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Why do databases need to Sort?

User asking for
sorted output Creating an Index
(Select...order by...)

Joining Tables
(More later)
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If data fits In memory, traditional sorting algorithms work
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Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.
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Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left
3. Using cursors, draw the smallest element of the two lists each step
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Merge-Sort Analysis

Log(N) iterations, each of which traverses all N elements: O( N log2(N) ) CPU work
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Merge-Sort Analysis

Log(N) iterations, each of which traverses all N elements: O( N log2(N) ) CPU work

We need O(N) space by maintaining at most two lists at a time



If data fits In memory, traditional sorting algorithms work
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Quick-Sort

1. Pick random pivot point and initialize two pointers at ends
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Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue
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Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.
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Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue
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Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.
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Properties:

Quick-Sort

Expected O(N log2 N) worst-case
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Quick-Sort

Properties: Expected O(N log> N) worst-case
But can be O(N2) with low probability

(e.g., always pick minimum key as pivot)
Also uses sequential access, which is fast

In-place algorithm: no need for x2 space like merge-sort
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Merge-Sort

(More robust performance)
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Quick-Sort

(Less space & faster on avg.)



But what if data does not fit in memory?
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But what if data does not fit in memory?

:l:l_ll:l: M/B pages
E Unordered data (N/B pages)

how to sort based on things we’ve seen in class?



Baselines
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B-Tree




Insert data entries into a B-tree

Insert each
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Insert data entries into a B-tree

INnsert each

entry
scan /\ & \Q
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Traverse fully
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Insert data entries into a B-tree

INnsert each

entry
scan /\QA( v \Q

—_—
oite oite

— Append

Traverse fully

If internal nodes are in memory: O(N) reads & writes
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Insert entries into LSM-tree

Insert each

entry
scan /\ D
—— )

Unordered data Merge® ()



Insert entries into LSM-tree

INnsert each

entry
/\‘ ) scan
scan
—b C;%‘

Unordered data Merge™ () Ordered data



Insert entries into LSM-tree

INnsert each

entry
/\ Q%’%

Unordered data C_:__j Ordered data

With basic LSM-tree: O(N/B * log2(N/P)) reads & writes
(Regardless of whether internal nodes fit in memory)
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B-Tree LSM-Tree

1@\ O
O(N) O(N/B * logz(N/P))

Can we do better?
|deally we want O(N/B)



How can we efficiently sort data that doesn’t fit in memory?
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:[:_IEI:I: M/B pages
a Unordered data (N/B pages)

Think & then discuss with your neighbors




Multi-Way Merge-Sort

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files
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1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

B (oorea | 1 1




1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files
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1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

2. Allocate a buffer for each input file and merge into output stream.
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1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

2. Allocate a buffer for each input file and merge into output stream.
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Problem?

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

2. Allocate a buffer for each input file and merge into output stream.

E}D D D D




3. If we have little memory, may have to do multiple passes
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Analysis

How many merging iterations (passes) must we do?
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Analysis

How many merging iterations (passes) must we do?
Data is divided into N/M partitions
We have M/B buffers, so each iteration merges M/B partitions

Iterations = logm/s(N/M)

:I:I_l:.l: m M/B buffers

N/M partitions




Analysis

lterations = logwm/s(N/M)

Each iteration does a full pass over the data costing O(N/B)

:I:IEI:II: m M/B buffers

N/M partitions




Analysis

lterations = logwm/s(N/M)
Each iteration does a full pass over the data costing O(N/B)

Cost of Merging Phase: N/B - [logm/s(N/M) ]

:I:I_l:.l: m M/B buffers

N/M partitions




Analysis

Partitioning Phase Merging Phase
N/B 1/0s N/B - [logm/s(N/M)]

=E=:l= - (0 ESE%iS‘
t1 1 1

Soned
Globally sorted



Analyzing |/0O for External Sort

Partitioning Phase Merging Phase Total
N/B 1/Os + N/B - [logus(N/M)] = O(N/B - logwm/s(N/B))

=E=:l= - (0 ESE%iS‘
t1 1 1

Soned
Globally sorted



Impact of More Memory

O(N/B - logwa(N/B))

:l:lill:l: M/B pages
E N/B pages




Impact of More Memory

O(N/B - logwa(N/B))

T

Merging more partitions per pass

:l:lill:l: M/B pages
E N/B pages




How much memory to merge all partitions in one pass?

