Tables Management

S

Database System Technology
Niv Dayan

2%

We've decided to allow Please start forming Undergrads and grads
groups of both 2 and 3. Load groups and start can form groups
is same. We recommend 3. step 1

We enabled “Search for Teammates” on Piazza

In person classes from this Thursday :)

This Thursday: Navid

Textbook Slides

There to solidify your Only material in the
understanding and get slides will appear in the
a historical perspective midterm/exam

Database Tables

A database consists of multiple tables

Customers Orders

ID Name email Addr ID Customer ID Product ID Date

Database Tables

A database consists of multiple tables

How do we store them in storage efficiently?

Customers Orders

ID Name email Addr ID Customer ID Product ID Date

il

Operations to Efficiently Support

1. Scans e.g., select * from Customers
2. Deletes e.g., delete from Customers where name ="..."
3. Updates e.g., update Customers set email = "..." where name ="
4. Insertions e.g., Insertinto Customers(,,,)
Customers

ID Name email Addr

Optimizing for Data Movement

In previous courses on algorithms &
data structures, you learned to
optimize CPU cycles for an algorithm.

Optimizing for Data Movement

=

In previous courses on algorithms & As storage devices are far slower in
data structures, you learned to this course we focus on optimizing
optimize CPU cycles for an algorithm. data movement.

First Insight: Database Pages

= (@

Reading/writing from storage at units of less
than =~4KB does not pay off.

\ I

Storage

First Insight: Database Pages

= (@

Reading/writing from storage at units of less
than =~4KB does not pay off.

\ I

Why? (Different reasons for disk and SSDs)

Storage

First Insight: Database Pages

a
Reading/writing from storage at units of less

than =4KB does not pay off.
Reading/writing at very large units /
consumes memory and is less flexible for

applications

Storage

First Insight: Database Pages

2 9

To balance, DBs use =4KB as the read/write

unit. This is known as a database page.

An I/0O (input/output) is one read or write /

request of one database page.

Storage

The Disk Access Model (The DAM Model)

We will shortly propose algorithms to support scans/delete/updates/inserts

To reason about such algorithms, we need a cost model

The Disk Access Model (The DAM Model)

We will shortly propose algorithms to support scans/delete/updates/inserts

To reason about such algorithms, we need a cost model

table

N entries
In table

B entries per
DB page (10-100)

The Disk Access Model (The DAM Model)

We will shortly propose algorithms to support scans/delete/updates/inserts

To reason about such algorithms, we need a cost model

table

We will count the worst-case number of I/0s

N entries per operations with respectto N and B
In table

B entries per
DB page (10-100)

The Disk Access Model (The DAM Model)

This model is imperfect. It ignores many characteristics of storage.

The Disk Access Model (The DAM Model)

This model is imperfect. It ignores many characteristics of storage.

Ignores that sequential
access Is faster than
random on disk

The Disk Access Model (The DAM Model)

This model is imperfect. It ignores many characteristics of storage.

=g

Ignores that sequential Ignores that SSD
access is faster than asynchronous1/O
random on disk are faster

The Disk Access Model (The DAM Model)

This model is imperfect. It ignores many characteristics of storage.

sl 3f

Ignores that sequential Ignores that SSD Ignores SSD garbage-
access is faster than asynchronous I/O collection due to
random on disk are faster random writes

The Disk Access Model (The DAM Model)

This model is imperfect. It ignores many characteristics of storage.

sl 3f

Ignores that sequential Ignores that SSD Ignores SSD garbage-
access is faster than asynchronous I/O collection due to
random on disk are faster random writes

However, it's useful due to its simplicity.

Operations

1. Scans e.g., select * from Customers
2. Deletes e.g., delete from Customers where name ="..."
3. Updates e.g., update Customers set email = "..." where name ="

4. Insertions e.g., Insertinto Customers (,,,)

ID

Scans - How not to Support Them

Customers Address Space

ID Name email Addr

Orders

Customer ID Product ID Date

ID

Scans - How not to Support Them

Customers Address Space

ID Name email Addr

Orders

Customer ID Product ID Date

Scan cost?

