
Tables Management

Database System Technology

Niv Dayan

We’ve decided to allow
groups of both 2 and 3. Load
is same. We recommend 3.

Please start forming
groups and start

step 1

Undergrads and grads
can form groups

We enabled “Search for Teammates” on Piazza

In person classes from this Thursday :)

This Thursday: Navid

Textbook Slides

Only material in the
slides will appear in the

midterm/exam

There to solidify your
understanding and get
a historical perspective

Database Tables

A database consists of multiple tables

ID Customer ID Product ID DateID Name email Addr

Customers Orders

Database Tables

A database consists of multiple tables

How do we store them in storage efficiently?

ID Customer ID Product ID DateID Name email Addr

Customers Orders

Operations to Efficiently Support

ID Name email Addr

Customers

1. Scans

2. Deletes

3. Updates

4. Insertions e.g.,	 Insert into Customers (, , ,)

e.g.,	 update Customers set email = “…” where name = “”

e.g.,	 delete from Customers where name = “…”

e.g.,	 select * from Customers

Optimizing for Data Movement

In previous courses on algorithms &
data structures, you learned to

optimize CPU cycles for an algorithm.

Optimizing for Data Movement

In previous courses on algorithms &
data structures, you learned to

optimize CPU cycles for an algorithm.

As storage devices are far slower, in
this course we focus on optimizing

data movement.

First Insight: Database Pages

Storage

Reading/writing from storage at units of less
than ≈4KB does not pay off.

First Insight: Database Pages

Storage

Reading/writing from storage at units of less
than ≈4KB does not pay off.

Why? (Different reasons for disk and SSDs)

First Insight: Database Pages

Storage

Reading/writing at very large units
consumes memory and is less flexible for
applications

Reading/writing from storage at units of less
than ≈4KB does not pay off.

Storage

To balance, DBs use ≈4KB as the read/write
unit. This is known as a database page.

An I/O (input/output) is one read or write
request of one database page.

First Insight: Database Pages

The Disk Access Model (The DAM Model)

We will shortly propose algorithms to support scans/delete/updates/inserts

To reason about such algorithms, we need a cost model

table

N entries
In table

B entries per

DB page (10-100)

The Disk Access Model (The DAM Model)

We will shortly propose algorithms to support scans/delete/updates/inserts

To reason about such algorithms, we need a cost model

The Disk Access Model (The DAM Model)

We will shortly propose algorithms to support scans/delete/updates/inserts

To reason about such algorithms, we need a cost model

table

We will count the worst-case number of I/Os
per operations with respect to N and BN entries

In table

B entries per

DB page (10-100)

The	Disk	Access	Model	 (The	DAM	Model)

This model is imperfect. It ignores many characteristics of storage.

The	Disk	Access	Model	 (The	DAM	Model)

Ignores that sequential
access is faster than

random on disk

This model is imperfect. It ignores many characteristics of storage.

The	Disk	Access	Model	 (The	DAM	Model)

Ignores that SSD
asynchronous I/O

are faster

This model is imperfect. It ignores many characteristics of storage.

Ignores that sequential
access is faster than

random on disk

The	Disk	Access	Model	 (The	DAM	Model)

Ignores SSD garbage-
collection due to
random writes

This model is imperfect. It ignores many characteristics of storage.

Ignores that SSD
asynchronous I/O

are faster

Ignores that sequential
access is faster than

random on disk

The	Disk	Access	Model	 (The	DAM	Model)

However, it’s useful due to its simplicity.

This model is imperfect. It ignores many characteristics of storage.

Ignores that SSD
asynchronous I/O

are faster

Ignores SSD garbage-
collection due to
random writes

Ignores that sequential
access is faster than

random on disk

Operations

1. Scans

2. Deletes

3. Updates

4. Insertions e.g.,	 Insert into Customers (, , ,)

e.g.,	 update Customers set email = “…” where name = “”

e.g.,	 delete from Customers where name = “…”

e.g.,	 select * from Customers

Scans - How not to Support Them

ID Name email Addr

Orders

ID Customer ID Product ID Date

Address SpaceCustomers

Scans - How not to Support Them

ID Customer ID Product ID Date

ID Name email Addr

Orders

Scan cost?

