
Niv Dayan

Recovery Tutorial
CSC443H1 Database System Technology

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cflog

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails

Nothing to undo

Redo T2 and T3
since checkpoint

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails

Undo T3

Redo T2

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails

Undo T3

Undo T2

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails

Undo T2

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>
Power fails

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>
Power fails

Redo T1

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails

Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?  

Cf

<T1 start>
<T1, A, 1, 2>

<T2 start >

<T1 commit>

<T2, B, 2, 3>
<T2, C, 3, 4>

<T3 start>

<T2 commit>
<T3, D, 4, 5>

<T3 commit>

<ckpt>

Power fails

Undo T1

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

logDatabase

<ckpt>

Buffer pool

Many commits

Resume

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

logDatabase

Add all ongoing transaction
names in checkpoint start record

Buffer pool

<start ckpt, Tx … Ty>

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

logDatabase

<start ckpt, Tx … Ty>

Flush all dirty
pages to disk

Buffer pool

X Y

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

logDatabase

<start ckpt, Tx … Ty>

Buffer pool

X Y

Flush end checkpoint record

<end ckpt>

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

how to recover?

Cflog

<T1 start>
<T1, A, 1, 2>
<T2 start >

<T1 commit>
<T2, B, 2, 3>

<T2, C, 3, 4>
<T3 start>

<T2 commit>

<T3, D, 4, 5>

<T3 commit>

<ckpt start T2>

<ckpt end>

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

<T1 start>
<T1, A, 1, 2>
<T2 start >

<T1 commit>
<T2, B, 2, 3>

<T2, C, 3, 4>
<T3 start>

<T2 commit>

<T3, D, 4, 5>

<T3 commit>

<ckpt start T2>

<ckpt end>

Find checkpoint start &
identify committed &
uncommitted
transactions

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

<T1 start>
<T1, A, 1, 2>
<T2 start >

<T1 commit>
<T2, B, 2, 3>

<T2, C, 3, 4>
<T3 start>

<T2 commit>

<T3, D, 4, 5>

<T3 commit>

<ckpt start T2>

<ckpt end>
redo committed

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

<T1 start>
<T1, A, 1, 2>
<T2 start >

<T1 commit>
<T2, B, 2, 3>

<T2, C, 3, 4>
<T3 start>

<T2 commit>

<T3, D, 4, 5>

<T3 commit>

<ckpt start T2>

<ckpt end>

redo committed

Go from back to front so
we keep latest copy of
each value

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

<T1 start>
<T1, A, 1, 2>
<T2 start >

<T1 commit>
<T2, B, 2, 3>

<T2, C, 3, 4>
<T3 start>

<T2 commit>

<T3, D, 4, 5>

<T3 commit>

<ckpt start T2>

<ckpt end>
undo uncommitted

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

<T1 start>
<T1, A, 1, 2>
<T2 start >

<T1 commit>
<T2, B, 2, 3>

<T2, C, 3, 4>
<T3 start>

<T2 commit>

<T3, D, 4, 5>

<ckpt start T2>

<ckpt end>
undo uncommitted
e.g. if T3 didn’t commit

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

<T1 start>
<T1, A, 1, 2>
<T2 start >

<T1 commit>
<T2, B, 2, 3>

<T2, C, 3, 4>
<T3 start>

<T2 commit>

<T3, D, 4, 5>

<ckpt start T2>

<ckpt end>
undo uncommitted
e.g. if T3 didn’t commit
Add rollback<T3, rollback>

Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Cf

<T1 start>
<T1, A, 1, 2>
<T2 start >

<T1 commit>
<T2, B, 2, 3>

<T2, C, 3, 4>
<T3 start>

<T3, D, 4, 5>

<ckpt start T2>

<ckpt end>

May need to go beyond
checkpoint start to undo
all relevant transactions

Question 3

Consider undo/redo logging. Flushing the log before can be a random I/O
bottleneck. What can we do to address this?

Question 3

Put log on a
separate disk

It only entails sequential
access so this is ideal.
Can also use SSD.

Consider undo/redo logging. Flushing the log before can be a random I/O
bottleneck. What can we do to address this?

Question 3

Put log on a
separate disk

Put DB on one or
more SSDs or disks,
maybe using RAID

It only entails sequential
access so this is ideal.
Can also use SSD.

Consider undo/redo logging. Flushing the log before can be a random I/O
bottleneck. What can we do to address this?

