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Question 1 - picking a storage engine
We would like to choose KV-store engine between BerkeleyDB vs. RocksDB for a workload 
consisting of 10% random gets and 90% random puts. BerkeleyDB uses a B-tree. 
RocksDB uses a leveled LSM-tree with size ratio T=10 and a buffer size of P=226 entries. 
Assume N=240 and B=27. All internal nodes fit in memory. We are using a disk drive. What is 
your choice and why?



Each “put” costs 1 read & 1 write I/O. Each get costs 1 read I/O. 

Avg. #I/O per operation: 0.9 * 2 + 0.1 * 1 ≈ 1.9
As we are using disk, read/write I/O costs are symmetric. 
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LSM-tree: A put costs 2 * (T/B) · logT(N/P) ≈ 0.66  read & write I/Os
A get costs logT(N/P) ≈ 4.2 read I/Os

0.66 · 0.9 + 4.2 · 0.1 ≈ 1.0 I/Os (Cheaper)
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Question 2 - tuning an LSM-tree

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2), 
yet write-amplification actually increased. There are N=240 entries, and the memtable size P 
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning 
options for reducing write-amplification and the trade-off of each one of them. 
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LSM-tree before tuning: write I/O (Costlier than B-tree)
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Increasing the buffer size P reduces the number of levels and thus WA. 
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LSM-tree before tuning: (1/B) * log2(N/P) = 1.1 write I/O

We can increase the buffer size to decrease the number of levels across which entries get 
merged. E.g., P=220 entries leads to:

(1/B) * log2(N/P) = 0.63
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Increasing the buffer size P reduces the number of levels and thus WA. 

 Trade-off: requires more memory 

Question 2 - tuning an LSM-tree

We can increase the buffer size to decrease the number of levels across which entries get 
merged. E.g., P=220 entries leads to:



We can further employ tiering, say, with size ratio T=10

e.g., (1/B) * logT(N/P) = (1/25) * log10(240/220) = 0.19
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Last approach: Make the LSM-tree unclustered. More in next question. 
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Question 3 - clustered vs. unclustered LSM-trees 
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In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another 
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them 
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered 
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree 
(size ratio T=2),  insertions only (no deletes or updates), and a 1 page memtable.  Let K be the 
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a 
page. Based on your models, identify cases where each of the two approaches shines.
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Unclustered is better when…
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- Large data entries (i.e., K > B)

- Few long range queries (S is small)

- Gets are not a clear cut
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Question 4 - space-amplification
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e.g., T=4

An LSM-tree can store multiple versions for a given entry, where only the most recent is 
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded 
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case 
space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent 
levels. Assume all levels are totally full and all entries are equally sized. 
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