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Question 1
Consider the following log, and note how records for different transactions 
are interleaved. Suppose power fails at different points. What would you 
need undo or redo?  

Cflog

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails 
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Question 2

The checkpointing mechanism we have seen requires all current 
transactions to commit, but this could lead to rejecting user transactions 
for a long while. How would you design a checkpoint mechanism that does 
not require all existing transactions to finish?

Cf

logDatabase

<ckpt>

Buffer pool

Many commits

Resume 
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Question 3

Consider undo/redo logging. Flushing the log before can be a random I/O 
bottleneck. What can we do to address this? 



Question 3

Put log on a 
separate  disk

It only entails sequential 
access so this is ideal. 
Can also use SSD.

Consider undo/redo logging. Flushing the log before can be a random I/O 
bottleneck. What can we do to address this? 



Question 3

Put log on a 
separate  disk

Put DB on one or 
more SSDs or disks, 
maybe using RAID

It only entails sequential 
access so this is ideal. 
Can also use SSD.

Consider undo/redo logging. Flushing the log before can be a random I/O 
bottleneck. What can we do to address this? 


