
Niv Dayan

Tutorial on LSM-trees
Database System Technology

Groups

Form for registration was sent today :)
Complete by Sunday

Question 1 - picking a storage engine
We would like to choose KV-store engine between BerkeleyDB vs. RocksDB for a workload
consisting of 10% random gets and 90% random puts. BerkeleyDB uses a B-tree.
RocksDB uses a leveled LSM-tree with size ratio T=10 and a buffer size of P=226 entries.
Assume N=240 and B=27. All internal nodes fit in memory. We are using a disk drive. What is
your choice and why?

Each “put” costs 1 read & 1 write I/O. Each get costs 1 read I/O.

Avg. #I/O per operation: 0.9 * 2 + 0.1 * 1 ≈ 1.9
As we are using disk, read/write I/O costs are symmetric.

… …

Memory

Storage

B-tree:

We would like to choose KV-store engine between BerkeleyDB vs. RocksDB for a workload
consisting of 10% random gets and 90% random puts. BerkeleyDB uses a B-tree.
RocksDB uses a leveled LSM-tree with size ratio T=10 and a buffer size of P=226 entries.
Assume N=240 and B=27. All internal nodes fit in memory. We are using a disk drive. What is
your choice and why?

Question 1 - picking a storage engine

LSM-tree: A put costs 2 * (T/B) · logT(N/P) ≈ 0.66 read & write I/Os
A get costs logT(N/P) ≈ 4.2 read I/Os

0.66 · 0.9 + 4.2 · 0.1 ≈ 1.0 I/Os (Cheaper)

B-tree:

Buffer
Lvl 1
Lvl 2
Lvl 3

Avg. # I/Os per operation:

Avg. #I/O per operation: 0.9 * 2 + 0.1 * 1 ≈ 1.9

We would like to choose KV-store engine between BerkeleyDB vs. RocksDB for a workload
consisting of 10% random gets and 90% random puts. BerkeleyDB uses a B-tree.
RocksDB uses a leveled LSM-tree with size ratio T=10 and a buffer size of P=226 entries.
Assume N=240 and B=27. All internal nodes fit in memory. We are using a disk drive. What is
your choice and why?

Question 1 - picking a storage engine

Question 2 - tuning an LSM-tree

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

Buffer
Lvl 1
Lvl 2
Lvl 3

LSM-tree before tuning: write I/O (Costlier than B-tree)

Buffer
Lvl 1
Lvl 2
Lvl 3

(1/B) * log2(N/P) = 1.1

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

Question 2 - tuning an LSM-tree

LSM-tree before tuning: (1/B) * log2(N/P) = 1.1 write I/O (Costlier than B-tree)

Increasing the buffer size P reduces the number of levels and thus WA.

Buffer
Lvl 1
Lvl 2

Buffer
Lvl 1

Buffer
Lvl 1
Lvl 2
Lvl 3

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

Question 2 - tuning an LSM-tree

LSM-tree before tuning: (1/B) * log2(N/P) = 1.1 write I/O

We can increase the buffer size to decrease the number of levels across which entries get
merged. E.g., P=220 entries leads to:

(1/B) * log2(N/P) = 0.63

(Costlier than B-tree)

Buffer
Lvl 1
Lvl 2

Buffer
Lvl 1

Buffer
Lvl 1
Lvl 2
Lvl 3

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

Increasing the buffer size P reduces the number of levels and thus WA.

Question 2 - tuning an LSM-tree

LSM-tree before tuning: (1/B) * log2(N/P) = 1.1 write I/O

(1/B) * log2(N/P) = 0.63

(Costlier than B-tree)

Buffer
Lvl 1
Lvl 2

Buffer
Lvl 1

Buffer
Lvl 1
Lvl 2
Lvl 3

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

Increasing the buffer size P reduces the number of levels and thus WA.

 Trade-off: requires more memory

Question 2 - tuning an LSM-tree

We can increase the buffer size to decrease the number of levels across which entries get
merged. E.g., P=220 entries leads to:

We can further employ tiering, say, with size ratio T=10

e.g., (1/B) * logT(N/P) = (1/25) * log10(240/220) = 0.19

Buffer
Lvl 1
Lvl 2

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

Question 2 - tuning an LSM-tree

Buffer
Lvl 1
Lvl 2

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

Trade-off: reads get more expensive.

e.g., (1/B) * logT(N/P) = (1/25) * log10(240/220) = 0.19

We can further employ tiering, say, with size ratio T=10

Question 2 - tuning an LSM-tree

Buffer
Lvl 1
Lvl 2

Last approach: Make the LSM-tree unclustered. More in next question.

A friend tells you they switched from using a B-tree to a basic LSM-tree (with size ratio 2),
yet write-amplification actually increased. There are N=240 entries, and the memtable size P
and block size B are both B=P=25 entries. Explain why this happened. Identify three tuning
options for reducing write-amplification and the trade-off of each one of them.

