1 1 1 1 1 1 1 1

h1 hX…

But too many hash functions
wind up increasing the FPR.

By adding hash functions, we
initially decrease the false

positive rate (FPR).

One is too few: false positive
occurs whenever we hit a 1

How many hash functions should we use?

(Drawn for a filter using 10 bits per entry)

Minimum

How many hash functions should we use?

Minimum

Differentiate (1-e-KN/M)K with respect to K

How many hash functions should we use?

Minimum

Optimal # hash functions k = ln(2) · M/N

How many hash functions should we use?

Differentiate (1-e-KN/M)K with respect to K

(e.g. with Wolfram Alpha)

Optimal # hash functions k = ln(2) · M/N

False
positives

rate
(1-e-KN/M)K

Optimal # hash functions k = ln(2) · M/N

False
positives

rate
(1-e-KN/M)K

2-M/N · ln(2)

assuming the optimal # hash functions,

false positive rate = 2-M/N · ln(2)

Some bit is
not set e-KN/M

Optimal # hash functions k = ln(2) · M/N

Optimal # hash functions k = ln(2) · M/N

e-KN/M

0.5

Some bit is
not set

Optimal # hash functions k = ln(2) · M/N

e-KN/M

0.5

50% of all bits are zero once the filter is full

Some bit is
not set

Positive Query =

Insertion =

Negative Query =

Operation Costs (in hash functions computed)

M/N · ln(2)

Operation Costs (in hash functions computed)

Positive Query =

Insertion =

Negative Query =

M/N · ln(2)

Operation Costs (in hash functions computed)

M/N · ln(2)

Positive Query =

Insertion =

Negative Query =

Operation Costs (in hash functions computed)

M/N · ln(2)

M/N · ln(2)

(50% of bits are zeros)

Positive Query =

Insertion =

Negative Query =

Positive Query =

Insertion =

Avg. Negative Query = 1 + 1/2 (1 + 1/2 · (…))

Operation Costs (in hash functions computed)

M/N · ln(2)

M/N · ln(2)

(50% of bits are zeros)

Positive Query =

Insertion =

Avg. Negative Query = 1 + 1/2 + 1/4 + … = 2

Operation Costs (in hash functions computed)

M/N · ln(2)

M/N · ln(2)

(50% of bits are zeros)

Positive Query =

Insertion =

Avg. Negative Query =

Full analysis from ground up :)

2

Operation Costs (in hash functions computed)

M/N · ln(2)

M/N · ln(2)

Positive Query =

Insertion =

Avg. Negative Query =

Is this ok for modern hardware?

2

Operation Costs (in hash functions computed)

M/N · ln(2)

M/N · ln(2)

CPU Registers

L1

L2

L3

DRAM

Recall the memory hierarchy

CPU Registers

L1

L2

L3

DRAM

Move data at “cache
line” granularity

(e.g., 64B)

CPU Registers

L1

L2

L3

DRAM

Move data at “word”
granularity
(e.g., 8B)

CPU Registers

L1

L2

L3

DRAM

3-4 cycles

CPU Registers

L1

L2

L3

DRAM

10-12 cycles

CPU Registers

L1

L2

L3

DRAM

30-70 cycles

CPU Registers

L1

L2

L3

DRAM

100-150 cycles

CPU Registers

L1

L2

L3

DRAM

Source: http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
(Numbers from 2016)

Positive Query =

Insertion =

Avg. Negative Query =

M/N · ln(2)

M/N · ln(2)

2

Each hash function can lead to a cache miss

Positive Query =

Insertion =

Avg. Negative Query =

M/N · ln(2) · 100 ns

M/N · ln(2) · 100 ns

2 · 100 ns

Each hash function can lead to a cache miss

Observation

Basic Bloom filter
is slowest filter

Observation

With hardware
optimizations, it is the

fastest

Basic Bloom filter
is slowest filter

Observation

With hardware
optimizations, it is the

fastest

Basic Bloom filter
is slowest filter

lends itself to hardware optimization

Bloom filter
0 0

X

Alleviate random accesses?

