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Hash Tables




Hash Tables

w E O

Maps keys to . Expected constant
Resolves collisions . .
random buckets time operations




Many DB applications

Hash Join In-memory index Key-value Stores



Collision Resolution

& o I X4

Open addressing
(Linear probing, etc)

Chaining Cuckoo hashing



Collision Resolution relies on storing full keys

& o I X4

Open addressing
(Linear probing, etc)

Chaining Cuckoo hashing



Problems storing full keys

space Requires indirection
Keys may be large If keys are var-length
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Does not store
the keys

Perfect Hashing

D)€

Collision-free
queries from key
to payload

Higher construction/
Insertion overheads to
resolve collisions



Perfect Hashing

P D)

Collision-free Higher construction/
Does not store . . .
queries from key iInsertion overheads to
the keys -
to payload resolve collisions

Only effective when we query existing keys! Why?



Application Example: Key-value Stores




Key-value Stores

Index

L\

LV LY

Data




Index can be hash table containing keys (e.g., bitcask)
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can we get away with not storing keys?

h(£L) h(L) h(L)
} } }




Use a filter (e.g., quotient filter )




Use a filter (e.g., quotient filter )

Replace keys with fingerprints to save space

(L)  h(L) h(L)




Query I/0 costs non-existing key?

existing key?




Query 1/0 costs non-existing key? 2-F

existing key??




Query I/0 costs non-existing key? 2-F
existing key? 1+2-F




Query I/0 costs non-existing key? 2-F
existing key? 1+2-F

T

Let’s focus on queries to existing keys

(1) more common
(2) minimize latency for useful work




Query I/O costs existing key? 1+2-F

T

Due to fingerprint collisions
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Query I/O costs existing key? 1+2-F

T

Due to fingerprint collisions
Can we reduce by increasing F

[ 1\
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Query I/O costs existing key? 1+2-F

T

Due to fingerprint collisions
Can we reduce by increasing F
Is there a better way?

[ 1\
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Perfect Hashing
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Minimal Dynamic

space-efficient more space
static data supports insertions



Minimal Perfect Hashing
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Minimal Perfect Hashing

N keys
A B C D E F G H

*—o—9o 90— 90— o9
Array with N slots



Minimal Perfect Hashing

N keys
A B C D E F G H

*—o—9o 90— 90— o9
Array with N slots

100% load factor! No extra capacity as with normal hash tables



N keys
A B C D E F G H

Goal: Establish bijection L
(one-to-one mapping) 4

Array with N slots



N keys
A B C D E F G H

Goal: Establish bijection %
(one-to-one mapping) 4

Collision-free

Array with N slots



What’s the probability of general hash function creating bijection?

N keys
A B C D E F G H

Pt

Array with N slots




What’s the probability of general hash function creating bijection?

# possible bijections (permutations)?
# possible assignments?

A B C D E F G H

pad




What’s the probability of general hash function creating bijection?

# possible bijections (permutations)? N!
# possible assignments?

A B C D E F G H

pad




What’s the probability of general hash function creating bijection?

# possible bijections (permutations)? N!
# possible assignments? NN
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What’s the probability of general hash function creating bijection?

N!
zJZT[N .- e-N

N
N \ /

By Stirling’s approximation &

A B C D E F G H
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What’s the probability of general hash function creating bijection?

NII-Too ~J21N -eN =0

What can we do instead?

A B C D E F G H
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\\._\_l VS

O NN




A B C D E F G H

NN\ L LA
Small amount of metadata Minimal Perfect
(few bits per entry)

O NN




A B C D E F G H

Small amount of metadata Minimal Perfect A data structure
(few bits per entry) Hash function (Fingerprinting)

O NN




Memory
(Bits / entry)

Q

Query cost Construction time

A B C D E F G H

NN\ 4 LS
Minimal Perfect A data structure
(Fingerprinting)

O NN




Fingerprinting

Fingerprinting-based Minimal Perfect Hashing Revisited. JEA 2023.
Piotr Beling.

Retrieval and Perfect Hashing using Fingerprinting. JEA 2014.
Ingo Mdller, Peter Sanders, Robert Schulze & Wei Zhou.