O(N/B - logwa(N/B))
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How much memory to merge all partitions in one pass?
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How much memory to merge all partitions in one pass?

Let logm/s(N/B) = 2 and solve for M

We get: M =+/N-B (Measured in entries)

Hence, memory can accommodate \/N/B buffers

:l:lill:l: M/B pages
E N/B pages




Two-Pass Merge Sort Algorithm

Use at least M =+/N-B memory to partition the data.

This creates at most N/M =+/N/B sorted partitons
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Two-Pass Merge Sort Algorithm

Use at least M =+/N-B memory to partition the data.

This creates at most N/M =+/N/B sorted partitons

Then merge in one pass using at most \/N/B iInput buffers

Cost: O(N/B)

:l:lill:l: M/B pages
E N/B pages




How much memory do we need in practice?

Assume 1 TB, 16 byte entries, and 4KB pages
N=236 entries. And with 4KB pages, B=28 entries.
We need M=+/N-B=4/2% =22 entries in memory, or 64 MB
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How much memory do we need in practice?

Assume 1 TB, 16 byte entries, and 4KB pages
N=236 entries. And with 4KB pages, B=28 entries.
We need M=+/N-B=4/2% =22 entries in memory, or 64 MB

Hence, for all practical purposes, a 2 pass sorting algorithm is practical.

:l:lill:l: M/B pages
E N/B pages




Achieved our goal of sorting using O(N/B) 1/0s using little memory :)
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Achieved our goal of sorting using O(N/B) |I/Os using little memory :)

But how about CPU overheads?

We still expect O(N - log2 N). Do we achieve it?

:l:lill:l: M/B pages
E N/B pages




Analyzing CPU
Partitioning Phase Merging Phase
merge &
1:-5; - 00D \\aorns

T???

Soned
Globally sorted



Partitioning Phase

Each chunk contains M entries
Need O(M - log2 M) CPU cycles to merge-sort it in-memory
Doing this for all N/M chunk takes O(N - log> M) CPU




Analyzing CPU

Partitioning Phase Merging Phase
O(N - logz M)

’E’} - (O 235%?15‘
111¢

Soned
Globally sorted



Merging Phase

maximum # partitions

to merge in one go? How do we merge them?

merge &
HI:D append
LI I
0 L -

Globally sorted



Merging Phase

# partitions to
merge in one go?

Merge two
partitions at a time

memory buffers (M/B)



Merging Phase

V/N/B .
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memory buffers (M/B)



Merging Phase

V/NIB .
# partitions to

- 2
merge in one go° Data fits in memory,

so 1 partition g

memory buffers (M/B)
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Merging Phase
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VN/B|  MIB NIM
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Merging Phase

| # buffers # partitions
— \N/B|  MIB NIM

Maximum # partitions
to merge in one go

memory buffers (M/B)



Merging Phase

maximum # partitions

to merge in one go? How to merge partitions?

\/N/B

merge &
D) "\ apend
Tttt
— ) -

Globally sorted



How to merge partitions?

\/N/B

TTT

Sorted G\ObaHy sorted



How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

V/N/B ;)
buffers 10
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How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

AREREE
buffers 9 | 1o | 10

T Read next page




How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

y 4 Y 6 O(\/N/B - N) comparisons
N/B
ol 7 3
buffers
ﬁ 1 2 o




How to merge partitions more efficiently?

\/N/B g 673 3
buffers 9 | 1o O



How to merge partitions more efficiently?

Discuss with your neighbors (2 min)

e 4 N
| I l' \‘
! A '\\ > y
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&

VNiB | 4| © >
buffers o 3
9 112 10




How to merge partitions more efficiently?