Blocked Bloom Filters

Cache-, Hash- and Space-Efficient Bloom Filters

Journal of Experimental Algorithms, 2010

Felix Putze, Peter Sanders, Johannes Singler

Bloom filter
0 0

X

X

0 0

Hash to one block, sized as a cache line

Blocked Bloom filter

X

0 0

Insert as though block is an
independent Bloom filter

Blocked Bloom filter

X

0 0

1 cache miss per query/insertion

Blocked Bloom filter

X

0 0

Anything bad?
1 cache miss per query/insertion

Blocked Bloom filter

uneven distribution of entries across blocks

Blocked Bloom filter

impact on FPR?

Blocked Bloom filter

uneven distribution of entries across blocks

impact on FPR?

Blocked Bloom filter

uneven distribution of entries across blocks

General analysis technique for hash tables

Blocked Bloom filter

f(n, p, i) = (n
i) ⋅ pi ⋅ (1 − p)n−i

entries per block follows binomial distribution

entries

f(n, p, i) = (n
i) ⋅ pi ⋅ (1 − p)n−i

entries per block follows binomial distribution

Prob of 1 entry falling into a given
block, i.e., 1/n

f(n, p, i) = (n
i) ⋅ pi ⋅ (1 − p)n−i

entries per block follows binomial distribution

i entries falling into our bucket

f(n, p, i) = (n
i) ⋅ pi ⋅ (1 − p)n−i

entries per block follows binomial distribution

Ways of choosing i out of n entries

f(n, p, i) = (n
i) ⋅ pi ⋅ (1 − p)n−i

entries per block follows binomial distribution

i entries falling into our block

f(n, p, i) = (n
i) ⋅ pi ⋅ (1 − p)n−i

entries per block follows binomial distribution

All other entries falling into other blocks

f(n, p, i) = (n
i) ⋅ pi ⋅ (1 − p)n−i

entries per block follows binomial distribution

Cumbersome

f(n, p, i) = (n
i) ⋅ pi ⋅ (1 − p)n−i

entries per block follows binomial distribution

For n → ∞ & p → 0, binomial converges to Poisson

f(n, p, i) = (n
i) ⋅ pi ⋅ (1 − p)n−i

entries per block follows binomial distribution

λi ⋅ e−λ

i!
P[i entries fall into given block] ~ Poisson(i, λ) =

P[i entries fall into given block] ~ Poisson(i, λ) = λi ⋅ e−λ

i!

λ = avg. entries per block

λi ⋅ e−λ

i!

λ = avg. entries per block

Bits per cache
line (e.g., 256)

 = B/(M/N)

P[i entries fall into given block] ~ Poisson(i, λ) =

λi ⋅ e−λ

i!

λ = avg. entries per block

Bits per cache
line (e.g., 256)

 = B/(M/N)

P[i entries fall into given block] ~ Poisson(i, λ) =

Bits per
entry (e.g., 8)

λi ⋅ e−λ

i!

λ = avg. entries per block

256 / 8 = 32

 = B/(M/N)

P[i entries fall into given block] ~ Poisson(i, λ) =

λi ⋅ e−λ

i!

λ = avg. entries per block

P[i entries fall into given block] ~ Poisson(i, λ) =

Entries i per block with λ = 16

Pr
ob

λi ⋅ e−λ

i!

λ = avg. entries per block

P[i entries fall into given block] ~ Poisson(i, λ) =

Entries i per block with λ = 16

Pr
ob

Overflowing Un
de

rfl
ow

in
g

entries in a block ~ Poisson(i, B/(M/N))

FPR for filter ~ FPR(N, M, K) = (1-e-KN/M)K

entries in a block ~ Poisson(i, B/(M/N))

FPR for filter ~ FPR(i, B, K)

entries in a block ~ Poisson(i, B/(M/N))

i entries in
cache line

B bits in
cache line

K hash
functions

·∑
i=0

∞
Poisson(i, B/(M/N)) FPR(i, B, K)Avg. FPR across all blocks =

Bits / entry (M/N)

FPR

With smaller blocks, there is more
variation in entries across blocks.

Overflowing blocks blow up the FPR.

