Reasoning About SSD Write-Amplification - CSC443H1 Database
System Technology — Niv Dayan

Pages and Erase Units. An SSD based on NAND flash memory consists of multiple pages, each
approximately 4KB. Reads and writes take place at the granularity of pages. Pages are organized
into erase units, and they must be written sequentially within an erase unit (consisting of
hundreds to thousands of pages). To update a physical page, we must erase the entire erase
unit that the page belongs to. Erase units have a finite lifetime: they can only be erased a
certain number of times before they become too error-prone to store data reliably.

Out-of-Place Updates. SSDs are therefore designed to prevent having to erase and rewrite an
entire erase unit every time we want to update the contents of an individual page. It does this
by updating pages out-of-place. Specifically, it uses some metadata to mark the original version
of the page as invalid, and it writes the new version of the page on some erase unit with free
space. The SSD maintains a mapping table from the logical address of each phase to its physical
address within the SSD. Overall, each page can have one of three states: free, valid, or invalid.

Garbage Collection. As updates take place, more physical pages within the SSD get marked as
invalid. Eventually, as the SSD runs out of free space, we must reclaim space taken up by invalid
pages to accommodate more updates from the application. The SSD does this by performing
garbage collection. The garbage collector picks the erase unit with the highest number of
invalid pages. It migrates any remaining valid pages into an erase unit with free space, and it
then erases the target erase unit.

Write-Amplification. These garbage-collection operations induce write-amplification, the
phenomenon whereby more physical work gets done within the SSD for any unit of logical work
that the application is trying to do. Write-amplification disrupts performance and further
reduces the lifetime of an SSD. It is therefore important to keep it low

Over-Provisioning. To limit write-amplification, any SSD is assigned more physical space than
the logical capacity it exposes to the user. This extra capacity allows more invalid pages to
accumulate before free space runs out. This means that in each erase unit, there is a higher
proportion on average of invalid pages. For each garbage-collection operation, we, therefore,
need to migrate less valid pages. This reduces write-amplification.

Quantifying Write-Amplification. Let x be the average fraction of valid pages in the target erase
unit that we pick for garbage collection. Let us also assume each erase unit has y pages. This
means that for every (1-x)*y invalid pages reclaimed during garbage collection, we must
migrate x*y valid pages. Hence, the average number of pages we must migrate to reclaim one
page is x*y / (1-x)*y = x / (1-x). Hence, for every page the application writes, we must physically
write that page and in addition perform x / (1-x) writes in the background. This leads to a
general write-amplification expression:

write-amplification per page written = (1 + :_x)

Write-Amplification from a User’s Perspective. We usually like to express write-amplification
as the total amount of physical space within the SSD that gets rewritten divided by the size of
the update that the user wanted to make. If users make updates that are smaller than a page,
an entire page still must be written as this is the minimum SSD write granularity. This further
increases write-amplification.

For example, suppose the user updates 1KB chunks. For each 1KB chunk, a whole 4KB page has
to be rewritten. For this to occur, x / (1-x) page migrations must have also happened in the
background to have one free page available that we can write to. Hence, write-amplification is
4 * (1+x/(1-x)) in this case, since for each 1 KB update, 1 + x / (1-x) 4KB pages must be
rewritten in storage.

Generally, suppose that B data items fit into each page and that the user updates one random
entry in each request. A general expression for write-amp from the user’s perspective is:

write-amplification per entry written = B - (1 + :_x)

Worst-Case Write-Amplification. The worst-case write-amplification occurs when every full
erase unit in the SSD has the same number of invalid pages. In this case, the SSD is unable to
pick an erase unit with especially few live pages left to migrate, and so garbage-collection
overheads are the most expensive they can be. This worst-case is admittedly contrived, as
usually there will be an uneven distribution of invalid pages across erase units (on this this
later). However, this worst-case helps us to upper bound write-amplification. This can be
visualized as follow. Each row corresponds to an erase unit with 4 pages. Gray means a valid
page, white means a free page, and an X means an invalid page. In this example, each garbage-
collection operation would have to migrate 5 pages to free one page.

Let us denote the logical capacity of the SSD as L and the physical capacity of the SSD as P. In
each full erase unit, a fraction of L/P of the pages is valid while 1-L/P is invalid. Hence, we can
plug int L/P into our equation above to reason about worst-case write-amplification.

L
Worst-case write-amplification = B - <1 + %) =B- (1 + L)
1_F P-L
For example, if we have an SSD with a logical address space of 800GB and a physical capacity of
1TB, and the user is issuing 4KB updates, then L/P = 0.8 and B=1. In this case, the worst-case

write-amp is 1+0.8 / (1-0.8) = 5.

Write-Amplification Under Uniformly Random Writes. Let us now consider the case where the
workload consists of uniformly randomly distributed writes. In this case, each page in the
system is equally likely to be updated next, regardless of when it was written. In this case, erase
units that were written a longer time ago will tend to have more invalid pages. Hence, the
garbage-collector will generally be able to find erase units with fewer than L/P valid pages left.

49pIO

So what is x in this case? In other words, what is the average number of live pages we must
migrate in the erase unit with the least number of live pages left? In Section 4 of the following
document, | show how to derive this precisely: https://arxiv.org/pdf/1504.00229.pdf. Section 4
in the following paper also provides a good approximation:
http://www.vldb.org/pvldb/vol6/p733-stoica.pdf.

While the derivations in the above documents are precise, they use more complicated math
that | would prefer to leave out of this course. | provide you with the following approximation
instead. It is not formally derived, but as you can see in the following curve, it holds well in

practice, as shown in the figure below.
L

. N . P P _p. L
Uniformly randomly distributed write-amplification = B <1+—2'(1_%)> B (1+—2_(P_L))

=
oON

Write-amp

o

0 0.2 04 0.6 0.8 1
logical data size / physical capacity

ON B O

—e—Real WA for Uniformly Random Writes
—e—Worst-Case Model
Uniformly Random Writes Model

The Impact of Workload on Write-Amplification. In some workloads, the application
sequentially writes a lot of data at once, and this data is then updated all at once. The SSD is
likely to map pages from such large writes into the same erase units. When this data is then
updated, many pages or even all pages within the same erase units become invalid at the same
time. This makes it possible to perform reclaim erase units even more cheaply by migrating
fewer or even no pages. If all pages in an erase unit are invalid, we can simply erase the unit
with no page migrations and thus no write-amplification.

A pitfall, however, can occur if multiple applications are issuing such workloads at the same
time. In this case, data from across different applications can become interspersed within the
same erase units. This means that when some of this data is updated, not all pages within these
erase units would become invalid at the same time. Hence, garbage collection may still take
place to reclaim space, leading to write-amplification. This is precisely the problem we saw in
the Research lecture that the Spooky paper strives to address.

