
Niv Dayan

External Sorting
Database System Technology

Midterm next
week

TA office hours
after class

Extra office
hours (TBD)

Why do databases need to Sort?

Creating an Index Joining Tables

(More later)

User asking for
sorted output

(Select…order by…)

…

…

…
⋈

A B CB

If data fits in memory, traditional sorting algorithms work

Merge-Sort Quick-Sort

Merge-Sort

10 2 4 5 3 9 7 8 1 6

1. Given n entries, divide them into n sublists, each containing one element.

Merge-Sort

2. Merge two adjacent sublists at a time until there is one left
1. Given n entries, divide them into n sublists, each containing one element.

10 2 4 5 3 9 7 8 1 6

2 10 4 5 3 9 7 8 1 6

Merge-Sort

2 10 4 5 3 9 7 8 1 6

2 4 5 10 3 7 8 9 1 6

1. Given n entries, divide them into n sublists, each containing one element.
2. Merge two adjacent sublists at a time until there is one left

10 2 4 5 3 9 7 8 1 6

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2 4 5 10

2. Merge two adjacent sublists at a time until there is one left

3 7 8 9

3. Using cursors, draw the smallest element of the two lists each step

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

2 4 5 10

2. Merge two adjacent sublists at a time until there is one left

3 7 8 9

3. Using cursors, draw the smallest element of the two lists each step

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

4 5 10

2. Merge two adjacent sublists at a time until there is one left

3 7 8 9

3. Using cursors, draw the smallest element of the two lists each step

2

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

4 5 10

2. Merge two adjacent sublists at a time until there is one left

7 8 9

3. Using cursors, draw the smallest element of the two lists each step

2 3

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

5 10

2. Merge two adjacent sublists at a time until there is one left

7 8 9

3. Using cursors, draw the smallest element of the two lists each step

2 3 4

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

5

10

2. Merge two adjacent sublists at a time until there is one left

7 8 9

3. Using cursors, draw the smallest element of the two lists each step

2 3 4

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

5

10

2. Merge two adjacent sublists at a time until there is one left

7

8 9

3. Using cursors, draw the smallest element of the two lists each step

2 3 4

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

5

10

2. Merge two adjacent sublists at a time until there is one left

7

9

3. Using cursors, draw the smallest element of the two lists each step

2 3 4 8

Merge-Sort

1. Given n entries, divide them into n sublists, each containing one element.

5 10

2. Merge two adjacent sublists at a time until there is one left

7 9

3. Using cursors, draw the smallest element of the two lists each step

2 3 4 8

5 107 9 1 62 3 4 8

2 10 4 5 3 9 7 8 1 6

2 4 5 10 3 7 8 9 1 6

10 2 4 5 3 9 7 8 1 6

1 52 3 4 6 107 98

log2(N) iterations

Log(N) iterations, each of which traverses all N elements: O(N log2(N)) CPU work

Merge-Sort Analysis

5 107 9 1 62 3 4 8

1 52 3 4 6 107 98
O(N) space

Merge-Sort Analysis

We need O(N) space by maintaining at most two lists at a time

Log(N) iterations, each of which traverses all N elements: O(N log2(N)) CPU work

If data fits in memory, traditional sorting algorithms work

Merge-Sort Quick-Sort

Quick-Sort

10 2 4 5 3 9 7 8 1 6

1. Pick random pivot point and initialize two pointers at ends

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends

10 2 4 5 3 9 7 8 1 6

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

10 2 4 5 3 9 7 8 1 6

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

10 2 4 5 3 9 7 8 1 6

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot
3. Swap pair of out-of-order entries and continue

10 2 4 5 3 9 7 8 1 6

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 4 5 3 9 7 8 10 6

3. Swap pair of out-of-order entries and continue

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 4 5 3 9 7 8 10 6

3. Swap pair of out-of-order entries and continue

Quick-Sort

1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 4 3 5 9 7 8 10 6

3. Swap pair of out-of-order entries and continue

Quick-Sort
1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 4 3 5 9 7 8 10 6

