
Niv Dayan

Indexing Tutorial
Database System Technology

Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Empty

Invalid Valid

Modeling SSD Write-Amp

%Valid

%Empty %Valid %Invalid+ +
L/P =

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Modeling SSD Write-Amp

%Valid

%Valid %Invalid+

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

L/P =

Modeling SSD Write-Amp

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Non-Worst Case

Best target

Worst case

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

Modeling SSD Write-Amp

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case

1 +
x

1 − x

SSD WA Approx

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

x is avg. fraction of valid pages in
the garbage-collected block

Modeling SSD Write-Amp

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case

4/62/61

1 +
x

1 − x

SSD WA Approx

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

x is avg. fraction of valid pages in
the garbage-collected block

Modeling SSD Write-Amp

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case

4/6
2/6

1 +

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

1 +
x

1 − x

SSD WA Approx

x is avg. fraction of valid pages in
the garbage-collected block

Modeling SSD Write-Amp

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case

4
2

1 + = 3

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

1 +
x

1 − x

SSD WA Approx

x is avg. fraction of valid pages in
the garbage-collected block

Modeling SSD Write-Amp

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

1 +
x

1 − x

SSD WA Approx

Modeling SSD Write-Amp

In worst case: x = valid / total = 4/6 = L/P

Worst case write-amplification (WA) occurs when each erase-unit has
same number of invalid pages.

Worst case

Consider an SSD with logical address space size L and physical capacity P.
The usable capacity is a fraction of L/P of the overall capacity.

SSD WA Approx

1 +
L/P

1 − L/P

Modeling SSD Write-Amp

In worst case: x = valid / total = 4/6 = L/P

1 +
L/P

1 − L/P

But the worst-case hardly

ever happens in practice

In practice, erase units written
longer ago have more invalid

pages, so GC is cheaper

Older

Modeling SSD Write-Amp

Cost model assuming uniformly
randomly distributed writes?

Older 1 +
L/P

1 − L/P

Modeling SSD Write-Amp

Cost model assuming uniformly
randomly distributed writes?

1 +
1
2

⋅
L/P

1 − L/P
Older 1 +

L/P
1 − L/P

Modeling SSD Write-Amp

1 +
1
2

⋅
L/P

1 − L/P

1 +
L/P

1 − L/P

Modeling SSD Write-Amp

Question 1

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would
you expect? A back-of-the-envelope calculation is enough.

B

B B

Question 1

SSD WA Model with uniformly random updates: 1 +
1
2

⋅
L/P

1 − L/P

B-tree update cost: ≈ 1 write I/O

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would
you expect? A back-of-the-envelope calculation is enough.

Question 1

SSD WA Model with uniformly random updates: 1 +
1
2

⋅
L/P

1 − L/P

B-tree update cost: ≈ 1 write I/O B-tree WA: ≈ B

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would
you expect? A back-of-the-envelope calculation is enough.

Question 1

100 ⋅ (1 +
1
2

⋅
0.7

1 − 0.7
) = 216.67Total write-amp:

SSD WA Model with uniformly random updates:

B-tree update cost: ≈ 1 write I/O

1 +
1
2

⋅
L/P

1 − L/P

B-tree WA: ≈ B

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would
you expect? A back-of-the-envelope calculation is enough.

Question 1

Now suppose the workload exhibits skew (some entries are more likely
to be updated). Which mechanism of a database allows us to reduce
write-amplification in this case, and why?

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would
you expect? A back-of-the-envelope calculation is enough.

Question 1

Hot pages in LRU/Clock

buffer Pool

Updates

Storage

Now suppose the workload exhibits skew (some entries are more likely
to be updated). Which mechanism of a database allows us to reduce
write-amplification in this case, and why?

Consider a B-tree subject to uniformly randomly distributed updates. There
are 100 entries per page. The b-tree occupies 70% of the physical SSD
capacity, while the rest is over-provisioned. What write-amplification would
you expect? A back-of-the-envelope calculation is enough.

2B

2B 2B

Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider
making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

On SSD, cost is measured as # pages accessed

= 2 · log2B(N)

2B

2B 2B

Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider
making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

On SSD, cost is measured as # pages accessed

Condition for being cheaper
than standard B-tree

2B

2B 2B

logB(N)≤

Question 2

2 · log2B(N)

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider
making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

On SSD, cost is measured as # pages accessed

2B

2B 2B

logB(N)≤

B ≤ 2Simplifies to:

Question 2

2 · log2B(N)

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider
making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

On SSD, cost is measured as # pages accessed

2B

2B 2B

logB(N)≤

But B is typically larger. So
it’s not generally a good idea.

