Tutorial on LSM-trees

Database System Technology

Groups

Form for registration was sent today :)

Complete by Sunday

Question 1 - picking a storage engine

We would like to choose KV-store engine between BerkeleyDB vs. RocksDB for a workload
consisting of 10% random gets and 90% random puts. BerkeleyDB uses a B-tree.
RocksDB uses a leveled LSM-tree with size ratio T=10 and a buffer size of P=226 entries.
Assume N=240 and B=2’. All internal nodes fit in memory. We are using a disk drive. What is
your choice and why?

e’

D

ORACLE
BERKELEY DB

“~ RocksDB

Question 1 - picking a storage engine

We would like to choose KV-store engine between BerkeleyDB vs. RocksDB for a workload
consisting of 10% random gets and 90% random puts. BerkeleyDB uses a B-tree.
RocksDB uses a leveled LSM-tree with size ratio T=10 and a buffer size of P=226 entries.
Assume N=240 and B=2’. All internal nodes fit in memory. We are using a disk drive. What is
your choice and why?

B-tree: Each “put” costs 1 read & 1 write I/0. Each get costs 1 read |/O.
As we are using disk, read/write I/O costs are symmetric.

Avg. #1/0 per operation: 0.9*2 +0.1*1=1.9

ORACLE Memory ‘(Q\
BERKELEY DB C‘_‘_) D
KM X¥dN

Storage) - () -~ ()

Question 1 - picking a storage engine

We would like to choose KV-store engine between BerkeleyDB vs. RocksDB for a workload
consisting of 10% random gets and 90% random puts. BerkeleyDB uses a B-tree.
RocksDB uses a leveled LSM-tree with size ratio T=10 and a buffer size of P=226 entries.
Assume N=240 and B=2’. All internal nodes fit in memory. We are using a disk drive. What is
your choice and why?

B-tree: Avg. #1/0O per operation: 0.9 *2 + 0.1 *1 = 1.9

LSM-tree: A put costs 2 * (T/B) - logt(N/P) = 0.66 read & write I/Os
A get costs logTr(N/P) = 4.2 read I/Os
Avg. # |/Os per operation: 0.66-09+42-0.1=1.01/0Os (Cheaper)

Buffer @
L v| 1 &

“~ RocksDB V2 -

Lv|3 G

Question 2 - tuning an LSM-tree

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

Buffer @

vl @B

Lvl2 Gl
vi3 D

Question 2 - tuning an LSM-tree

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

LSM-tree before tuning: (1/B) * log2(N/P) = 1.1 write I/O (Costlier than B-tree)

Buffer @

vl @B

Lvl2 Gl
vi3 D

Question 2 - tuning an LSM-tree

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

LSM-tree before tuning: (1/B) * log2(N/P) = 1.1 write I/O (Costlier than B-tree)

Increasing the buffer size P reduces the number of levels and thus WA.

Buffer @ Buffer @@ Buffer Gl
vl @B Lvl1 D Lvl 1 D
vl2 Gl Lvl 2 D

Lvi3 D

Question 2 - tuning an LSM-tree

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

LSM-tree before tuning: (1/B) * log2(N/P) = 1.1 write I/O (Costlier than B-tree)

Increasing the buffer size P reduces the number of levels and thus WA.

Buffer @ Buffer @@ Buffer Gl
vl @B Lvl1 D Lvl 1 D
vl2 Gl Lvl 2 D

Lvi3 D

We can increase the buffer size to decrease the number of levels across which entries get
merged. E.g., P=220 entries leads to:

(1/B) * loga(N/P) = 0.63

Question 2 - tuning an LSM-tree

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

LSM-tree before tuning: (1/B) * log2(N/P) = 1.1 write I/O (Costlier than B-tree)

Increasing the buffer size P reduces the number of levels and thus WA.

Buffer @ Buffer @@ Buffer Gl
vl @B Lvl1 D Lvl 1 D
vl2 Gl Lvl 2 D

Lvi3 D

We can increase the buffer size to decrease the number of levels across which entries get
merged. E.g., P=220 entries leads to:

(1/B) * log2(N/P) = 0.63 Trade-off: requires more memory

Question 2 - tuning an LSM-tree

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

We can further employ tiering, say, with size ratio T=10 —\

e.g., (1/B) * logr(N/P) = (1/25) * log10(240/220) = 0.19

Buffer e
lvi1 D GO @G @
Lvi2 Gl ;D G G

Question 2 - tuning an LSM-tree

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

We can further employ tiering, say, with size ratio T=10

e.g., (1/B) * logr(N/P) = (1/25) * log10(240/220) = 0.19

Buffer & _ _
1 - e e e Trade-off: reads get more expensive.

Lvl2 Gl Gl Gl GED

Question 2 - tuning an LSM-tree

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

We can further employ tiering, say, with size ratio T=10

e.g., (1/B) * logr(N/P) = (1/25) * log10(240/220) = 0.19

Buffer & _ |
V1 - e e & Trade-off: reads get more expensive.