Fast and Scalable Minimal Perfect Hashing for Massive Key Sets. SEA 2017.
Antoine Limasset, Guillaume Rizk, Rayan Chikhi, Pierre Peterlongo.

Meraculous: de novo genome assembly with short paired-end reads. PloS one 2011.
Jarrod A. Chapman ,Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P. Schroth, Daniel S. Rokhsar

Perfect Hashing for Network Applications. ISIT 2006.
Yl Lu, Balaji Prabhakar, Flavio Bonomi.



Fingerprinting

Fast and Scalable Minimal Perfect Hashing for Massive Key Sets. SEA 2017.
Antoine Limasset, Guillaume Rizk, Rayan Chikhi, Pierre Peterlongo.

Accessible & Experimental
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Keys Bitmap B+

A B C Hash1
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Keys Bitmap B+
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Bitmap B Bitmap B> Continue
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Bitmap B1  Bitmap B> Continue
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Bitmap B+ Bitmap B>
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Bitmap B+ Bitmap B>

Bitmap Bs
i : Hashs B}] B
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Bitmap B1  Bitmap B2  Bitmap Bs
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Concatenate bitmaps

Bitmap B1  Bitmap B2  Bitmap Bs
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Concatenate bitmaps
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Bijection is now established :)
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Bijection is now established :)
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How to query?
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How to query?  Check bitmaps until finding 1
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How to query?  Check bitmaps until finding 1
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How to query?  Check bitmaps until finding 1
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How to query?  Check bitmaps until finding
Next? :)
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How to query?  Check bitmaps until finding
Rank on offset of first 1
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How to query?  Check bitmaps until finding
Rank on offset of first 1
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How to query?  Check bitmaps until finding
Rank on offset of first 1
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How to query?  Check bitmaps until finding
Rank on offset of first 1
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How to query?  Check bitmaps until finding
Rank on offset of first 1
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How to run rank quickly?




Rank(0) = 0
0
0
0
Rank(4) = 1 How to run rank quickly?
ﬂ Rank prefix sums as we saw 2 weeks ago
0
Rank(8) = 3
0

..



Rank array

How to run rank quickly?

Rank prefix sums as we saw 2 weeks ago

..



Rank array
0
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3

Rank(10)



Rank array
Rank(10) %
3

..



Rank array
Rank(10) %
3 \

Count additional 1s ‘[




Rank array
Rank(10) %
3

popcount(B & (2! - 1))



Total bitmap size?




Total bitmap size”

Tried 6 entries. 2 succeeded

Tried 4 entries. 2 succeeded
I Tried 2 entries. 2 succeeded

O >
m 0
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Total bitmap size?

# trials across all entries until success

Tried 6 entries. 2 succeeded

Tried 4 entries. 2 succeeded
I Tried 2 entries. 2 succeeded
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Total bitmap size”

# trials across all entries until success

Plentry succeeds in given iteration]?
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Total bitmap size”

# trials across all entries until success

Plentry succeeds in given iteration]
Poisson(A, 1)

A= 1

O >
m 0
LS,

A B
D E
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Total bitmap size”

# trials across all entries until success

Plentry succeeds in given iteration]
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Poisson(1,1) = e
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Total bitmap size”

# trials across all entries until success

Plentry succeeds in given iteration]
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Total bitmap size”

# trials across all entries until success
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Total bitmap size”
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Total bitmap size?

# trials across all entries until success

N-e Dbits
A B C
g D EF
0
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Total bitmap size?

# trials across all entries until success

N-e

I

Also our construction time :)
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Total bitmap size”

# trials across all entries until success

N-e

I

Also our construction time :)

# times each entry iIs hashed
A B

O >
m 0
LS,

-.



Worst Case Query cost?




Worst Case Query cost?

= # bitmaps to traverse
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Worst Case Query cost?
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Worst Case Query cost?

= # bitmaps to traverse
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Worst Case Query cost?

failing each iteration

= # bitmaps to traverse
G

= log base (N)
0
T
= 1
. .
0 Fraction of entries 1 o
0

=[]
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Worst Case Query cost?

= # bitmaps to traverse
0

m = log base (N)
0

!
0

1.58
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Worst Case Query cost?