Scans - How not to Support Them

Customers Address Space

! ID Name email Addr Miy

N rows the 5 WS Wjep
m Ithip
W
®
Orders
/ Scan cost: O(N) I/0s

ID Customer ID Product ID Date

Efficient Scans

Customers Address Space

Orders

ID Customer ID Product ID Date %
/ Scan cost?

Efficient Scans

Customers Address Space

Orders

ID Customer ID Product ID Date %
/ Scan cost: O(N/B) I/0s

Efficient Scans

Which pages belong to which table?

Efficient Scans

Which pages belong to which table?

Simplest Solution: Linked List
/NN TNNN

Efficient Scans

Which pages belong to which table?
Simplest Solution: Linked List

Problem? NN\ N\

Efficient Scans

Which pages belong to which table?
Simplest Solution: Linked List

NN\

Problem: entails synchronous 1I/0s,
which do not exploit SSD parallelism

Solution:

4259

Efficient Scans

Which pages belong to which table? Directory

Simplest Solution: Linked List /

Problem: entails synchronous I/Os,
which do not exploit SSD parallelism

Solution: Employ directory to allow

reading many pages asynchronously r

Efficient Scans

Directory

./

Problem for disk?

.
/
AN

Efficient Scans

Directory

Problem: small I/0s, which do not
saturate a disks’s sequential bandwidth . /

.
/'
S

Efficient Scans

Directory
Problem: small I/0s, which do not
saturate a disks’s sequential bandwidth
Solution: Store multiple database pages /
contiguously along “extents” (8-64 pages) ™~

49

Efficient Scans

Problem: small I/Os, which do not
saturate a disks’s sequential bandwidth

Solution: Store multiple database pages
contiguously along “extents” (8-64 pages)

Bonus: Saves some metadata

File can grow as a tree if it gets large

Efficient Scans

How to keep track of directories of all files?

./-
i

Efficient Scans

How to keep track of directories of all files?

Catalog . T~
Name Data Size Start
type (Bytes
)

Customers

Orders

/I\

Efficient Scans

How to keep track of free pages/extents?

Efficient Scans

How to keep track of free pages/extents?

Solution 1: linked list (slower)

Efficient Scans

How to keep track of free pages/extents?

Solution 1: linked list (slower)

Solution 2: bitmap (takes space) 01
00

10

Operations

1. Scans e.g., select * from Customers
2. Deletes e.g., delete from Customers where name ="...”
3. Updates e.g., update Customers set email = "..." where name ="

4. Insertions e.g., Insertinto Customers (,,,)

Supporting Deletes

\\ {4

e.g., delete from Customers where name = "...

Simplest solution?

e i
Name Data Size Start
type (Bytes . /

)

Customers
Orders

Supporting Deletes

\\ {4

e.g., delete from Customers where name = "...

Simplest solution? Scan the table. Create "holes”.

o 11
Name Data Size Start
type (Bytes . /

)

Customers
Orders

Supporting Deletes

\\ {4

e.g., delete from Customers where name = "...

Simplest solution? Scan of the table. Creates “holes”.

N 11
Name Data Size Start
type (Bytes . /

)
Customers

Cost: O(1) write and O(N/B) reads.

Operations

1. Scans
2. Deletes
3. Updates

4. Insertions

Supporting Updates

A\ 7

e.d., update Customers set email = "..." where name =

\\7/

Scan and update.

!

e i
Name Data Size Start
type (Bytes . /

)
Customers

Supporting Updates

A\ 7

e.d., update Customers set email = "..." where name =

\\7/

Scan and update. If newer version is too large, delete & reinsert

!

Catalog

Name Data Size Start -
type (Bytes . /

)
Customers

Supporting Updates

A\ 7

e.d., update Customers set email = "..." where name =

\\7/

Scan and update. If newer version is too large, delete & reinsert

Catalog

Name Data Size Start I:_
type (Bytes . /

)
Customers

Cost: O(1) write and O(N/B) reads

Operations

1. Scans
2. Deletes
3. Updates

4. Insertions

Supporting Insertions

e.g., Insertinto Customers(,,,)

Solutions?

N 11
Name Data Size Start
type (Bytes . /

)

Customers
Orders

Supporting Insertions

(1) Scan & find space. Cost: O(N/B) reads and O(1) write.

