External Sorting

Database System Technology

Niv Dayan

@
“%Z a AN
Midterm next TA office hours Extra office
week after class hours (TBD)

Why do databases need to Sort?

User asking for
sorted output Creating an Index
(Select...order by...)

Joining Tables
(More later)

O

— I —
l: d%d%@ D N D

If data fits In memory, traditional sorting algorithms work

) v
(_JC_)
OO0))

Merge-Sort Quick-Sort

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

EOEEE@E@E)

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left

EOEEE@E@E)

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left

0000000000

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left
3. Using cursors, draw the smallest element of the two lists each step

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left
3. Using cursors, draw the smallest element of the two lists each step

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left
3. Using cursors, draw the smallest element of the two lists each step

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left
3. Using cursors, draw the smallest element of the two lists each step

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left
3. Using cursors, draw the smallest element of the two lists each step

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left
3. Using cursors, draw the smallest element of the two lists each step

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left
3. Using cursors, draw the smallest element of the two lists each step

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left
3. Using cursors, draw the smallest element of the two lists each step

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2. Merge two adjacent sublists at a time until there is one left
3. Using cursors, draw the smallest element of the two lists each step

2 3 4 5 7 8 9 10

Merge-Sort Analysis

Log(N) iterations, each of which traverses all N elements: O(N log2(N)) CPU work

0000000000

Merge-Sort Analysis

Log(N) iterations, each of which traverses all N elements: O(N log2(N)) CPU work

We need O(N) space by maintaining at most two lists at a time

If data fits In memory, traditional sorting algorithms work

) v
(_JC_)
OO0))

Merge-Sort Quick-Sort

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

10 2 4 5 3 9 7 8 1 ©

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

10 2 4 5 3 9 /7 8 1 ©

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

™

1 2 4 &5 3 9 7 8 10 6

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

™

1 2 4 3 5 9 7 8 10 6

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.

l'_

!

1 2 4 3 5 9 7 8 10 6

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.

g

e

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.

g

e

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.

1 2 3 415 6 7 8 10 9

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

3. Swap pair of out-of-order entries and continue

4. Continue recursively on both partitions around pivot.

™

o—e

Properties:

Quick-Sort

Expected O(N log2 N) worst-case

10

Properties:

Quick-Sort

Expected O(N log2 N) worst-case

Can it be worse?

10

Properties:

Quick-Sort

Expected O(N log2 N) worst-case
But can be O(N2) with low probability

10

Properties:

Quick-Sort

Expected O(N log2 N) worst-case
But can be O(N2) with low probability

(e.g., always pick minimum key as pivot)

Quick-Sort

Properties: Expected O(N log> N) worst-case
But can be O(N2) with low probability

(e.g., always pick minimum key as pivot)

Also uses sequential access, which iIs fast

Quick-Sort

Properties: Expected O(N log> N) worst-case
But can be O(N2) with low probability

(e.g., always pick minimum key as pivot)
Also uses sequential access, which is fast

In-place algorithm: no need for x2 space like merge-sort

)
(_JC_)
OO0

Merge-Sort

(More robust performance)

))

Quick-Sort

(Less space & faster on avg.)

But what if data does not fit in memory?

:l:l_ll:l: M/B pages
E Unordered data (N/B pages)

But what if data does not fit in memory?

:l:l_ll:l: M/B pages
E Unordered data (N/B pages)

how to sort based on things we’ve seen in class?

Baselines

E)jq Merge

)

Log-Structured
Merge-Tree

B-Tree

Insert data entries into a B-tree

Insert each

e"t”’/}@\@

TR =
oieolte

Insert data entries into a B-tree

INnsert each

entry
scan /\ & \Q
9l

—-—-——-—-—————-———-—) mEm
oite oite

— Append

Traverse fully

Insert data entries into a B-tree

INnsert each

entry
scan /\QA(v \Q

—_—
oite oite

— Append

ITraverse fully

If internal nodes are in storage: O(N logs N) reads & O(N) writes

Insert data entries into a B-tree

INnsert each

entry
scan /\QA(v \Q

—_—
oite oite

— Append

Traverse fully

If internal nodes are in memory: O(N) reads & writes

Baselines

O
(=
)

Log-Structured
Merge-Tree

B-Tree

Insert entries into LSM-tree

Insert each

entry
scan /\ D
——)

Unordered data Merge® ()

Insert entries into LSM-tree

INnsert each

entry
/\‘) scan
scan
—b C;%‘

Unordered data Merge™ () Ordered data

Insert entries into LSM-tree

INnsert each

entry
/\ Q%’%

Unordered data C_:__j Ordered data

With basic LSM-tree: O(N/B * log2(N/P)) reads & writes
(Regardless of whether internal nodes fit in memory)

B-Tree LSM-Tree
O

¥ -
o)) (=
O--OO-O)

ON) ON/B * logz(N/P))

B-Tree LSM-Tree

1@\ O
O(N) O(N/B * logz(N/P))

Can we do better?
|deally we want O(N/B)

How can we efficiently sort data that doesn’t fit in memory?