Insert

W

4 Y 0
E)/]:‘]f/B 5 | 7 3 Extract min
urrers 9 10 -ns 10
1 2
[ CER.

Globally sorted



Binary Min-Heap

Well-known data structure that efficiently extracts the minimum value in a
collection of data items

API Runtime
Insert(key) O(logz N)

Key = extract_min() O(log2 N)



Binary Min-Heap

Well-known data structure that efficiently extracts the minimum value in a
collection of data items

API Runtime
Insert(key) O(log2 N)
Key = extract_min() O(log2 N)

min_key = insert_and_extract(new _key) O(log2 N)
(efficiently combines both operations)



Binary Min-Heap

(1) Complete binary tree
(All levels are full & largest
level is full from left to right)
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Binary Min-Heap

(1) Complete binary tree (2) Parent key always
(All levels are full & largest smaller than children’s.

level is full from left to right)
N W
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Binary Min-Heap Insertion

Insert( 1)

PON

Add to first empty

O\ /
@ @ O slot at largest level



Binary Min-Heap Insertion

PON

Swap until parent
Is always smaller
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Binary Min-Heap Insertion

PON

Swap until parent
Is always smaller
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@ O



Binary Min-Heap Insertion

O(logz N) insertion cost

PON
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Binary Min-Heap Extract Minimum

"\ Return key at root to user.
@ ®
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Binary Min-Heap Extract Minimum

Set last key at last

O level to be new root
/ \

/TN
@ O



Binary Min-Heap Extract Minimum

@ Swap with smaller child
N W

®

VAN

@ @



Binary Min-Heap Extract Minimum

O(log2 N) min extraction cost

A
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Binary Min-Heap Insert & extract

min_key = insert_and_extract( new_key )

PON
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Binary Min-Heap Insert & extract

insert_and_extract( 10 )
Return root to user &

replace by new key
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Binary Min-Heap Insert & extract

Is always smaller

Swap until parent
N W

/N
@ @



Binary Min-Heap Insert & extract

Swap until parent @
N W

Is always smaller
VAR
OENO



Binary Min-Heap Insert & extract

O(log2 N) for insert_and_extract

PON
O ©
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Binary Min-Heap Implementation

Tree with Pointers Array

/@\ N N

() 67 ]on]rwo
@ Compact since the binary tree
Is complete. Avoids overhead

of pointers.



Binary Min-Heap Construction

We can construct a heap for N entries using normal insertions

takes O(N log2 N)
—

Unordered N keys



Binary Min-Heap Construction

We can construct a heap for N entries using normal insertions

takes O(N logz N)
T

Unordered N keys

We can do better :)



Binary Min-Heap Efficient Array Construction

olefafr]s|4fs

Start with Unordered N keys



Binary Min-Heap Efficient Array Construction

olefafr]s|4fs

W

We can infer which slots should be the parent of which other slots.



Handle
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olefzfr]s|4fs

W

For each parent node starting from right and moving left, swap until
every parent in sub-tree is smaller than its children



Handle (Do nothing)

l
olefz[r]s|4]s

W

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children



Handle (Swap w left child)

l
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For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children



Handle

l
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For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children



Handle (Swap w left child)

l
el1]zfe]sf4fs

NS

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children



Handle (Swap w left child)

l
tefefe]sf4fs

NS

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children



Handle (Swap w right child)

l
lefefe]sf4fs
S~ "

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children



Handle

l
sfefe]ef4fs
S~ "

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children



sfefe]ef4fs

Max swaps: 2 1 1 0 0 0 O



1]sf2fsfe]4]s
Max swaps: 2 1 1 0 0 0 O

Max swaps for a sub-tree is equal to its depth



fsf2]sfef4]s
Max swaps: 2+1+1+0+0+0+ 0= 0O(N)

Max swaps for a sub-tree is equal to its depth



sfefe]ef4fs

O(N) < O(Nlog2N) from before with pure
insertions



Side-Note on Heap-Sort

If data fits in memory, we can sort it using a heap

Construct heap in-
place in O(N)

extract N times until heap
y > is empty in O(N logz N)



Side-Note on Heap-Sort

If data fits in memory, we can sort it using a heap

Construct heap in-
place in O(N)

extract N times until heap
y > is empty in O(N logz N)

Can you do this in-place? :)



sfefe]ef4fs

W

Recall min-heap can be stored as compact array



1

Extract T

_Isfefe]ef4fs
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Extract T
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Rebalance



1

Store
Extract

2|sfafe]ol4]

Rebalance



2sfsfe]ef4lt

min-heap Output



Isfefe]ef4lt

min-heap Output



asfafe]e] |1

min-heap Output



3sfafe]of2]tr

min-heap Output



in-place algorithm :)

Extract T Store

min-heap Output



Downsides compared to quick-sort or merge-sort?