N 11
Name Data Size Start
type (Bytes . /

)
Customers

Supporting Insertions

(1) Scan & find space. Cost: O(N/B) reads and O(1) write.

(2) Separate Linked list of pages with free space.

Catalog
Name Data Size Start I]I

)

type (Bytes . /
Customers \
Orders

Supporting Insertions

(1) Scan & find space. Cost: O(N/B) reads and O(1) write.

(2) Separate Linked list of pages with free space.
Cost: O(1) reads & O(1) write for fixed-sized entries

Catalog
Name Data Size Start
type (Bytes /

)

Customers
Orders

Supporting Insertions

(1) Scan & find space. Cost: O(N/B) reads and O(1) write.

(2) Separate Linked list of pages with free space.

Cost: O(1) reads & O(1) write for fixed-sized entries
Cost: O(N/B) reads & O(1) write for variable-sized entries

Catalog

)

Name Data Size Start
type (Bytes /

Customers
Orders

Supporting Insertions

(3) buffer insertions in memory until a page fills up & append to extent

Flush

Inserts —~ —

Extent with
free space

Dlrectory

-

memory buffer Storage

Supporting Insertions

(3) buffer insertions in memory until a page fills up & append to extent

Cost: No reads and O(1/B) of a write

Flush

Inserts —~ —

Extent with
free space

Dlrectory

-

memory buffer Storage

Supporting Insertions

(1) Scan & find space. Cost: O(N/B) reads and O(1) write.

(2) Separate Linked list of pages with free space.
Cost: O(1) reads & O(1) write for fixed-sized entries Cost:

O(N/B) reads & O(1) write for variable-sized entries

(3) buffer insertions in memory until a page fills up & append to extent
Cost: No reads and O(1/B) of a write

Internal Page Organization

Recall each page is 4 KB

Suppose rows are fixed-sized

How to organize rows within a slot?

Internal Page Organization

Recall each page is 4 KB

Suppose rows are fixed-sized

How to organize rows within a slot?

Metadata N, etc.
Slot 1

Slot 2

Slot N

Free

Internal Page Organization

Recall each page is 4 KB

Suppose rows are fixed-sized

How to organize rows within a slot?

Metadata N, etc.
Slot 1

Slot 2

delete

S
Slot N > Move

Free

Need to reorganize due to deletes

Internal Page Organization

Recall each page is 4 KB

Suppose rows are fixed-sized

How to organize rows within a slot?

Metadata N, etc. Metadata
Slot 1 delete Free Bitmap [101...1
Slot 2 D — Slot1
Move Slot 2
Free
Slot N

Need to reorganize due to deletes No reorganization, requires more space

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Solutions?

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Metadata
Qr’

Free

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Metadata

Wasted

If entries are small, we waste
space at the end, or we must push
all content up to clear space

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Metac

ata

Metadata

Wasted

Store data from
end of page

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Metac

ata

Metadata

Wasted

Free

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Metadata Metadata

/ Free

Minimal space wastage,
and no need to move data

Wasted

Variable-Sized Record Organization

Delimiters Pointers
222N
F1 |$[F2 [§|F2 $ F1|F2 |F2
Smaller More space

No random access Random access (faster)

Break

Then let's now move to buffer management

Buffer Management

(IITTT]}

O

/\
\/
Database System Technology
Niv Dayan

Context

A DB is reading and writing aligned 4KB
storage pages

DB _ ————7 T

Storage

Context

A DB is reading and writing aligned 4KB
storage pages

Suppose orange pages are frequently accessed

(\\ h Otll)

Storage

Context

A DB is reading and writing aligned 4KB
storage pages

Suppose orange pages are frequently accessed

(\\ h Otll)

Retrieving these pages over and over is expensive! Storage

Buffer Pool

Keep copies of hot pages in memory [@
s 4

DB —

memory Storage

Buffer Pool

How to structure this buffer pool? T T =

memory Storage

Buffer Pool

How to structure this buffer pool? =

hash table (more details later)

memory Storage

Buffer Pool

Consist of frames, each containing one page of data (e.g., 4 K

| |

—mpty Occupied
frame frame

Buffer Pool

Consist of frames, each containing one page of data (e.g., 4 K

—ventually it fills up. Must evict pages to clear space.

r New page

k» —VICt

Buffer Pool

Each frame must keep some metadata

Buffer Pool

Each frame must keep some metadata

(1) Pin count - How many users are currently using this page

(2) Dirty flag - indicates whether the page has been updated

Eviction Policy

Which page to evict when we run out of space?

