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In practice, erase units written
longer ago have more invalid
pages, so GC is cheaper

L/P Older
1 —L/P X

But the worst-case hardly
ever happens In practice
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Updates /—\‘_

Hot pages in LRU/Clock
buffer Pool Storage




Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider

making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?
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Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider

making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

What if we use disk instead of SSD?

On disk, seek & rotational delay dominates,
while data transfer is negligible. So this is a
good idea. A node size in the area of a few
MB Is common for disk. Beyond that, we
begin to incur a penalty for long sequential
accesses.
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at a cost of O(1/B) each.
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Should we employ a B-tree index on any of the columns?
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Indexing column A significantly reduces overall costs.
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[logs(N)] + [S/B]
4 + 1

~1 I/O per query