Bits / entry (M/N)

FPR

With large blocks, we don’t
lose much

Bits / entry (M/N)

FPR

size blocks as cache lines

0 0
Block Block Block Block Block Block

0 0
Block Block Block Block Block Block

size blocks as cache lines

512

bits

512

bits

512

bits

512

bits

512

bits

512

bits

0 0
Block Block Block Block Block Block

Any remaining issue?

512

bits

512

bits

512

bits

512

bits

512

bits

512

bits

0 0
Block Block Block Block Block Block

Any remaining issue?

512

bits

512

bits

512

bits

512

bits

512

bits

512

bits

Random access within a cache line

CPU Registers

L1/L2/L3

DRAM

words (8B) 3-4 cycles

cache lines (64B)

0 0
Block Block Block Block Block Block

Each random access moves different
word from L1 cache to register

Block Block Block Block Block Block

e.g., 4 hash functions, 2 words per block

Block Block Block Block Block Block

e.g., 4 hash functions, 2 words per block

H1

Block Block Block Block Block Block

e.g., 4 hash functions, 2 words per block

H2

Block Block Block Block Block Block

e.g., 4 hash functions, 2 words per block

H3

Block Block Block Block Block Block

e.g., 4 hash functions, 2 words per block

H4

Solutions?

0 0
Block Block Block Block Block Block

Split block Bloom filters. Jim Apple. Arxiv 2023.

Used in the Impala system as of 2016

0 0
Block Block Block Block Block Block

Split block Bloom filters. Jim Apple. Arxiv 2023.

Performance-Optimal Filtering: Bloom Overtakes
Cuckoo at High Throughput. Harald Lang, Thomas
Neumann, Alfons Kemper, Peter Boncz. VLDB 2019.

Partition into s sectors, each the
size of a word (e.g., 64 bits)

Block

Sectors

Block

Example: s = 4 sectors

64
bits

64
bits

64
bits

64
bits

Sectors

Block

Insertion: hashes to k / s bits per sector sequentially

Sectors

Block

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially

Sectors

Block

Hash 2 bits

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially

Sectors

Block

0 1 0 1 0
Or

0 0 0 0 1

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially

Hash 2 bits

Sectors

Block

0 1 0 1 1

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially

Hash 2 bits

Sectors

Block

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially

Hash 2 bits

Sectors

Block

Hash 2 bits

e.g., s=4 sectors and k=8 hashes

Insertion: hashes to k / s bits per sector sequentially

Sectors

Block

Hash 2 bits

Insertion: hashes to k / s bits per sector sequentially

Read/written 4 rather than 8 registers

Sectors

Block

Query: check k / s hashes per sector sequentially

Hash 2 bits

Sectors

Block

Query: check k / s hashes per sector sequentially

0 1 0 1 0
And

0 1 0 1 1

Hash 2 bits

Sectors

Block

Query: check k / s hashes per sector sequentially

0 1 0 1 0 And 0 1 0 1 1

Hash 2 bits

() == 0 1 0 1 0

Sectors

Block

Query: check k / s hashes per sector sequentially

0 1 0 1 0 And 0 1 0 1 1

Hash 2 bits

() != 0 1 0 1 0if
Return false

Query: check k / s hashes per sector sequentially

Hash 2 bits

Sectors

Block

Query: check k / s hashes per sector sequentially

Hash 2 bits

Sectors

Block

Query: check k / s hashes per sector sequentially

Hash 2 bits

Sectors

Block

Query: check k / s hashes per sector sequentially

blocked

sectorized

Further ways to optimize?

Sectors

Block

Further ways to optimize?

Sectors

Block

AVX - SIMD

Further ways to optimize?

Sectors

Block

AVX - SIMD

Operate on each sector in parallel

Problems with Sectorized Bloom filters?

Sectors

Block

Problems with Sectorized Bloom filters?

Sectors

Block

hashes must be multiple of # sectors

Problems with Sectorized Bloom filters?

Sectors

Block

hashes must be multiple of # sectors
Why is this bad?

Problems with Sectorized Bloom filters?

Sectors

Block

hashes must be multiple of # sectors
Why is this bad?
Force using sub-optimal # hash functions

Problems with Sectorized Bloom filters?

Sectors

Block

hashes must be multiple of # sectors
Why is this bad?
Force using sub-optimal # hash functions
Harm FPR

Problems with Sectorized Bloom filters?