K—v —VICt

Eviction Policy

Which page to evict when we run out of space”

K—v —VICt

(1) Avoid evicting a page that is likely to be used again

Considerations:

(2) Avoid excessive metadata or CPU overheads to make decision

Eviction Policy

Which page to evict when we run out of space”

K—v —VICt

Big impact on number of I/0s and CPU efficiency

Depends on the access pattern

we’ll cover 5 eviction policies

Random Eviction

Evict whichever page collides in the hash table with a new page

Pros: ?

New page
Con: ? J

\\-v ~VICt

Random Eviction

—vict whichever page collides in the hash table with a new page

Pros: Simple, CPU-efficient, no extra metadata

Con: ? F

o

New page

—VICt

Random Eviction

—vict whichever page collides in the hash table with a new page

Pros: Simple, CPU-efficient, no extra metadata

New page
Con: May evict a frequently used page {

\\-v ~VICt

Random Eviction

—vict whichever page collides in the hash table with a new page

Pros: Simple, CPU-efficient, no extra metadata

New page
Con: May evict a frequently used page {

Can we improve this?

\\-v ~VICt

First in First Out (FIFO)

Evict Page that was inserted the longest time ago

Rationale?

First in First Out (FIFO)

—vict Page that was inserted the longest time ago

Rationale? Less likely to be used again

Implementation?

First in First Out (FIFO)

—vict Page that was inserted the longest time ago

Rationale? Less likely to be used again Rear Front

|
3|4

11216 Queue

Implementation” Using a queue

(i.e., array with front/rear pointers)

Buffer
Pool

1 23 456

K» —VICt

First in First Out (FIFO)

Rear Front

3 11216 Queue
Buffer
Pool

1 23 456

First in First Out (FIFO)

Rear Front
3 216 Queue
Buffer
Pool

1 23 456

First in First Out (FIFO)

Rear Front

3|5 216 Queue
Buffer
Pool

1 2 3 45 6

L Insert

First in First Out (FIFO)

Rear Front
3/5/1/2/|6 Queue
Buffer
Pool
1 2 3 456

L Insert

First in First Out (FIFO)

Front
Unlike the random policy, pages we evict now |
have different frames than pages we insert.
3/5/1/2/|6 Queue
Buffer
Pool
123456

L Insert

Jnlike t

First in First Out (FIFO)

ne random policy, pages we evict now

nave ar

We need a hash collision resolution algo.

ferent frames than pages we insert.

(e.g., linear probing, chaining)

Rear Front
|}
5(1(216 Queue
/
Buffer
Pool
I

L Insert

Jnlike t

First in First Out (FIFO)

ne random policy, pages we evict now

nave ar

ferent frames than pages we insert.

We need a hash collision resolution algo.
(e.g., linear probing, chaining)

Need 10-20% extra capacity In the table
to reduce likelihood of collisions

Rear Front
|}
5(1(216 Queue
/
Buffer
Pool
I

L Insert

Jnlike t

First in First Out (FIFO)

ne random policy, pages we evict now

nave ar

ferent frames than pages we insert.

We need a hash collision resolution algo.
(e.g., linear probing, chaining)

Extra space and CPU cost, but necessary

Need 10-20% extra capacity in the table
to reduce likelihood of collisions

for all policies but the random one

Rear

Front

5

b4
12

6 Queue

/

Buffer
Pool

L Insert

First in First Out (FIFO)

Problem?
Rear Front
3/5/1/2/|6 Queue
Buffer
Pool

1 23 456

First in First Out (FIFO)

Problem?
Oldest page may still be frequently used. Realr fm”t
3/5/1/2/|6 Queue
Buffer
Pool

1 23 456

First in First Out (FIFO)

Problem?
Oldest page may still be frequently used. Rear Front
|
Can we address this? 3/5/1/2|6 Queue
Buffer
Pool

1 23 456

Least Recently Used (LRU)

Evict page that was used last the longest time ago

Least Recently Used (LRU)

—vict page that was used last the longest time ago

Implementation?