3. Swap pair of out-of-order entries and continue
4. Continue recursively on both partitions around pivot.

Quick-Sort
1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 4 3 5 9 7 8 10 6

3. Swap pair of out-of-order entries and continue
4. Continue recursively on both partitions around pivot.

Quick-Sort
1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 4 3 5 9 7 8 10 6

3. Swap pair of out-of-order entries and continue
4. Continue recursively on both partitions around pivot.

Quick-Sort
1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 3 4 5 9 7 8 10 6

3. Swap pair of out-of-order entries and continue
4. Continue recursively on both partitions around pivot.

Quick-Sort
1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 3 4 5 9 7 8 10 6

3. Swap pair of out-of-order entries and continue
4. Continue recursively on both partitions around pivot.

Quick-Sort
1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 3 4 5 9 7 8 10 6

3. Swap pair of out-of-order entries and continue
4. Continue recursively on both partitions around pivot.

Quick-Sort
1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 3 4 5 6 7 8 10 9

3. Swap pair of out-of-order entries and continue
4. Continue recursively on both partitions around pivot.

Quick-Sort
1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 3 4 5 6 7 8 10 9

3. Swap pair of out-of-order entries and continue
4. Continue recursively on both partitions around pivot.

Quick-Sort
1. Pick random pivot point and initialize two pointers at ends
2. Move each pointer towards pivot, stopping at first out-of-order value
respect to pivot

1 2 3 4 5 6 7 8 10 9

3. Swap pair of out-of-order entries and continue
4. Continue recursively on both partitions around pivot.

Quick-Sort

Properties:

1 2 3 4 5 6 7 8 9 10

Expected O(N log2 N) worst-case

Quick-Sort

Properties:

1 2 3 4 5 6 7 8 9 10

Expected O(N log2 N) worst-case

Can it be worse?

Quick-Sort

Properties: Expected O(N log2 N) worst-case
O(N2)But can be with low probability

1 2 3 4 5 6 7 8 9 10

Quick-Sort

Properties: Expected O(N log2 N) worst-case
O(N2)But can be with low probability

(e.g., always pick minimum key as pivot)

1 2 3 4 5 6 7 8 9 10

Quick-Sort

Properties: Expected O(N log2 N) worst-case
O(N2)But can be with low probability

1 2 3 4 5 6 7 8 9 10

Also uses sequential access, which is fast

(e.g., always pick minimum key as pivot)

Quick-Sort

Properties: Expected O(N log2 N) worst-case
O(N2)But can be with low probability

1 2 3 4 5 6 7 8 9 10

In-place algorithm: no need for x2 space like merge-sort

(e.g., always pick minimum key as pivot)

Also uses sequential access, which is fast

Merge-Sort Quick-Sort

(Less space & faster on avg.)(More robust performance)

But what if data does not fit in memory?

Unordered data (N/B pages)

M/B pages

But what if data does not fit in memory?

Unordered data (N/B pages)

M/B pages

how to sort based on things we’ve seen in class?

Baselines

B-Tree Log-Structured
Merge-Tree

…

…

…

Merge

Insert data entries into a B-tree

…

…

…Unordered data

scan

Insert each
entry

Insert data entries into a B-tree

…

…

…Unordered data

scan

Traverse fully

Ordered data

Append

Insert each

entry

If internal nodes are in storage: O(N logB N) reads & O(N) writes

…

…

…Unordered data

scan

Traverse fully

Ordered data

Insert each

entry

Insert data entries into a B-tree

Append

If internal nodes are in memory: O(N) reads & writes

…

…

…Unordered data

scan

Traverse fully

Ordered data

Insert each

entry

Insert data entries into a B-tree

Append

Baselines

B-Tree Log-Structured
Merge-Tree

…

…

…

Insert entries into LSM-tree

Unordered data

scan

Insert each
entry

Merge

Insert entries into LSM-tree

Unordered data

scan

Insert each

entry

Merge

scan

Ordered data

Insert entries into LSM-tree

Unordered data

scan

Insert each

entry

scan

Ordered data

With basic LSM-tree: O(N/B * log2(N/P)) reads & writes
(Regardless of whether internal nodes fit in memory)