Sectors

Block

hashes must be multiple of # sectors
Why is this bad?
Force using sub-optimal # hash functions
Harm FPR - solutions?

Divide sectors into Z groups

Sectors

Block

Groups

Sectors

Block

Groups

Map each key to one sector per group based on its hash

Key

Sectors

Block

Groups

Hash bits only to relevant sector in each group

Key

Sectors

Block

Groups

Hash bits only to relevant sector in each group

Key

e.g., here we can use 6 hashes :)

Sectors

Block

Groups

Hash bits only to relevant sector in each group

Key

Nearly best of both worlds :) faster & low FPR

Break

Bloom

≈ 2 -M/N · ln(2)FPR ε

Bloom Lower Bound

???≈ 2 -M/N · ln(2)FPR ε

Lower Bound for Filter Memory

Lower Bound for Filter Memory

Assume nothing
about implementation

Lower Bound for Filter Memory

Analyze with respect to
filter specification

Assume nothing
about implementation

Lower Bound for Filter Memory

Analyze with respect to
filter specification

Assume nothing
about implementation

ε - FPR
N - # entries
U - Universe size

Lower Bound for Exact Set

Out of Universe U, store N entries

Lower Bound for Exact Set

(U choose N) combinations

Lower Bound for Exact Set

(U choose N)

to encode a unique combination

log2

Lower Bound for Exact Set

bits

bitslog2(U choose N) ≈ N · log2(U / N)

Lower Bound for Exact Set

for large U

Lower Bound for Filter - Approximate Set

Lower Bound for Filter

|Filter| + |Disambiguation| ≥ |Exact Set|

|Filter| + |Disambiguation| ≥ |Exact Set|

ε - FPR
N - # entries
U - Universe size

Legend

ε - FPR
N - # entries
U - Universe size

|Filter| + |Disambiguation| ≥ |Exact Set|

What information must we add the filter
to turn it into an exact set?

ε - FPR
N - # entries
U - Universe size

|Filter| + |Disambiguation| ≥ N · log2(U / N)

Plug in

ε - FPR
N - # entries
U - Universe size

Query filter U times

|Filter| + |Disambiguation| ≥ N · log2(U / N)

ε - FPR
N - # entries
U - Universe size

Tells us all positive keys
N + ε · U

|Filter| + |Disambiguation| ≥ N · log2(U / N)

ε - FPR
N - # entries
U - Universe size

Tells us all positive keys
ε · U

|Filter| + |Disambiguation| ≥ N · log2(U / N)

ε - FPR
N - # entries
U - Universe size

Of all positives ε · U, which
keys are true positives?

|Filter| + |Disambiguation| ≥ N · log2(U / N)

ε - FPR
N - # entries
U - Universe size

ε · U choose N

|Filter| + |Disambiguation| ≥ N · log2(U / N)

ε - FPR
N - # entries
U - Universe size

log2(ε · U choose N)

|Filter| + |Disambiguation| ≥ N · log2(U / N)

ε - FPR
N - # entries
U - Universe size

N · log2((ε · U) / N)

|Filter| + |Disambiguation| ≥ N · log2(U / N)

ε - FPR
N - # entries
U - Universe size

Legend

|Filter| + N · log2((ε · U) / N) ≥ N · log2(U / N)

ε - FPR
N - # entries
U - Universe size

|Filter| ≥ N · log2(U / N) - N · log2((ε · U) / N)

ε - FPR
N - # entries
U - Universe size

|Filter| ≥ N · log2(1 / ε)

ε - FPR
N - # entries
U - Universe size

ε ≥ 2 -M/N

Bloom

≈ 2 -M/N · ln(2)

Lower bound

2 -M/N

Bloom

≈ 2 -M/N · 0.69

Lower bound

2 -M/N

Bloom

≈ 2 -M/N · 0.69 2 -M/N

???