Simplifies to:

Question 2

2 · log2B(N)

B ≤ 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider
making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

On SSD, cost is measured as # pages accessed

2B

2B 2B

logB(N)≤

Simplifies to:

Question 2

2 · log2B(N)

B ≤ 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider
making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

What if we use disk instead of SSD?

On disk, seek & rotational delay dominates,
while data transfer is negligible. So this is a
good idea. A node size in the area of a few
MB is common for disk. Beyond that, we

begin to incur a penalty for long sequential
accesses.

Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care
about read performance. Each node and each SSD page are 4 KB. Consider
making each B-tree node take up two rather than one flash pages (i.e., 8KB
rather than 4KB). This can make the tree shallower. Is this a good idea?

What if we use disk instead of SSD?

Question 3

Returns one row

Consider a table with columns A, B and C. Suppose we employ buffered insertions
at a cost of O(1/B) each.

A B C Workload:

50% Select * from table where A = “…”

50% Insert (, ,)

Question 3

A B C

50% Insert (, ,)

Returns one row50% Select * from table where A = “…”

Should we employ a B-tree index on any of the columns?
Estimate the overall I/O cost of both operations with & without it.

(Back-of-the-envelope reasoning is sufficient)

Consider a table with columns A, B and C. Suppose we employ buffered insertions
at a cost of O(1/B) each.

Workload:

Question 3

A B C

50% Insert (, ,)

Returns one row

Query Insert
≈I/O cost without index

Consider a table with columns A, B and C. Suppose we employ buffered insertions
at a cost of O(1/B) each.

Should we employ a B-tree index on any of the columns?
Estimate the overall I/O cost of both operations with & without it.

0.5 · N/B + 0.5 · 1/B 0.5 · N/B

50% Select * from table where A = “…”

Question 3

A B C

50% Insert (, ,)

Returns one row50% Select * from table where A = “…”

I/O cost without index ≈ 0.5 · N/B

Query Insert

0.5 · logB N + 0.5 · (1/B + logB N) ≈ logB N I/O cost with index on A

0.5 · N/B + 0.5 · 1/B

Consider a table with columns A, B and C. Suppose we employ buffered insertions
at a cost of O(1/B) each.

Should we employ a B-tree index on any of the columns?
Estimate the overall I/O cost of both operations with & without it.

Question 3

A B C

50% Insert (, ,)

Returns one row50% Select * from table where A = “…”

I/O cost without index
Query Insert

I/O cost with index on A

Indexing column A significantly reduces overall costs.

Consider a table with columns A, B and C. Suppose we employ buffered insertions
at a cost of O(1/B) each.

Should we employ a B-tree index on any of the columns?
Estimate the overall I/O cost of both operations with & without it.

≈
≈ logB N

0.5 · N/B + 0.5 · 1/B
0.5 · logB N + 0.5 · (1/B + logB N)

0.5 · N/B

50% Select A from table where A = “…”

Question 4

A B C 50% Select * from table where B > x and B < y

How should we index this table? B-tree or hash table? Clustered vs.
unclustered? Estimate worst-case I/O cost with your plan for each
query with these indexes assuming N=240 and B=210

A table has columns A, B and C. The workload consists of two query types:

Returns one row

Returns avg. 10 rows

50% Select A from table where A = “…”

Question 4

A B C 50% Select * from table where B > x and B < y

Clustered B-tree on B Unclustered Hash table on A

A table has columns A, B and C. The workload consists of two query types:

How should we index this table? B-tree or hash table? Clustered vs.
unclustered? Estimate worst-case I/O cost with your plan for each
query with these indexes assuming N=240 and B=210

Returns one row

Returns avg. 10 rows

50% Select A from table where A = “…”

Question 4

A B C 50% Select * from table where B > x and B < y

Clustered B-tree on B
⌈logB(N)⌉ + ⌈S/B⌉

4 + 1
≈1 I/O per query

A table has columns A, B and C. The workload consists of two query types:

How should we index this table? B-tree or hash table? Clustered vs.
unclustered? Estimate worst-case I/O cost with your plan for each
query with these indexes assuming N=240 and B=210

Unclustered Hash table on A

Returns one row

Returns avg. 10 rows