Lvl2 Gl Gl Gl GED

Last approach: Make the LSM-tree unclustered. More in next question.

Question 3 - clustered vs. unclustered LSM-trees

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Value Buffer
Key Buffer @ . ®

vI2 . CE— > A
vl 3 G

Append only file

Question 3 - clustered vs. unclustered LSM-trees

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Clustered Unclustered?
levels: Lc=logT(N/B) Value Buffer
Key Buffer @ | . e
ut: O(Lc /B Vil e T Ty v
P (Lc / B) Vo e b T
get: O(Lc) i3 G Append only file
scan: O(Lc+S/B)

Question 3 - clustered vs. unclustered LSM-trees

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Clustered Unclustered?
levels: Lc=logTt(N/B) Lu=logT(N/K) Value Buffer
Key Buffer @ | . e
ut: O(Lc/B Vi1 & T Ty v
P (Lc / B) Vo e b T
get: O(Lc) i3 G Append only file

scan: O(Lc+S/B)

Question 3 - clustered vs. unclustered LSM-trees

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Clustered Unclustered?
levels: Lc=logT(N/B) Lu=logT(N/K) Value Buffer
Key Buffer @ | e e
ut: O(Lc/ B O(1/B + Lu/K vl & T T .
p (Lo /B) (1/B + Lu/K)) . — >~
get: O(Lc) i3 G Append only file

scan: O(Lc+S/B)

Question 3 - clustered vs. unclustered LSM-trees

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Clustered Unclustered?
levels: Lc=logT(N/B) Lu=logT(N/K) Value Buffer
Key Buffer @ | e e
ut: O(Lc/ B O(1/B + Lu/K BRI N o
P (Lc / B) (u/K) V2 e b T
get: O(Lc) O(Lu + 1) Vi3 G Append only file

scan: O(Lc+S/B)

Question 3 - clustered vs. unclustered LSM-trees

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Clustered Unclustered
levels: Lc=logT(N/B) Lu=logT(N/K) Value Buffer
Key Buffer @ | e e
ut: O(Lc/ B O(1/B + Lu/K BRI N o
P (Lc / B) (u/K) V2 e b T
get: O(Lc) O(Lu + 1) Vi3 Append only file

scan: O(Lc+S/B) O(Lu+S)

Question 3 - clustered vs. unclustered LSM-trees

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Clustered Unclustered Unclustered is better when...
levels: Lc=logT(N/B) Lu=logT(N/K)
put: O(Lc / B) O(1/B + Lu/K)
get: O(Lc) O(Lu + 1)

scan: O(Lc+S/B) O(Lu+S)

Question 3 - clustered vs. unclustered LSM-trees

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Clustered Unclustered Unclustered is better when...
levels: Lc=logT(N/B) Lu=logr(N/K) - Large data entries (i.e., K > B)
- Few long range queries (S is small)
put: O(Lc / B) O(1/B + Lu/K) - Gets are not a clear cut
get: O(Lc) O(Lu + 1)

scan: O(Lc+S/B) O(Lu+S)

Question 4 - space-amplification

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case

space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Tiered Leveled
Buffer @@ Buffer &
e.g., =4 Lvi1 b b &b @ Lvl1 CO—

el X X X Lvl 2 D

Question 4 - space-amplification

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case

space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Tiered Leveled
Buffer @®» Max obsolete Buffer @® Max obsolete
e.g., =4 Lvi1 b a» a» @& Lvl 1 CO—

el X X X Lvl 2 D

Question 4 - space-amplification

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case

space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Leveled

Buffer @®» Max obsolete
Lvl 1 G
Lvl 2 D

black + red
black

Space-amp =

Question 4 - space-amplification

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case

space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Leveled

Buffer @®» Max obsolete
Lvl 1 G
Lvl 2 D

black + red black + black /T + black/ T2 + ...
black black

Space-amp =

Question 4 - space-amplification

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case

space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Leveled

Buffer @®» Max obsolete
Lvl 1 G
Lvl 2 D

black + red black + black /T + black/ T2 + ... 1 1 T

Space-amp =

1 .. <
black black T T2 T—1

Question 4 - space-amplification

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case

space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Tiered Leveled
Buffer @®» Max obsolete Buffer @® Max obsolete
e.g., =4 Lvi1 b ab &b @ Lvl 1 CoO——
Lvl|? CGEED D ;D GED Lvl 2 cEE
T
227 =

-1

Question 4 - space-amplification

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case

space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Tiered

Buffer @® Max obsolete
€.g., 1=4 Lvi1 G b &b @&
LvI2 Gl G G b

black + red (T-1) * black + black + black / T2 -
Space-amp = Hlack = black ~

Question 4 - space-amplification

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case

space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Tiered Leveled
Buffer @®» Max obsolete Buffer @® Max obsolete
e.g., =4 Lvi1 b a» a» @& Lvl 1 CO—
Lvi2 G G G ;G Lvl 2 D
T
~ T <

-1