LSM-TreeB-Tree

…

…

…

O(N) O(N/B * log2(N/P))

LSM-TreeB-Tree

…

…

…

O(N) O(N/B * log2(N/P))

Can we do better?
 Ideally we want O(N/B)

How can we efficiently sort data that doesn’t fit in memory?

Think & then discuss with your neighbors

Unordered data (N/B pages)

M/B pages

Multi-Way Merge-Sort

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

Multi-Way Merge-Sort

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

sort

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

sorted

Multi-Way Merge-Sort

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

sorted sorted sorted sorted

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

sorted sorted sorted sorted

2. Allocate a buffer for each input file and merge into output stream.

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

sorted sorted sorted sorted

2. Allocate a buffer for each input file and merge into output stream.

sorted

1. Sequentially read chunks that fit in memory, sort, and store back as
temporary files

sorted sorted sorted sorted

2. Allocate a buffer for each input file and merge into output stream.

sorted

Problem?

3. If we have little memory, may have to do multiple passes

sorted sorted sorted sorted

sorted

3. If we have little memory, may have to do multiple passes

sorted sorted sorted sorted

sorted sorted

3. If we have little memory, may have to do multiple passes

sorted sorted

sorted

Analysis

How many merging iterations (passes) must we do?

N/B pages

M/B pages

Data is divided into N/M partitions

How many merging iterations (passes) must we do?

N/M partitions

Analysis

Data is divided into N/M partitions

We have M/B buffers, so each iteration merges M/B partitions

How many merging iterations (passes) must we do?

N/M partitions

M/B buffers

Analysis

How many merging iterations (passes) must we do?

N/M partitions

M/B buffers

Data is divided into N/M partitions
We have M/B buffers, so each iteration merges M/B partitions
Iterations = logM/B(N/M)

Analysis

Iterations = logM/B(N/M)

Each iteration does a full pass over the data costing O(N/B)

N/M partitions

M/B buffers

Analysis

Cost of Merging Phase: N/B · ⌈logM/B(N/M)⌉

Iterations = logM/B(N/M)

Each iteration does a full pass over the data costing O(N/B)

N/M partitions

M/B buffers

Analysis

Merging Phase

Unsorted Sorted

Sort

…

merge &

append

Sorted
Globally sorted

Partitioning Phase
N/B I/Os N/B · ⌈logM/B(N/M)⌉

Analysis

Analyzing I/O for External Sort

Merging Phase

Unsorted Sorted

Sort

…
Sorted

Globally sorted

Partitioning Phase
N/B I/Os N/B · ⌈logM/B(N/M)⌉

Total
O(N/B · logM/B(N/B))+ =

merge &

append

O(N/B · logM/B(N/B))

Impact of More Memory

N/B pages

M/B pages

Impact of More Memory

Merging more partitions per pass

N/B pages

M/B pages

O(N/B · logM/B(N/B))

How much memory to merge all partitions in one pass?

N/B pages

M/B pages

O(N/B · logM/B(N/B))

How much memory to merge all partitions in one pass?

N/B pages

M/B pages

Let logM/B(N/B) = 2 and solve for M

How much memory to merge all partitions in one pass?

N/B pages

M/B pages

Let logM/B(N/B) = 2 and solve for M

We get: M = N ⋅ B (Measured in entries)

How much memory to merge all partitions in one pass?

N/B pages

M/B pages

We get: M = N ⋅ B

Hence, memory can accommodate N/B buffers

(Measured in entries)

Let logM/B(N/B) = 2 and solve for M

memory to partition the data.