Lower bound

Bloom Lower bound

≈ 2 -M/N

XOR Filter

≈ 2 -M/N · 0.69 ≈ 2 -M/N ·0.81

Xor Filters: Faster and Smaller Than Bloom Filters

Journal of Experimental Algorithmics, 2020

XOR Filter

Thomas Mueller Graf, Daniel Lemire

XOR Operator

0 0 1 1Input 1

Input 2

Parity

0 1 0 1

0 1 1 0
=

Parity can help recover any input

0 0 1 1Input 1

Parity 0 1 1 0

Suppose we
lost input 2

Parity can help recover any input

0 0 1 1Input 1

Parity

Input 2

0 1 1 0

0 1 0 1
=

Recovered

Suppose we
lost input 2

Parity can help recover any input

0 1 0 1Input 2

Parity 0 1 1 0

Or suppose we
lost input 1

Parity can help recover any input

0 1 0 1Input 2

Parity 0 1 1 0

Or suppose we
lost input 1

Input 1 0 0 1 1
=

Recovered

XOR is commutative and associative

0 0 0 0 1 1 1 1

=

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1

Input 1

Input 2

Parity

Input 3

XOR is commutative and associative

0 0 0 0 1 1 1 1

=

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1

Parity can recover any input, as long as we also have all the other inputs

Input 1

Input 2

Parity

Input 3

XOR filter stores a fingerprint for each key

FP() = ……

XOR filter stores a fingerprint for each key

0100
F bits

Example: FP(X) =

Query(X) XOR filter

Does FP(X) exist?

Query(X) XOR filter

Does FP(X) exist?

1. True negative
2. True positive
3. False positive with probability 2-F

How does XOR filter store its fingerprints?

1 2 3 4 5 6

Hash each entry to three slots

X Y

1 2 3 4 5 6

Assign one slot to uniquely own each entry

X YX XY Y

Owns X Owns Y

1 2 3 4 5 6

(More on this shortly)

Each bucket stores XOR of fingerprint and other two slots

YY

Owns Y

FP(Y) 2 6

2 4 6

Y

During queries, recover fingerprints by xoring three slots

YY

Owns Y

2 4 6

Y

get(Y) returns true if FP(Y) = 2 64

How to assign slots to own different entries?

X YX XY Y

Owns X Owns Y

1 2 3 4 5 6

How to assign slots to own different entries?

Peeling

Peeling

Slots 0 1 2 3 4 5 6 7

1, 4, 5 0, 1, 3 3, 4, 6 2, 3, 7

Peeling

Slots 0 1 2 3 4 5 6 7

0, 1, 3 3, 4, 6 2, 3, 71, 4, 5

Peeling

Slots 0 1 2 3 4 5 6 7

0, 1, 3 3, 4, 6 2, 3, 7

While not all keys have been assigned to a slot

1, 4, 5

Peeling

Slots 0 1 2 3 4 5 6 7

0, 1, 3 3, 4, 6 2, 3, 7

Assign some entry x to some slot y that only entry x maps to

1, 4, 5

While not all keys have been assigned to a slot

Peeling

Slots 0 1 2 3 4 5 6 7

0, 1, 3 3, 4, 6

Assign some entry x to some slot y that only entry x maps to

1, 4, 5

While not all keys have been assigned to a slot

Peeling

Slots 0 1 2 3 4 5 6 7

3, 4, 6

Assign some entry x to some slot y that only entry x maps to

1, 4, 5

While not all keys have been assigned to a slot

Peeling

Slots 0 1 2 3 4 5 6 7

3, 4, 6

Assign some entry x to some slot y that only entry x maps to
While not all keys have been assigned to a slot

Slots 0 1 2 3 4 5 6 7

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are populated

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

3,4,6

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

3,4,6

Xor its fingerprint with content at other slots and store

Populate all unassigned slots with zeros

1101

Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000

0000

0000

0000

3,4,6

Xor its fingerprint with content at other slots and store

⊕ ⊕ = 1101

Populate all unassigned slots with zeros

1101

Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Xor its fingerprint with content at other slots and store

1101

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Xor its fingerprint with content at other slots and store

1101

1,4,5

0001

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000

0000

0000 0000

Xor its fingerprint with content at other slots and store

1101

1,4,5

0001 =⊕ ⊕ 1100

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Xor its fingerprint with content at other slots and store

11011100

0,1,3

1001

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000

0000

0000 0000

Xor its fingerprint with content at other slots and store

1101

1100

0,1,3

1001 =⊕ ⊕ 0101

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Xor its fingerprint with content at other slots and store