7y

:[:_IEI:I: M/B pages
a Unordered data (N/B pages)

Think & then discuss with your neighbors

Multi-Way Merge-Sort

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

@)
= S G R G

Multi-Way Merge-Sort

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

E o)

S S

Multi-Way Merge-Sort

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

B (oorea | 1 1

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

-

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

2. Allocate a buffer for each input file and merge into output stream.

@) ¢ ¢ § T
o (sore) sored J(_soried J(_sored |

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

2. Allocate a buffer for each input file and merge into output stream.

E}D D D D

Problem?

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

2. Allocate a buffer for each input file and merge into output stream.

E}D D D D

3. If we have little memory, may have to do multiple passes

?

@0 0
-

3. If we have little memory, may have to do multiple passes

/%.
@:t o

3. If we have little memory, may have to do multiple passes

{g} () J 0
:
E)

Analysis

How many merging iterations (passes) must we do?

:l:lill:l: M/B pages
E N/B pages

Analysis

How many merging iterations (passes) must we do?

Data is divided into N/M partitions

&]
-l S G G G

N/M partitions

Analysis

How many merging iterations (passes) must we do?

Data is divided into N/M partitions

We have M/B buffers, so each iteration merges M/B partitions

:I:I_l:.l: m M/B buffers

N/M partitions

Analysis

How many merging iterations (passes) must we do?
Data is divided into N/M partitions
We have M/B buffers, so each iteration merges M/B partitions

Iterations = logm/s(N/M)

:I:I_l:.l: m M/B buffers

N/M partitions

Analysis

lterations = logwm/s(N/M)

Each iteration does a full pass over the data costing O(N/B)

:I:IEI:II: m M/B buffers

N/M partitions

Analysis

lterations = logwm/s(N/M)
Each iteration does a full pass over the data costing O(N/B)

Cost of Merging Phase: N/B - [logm/s(N/M)]

:I:I_l:.l: m M/B buffers

N/M partitions

Analysis

Partitioning Phase Merging Phase
N/B 1/0s N/B - [logm/s(N/M)]

=E=:l= - (0 ESE%iS‘
t1 1 1

Soned
Globally sorted

Analyzing |/0O for External Sort

Partitioning Phase Merging Phase Total
N/B 1/Os + N/B - [logus(N/M)] = O(N/B - logwm/s(N/B))

=E=:l= - (0 ESE%iS‘
t1 1 1

Soned
Globally sorted

Impact of More Memory

O(N/B - logwa(N/B))

:l:lill:l: M/B pages
E N/B pages

Impact of More Memory

O(N/B - logwa(N/B))

T

Merging more partitions per pass

:l:lill:l: M/B pages
E N/B pages

How much memory to merge all partitions in one pass?

O(N/B - logwa(N/B))

:l:lill:l: M/B pages
E N/B pages

How much memory to merge all partitions in one pass?

Let logm/s(N/B) = 2 and solve for M

:l:lill:l: M/B pages
E N/B pages

How much memory to merge all partitions in one pass?

Let logm/s(N/B) = 2 and solve for M

We get: M =+/N-B (Measured in entries)

:l:lill:l: M/B pages
E N/B pages

How much memory to merge all partitions in one pass?

Let logm/s(N/B) = 2 and solve for M

We get: M =+/N-B (Measured in entries)

Hence, memory can accommodate \/N/B buffers

:l:lill:l: M/B pages
E N/B pages

Two-Pass Merge Sort Algorithm

Use at least M =+/N-B memory to partition the data.

This creates at most N/M =+/N/B sorted partitons

:l:lill:l: M/B pages
E N/B pages

Two-Pass Merge Sort Algorithm

Use at least M =+/N-B memory to partition the data.