Address Space

Mix table rows within
the same pages

Customers

Scans - How not to Support Them

ID Customer ID Product ID Date

ID Name email Addr

Orders

Scan cost: O(N) I/Os

Address Space

N rows

Mix table rows within
the same pages

Customers

Efficient Scans

ID Customer ID Product ID Date

ID Name email Addr

Orders

Scan cost?

Address Space

Separate tables rows into

different sets of DB pages

Customers

ID Customer ID Product ID Date

ID Name email Addr

Orders

Scan cost: O(N/B) I/Os

Address Space

Efficient Scans

Separate tables rows into

different sets of DB pages

Customers

Which pages belong to which table?

Efficient Scans

Which pages belong to which table?

Simplest Solution: Linked List

Efficient Scans

Which pages belong to which table?

Simplest Solution: Linked List

Problem?

Efficient Scans

Which pages belong to which table?

Simplest Solution: Linked List

Problem: entails synchronous I/Os,
which do not exploit SSD parallelism

Solution:

Efficient Scans

Which pages belong to which table?

Simplest Solution: Linked List

Problem: entails synchronous I/Os,
which do not exploit SSD parallelism

Solution: Employ directory to allow
reading many pages asynchronously

Efficient Scans

Directory

Problem for disk?

Efficient Scans

Directory

Problem: small I/Os, which do not
saturate a disks’s sequential bandwidth

Efficient Scans

Directory

Solution: Store multiple database pages
contiguously along “extents” (8-64 pages)

Efficient Scans

Directory
Problem: small I/Os, which do not
saturate a disks’s sequential bandwidth

Efficient Scans

Bonus: Saves some metadata

File can grow as a tree if it gets large

Solution: Store multiple database pages
contiguously along “extents” (8-64 pages)

Problem: small I/Os, which do not
saturate a disks’s sequential bandwidth

How to keep track of directories of all files?

Efficient Scans

How to keep track of directories of all files?

Efficient Scans

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

Catalog

How to keep track of free pages/extents?

Efficient Scans

Efficient Scans

How to keep track of free pages/extents?

Solution 1: linked list (slower)

Efficient Scans

How to keep track of free pages/extents?

Solution 1: linked list (slower)

0 1

0 0

1 0

Solution 2: bitmap (takes space)

Operations

1. Scans

2. Deletes

3. Updates

4. Insertions e.g.,	 Insert into Customers (, , ,)

e.g.,	 update Customers set email = “…” where name = “”

e.g.,	 delete from Customers where name = “…”

e.g.,	 select * from Customers

Supporting Deletes

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

e.g.,	 delete from Customers where name = “…”

Simplest solution?

Catalog

Supporting Deletes

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

e.g.,	 delete from Customers where name = “…”

Simplest solution? Scan the table. Create “holes”.

Catalog

Supporting Deletes

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

e.g.,	 delete from Customers where name = “…”

Simplest solution? Scan of the table. Creates “holes”.

Catalog

Cost: O(1) write and O(N/B) reads.

Operations

1. Scans

2. Deletes

3. Updates

4. Insertions

Supporting Updates

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

e.g.,	 update Customers set email = “…” where name = “”

Scan and update.

Catalog

Supporting Updates

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

e.g.,	 update Customers set email = “…” where name = “”

Scan and update. If newer version is too large, delete & reinsert

Catalog

Supporting Updates

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

e.g.,	 update Customers set email = “…” where name = “”

Scan and update. If newer version is too large, delete & reinsert

Catalog

Cost: O(1) write and O(N/B) reads

Operations

1. Scans

2. Deletes

3. Updates

4. Insertions

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

e.g.,	 Insert into Customers (, , ,)

Solutions?

Catalog

Supporting Insertions

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

Catalog

(1) Scan & find space. Cost: O(N/B) reads and O(1) write.