110111000101

2,3,7

1111

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7

0000 0000

0000 0000

Xor its fingerprint with content at other slots and store

110111000101

2,3,7

1111= ⊕ ⊕1111

Populate all unassigned slots with zeros

Find some entry whose only other candidate slots are filled

Slots 0 1 2 3 4 5 6 7
0000 0000 0000 0000

Xor its fingerprint with content at other slots and store

110111000101 1111

Populate all unassigned slots with zeros

Slots 0000 0000 0000 0000

We’re
done :)

110111000101 1111

Slots 0000 0000 0000 0000

Query(X) where FP(X) = 1001

110111000101 1111

Slots 0000

0000

0000

0000

Query(X) where FP(X) = 1001

1101

1100

0101 1111

⊕ ⊕ = 1100

Slots 0000

0000

0000

0000

Query(X) where FP(X) = 1001

1101

1100

0101 1111

⊕ ⊕ = 1100

Not a fingerprint match so return negative

Construction can fail if there is no entry we can peel

0 1 2 3 4 5 6 7

0, 1, 3 1, 3, 6 3, 6, 0
Example:

Construction can fail if there is no entry we can peel

0 1 2 3 4 5 6 7

Construction can fail if there is no entry we can peel

0 1 2 3 4 5 6 7

No slot has one entry uniquely mapping to it

If we fail, we must restart from scratch.

0 1 2 3 4 5 6 7

free space is necessary to succeed with high probability

If we fail, we must restart from scratch.

0 1 2 3 4 5 6 7

free space is necessary to succeed with high probability

If we fail, we must restart from scratch.

What’s the interplay between free space and # number
of hash functions?

0 1 2 3 4 5 6 7

What’s the interplay between free space and # number
of hash functions?

0 1 2 3 4 5 6 7

Too few hash functions e.g., 1?

What’s the interplay between free space and # number
of hash functions?

0 1 2 3 4 5 6 7

Too few hash functions e.g., 1? Any collision makes us fail

What’s the interplay between free space and # number
of hash functions?

0 1 2 3 4 5 6 7

Too few hash functions e.g., 1? Any collision makes us fail

Too many hash functions e.g., n?

What’s the interplay between free space and # number
of hash functions?

0 1 2 3 4 5 6 7

Too few hash functions e.g., 1? Any collision makes us fail

Too many hash functions e.g., n? Nothing is peelable

Slide by Keith
Schwarz of

Stanford

hash functions

Utilization

hash functions

Utilization

Not enough placement flexibility

hash functions

Utilization

Too many items hashing to each slot

hash functions

Utilization

Optimal 0.81

Similar to finding the optimal # hash functions
with Bloom filters :)

Optimal 0.81

≈ 2 -M/N · 0.69

Bloom Idealized

≈ 2 -M/N

XOR

≈ 2 -M/N ·0.81

≈ 2 -M/N · 0.69

Bloom Idealized

≈ 2 -M/N

XOR

≈ 2 -M/N ·0.81

Ribbon

≈ 2 -M/N ·0.92

Denser XOR filter

≈ 2 -M/N · 0.69

Idealized

≈ 2 -M/N

XOR

≈ 2 -M/N ·0.81

Ribbon

Denser XOR filter
In RocksDB since 2020

≈ 2 -M/N ·0.92

Bloom

≈ 2 -M/N · 0.69 ≈ 2 -M/N

XOR

≈ 2 -M/N ·0.81

Ribbon

Approach ideal

≈ 2 -M/N ·0.92

Spatial Coupling
XOR filter w.Bloom

Positive Query =

Construction =

Avg. Negative Query =

Operation Costs (in hash functions computed)

Positive Query =

Construction =

Avg. Negative Query =

Operation Costs (in hash functions computed)

O(N)

Positive Query =

Avg. Negative Query =

Operation Costs (in hash functions computed)

3

3

Construction = O(N)

Positive Query =

Avg. Negative Query =

Operation Costs (in hash functions computed)

3

3

Not as good as blocked Bloom filters

Construction = O(N)

Lower FPRFaster

Blocked
Bloom Spatial CouplingXOR Ribbon

And now: office hours :)