= |log 1.58 (N)

=[]
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Worst Case Query cost?

= log 1.58 (N)

Is it really so bad?

=[]
*—o



s it really so bad?

+— Entries that hit 1 terminate immediately.

+— Only for very few entries we must go to end

-.



expected worst-case query cost?

-.



expected worst-case query cost?

1 access to first bit map

-.



expected worst-case query cost?

1 access to first bit map

(1 - e-1) chance to access second

-.



expected worst-case query cost?

1 access to first bit map

(1 - e-1) chance to access second

(1 - e-1)2 chance to access third

-.



expected worst-case query cost?

=1 +(1-e) + (1-e1)2+ (1-e1)8+...

-.



expected worst-case query cost?

=1+ (-el)+ (1-e)2+ (1-eT)p3+...
1

= = 2.72 = O(1)
e-1

-.



0

g Memory (bits) N-e

0 worst-case query cost O(log N)
0 expected worst-case query cost O(1)

0 Construction O(N)

-.



Is this the best we can do?

Memory (bits)

WwOorst-case query cost

expected worst-case query cost O(1)

Construction O(N)

-.



Lower Bound for Minimal Perfect Hashing (MPH)



Lower Bound for Minimal Perfect Hashing (MPH)

Assume nothing Analyze with respect
about implementation to specification




Lower Bound for Minimal Perfect Hashing (MPH)

Assume nothing Analyze with respect
about Implementation to specification

] —

0 —

=

e

0D =

N - # entries

Bijective (one-to-one)



Lower Bound for Minimal Perfect Hashing (MPH)

IMPHI + ?7? = |IPermutationl



Lower Bound for Minimal Perfect Hashing (MPH)

MPH| + ??? > |Permutation|

I

What data must we add to transform MPH into permutation? :)



Lower Bound for Minimal Perfect Hashing (MPH)

MPH| + ??? > |Permutation|

I

What data must we add to transform MPH into permutation? :)

The data itself! N - log2(N)



Lower Bound for Minimal Perfect Hashing (MPH)

IMPH| + N - logz(N) > |Permutation



Lower Bound for Minimal Perfect Hashing (MPH)

IMPH| + N - log2(N) > IPermutationl

I

How big is this?



Lower Bound for Minimal Perfect Hashing (MPH)

MPH| + N - loga(N) > loga(N!)

I

How big is this?



Lower Bound for Minimal Perfect Hashing (MPH)

IMPH| + N -1loga(N) > N - logz(N) + N - logz(e)

I

By Stirling’s approximation

\'/

<



Lower Bound for Minimal Perfect Hashing (MPH)

MPH| + N/bgz/(N) > N'/logz/(N) + N - logz(e)



Lower Bound for Minimal Perfect Hashing (MPH)

IMPHI = N logz(e)

We’'re done :)



Lower Bound Fingerprinting

N - logz(e) N-e



Lower Bound Fingerprinting

N - logz(e) N-e
1.44 bits / key 2.71 bits / key



Lower Bound Fingerprinting

N - logz(e) N-e

Not far off, but also not there...



Lower Bound Fingerprinting

N - logz(e) N-e

Not far off, but also not there...

Other methods push memory footprint lower :)



Perfect Hashing
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Minimal Dynamic

space-efficient more space
static data supports updates



Dynamic Perfect Hashing

N keys
A B C D E F

*—o 90— —90—90—0—0—9
more than N slots



Dynamic Perfect Hashing

Some slots can stay free



Dynamic Perfect Hashing

More flexibility :)

Some slots can stay free



Dynamic Perfect Hashing

A B C D E F

NN L L/
Perfect Hash

L NN\




Dynamic Perfect Hashing

A B C D E F

Just a data structure to Perfect Hash
ensure no collisions :) function

L NN\




Dynamic Perfect Hashing

A B C D E F

Just a data structure to Perfect Hash Can handle insertions!
ensure no collisions :) function

L NN\




Dynamic Perfect Hashing

F G

Just a data structure to Perfect Hash Can handle insertions!
ensure no collisions :) function




Dynamic Perfect Hashing

F G

Just a data structure to Perfect Hash Can handle insertions!
ensure no collisions :) function By adapting hash function