Two-Pass Merge Sort Algorithm

N/B pages

M/B pages

Use at least M = N ⋅ B

N/M = N/B sorted partitonsThis creates at most

Two-Pass Merge Sort Algorithm

N/B pages

M/B pages

Then merge in one pass using at most N/B input buffers

memory to partition the data. Use at least M = N ⋅ B

N/M = N/B sorted partitonsThis creates at most

Two-Pass Merge Sort Algorithm

N/B pages

M/B pages

Then merge in one pass using at most N/B input buffers

memory to partition the data. Use at least M = N ⋅ B

N/M = N/B sorted partitonsThis creates at most

Cost: O(N/B)

How much memory do we need in practice?

N/B pages

M/B pages

Assume 1 TB, 16 byte entries, and 4KB pages

N=236 entries. And with 4KB pages, B=28 entries.

We need
 M = N ⋅ B = 244 = 222 entries in memory, or 64 MB

How much memory do we need in practice?

N/B pages

M/B pages

Hence, for all practical purposes, a 2 pass sorting algorithm is practical.

Assume 1 TB, 16 byte entries, and 4KB pages

N=236 entries. And with 4KB pages, B=28 entries.

We need
 M = N ⋅ B = 244 = 222 entries in memory, or 64 MB

N/B pages

M/B pages

Achieved our goal of sorting using O(N/B) I/Os using little memory :)

N/B pages

M/B pages

Achieved our goal of sorting using O(N/B) I/Os using little memory :)

But how about CPU overheads?

We still expect O(N · log2 N). Do we achieve it?

Analyzing CPU

Partitioning Phase Merging Phase

Unsorted Sorted

Sort

…

merge &

append

Sorted
Globally sorted

Unsorted Sorted

Sort

Each chunk contains M entries

Need O(M · log2 M) CPU cycles to merge-sort it in-memory

Doing this for all N/M chunk takes CPU

Partitioning Phase

O(N · log2 M)

Analyzing CPU

Partitioning Phase Merging Phase

Unsorted Sorted

Sort

…

merge &

append

Sorted
Globally sorted

O(N · log2 M)

Merging Phase

…

merge &

append

Sorted
Globally sorted

How do we merge them? maximum # partitions
to merge in one go?

Merging Phase

memory buffers (M/B)

2 Merge two
partitions at a time

3

partitions to
merge in one go?

Merging Phase

2

N/B

N/B
2-pass merge-sort

memory buffers (M/B)
3

partitions to
merge in one go?

Merging Phase

2

N/BN/B

0
Data fits in memory,
so 1 partition

memory buffers (M/B)
N/B3 N/B

partitions to
merge in one go?

Merging Phase

3

2

N/B

N/B

N/B

N/B

memory buffers (M/B)

0

partitions to
merge in one go?

Merging Phase

3

2

N/B

N/B

N/B

N/B

memory buffers (M/B)

0

M/B N/M
buffers # partitions

partitions to
merge in one go?

Merging Phase

3

2

N/B

N/B

N/B

N/B

memory buffers (M/B)

0

M/B N/M
buffers # partitions

Maximum # partitions
to merge in one go

Merging Phase

…

merge &

append

Sorted
Globally sorted

How to merge partitions?

N/B

maximum # partitions
to merge in one go?

How to merge partitions?

…
Sorted Globally sorted

…buffers
N/B

…
Sorted Globally sorted

…
4 6 2 1

How to merge partitions?

Simple solution: Traverse all buffers and pick minimum

5 7
129

8
11

3
10buffers

N/B

…
Sorted Globally sorted

How to merge partitions?

Simple solution: Traverse all buffers and pick minimum

buffers
N/B

…
4 6 2 1
5 7

129
8

11
3

10

…
Sorted Globally sorted

How to merge partitions?