Extract T Store

min-heap Output



Downsides compared to quick-sort or merge-sort”?

Extract T Store

S "~
Output

Random access to rebalance



Heap-Sort
Worst case O(N log N)
In-place

More random access

Merge-Sort Quick-Sort
Worst case O(N log N) Avg. worst case O(N log N)
2X more space In-place

Seqguential access Sequential access



Heap-Sort
Worst case O(N log N)
In-place

More random access

Merge-Sort Quick-Sort
Worst case O(N log N) Avg. worst case O(N log N)
2X more space In-place

Seqguential access Sequential access



Now back to merging partitions in external merge-sort



How to merge partitions?

ine D

TTT

Sorted G\ObaHy sorted



How to merge partitions?

\/N/B Pick min
buffers

TTT

Globally sorted



How to merge partitions?

\/N/B Pick min OG“/N/B-N) comparisons
puffers

TTT

Globally sorted



\/N/B
buffers

Sorted G\ObaHy sorted



pair<key, buffer ID>

UL

buffers IDs: 3 /N/B

Sorted G\ObaHy sorted



pair<key, buffer ID>

buffers IDs: 2 3 \/N /B

Sorted G\ObaHy sorted



pair<key, buffer ID>

Keys:

buffers IDs:

Soﬁed

G\ObaHy sorted



Construct in O(y/N/B)

W

\/N/B
buffers

Sorted G\ObaHy sorted



\/N/B Extract min
~ Uffers e.g., <1, 2>

7N

key, buffer 1D

Sorted G\ObaHy sorted



Insert next key
from buffer 2

_— * (Min-Heap |

\/N/B Extract min
buffers e.g., <1, 2>
Sorted lll C:

Globally sorted



Insert next key
from buffer 2

_— * (Min-Heap |

\/N/B Em O og, <1.25
buffers e.g., <1, 2>
Append 1 to J

sorted list

Globally sorted



can do this with insert and extract

Insert

P S

\/N/B Extract
buffers

Append

Globally sorted



can do this with insert_and_extract: 0(log2\/N/B) per entry

Insert

P TS

\/N/B Extract
buffers

Append

Globally sorted



can do this with insert_and_extract: O(log,\/N/B)
O(N - log,\/N/B) overall

Insert

(e

\/N/B Extract
buffers

Append

Globally sorted



Analyzing CPU

Partitioning Phase Merging Phase
O(N - log,M) O(N - log,\/N/B)

@: - 00\

T???

Soned
Globally sorted



Analyzing CPU

Partitioning Phase Merging Phase
O(N - log,M) O(N - log,\/N/B)
= O(N - logz\/N- B)

@: - 00\

T???

Soned
Globally sorted




Analyzing CPU

Partitioning Phase Merging Phase Total cost

O(N - log:\/N - B) + O(N - log,\/NIB) = O(N - log,;N)

=¢=:|= D N

T???

Soned
Globally sorted



Same as in-memory algorithms :)

O(N - log,N)

=E=:l= - 00\

T???

Soned
Globally sorted



Overall costs

O(N - log;N) CPU
O(N/B - logys(N/B)) 1/0

@: - 00\ e

T???

Soned
Globally sorted



Overall costs

O(N - log;N) CPU
O(N/B - logys(N/B)) 1/0 or OWN/B) when M>+/N-B

@: - 00\

T???

Soned
Globally sorted



And now: TA office hours



Suppose we need next min entry from buffer 2 but it is empty.

o
g
Q§ mmn

puffersIDs: 1 2 3  /N/B

= )




Suppose we need next min entry from buffer 2 but it is empty.

o
g
Q§ mmn

i must wait for a read 1/0 to complete

= )



Double buffering: load one additional buffer preemptively for each partition
before the first buffer empties

—
g

puffersIDs: 1 1" 2 2" \/N/B+/NIB

=)




Double buffering: load one additional buffer preemptively for each partition
before the first buffer empties

(e

5 S > While I/0 takes place into buffer 2,
& we can still read from buffer 2’

buffers IDs: i

= )



Larger though fewer buffers: more groups, so potentially more iterations,
but each I/0O reads more data

= )