Supporting	 Insertions

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

Catalog

(1) Scan & find space. Cost: O(N/B) reads and O(1) write.

(2) Separate Linked list of pages with free space.

Supporting	 Insertions

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

Catalog

(1) Scan & find space. Cost: O(N/B) reads and O(1) write.

(2) Separate Linked list of pages with free space.

Cost: O(1) reads & O(1) write for fixed-sized entries

Supporting	 Insertions

Name Data
type

Size
(Bytes
)

Start

Customers

Orders

(1) Scan & find space. Cost: O(N/B) reads and O(1) write.

(2) Separate Linked list of pages with free space.

Cost: O(1) reads & O(1) write for fixed-sized entries

Cost: O(N/B) reads & O(1) write for variable-sized entries

Catalog

Supporting	 Insertions

Extent with
free space

Storagememory buffer

Inserts Flush

Supporting	 Insertions

(3) buffer insertions in memory until a page fills up & append to extent

Directory

Extent with
free space

Storagememory buffer

Inserts Flush

Supporting	 Insertions

Directory

(3) buffer insertions in memory until a page fills up & append to extent

Cost: No reads and O(1/B) of a write

Supporting	 Insertions

(1) Scan & find space. Cost: O(N/B) reads and O(1) write.

(2) Separate Linked list of pages with free space.

Cost: O(1) reads & O(1) write for fixed-sized entries Cost:
O(N/B) reads & O(1) write for variable-sized entries

(3) buffer insertions in memory until a page fills up & append to extent

Cost: No reads and O(1/B) of a write

Internal Page Organization

Recall each page is 4 KB

Suppose rows are fixed-sized

How to organize rows within a slot?

Internal Page Organization

N, etc.Metadata
Slot 1

Slot 2

…

Slot N

Free

Recall each page is 4 KB

Suppose rows are fixed-sized

How to organize rows within a slot?

Internal Page Organization

N, etc.Metadata
Slot 1

Slot 2

…

Slot N

Free

Recall each page is 4 KB

Suppose rows are fixed-sized

How to organize rows within a slot?

Need to reorganize due to deletes

delete

Move

Internal Page Organization

101…1

Metadata
Free Bitmap

Slot 1

Slot 2

Slot 3

…
Slot N

Recall each page is 4 KB

Suppose rows are fixed-sized

How to organize rows within a slot?

Need to reorganize due to deletes No reorganization, requires more space

N, etc.Metadata
Slot 1

Slot 2

…

Slot N

Free

delete

Move

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Solutions?

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Free

Metadata

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Metadata

Wasted

If entries are small, we waste
space at the end, or we must push

all content up to clear space

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

MetadataMetadata

Wasted
Store data from

end of page

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Metadata

Free

Metadata

Wasted

Internal Page Organization

Recall each page is 4 KB

Suppose rows are variable-length

Metadata

Free

Metadata

Wasted

Minimal space wastage,
and no need to move data

Variable-Sized Record Organization

Delimiters Pointers

F1 $ F2 $ F2 $ F1 F2 F2

Smaller

No random access

More space
Random access (faster)

Then let’s now move to buffer management

Break

Buffer Management

Database System Technology
Niv Dayan

Context

Storage

A DB is reading and writing aligned 4KB
storage pages

DB

Context

Suppose orange pages are frequently accessed
(“hot”)

Storage

A DB is reading and writing aligned 4KB
storage pages

DB

Context

Suppose orange pages are frequently accessed
(“hot”)

StorageRetrieving these pages over and over is expensive!

A DB is reading and writing aligned 4KB
storage pages

DB

Buffer Pool

Keep copies of hot pages in memory

Storagememory

DB

Storagememory

Buffer Pool

How to structure this buffer pool?

How to structure this buffer pool?

hash table (more details later)

Buffer Pool

Storagememory

Buffer Pool

Consist of frames, each containing one page of data (e.g., 4 KB)

Empty

frame

Occupied

frame

Buffer Pool

Eventually it fills up. Must evict pages to clear space.