Simple solution: Traverse all buffers and pick minimum

buffers
N/B

…
4 6 2

1

5 7
129

8
11

3
10

…
Sorted Globally sorted

How to merge partitions?

Simple solution: Traverse all buffers and pick minimum

buffers
N/B

…
4 6 2

1

5 7
129

8
11

3
10

…
Sorted Globally sorted

How to merge partitions?

Simple solution: Traverse all buffers and pick minimum

buffers
N/B

…
4 6 2

1

5 7
129

8
11

3
10

…
Sorted Globally sorted

How to merge partitions?

Simple solution: Traverse all buffers and pick minimum

buffers
N/B

…
4 6

21

5 7
129

8
11

3
10

…
Sorted Globally sorted

How to merge partitions?

Simple solution: Traverse all buffers and pick minimum

buffers
N/B

…
4 6

21

5 7
129

3
10

Read next page

…
Sorted Globally sorted

How to merge partitions?

Simple solution: Traverse all buffers and pick minimum

buffers
N/B

…
4 6

21

5 7
129

3
10

O(N/B ⋅ N) comparisons

…
Sorted Globally sorted

How to merge partitions more efficiently?

buffers
N/B

…
4 6

21

5 7
129

3
10

…
Sorted Globally sorted

How to merge partitions more efficiently?

buffers
N/B

…
4 6

21

5 7
129

3
10

Discuss with your neighbors (2 min)

…
Sorted Globally sorted

How to merge partitions more efficiently?

buffers
N/B

…
4 6

21

5 7
129

3
10

Min-Heap

Extract min

Insert

Well-known data structure that efficiently extracts the minimum value in a
collection of data items

Min-HeapBinary

Insert(key)

Runtime

O(log2 N)

API

extract_min()Key = O(log2 N)

Well-known data structure that efficiently extracts the minimum value in a
collection of data items

Min-HeapBinary

Insert(key)

Runtime

O(log2 N)

API

min_key = insert_and_extract(new_key) O(log2 N)

extract_min()Key = O(log2 N)

(efficiently combines both operations)

Min-HeapBinary

(1) Complete binary tree
(All levels are full & largest
level is full from left to right)

Min-HeapBinary

(1) Complete binary tree
(All levels are full & largest
level is full from left to right)

(2) Parent key always
smaller than children’s.

96

7

4

11

Min-HeapBinary Insertion

96

7

4

Insert(1)

Add to first empty

slot at largest level11

Min-HeapBinary Insertion

96

7

4

1

Swap until parent
is always smaller

11

9

6

7

4

1
Swap until parent
is always smaller

Min-HeapBinary Insertion

11

9

6

7

4

1

O(log2 N) insertion cost

Min-HeapBinary Insertion

11

9

6

7

4

1

Min-HeapBinary Extract Minimum

Return key at root to user.

11

9

6

7

4

Min-HeapBinary Extract Minimum

Set last key at last
level to be new root

11

9

6

7

4

Min-HeapBinary Extract Minimum

Swap with smaller child

11

96

7

4

Min-HeapBinary Extract Minimum

O(log2 N) min extraction cost

11

96

711

4

Min-HeapBinary Insert & extract

min_key = insert_and_extract(new_key)

96

7

4

Min-HeapBinary Insert & extract

insert_and_extract(10)

11

Return root to user &
replace by new key

96

7

Min-HeapBinary Insert & extract

11

10Swap until parent
is always smaller

9

6

7

Min-HeapBinary Insert & extract

11

10

Swap until parent
is always smaller

9

6

7

Min-HeapBinary Insert & extract

11 10

O(log2 N) for insert_and_extract

9

6

7

Min-HeapBinary Implementation

11 10

Tree with Pointers Array

Compact since the binary tree
is complete. Avoids overhead
of pointers.