Least Recently Used (LRU)

—vict page that was used last the longest time ago

Implementation? A random-access queue

l.e., We must be able to move an element at a
random location back to the front

Least Recently Used (LRU)

Use a doubly-linked list as the queue Rear Front
341246 Queue

Buffer
Pool

1 23 456

Least Recently Used (LRU)

Use a doubly-linked list as the queue Rear Front

With pointers linking nodes and buckets 3%2 /6 ueue
Buffer
Pool

1 23 456

Least Recently Used (LRU)

Use a doubly-linked list as the queue R?ar Fr?”t
With pointers linking nodes and buckets 3%2 Queue
Load to rear and evict front (as before) Buffer

Pool

1 23 456

Least Recently Used (LRU)

Use a doubly-linked list as the queue R?ar Frf’”t
With pointers linking nodes and buckets 5&2 Rueue
Load to rear and evict front (as before) Buffer

Pool

1 23 456

Least Recently Used (LRU)

During access, return entry to rear

Rear

|

5A‘

34‘

4 |

Front
|

2

————
P .
< »
B

-

Access

12 3 456

T

Queue

Buffer
Pool

Least Recently Used (LRU)

Implementation”? Doubly-linked list

Rear Front
} |
i 534 2 Queue
Buffer
Pool
1 2 3 45 6

Access

Least Recently Used (LRU)

Implementation”? Doubly-linked list

Rear Front
} }
153 4|42 Queue
Buffer
Pool
1 2 3 456

Access

Least Recently Used (LRU)

Problems?

Rear Front
} }
153 4|42 Queue
Buffer
Pool
1 2 3 456

Access

Least Recently Used (LRU)

Problems?
Rear Front
1 1
(1) CPU overhead to update queue B
for each access 1& Queue
(2) Linked lists are less efficient than Buffer
arrays due to pointer chasing Pool
1 2 3 456
(3) Metadata overhead for pointers T

Access

Least Recently Used (LRU)

f?
Proplems: Rear Front
| |
(1) CPU overhead to update queue B
for each access 1& Queue
(2) Linked lists are less efficient than Buffer
arrays due to pointer chasing Pool
1 2 3 456
(3) Metadata overhead for pointers T
ACCESS

Better ideas? :)

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation?

Buffer
Pool

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap

000 0O0O

Buffer
Pool

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap

111010

Buffer
Pool

1T

Accesses

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap handle

}

111010

Buffer
Pool

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap handle

'
011010

Buffer
Pool

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap handle

'
001010

Buffer
Pool

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap handle
'
000010
Buffer
Pool

\Jr ~VICH

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap handle
'
000010
Buffer
Pool

T

Insert

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap handle
'
000011
Buffer
Pool

T

Insert

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap handle

'
00000 1

Buffer
Pool

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap handle

'
000000

Buffer
Pool

Clock

Traverse hash table circularly as a clock.
—Vict any entry not used since last traversal.

Implementation? Bitmap handle
'
010010
Buffer
Pool

I

Accesses

Traverse has
—vict any ent

Advantages

N tab

Clock

e circularly as a clock.

'y not used since last traversal.

(1) lower overheads as there is no queue

(2) bitmap takes little extra space

Disadvantages

(1)can evict “hotter” pages than LRU,

But still better than FIFO

handle

'
010010

I

Accesses

Buffer
Pool

Summary

Random Worst Best
Moderate Good
Best Worst

Close to Best Good

Two trade-offs

Eviction
Effectiveness

Eviction algorithm
(e.g., LRU vs. Clock)

CPU Efficiency

Two trade-offs

Eviction
Effectiveness

Eviction algorithm Buffer pool
(e.g., LRU vs. Clock) size

CPU Efficiency Memory

LRU and Clock are good for small random reads. How do they
respond to large sequential reads?