This creates at most N/M =+/N/B sorted partitons

Then merge in one pass using at most \/N/B iInput buffers

:l:lill:l: M/B pages
E N/B pages

Two-Pass Merge Sort Algorithm

Use at least M =+/N-B memory to partition the data.

This creates at most N/M =+/N/B sorted partitons

Then merge in one pass using at most \/N/B iInput buffers

Cost: O(N/B)

:l:lill:l: M/B pages
E N/B pages

How much memory do we need in practice?

Assume 1 TB, 16 byte entries, and 4KB pages
N=236 entries. And with 4KB pages, B=28 entries.
We need M=+/N-B=4/2% =22 entries in memory, or 64 MB

:l:lill:l: M/B pages
E N/B pages

How much memory do we need in practice?

Assume 1 TB, 16 byte entries, and 4KB pages
N=236 entries. And with 4KB pages, B=28 entries.
We need M=+/N-B=4/2% =22 entries in memory, or 64 MB

Hence, for all practical purposes, a 2 pass sorting algorithm is practical.

:l:lill:l: M/B pages
E N/B pages

Achieved our goal of sorting using O(N/B) 1/0s using little memory :)

:l:lill:l: M/B pages
E N/B pages

Achieved our goal of sorting using O(N/B) |I/Os using little memory :)

But how about CPU overheads?

We still expect O(N - log2 N). Do we achieve it?

:l:lill:l: M/B pages
E N/B pages

Analyzing CPU
Partitioning Phase Merging Phase
merge &
1:-5; - 00D \\aorns

T???

Soned
Globally sorted

Partitioning Phase

Each chunk contains M entries
Need O(M - log2 M) CPU cycles to merge-sort it in-memory
Doing this for all N/M chunk takes O(N - log> M) CPU

Analyzing CPU

Partitioning Phase Merging Phase
O(N - logz M)

’E’} - (O 235%?15‘
111¢

Soned
Globally sorted

Merging Phase

maximum # partitions

to merge in one go? How do we merge them?

merge &
HI:D append
LI I
0 L -

Globally sorted

Merging Phase

partitions to
merge in one go?

Merge two
partitions at a time

memory buffers (M/B)

Merging Phase

V/N/B .
partitions to | 2-pass merge-sort
merge in one go?

memory buffers (M/B)

Merging Phase

V/NIB .
partitions to

- 2
merge in one go° Data fits in memory,

so 1 partition g

memory buffers (M/B)

Merging Phase

V/N/B
partitions to
merge in one go?

memory buffers (M/B)

Merging Phase

| # buffers # partitions
VN/B| MIB NIM

partitions to
merge in one go?

memory buffers (M/B)

Merging Phase

| # buffers # partitions
— \N/B| MIB NIM

Maximum # partitions
to merge in one go

memory buffers (M/B)

Merging Phase

maximum # partitions

to merge in one go? How to merge partitions?

\/N/B

merge &
D) "\ apend
Tttt
—) -

Globally sorted

How to merge partitions?

\/N/B

TTT

Sorted G\ObaHy sorted

How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

V/N/B ;)
buffers 10

I

Globally sorted

How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

V/N/B ;)
buffers 10

I

Globally sorted

How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

\/N/B
buffers

Globally sorted

How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

\/N/B
buffers

Globally sorted

How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

\/N/B
buffers

Globally sorted

How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

\/N/B
buffers

Globally sorted

How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

AREREE
buffers 9 | 1o | 10

T Read next page

How to merge partitions”?

Simple solution: Traverse all buffers and pick minimum

y 4 Y 6 O(\/N/B - N) comparisons
N/B
ol 7 3
buffers
ﬁ 1 2 o

How to merge partitions more efficiently?

\/N/B g 673 3
buffers 9 | 1o O

How to merge partitions more efficiently?

Discuss with your neighbors (2 min)

e 4 N
| I l' \‘
! A '\\ > y
.__»7
&

VNiB | 4| © >
buffers o 3
9 112 10

How to merge partitions more efficiently?