6 7 9 11 10

Min-HeapBinary Construction

We can construct a heap for N entries using normal insertions

takes O(N log2 N)

Unordered N keys Min-Heap

Min-HeapBinary Construction

We can construct a heap for N entries using normal insertions

Min-Heap

We can do better :)

takes O(N log2 N)

Unordered N keys

Min-Heap Efficient ArrayBinary Construction

6 8 2 1 5

Start with Unordered N keys

4 3

Min-Heap Efficient ArrayBinary Construction

6 8 2 1 5

We can infer which slots should be the parent of which other slots.

4 3

6 8 2 1 5

For each parent node starting from right and moving left, swap until
every parent in sub-tree is smaller than its children

4 3

Handle

6 8 2 1 5 4 3

Handle (Do nothing)

For each parent node starting from right and moving left, swap until
every parent in sub-tree is smaller than its children

6 8 2 1 5 4 3

Handle (Swap w left child)

For each parent node starting from right and moving left, swap until
every parent in sub-tree is smaller than its children

6 21 5 4 3

Handle

8

For each parent node starting from right and moving left, swap until
every parent in sub-tree is smaller than its children

6 21 5 4 3

Handle (Swap w left child)

8

For each parent node starting from right and moving left, swap until
every parent in sub-tree is smaller than its children

21 5 4 3

Handle (Swap w left child)

86

For each parent node starting from right and moving left, swap until
every parent in sub-tree is smaller than its children

21 5 4 3

Handle (Swap w right child)

86

For each parent node starting from right and moving left, swap until
every parent in sub-tree is smaller than its children

21 5 4 3

Handle

8 6

For each parent node starting from right and moving left, swap until
every parent in sub-tree is smaller than its children

21 5 4 3

Max swaps:

8 6

2 1 1 0 0 0 0

21 5 4 3

Max swaps:

8 6

2 1 1 0 0 0 0

Max swaps for a sub-tree is equal to its depth

21 5 4 3

Max swaps:

8 6

2 1 1 0 0 0 0+ + + + + + = O(N)

Max swaps for a sub-tree is equal to its depth

21 5 4 38 6

O(N) < O(N log2 N) from before with pure
insertions

Side-Note on Heap-Sort

If data fits in memory, we can sort it using a heap

Construct heap in-
place in O(N)

N keys extract N times until heap
is empty in O(N log2 N)

Side-Note on Heap-Sort

If data fits in memory, we can sort it using a heap

Construct heap in-
place in O(N)

N keys extract N times until heap
is empty in O(N log2 N)

Can you do this in-place? :)

Recall min-heap can be stored as compact array

21 5 4 38 6

25 4 38 6

1

Extract

2 5 43 8 6

1

Extract

Rebalance

2 5 43 8 6

1

Extract

Rebalance

Store

2 5 43 8 6 1

min-heap Output

2

5 43 8 6 1

min-heap Output

2

5 43 8 6 1

min-heap Output

5 43 8 6 1

min-heap Output

2

min-heap Output

in-place algorithm :)

Extract Store

min-heap Output

Extract

Downsides compared to quick-sort or merge-sort?

Store

Output

Extract

Downsides compared to quick-sort or merge-sort?

Store

Random access to rebalance

Heap-Sort

Merge-Sort Quick-Sort

Worst case O(N log N)
In-place

Worst case O(N log N) Avg. worst case O(N log N)
In-place2x more space

More random access

Sequential access Sequential access

Intro-Sort

Hybrid (in C++)

Heap-Sort

Merge-Sort Quick-Sort

Worst case O(N log N)
In-place

Worst case O(N log N) Avg. worst case O(N log N)
In-place2x more space

More random access

Sequential access Sequential access

Now back to merging partitions in external merge-sort

How to merge partitions?

…
Sorted Globally sorted

…

How to merge partitions?

…
Sorted Globally sorted

…
Pick min

buffers
N/B

How to merge partitions?