Consist of frames, each containing one page of data (e.g., 4 KB)

Evict

New page

Buffer Pool

Each frame must keep some metadata

(1) ?

(2) ?

Buffer Pool

(2) Dirty flag - indicates whether the page has been updated

(1) Pin count - How many users are currently using this page

Each frame must keep some metadata

Eviction Policy

Which page to evict when we run out of space?

Evict

Eviction Policy

Which page to evict when we run out of space?

Considerations:

(1) Avoid evicting a page that is likely to be used again

(2) Avoid excessive metadata or CPU overheads to make decision

Evict

Eviction Policy

Which page to evict when we run out of space?

Big impact on number of I/Os and CPU efficiency

Depends on the access pattern

Evict

We’ll cover 5 eviction policies

Random Eviction

Evict whichever page collides in the hash table with a new page

Pros: ?

New page

Evict

Con: ?

Random Eviction

Evict whichever page collides in the hash table with a new page

Con: ?

Pros: Simple, CPU-efficient, no extra metadata

New page

Evict

Evict whichever page collides in the hash table with a new page

Con: May evict a frequently used page

Random Eviction

New page

Evict

Pros: Simple, CPU-efficient, no extra metadata

Evict whichever page collides in the hash table with a new page

Random Eviction

Can we improve this?

New page

Evict

Con: May evict a frequently used page

Pros: Simple, CPU-efficient, no extra metadata

First in First Out (FIFO)

Evict Page that was inserted the longest time ago

Rationale?

Rationale?

Implementation?

Less likely to be used again

Evict Page that was inserted the longest time ago

First in First Out (FIFO)

1 2 3 4 5 6

13 4 6

Front

2

Evict

Using a queue

Evict Page that was inserted the longest time ago

Queue

Buffer

Pool

First in First Out (FIFO)

(i.e., array with front/rear pointers)

RearRationale?

Implementation?

Less likely to be used again

1 2 3 4 5 6

13

Front

Queue

Buffer

Pool

62

First in First Out (FIFO)

Rear

1 2 3 4 5 6

3

Front

Queue

Buffer

Pool

62

First in First Out (FIFO)

Rear

1 2 3 4 5 6

3

FrontRear

Insert

5 Queue

Buffer

Pool

62

First in First Out (FIFO)

1 2 3 4 5 6

3

FrontRear

Insert

5 1 Queue

Buffer

Pool

62

First in First Out (FIFO)

Queue

Buffer

Pool

1 2 3 4 5 6

3

FrontRear

5 1 62

First in First Out (FIFO)

Unlike the random policy, pages we evict now
have different frames than pages we insert.

Insert

Queue

Buffer

Pool

3

FrontRear

5 1 62

First in First Out (FIFO)

Unlike the random policy, pages we evict now
have different frames than pages we insert.

We need a hash collision resolution algo.
(e.g., linear probing, chaining)

Insert

First in First Out (FIFO)

Unlike the random policy, pages we evict now
have different frames than pages we insert.

We need a hash collision resolution algo.

(e.g., linear probing, chaining)

Need 10-20% extra capacity in the table
to reduce likelihood of collisions

Queue

Buffer

Pool

3

FrontRear

5 1 62

Insert

First in First Out (FIFO)

Unlike the random policy, pages we evict now
have different frames than pages we insert.

We need a hash collision resolution algo.

(e.g., linear probing, chaining)

Extra space and CPU cost, but necessary
for all policies but the random one

Queue

Buffer

Pool

3

FrontRear

5 1 62

Insert

Need 10-20% extra capacity in the table
to reduce likelihood of collisions

Queue

Buffer

Pool

Problem?

1 2 3 4 5 6

3

FrontRear

5 1 62

First in First Out (FIFO)

Queue

Buffer

Pool

Problem?

Oldest page may still be frequently used.

1 2 3 4 5 6

3

FrontRear

5 1 62

First in First Out (FIFO)

Queue

Buffer

Pool

1 2 3 4 5 6

3

FrontRear

5 1 62

First in First Out (FIFO)

Can we address this?