Insert

W

4 Y 0
E)/]:‘]f/B 5 | 7 3 Extract min
urrers 9 10 -ns 10
1 2
[CER.

Globally sorted

Binary Min-Heap

Well-known data structure that efficiently extracts the minimum value in a
collection of data items

API Runtime
Insert(key) O(logz N)

Key = extract_min() O(log2 N)

Binary Min-Heap

Well-known data structure that efficiently extracts the minimum value in a
collection of data items

API Runtime
Insert(key) O(log2 N)
Key = extract_min() O(log2 N)

min_key = insert_and_extract(new _key) O(log2 N)
(efficiently combines both operations)

Binary Min-Heap

(1) Complete binary tree
(All levels are full & largest
level is full from left to right)

PON

/TN
O O

Binary Min-Heap

(1) Complete binary tree (2) Parent key always
(All levels are full & largest smaller than children’s.

level is full from left to right)
N W

/N
@ @

Binary Min-Heap Insertion

Insert(1)

PON

Add to first empty

O\ /
@ @ O slot at largest level

Binary Min-Heap Insertion

PON

Swap until parent
Is always smaller

/TN
@ OO

Binary Min-Heap Insertion

PON

Swap until parent
Is always smaller

/TN
@ O

Binary Min-Heap Insertion

O(logz N) insertion cost

PON
OO

VAN /

@ OO

Binary Min-Heap Extract Minimum

"\ Return key at root to user.
@ ®

/TN
@ O

Binary Min-Heap Extract Minimum

Set last key at last

O level to be new root
/ \

/TN
@ O

Binary Min-Heap Extract Minimum

@ Swap with smaller child
N W

®

VAN

@ @

Binary Min-Heap Extract Minimum

O(log2 N) min extraction cost

A
®

VAN

@ @

Binary Min-Heap Insert & extract

min_key = insert_and_extract(new_key)

PON

VAN

@ @

Binary Min-Heap Insert & extract

insert_and_extract(10)
Return root to user &

replace by new key

A
OO

VAN

@ @

Binary Min-Heap Insert & extract

Is always smaller

Swap until parent
N W

/N
@ @

Binary Min-Heap Insert & extract

Swap until parent @
N W

Is always smaller
VAR
OENO

Binary Min-Heap Insert & extract

O(log2 N) for insert_and_extract

PON
O ©

VAN

O

Binary Min-Heap Implementation

Tree with Pointers Array

/@\ N N

() 67]on]rwo
@ Compact since the binary tree
Is complete. Avoids overhead

of pointers.

Binary Min-Heap Construction

We can construct a heap for N entries using normal insertions

takes O(N log2 N)
—

Unordered N keys

Binary Min-Heap Construction

We can construct a heap for N entries using normal insertions

takes O(N logz N)
T

Unordered N keys

We can do better :)

Binary Min-Heap Efficient Array Construction

olefafr]s|4fs

Start with Unordered N keys

Binary Min-Heap Efficient Array Construction

olefafr]s|4fs

W

We can infer which slots should be the parent of which other slots.

Handle

!
AT

olefzfr]s|4fs

W

For each parent node starting from right and moving left, swap until
every parent in sub-tree is smaller than its children

Handle (Do nothing)

l
olefz[r]s|4]s

W

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children

Handle (Swap w left child)

l
olsfzf1]s|4]s
S~ "

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children

Handle

l
ol1]zfe]s|4]s
S~ "

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children

Handle (Swap w left child)

l
el1]zfe]sf4fs

NS

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children

Handle (Swap w left child)

l
tefefe]sf4fs

NS

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children

Handle (Swap w right child)

l
lefefe]sf4fs
S~ "

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children

Handle

l
sfefe]ef4fs
S~ "

For each parent node starting from right and moving left, swap until
every parent in sub-tree i1s smaller than its children

sfefe]ef4fs

Max swaps: 2 1 1 0 0 0 O

1]sf2fsfe]4]s
Max swaps: 2 1 1 0 0 0 O

Max swaps for a sub-tree is equal to its depth

fsf2]sfef4]s
Max swaps: 2+1+1+0+0+0+ 0= 0O(N)

Max swaps for a sub-tree is equal to its depth

sfefe]ef4fs

O(N) < O(Nlog2N) from before with pure
insertions

Side-Note on Heap-Sort

If data fits in memory, we can sort it using a heap

Construct heap in-
place in O(N)

extract N times until heap
y > is empty in O(N logz N)

Side-Note on Heap-Sort

If data fits in memory, we can sort it using a heap

Construct heap in-
place in O(N)

extract N times until heap
y > is empty in O(N logz N)

Can you do this in-place? :)

sfefe]ef4fs

W

Recall min-heap can be stored as compact array

1

Extract T

_Isfefe]ef4fs

1

Extract T

2|sfsfe]of4]

Rebalance

1

Store
Extract

2|sfafe]ol4]

Rebalance

2sfsfe]ef4lt

min-heap Output

Isfefe]ef4lt

min-heap Output

asfafe]e] |1

min-heap Output

3sfafe]of2]tr

min-heap Output

in-place algorithm :)

Extract T Store

min-heap Output

Downsides compared to quick-sort or merge-sort?