/\




Dynamic Perfect Hashing

F G

Just a data structure to Perfect Hash Can handle insertions!
ensure no collisions :) function By adapting hash function

/\

Catch: must be able to fetch original keys to to resolve new collisions



Dynamic Perfect Hashing

Storing a Sparse Table with 0(1) Worst Case Access Time. JACM 1984.
ML Fredman, J Komlos, E Szemerédi

The End of Moore's Law and the Rise of the Data Processor. VLDB 2021.
Niv Dayan, Moshe Twitto, Yuval Rochman, Uri Beiltler, Ital Ben Zion, Edward Bortnikov,

Shmuel Dashevsky, Ofer Frishman, Evgeni Ginzburg, Igal Maly, Avraham Meir, Mark
Mokryn, Iddo Naiss, Noam Rabinovich

Many more...



Dynamic Perfect Hashing

The End of Moore's Law and the Rise of the Data Processor. VLDB 2021.

Niv Dayan, Moshe Twitto, Yuval Rochman, Uri Beiltler, Ital Ben Zion, Edward Bortnikov,
Shmuel Dashevsky, Ofer Frishman, Evgeni Ginzburg, Igal Maly, Avraham Meir, Mark
Mokryn, Iddo Naiss, Noam Rabinovich

space-efficient, used In practice



Delta Hash Table

hash(X) =

hash(Y) =




Delta Hash Table

hash(X) = 010100110

hash(Y)= 010100110

0

Same slot



Delta Hash Table

hash(X) =

hash(Y) =

Q)



Build Trie capturing index of first different bit

hash(X) = 0

0 1
hash(Y) = 1

Q)



Build Trie capturing index of first different bit

hash(X) = 1

— 0 1
hash(Y) = 1
l_.__________________.

hash(Z)= O



Build Trie capturing index of first different bit

hash(X) = 1
].._______________.
hash(Y) = 1
l_.__________________.
hash(Z)= O



Build Trie capturing index of first different bit

hash(X) =
hash(Y) =
hash(Z) = 0
hash(Q) = 1

l-.__________________.



Build Trie capturing index of first different bit

hash(X) =

l..________________.

0 Q 1

hash(Y) =

l_._________________.
hash(Z) = 0

l_.__________.______.
hash(Q) = 1



Build Trie capturing index of first different bit

hash(X) =

hash(Y) =

hash(Z) =

hash(Q) =

hash(W) =

-



Build Trie capturing index of first different bit

hash(X) = , Q 1
hash(Y) =
—_
hash(Z) = 1 e 0
hash(Q) = 1 0 1
hash(W) = 0 Q

l-.______—___—_-___.



Place pointer/payload in leafs
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Existing keys are fully differentiated
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Existing keys are fully differentiated

A query to an existing key always

finds correct payload 0 Q 1

S h&
&



How about a query to non-existing key?

0 L

01 01
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How about a query to non-existing key?

Finds empty slot or returns Q
payload associated with some 0 1

other key
0 1 0 1
S h& &
3 &



How to encode this trie efficiently within a hash table bucket?
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How to encode this trie efficiently within a hash table bucket?

Encode # entries iIn unary: 111110

S h&
&



How to encode this trie efficiently within a hash table bucket?

Encode # entries in unary: 111110

0 1 Unary is ideal since trie Is

usually small (0-2 entries)
@g 1 @g 1
g 1



# entries
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# entries Trie topology?
111110
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# entries
111110
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Trie topology?

00 - no children

01 - one right child node
10 - one left child node
11 - two children
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Encode structure depth-first
11 01 00 00
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Trie topology??

00 - no children

01 - one right child node
10 - one left child node
11 - two children

Encode structure depth-first
11 01 00 66

I

Last bits always zero
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Trie topology??

