Indexing Tutorial

Database System Technology

Niv Dayan

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Empty -

Invalid — + Valid

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

%Valid

/P =

%EmMpty + %Valid + %lnvalid

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

%Valid

/P =

%Valid + %lnvalid

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case Non-Worst Case

— Best target

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case SSD WA Approx

1 +

Il —x

X Is avg. fraction of valid pages in
the garbage-collected block

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case SSD WA Approx
X
1 +
Il —x
-~ o - X Is avg. fraction of valid pages in
1 2/6 4/6

the garbage-collected block

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case SSD WA Approx

1+A—'-/--e-3 1 + .

2/6 1 —x

X Is avg. fraction of valid pages in
the garbage-collected block

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case SSD WA Approx

1+i =3 1 +
2

Il —x

X Is avg. fraction of valid pages in
the garbage-collected block

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case SSD WA Approx

1 +

Il —x

In worst case: x =valid/total =4/6 =L/P

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case SSD WA Approx

L/P
1 —-L/P

1 +

In worst case: x =valid/total = 4/6 = L/P

Modeling SSD Write-Amp

In practice, erase units written
longer ago have more invalid
pages, so GC is cheaper

L/P Older
1 —L/P X

But the worst-case hardly
ever happens In practice

Modeling SSD Write-Amp

L/P

1 —-L/P

Cost model assuming uniformly
randomly distributed writes?

X Older

L/P

Modeling SSD Write-Amp

Cost model assuming uniformly
randomly distributed writes?

1 —L/P 2> 1—L/P

] + l L/p >< Older

b
O N

Write-amp

O N B O O

Modeling SSD Write-Amp

i

0.2 0.4 0.6 0.8
logical data size / physical capacity

—e—Real WA for Uniformly Random Writes
—o—Worst-Case Model

—o—Uniformly Random Writes Model

L/P
1 +
1 —L/P
1 L/P
I +—-
2 1-L/P

Question 1

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would
you expect?

Question 1

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would

you expect?

1 L/P

SSD WA Model with uniformly random updates:] +—-
2 1-L/P

B-tree update cost: = 1 write I/0

Question 1

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would

you expect?

1 L/P

SSD WA Model with uniformly random updates:] +—-
2 1-L/P

B-tree update cost: = 1 write I/0 B-tree WA: = B

Question 1

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would

you expect?

1 L/P
SSD WA Model with uniformly random updates: l +—-
2 1-L/P
B-tree update cost: = 1 write I/0O B-tree WA: = B
. 1 0.7
Total write-amp: 100 - (1 +—-) = 216.67

2 1-0.7

Question 1

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would

you expect?

Now suppose the workload exhibits skew (some entries are more likely
to be updated). Which mechanism of a database allows us to reduce
write-amplification in this case, and why?

Question 1

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would

you expect?

Now suppose the workload exhibits skew (some entries are more likely
to be updated). Which mechanism of a database allows us to reduce
write-amplification in this case, and why?

Updates /—\‘_

Hot pages in LRU/Clock
buffer Pool Storage

Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider

making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

al

W NN

(D 2 ([
NN NN
2B 2B

Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider

making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

On SSD, cost is measured as # pages accessed

= 2 . log2s(N) an

W NN

(D 2 ([
AN NN
2B 2B

Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider

making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

On SSD, cost is measured as # pages accessed

2 - log2s(N) = logs(N) /g;]\
t (D 2 ()
Condition for being cheaper A YN F

than standard B-tree 7B 7B

Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider

making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

On SSD, cost is measured as # pages accessed

2 - log2s(N) < logs(N) /g;]\
Simplifiesto: B s 2 (1) 28 ()
A NN K NN

2B 2B

Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider

making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

On SSD, cost is measured as # pages accessed

2 - log2s(N) < logs(N) /g;]\
Simplifies to: B < 2 G:] 2B CD
A NN W N
But B is typically larger. So 2B 2B

it’s not generally a good idea.

Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider

making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

On SSD, cost is measured as # pages accessed

2 - log2s(N) < logs(N) G:]
o a2
Simplifies to: B < 2
(D = ()
A NN A N

What if we use disk instead of SSD? 2B 2B

Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider

making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

What if we use disk instead of SSD?

On disk, seek & rotational delay dominates,
while data transfer is negligible. So this is a
good idea. A node size in the area of a few
MB Is common for disk. Beyond that, we
begin to incur a penalty for long sequential
accesses.

Question 3

Consider a table with columns A, B and C. Suppose we employ buffered insertions
at a cost of O(1/B) each.

~ — x - Workload:

50% Select * from table where A ="..” Returns one row

50% Insert (, ,)

Question 3

Consider a table with columns A, B and C. Suppose we employ buffered insertions
at a cost of O(1/B) each.

~ — x - Workload:

50% Select * from table where A ="..” Returns one row

50% Insert (, ,)

Should we employ a B-tree index on any of the columns?
Estimate the overall I/O cost of both operations with & without it.

Question 3

Consider a table with columns A, B and C. Suppose we employ buffered insertions
at a cost of O(1/B) each.

| 50% Select * from table where A ="..” Returns one row

50% Insert (, ,)

Should we employ a B-tree index on any of the columns?
Estimate the overall I/O cost of both operations with & without it.

Query Insert
I1/0 cost without index 0.5"NB + 0.5-1/B

2

0.5 N/B

Question 3

Consider a table with columns A, B and C. Suppose we employ buffered insertions
at a cost of O(1/B) each.

| 50% Select * from table where A ="..” Returns one row

50% Insert (, ,)

Should we employ a B-tree index on any of the columns?
Estimate the overall I/O cost of both operations with & without it.

Query Insert
I/O cost without index 0.5"NB + 0.5-1/B ~ 0.5 N/B

I/0 cost with index on A 0.5'loggN + 0.5°(1/B+1logesN) = logsN

Question 3

Consider a table with columns A, B and C. Suppose we employ buffered insertions
at a cost of O(1/B) each.

| 50% Select * from table where A ="..” Returns one row

50% Insert (, ,)

Should we employ a B-tree index on any of the columns?
Estimate the overall I/O cost of both operations with & without it.

Query Insert
I/O cost without index 0.5"NB + 0.5-1/B ~ 0.5°N/B
I/O cost with index on A 0.5 loggsN + 0.5°(1/B+logeN) = logsN

Indexing column A significantly reduces overall costs.

Question 4

A table has columns A, B and C. The workload consists of two query types:

50% Select A from table where A =".." Returns one row

. , \\ 50% Select * from table where B > xand B <y Returns avg. 10 rows

How should we index this table? B-tree or hash table? Clustered vs.
unclustered? Estimate worst-case I/O cost with your plan for each
query with these indexes assuming N=240 and B=210

Question 4

A table has columns A, B and C. The workload consists of two query types:

50% Select A from table where A =".." Returns one row

50% Select * from table where B > xand B <y Returns avg. 10 rows

How should we index this table? B-tree or hash table? Clustered vs.
unclustered? Estimate worst-case I/O cost with your plan for each
query with these indexes assuming N=240 and B=210

Clustered B-treeon B Unclustered Hash table on A

Question 4

A table has columns A, B and C. The workload consists of two query types:

50% Select A from table where A =".." Returns one row

50% Select * from table where B > xand B <y Returns avg. 10 rows

How should we index this table? B-tree or hash table? Clustered vs.
unclustered? Estimate worst-case I/O cost with your plan for each
query with these indexes assuming N=240 and B=210

Clustered B-treeon B Unclustered Hash table on A

[logs(N)] + [S/B]
4 + 1

~1 I/O per query