Trade-off: reads get more expensive.

e.g., (1/B) * logT(N/P) = (1/25) * log10(240/220) = 0.19

We can further employ tiering, say, with size ratio T=10

Question 2 - tuning an LSM-tree

Question 3 - clustered vs. unclustered LSM-trees

Buffer
Lvl 1
Lvl 2
Lvl 3 Append only file

Key
BufferValue

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Buffer
Lvl 1
Lvl 2
Lvl 3 Append only file

Key
BufferValue

Unclustered?Clustered

 LC=logT(N/B)

O(LC / B)

O(LC)

O(LC+S/B)

put:

get:

scan:

#levels:

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Question 3 - clustered vs. unclustered LSM-trees

Buffer
Lvl 1
Lvl 2
Lvl 3 Append only file

Key
BufferValue

Unclustered?Clustered

 LC=logT(N/B)

O(LC / B)

O(LC)

O(LC+S/B)

put:

get:

scan:

#levels:

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Question 3 - clustered vs. unclustered LSM-trees

 LU=logT(N/K)

Buffer
Lvl 1
Lvl 2
Lvl 3 Append only file

Key
BufferValue

Unclustered?Clustered

 LC=logT(N/B)

O(LC / B)

O(LC)

O(LC+S/B)

put:

get:

scan:

#levels:

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Question 3 - clustered vs. unclustered LSM-trees

O(1/B + LU/K)

 LU=logT(N/K)

Buffer
Lvl 1
Lvl 2
Lvl 3 Append only file

Key
BufferValue

Unclustered?Clustered

 LC=logT(N/B)

O(LC / B)

O(LC)

O(LC+S/B)

put:

get:

scan:

#levels:

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Question 3 - clustered vs. unclustered LSM-trees

O(1/B + LU/K)

 LU=logT(N/K)

O(LU + 1)

Buffer
Lvl 1
Lvl 2
Lvl 3 Append only file

Key
BufferValue

UnclusteredClustered

 LC=logT(N/B)

O(LC / B)

O(LC+S/B)

put:

get:

scan:

#levels:

O(1/B + LU/K)

O(LU + 1)

O(LU+S)

 LU=logT(N/K)

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

Question 3 - clustered vs. unclustered LSM-trees

O(LC)

put:

get:

scan:

#levels:

Clustered Unclustered

O(LU+S)

 LU=logT(N/K) LC=logT(N/B)

O(LC / B)

O(LC+S/B)

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

O(1/B + LU/K)

Unclustered is better when…

Question 3 - clustered vs. unclustered LSM-trees

O(LC) O(LU + 1)

- Large data entries (i.e., K > B)

- Few long range queries (S is small)

- Gets are not a clear cut

Unclustered is better when…

put:

get:

scan:

#levels:

Clustered Unclustered

O(LU+S)

 LU=logT(N/K) LC=logT(N/B)

O(LC / B)

O(LC+S/B)

In a clustered LSM-trees, the values are stored within the LSM-tree alongside their keys. Another
approach is an unclustered LSM-tree, which stores values in an append-only file and indexes them
using key-pointer pairs from within the LSM-tree. What’s the impact of clustered vs. unclustered
LSM-trees on put/get/scan performance. Propose adjusted cost models. Assume a basic LSM-tree
(size ratio T=2), insertions only (no deletes or updates), and a 1 page memtable. Let K be the
number of key-pointer pairs fitting into a page, and let B be the number of key-value pairs fitting in a
page. Based on your models, identify cases where each of the two approaches shines.

O(1/B + LU/K)

Question 3 - clustered vs. unclustered LSM-trees

O(LC) O(LU + 1)

Question 4 - space-amplification

Buffer
Lvl 1
Lvl 2

Buffer
Lvl 1
Lvl 2

Tiered Leveled

e.g., T=4

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case
space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Buffer
Lvl 1
Lvl 2

Buffer
Lvl 1
Lvl 2

Tiered Leveled

Max obsolete Max obsolete

e.g., T=4

Question 4 - space-amplification
An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case
space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Buffer
Lvl 1
Lvl 2

Leveled
Max obsolete

Question 4 - space-amplification
An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case
space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Space-amp =
black + red

black

Buffer
Lvl 1
Lvl 2

Leveled
Max obsolete

Question 4 - space-amplification
An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case
space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Space-amp =
black + red

black
=

black + black / T + black / T2 + …
black

Buffer
Lvl 1
Lvl 2

Leveled
Max obsolete

Question 4 - space-amplification
An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case
space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

Space-amp =
black + red

black
=

black + black / T + black / T2 + …
black

= ≤
T

T − 1
1 +

1
T

+
1
T2

+ . . .

Buffer
Lvl 1
Lvl 2

Buffer
Lvl 1
Lvl 2

Tiered Leveled

Max obsolete Max obsolete

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case
space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

e.g., T=4

Question 4 - space-amplification

≤
T

T − 1???

Buffer
Lvl 1
Lvl 2

Tiered

Max obsolete

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case
space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

e.g., T=4

Question 4 - space-amplification

Space-amp =
black + red

black
=

(T-1) * black + black + black / T2

black
≈ T

Buffer
Lvl 1
Lvl 2

Buffer
Lvl 1
Lvl 2

Tiered Leveled

Max obsolete Max obsolete

An LSM-tree can store multiple versions for a given entry, where only the most recent is
considered up-to-date and the rest are obsolete. The obsolete entries are eventually discarded
during compaction, but meanwhile they consume space. This phenomenon is known as space-
amplification, defined as: (physical space taken up) / (logical data size). Quantify worst-case
space-amplification for a leveled vs. tiered LSM-tree with size ratio T between any two adjacent
levels. Assume all levels are totally full and all entries are equally sized.

e.g., T=4

Question 4 - space-amplification

≤
T

T − 1≈ T