00 - no children

01 - one right child node
10 - one left child node
11 - two children

Encode structure depth-first
11 01 00



# entries Topology
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Differentiating bit indexes?
Depth-first, unary
O 10 110 111110

child’s index is larger than
parent’s by at least 1



# entries Topology Differentiating bit indexes?
111110 11 01 00 Depth-first, unary
a O 10 110 111110

0 l
child’s index is larger than

parent’s by at least 1

d d 0 So let’s encode index as A - 1



# entries Topology Differentiating bit indexes?
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child’s index is larger than

parent’s by at least 1

d d 0 So let’s encode index as A - 1



# entries Topology Differentiating bit indexes?
111110 11 01 00 Depth-first, unary

000 11110
O

0 L
child’s index Is larger than

parent’s by at least 1

d CA{ 0 So let’s encode index as A - 1
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e.g., get(Q) where FP(Q)=01100 1



# entries
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Topology
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Indices Pointers
00011110 W Z Q X Y

FP(Q)=01100 1



# entries Topology Indices Pointers
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# entries Topology Indices Pointers
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# entries Topology Indices Pointers
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# entries Topology Indices Pointers
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# entries Topology Indices Pointers
111110 11 01 00 00011110 W Z2 Q X Y

! !

1 FP(Q =01100 1




# entries Topology Indices Pointers
111110 11 01 00 00011110 W Z2 Q X Y

»

FP(Q =01100 1




# entries Topology Indices Pointers
111110 11 01 00 00011110 W Z2 Q X Y
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# entries
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11 01 00
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Indices Pointers
00011110 W Z Q X Y

Since this encoding is var-length,
how do we store i1t in the hash table?



# entries Topology Indices Pointers

111110 11 01 00 00011110 W Z Q X Y
Q Since this encoding is var-length,
0 1 how do we store it in the hash table?
o e Note: all fields are self-delimiting

S h&
&



# entries Topology Indices Pointers
111110 11 01 00 00011110 W 2Z2 Q X Y
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Variable-length slot



Fixed-sized block

Multiple Variable-length slots



Multiple Variable-length slots



hash( X )=
—_— 4

. I

Block ID  SlotID Fingerprint

blocks
.................... NBEmmmmmmesosmssme—mes  meemeemmammeann—--
i i
i )
.................... O Y

Multiple Variable-length slots



Hash entry to some slot in
some block



Hash entry to some slot in
some block

Scan from
start of block



Hash entry to some slot in
some block

Insertion pushes all
other slots to right
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Overflow
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extension block



With more slots per block...

(1) (2)




With more slots per block...

(1) Less size variability (2) More to traverse
-> fewer overflows for queries/inserts




The structure Is not expandable and tuned
to support on avg. 1 entry per slot

e.d., 64 slots per block




How large is each slot?




How large is each slot?

#entries Topology Indices Pointers



#entries

Slot size X Encoding #Bits



#entries

Slot size X Encoding #Bits
0 0 1



#entries

Slot size X Encoding #Bits
0 0 1
1 10 2



#entries

Slot size X Encoding #Bits
0 0 1

0 1
] 10 2

2 110 3



Slot size X
0
1
2

Encoding
0
10
110
1110

#entries

#Bits
1

= @8 N




Slot size X
0

= @8 N

Encoding
0
10
110
1110
11110

#entries

#Bits
1
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#entries

Slot size X Encoding #Bits
0 0 1
1 10
110
1110
11110

Ol Ea o N
o) Ol B~ W N

111110



How large is each slot?

#entries Topology Indices Pointers



Topology

Slot size X Encoding #Bits
0 - 0



Topology

Slot size X Encoding #Bits
0 - 0
1 - 0



Slot size X Encoding
0 -
1 -
2 06~

Topology

#Bits



Topology

Slot size X Encoding #Bits

0 - 0
] - 0
2 -60- 0
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Indices

Slot size X #Bits

0 0
hash(X)= 01010...

1 0
2 ? T
diff with prob 0.5

First diff bit occurs after
2 DItS In expectation

Avg. of geometric dist. with prob 0.5
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Average

( #entries() + Topology() + Indices(i) )



Average

> Poisson(1, i) - (#entries(i) + Topology(i) + Indices(i) )
1=0



Average

> Poisson(1, i) - (#entries(i) + Topology(i) + Indices(i) )z 3 bits
1=0
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Reduce overflows
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Memory

Load factor
Avg. query
Insertions

Construction

Fingerprinting

~e-N

100%

Delta Hash
Table

~4 - N
~ 90%



And now, a student
presentation