Extract T Store

min-heap Output

Downsides compared to quick-sort or merge-sort”?

Extract T Store

S "~
Output

Random access to rebalance

Heap-Sort
Worst case O(N log N)
In-place

More random access

Merge-Sort Quick-Sort
Worst case O(N log N) Avg. worst case O(N log N)
2X more space In-place

Seqguential access Sequential access

Heap-Sort
Worst case O(N log N)
In-place

More random access

Merge-Sort Quick-Sort
Worst case O(N log N) Avg. worst case O(N log N)
2X more space In-place

Seqguential access Sequential access

Now back to merging partitions in external merge-sort

How to merge partitions?

ine D

TTT

Sorted G\ObaHy sorted

How to merge partitions?

\/N/B Pick min
buffers

TTT

Globally sorted

How to merge partitions?

\/N/B Pick min OG“/N/B-N) comparisons
puffers

TTT

Globally sorted

\/N/B
buffers

Sorted G\ObaHy sorted

pair<key, buffer ID>

UL

buffers IDs: 3 /N/B

Sorted G\ObaHy sorted

pair<key, buffer ID>

buffers IDs: 2 3 \/N /B

Sorted G\ObaHy sorted

pair<key, buffer ID>

Keys:

buffers IDs:

Soﬁed

G\ObaHy sorted

Construct in O(y/N/B)

W

\/N/B
buffers

Sorted G\ObaHy sorted

\/N/B Extract min
~ Uffers e.g., <1, 2>

7N

key, buffer 1D

Sorted G\ObaHy sorted

Insert next key
from buffer 2

_— * (Min-Heap |

\/N/B Extract min
buffers e.g., <1, 2>
Sorted lll C:

Globally sorted

Insert next key
from buffer 2

_— * (Min-Heap |

\/N/B Em O og, <1.25
buffers e.g., <1, 2>
Append 1 to J

sorted list

Globally sorted

can do this with insert and extract

Insert

P S

\/N/B Extract
buffers

Append

Globally sorted

can do this with insert_and_extract: 0(log2\/N/B) per entry

Insert

P TS

\/N/B Extract
buffers

Append

Globally sorted

can do this with insert_and_extract: O(log,\/N/B)
O(N - log,\/N/B) overall

Insert

(e

\/N/B Extract
buffers

Append

Globally sorted

Analyzing CPU

Partitioning Phase Merging Phase
O(N - log,M) O(N - log,\/N/B)

@: - 00\

T???

Soned
Globally sorted

Analyzing CPU

Partitioning Phase Merging Phase
O(N - log,M) O(N - log,\/N/B)
= O(N - logz\/N- B)

@: - 00\

T???

Soned
Globally sorted

Analyzing CPU

Partitioning Phase Merging Phase Total cost

O(N - log:\/N - B) + O(N - log,\/NIB) = O(N - log,;N)

=¢=:|= D N

T???

Soned
Globally sorted

Same as in-memory algorithms :)

O(N - log,N)

=E=:l= - 00\

T???

Soned
Globally sorted

Overall costs

O(N - log;N) CPU
O(N/B - logys(N/B)) 1/0

@: - 00\ e

T???

Soned
Globally sorted

Overall costs

O(N - log;N) CPU
O(N/B - logys(N/B)) 1/0 or OWN/B) when M>+/N-B

@: - 00\

T???

Soned
Globally sorted

And now: TA office hours

Suppose we need next min entry from buffer 2 but it is empty.

o
g
Q§ mmn

puffersIDs: 1 2 3 /N/B

=)

Suppose we need next min entry from buffer 2 but it is empty.

o
g
Q§ mmn

i must wait for a read 1/0 to complete

=)

Double buffering: load one additional buffer preemptively for each partition
before the first buffer empties

—
g

puffersIDs: 1 1" 2 2" \/N/B+/NIB

=)

Double buffering: load one additional buffer preemptively for each partition
before the first buffer empties

(e

5 S > While I/0 takes place into buffer 2,
& we can still read from buffer 2’

buffers IDs: i

=)

Larger though fewer buffers: more groups, so potentially more iterations,
but each I/0O reads more data

=)