Problem?

Oldest page may still be frequently used.

Least Recently Used (LRU)

Evict page that was used last the longest time ago

Least Recently Used (LRU)

Evict page that was used last the longest time ago

Implementation?

Least Recently Used (LRU)

Evict page that was used last the longest time ago

Implementation?

i.e., We must be able to move an element at a
random location back to the front

A random-access queue

Least Recently Used (LRU)

Queue

Buffer

Pool

1 2 3 4 5 6

3 4 62

FrontRear

1

Use a doubly-linked list as the queue

Least Recently Used (LRU)

Queue

Buffer

Pool

1 2 3 4 5 6

3 4 62

FrontRear

1With pointers linking nodes and buckets

Use a doubly-linked list as the queue

Least Recently Used (LRU)

Queue

Buffer

Pool

1 2 3 4 5 6

3 4 2

FrontRear

1

Load to rear and evict front (as before)

With pointers linking nodes and buckets

Use a doubly-linked list as the queue

Least Recently Used (LRU)

Queue

Buffer

Pool

1 2 3 4 5 6

3 4 2

FrontRear

5 1

Load to rear and evict front (as before)

With pointers linking nodes and buckets

Use a doubly-linked list as the queue

Least Recently Used (LRU)

During access, return entry to rear

Queue

Buffer

Pool

1 2 3 4 5 6

13 4 2

FrontRear

5

Access

Least Recently Used (LRU)

Implementation? Doubly-linked list

Queue

Buffer

Pool

1 2 3 4 5 6

Rear

Access

3 4 25

Front

1

Least Recently Used (LRU)

Implementation? Doubly-linked list

Queue

Buffer

Pool

1 2 3 4 5 6

Rear

Access

3 4 25

Front

1

Least Recently Used (LRU)

Queue

Buffer

Pool

1 2 3 4 5 6

Rear

Access

3 4 25

Front

1

Problems?

Least Recently Used (LRU)

Queue

Buffer

Pool

1 2 3 4 5 6

Rear

Access

3 4 25

Front

1

Problems?

(1) CPU overhead to update queue
for each access

(3) Metadata overhead for pointers

(2) Linked lists are less efficient than
arrays due to pointer chasing

Least Recently Used (LRU)

Queue

Buffer

Pool

1 2 3 4 5 6

Rear

Access

3 4 25

Front

1

Problems?

(1) CPU overhead to update queue
for each access

(3) Metadata overhead for pointers

(2) Linked lists are less efficient than
arrays due to pointer chasing

Better ideas? :)

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation?

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap

0 0 0 0 0 0

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap

1 1 1 0 1 0

Accesses

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap

1 1 1 0 1 0

handle

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap handle

0 1 1 0 1 0

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap handle

0 0 1 0 1 0

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap handle

0 0 0 0 1 0

Evict

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap handle

0 0 0 0 1 0

Insert

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap handle

0 0 0 0 1 1

Insert

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap handle

0 0 0 0 0 1

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap handle

0 0 0 0 0 0

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Implementation? Bitmap handle

0 1 0 0 1 0

Accesses

Clock

Traverse hash table circularly as a clock.

Evict any entry not used since last traversal.

Buffer

Pool

Advantages handle

0 1 0 0 1 0

Accesses

(1) lower overheads as there is no queue

(2) bitmap takes little extra space

Disadvantages

(1)can evict “hotter” pages than LRU,

But still better than FIFO

Summary

Eviction Effectiveness CPU

Random Worst Best

FIFO Moderate Good

LRU Best Worst

Clock Close to Best Good

Two trade-offs

Eviction

Effectiveness

CPU Efficiency

Eviction algorithm

(e.g., LRU vs. Clock)

Two trade-offs

Eviction

Effectiveness

CPU Efficiency

Buffer pool

size

Memory

Eviction algorithm

(e.g., LRU vs. Clock)

LRU and Clock are good for small random reads. How do they
respond to large sequential reads?