…
Sorted Globally sorted

…
O(N/B ⋅ N) comparisonsPick min

buffers
N/B

Sorted

buffers

Min-Heap

…

…

Globally sorted

N/B

Sorted

buffers IDs: N/B

Min-Heap

…

…

Globally sorted

1 2 3

pair<key, buffer ID>

Sorted

buffers IDs: N/B

Min-Heap

…

…

Globally sorted

1 2 3

pair<key, buffer ID>

4
… … …

1Keys: 3

Sorted

buffers IDs: N/B

Min-Heap

…

…

Globally sorted

2 3

pair<key, buffer ID>

… … …
1Keys: 34

1

<4, 1>
<1, 2>
<3, 3>

Sorted

Min-Heap

Construct in O(N/B)

buffers
N/B

…

…

Globally sorted

Sorted

Min-Heap

buffers
N/B

…

…

Globally sorted

Extract min
e.g., <1, 2>

key, buffer ID

Sorted

Min-Heap

buffers
N/B

…

…

Globally sorted

Insert next key
from buffer 2

Extract min
e.g., <1, 2>

Sorted

Min-Heap

buffers
N/B

…

…

Globally sorted

Insert next key
from buffer 2

Extract min
e.g., <1, 2>

Append 1 to
sorted list

Sorted

Min-Heap

buffers
N/B

…

…

Globally sorted

Append

can do this with insert_and_extract

Extract

Insert

Sorted

Min-Heap

buffers
N/B

…

…

Globally sorted

can do this with insert_and_extract:

Insert

per entryO(log2 N/B)

Append

Extract

Sorted

Min-Heap

buffers
N/B

…

…

Globally sorted

Insert

Append

Extract

O(log2 N/B)can do this with insert_and_extract:

overallO(N ⋅ log2 N/B)

Analyzing CPU

Partitioning Phase Merging Phase

Unsorted Sorted

Sort

…

merge

Sorted
Globally sorted

O(N ⋅ log2 N/B)O(N ⋅ log2M)

Analyzing CPU

Partitioning Phase Merging Phase

Unsorted Sorted

Sort

…
Sorted

Globally sorted

O(N ⋅ log2 N/B)O(N ⋅ log2M)

merge

O(N ⋅ log2 N ⋅ B)=

Analyzing CPU

Partitioning Phase Merging Phase

Unsorted Sorted

Sort

…
Sorted

Globally sorted

O(N ⋅ log2 N/B)O(N ⋅ log2 N ⋅ B)

merge

Total cost

O(N ⋅ log2N)+ =

Unsorted Sorted

Sort

…
Sorted

Globally sorted

merge

O(N ⋅ log2N)

Same as in-memory algorithms :)

Unsorted Sorted

Sort

…
Sorted

Globally sorted

merge

O(N ⋅ log2N)

Overall costs

CPU
O(N/B ⋅ logM/B(N/B)) I/O

Unsorted Sorted

Sort

…
Sorted

Globally sorted

merge

O(N ⋅ log2N)

Overall costs

CPU
O(N/B ⋅ logM/B(N/B)) I/O or O(N/B) when M > N ⋅ B

And now: TA office hours

Sorted

…

Min-Heap

Suppose we need next min entry from buffer 2 but it is empty.

buffers IDs: N/B2 31

Em
pt

y

Sorted

…

Min-Heap

must wait for a read I/O to complete

Em
pt

y

Suppose we need next min entry from buffer 2 but it is empty.

Sorted

…

Min-Heap

Double buffering: load one additional buffer preemptively for each partition
before the first buffer empties

buffers IDs: N/B1’ 21 2’ N/B’

Em
pt

y

Sorted

Min-Heap

Double buffering: load one additional buffer preemptively for each partition
before the first buffer empties

buffers IDs:

2 2’
Em

pt
y While I/O takes place into buffer 2,

we can still read from buffer 2’

Sorted

Larger though fewer buffers: more groups, so potentially more iterations,
but each I/O reads more data

…

