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Modeling SSD Write-Amp

Consider an SSD with logical address space size L and physical capacity P. 
The usable capacity is a fraction of L/P of the overall capacity. 
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Worst case write-amplification (WA) occurs when each erase-unit has 
same number of invalid pages.
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Consider an SSD with logical address space size L and physical capacity P. 
The usable capacity is a fraction of L/P of the overall capacity. 

x is avg. fraction of valid pages in 
the garbage-collected block 

Modeling SSD Write-Amp



Worst case write-amplification (WA) occurs when each erase-unit has 
same number of invalid pages.

Worst case

4/62/61

1 +
x

1 − x

SSD WA Approx

Consider an SSD with logical address space size L and physical capacity P. 
The usable capacity is a fraction of L/P of the overall capacity. 

x is avg. fraction of valid pages in 
the garbage-collected block 

Modeling SSD Write-Amp



Worst case write-amplification (WA) occurs when each erase-unit has 
same number of invalid pages.

Worst case

4/6
2/6

1 +

Consider an SSD with logical address space size L and physical capacity P. 
The usable capacity is a fraction of L/P of the overall capacity. 

1 +
x

1 − x

SSD WA Approx

x is avg. fraction of valid pages in 
the garbage-collected block 

Modeling SSD Write-Amp



Worst case write-amplification (WA) occurs when each erase-unit has 
same number of invalid pages.

Worst case

4
2

1 + = 3

Consider an SSD with logical address space size L and physical capacity P. 
The usable capacity is a fraction of L/P of the overall capacity. 

1 +
x

1 − x

SSD WA Approx

x is avg. fraction of valid pages in 
the garbage-collected block 

Modeling SSD Write-Amp



Worst case write-amplification (WA) occurs when each erase-unit has 
same number of invalid pages.
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In worst case:   x = valid / total = 4/6 = L/P



Worst case write-amplification (WA) occurs when each erase-unit has 
same number of invalid pages.
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The usable capacity is a fraction of L/P of the overall capacity. 
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But the worst-case hardly 

ever happens in practice

In practice, erase units written 
longer ago have more invalid 

pages, so GC is cheaper 

Older 
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Cost model assuming uniformly 
randomly distributed writes?
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Modeling SSD Write-Amp



Cost model assuming uniformly 
randomly distributed writes?

1 +
1
2

⋅
L/P

1 − L/P
Older 1 +

L/P
1 − L/P

Modeling SSD Write-Amp



1 +
1
2

⋅
L/P

1 − L/P

1 +
L/P

1 − L/P

Modeling SSD Write-Amp



Question 1

Consider a B-tree subject to uniformly randomly distributed updates. There 
are 100 entries per page. The b-tree occupies 70% of the physical SSD 
capacity, while the rest is over-provisioned. What write-amplification would 
you expect? A back-of-the-envelope calculation is enough. 

B

B B



Question 1

SSD WA Model with uniformly random updates: 1 +
1
2

⋅
L/P

1 − L/P

B-tree update cost: ≈ 1 write I/O

Consider a B-tree subject to uniformly randomly distributed updates. There 
are 100 entries per page. The b-tree occupies 70% of the physical SSD 
capacity, while the rest is over-provisioned. What write-amplification would 
you expect? A back-of-the-envelope calculation is enough. 



Question 1

SSD WA Model with uniformly random updates: 1 +
1
2

⋅
L/P

1 − L/P

B-tree update cost: ≈ 1 write I/O B-tree WA: ≈ B

Consider a B-tree subject to uniformly randomly distributed updates. There 
are 100 entries per page. The b-tree occupies 70% of the physical SSD 
capacity, while the rest is over-provisioned. What write-amplification would 
you expect? A back-of-the-envelope calculation is enough. 



Question 1

100 ⋅ (1 +
1
2

⋅
0.7

1 − 0.7
) = 216.67Total write-amp:

SSD WA Model with uniformly random updates:

B-tree update cost: ≈ 1 write I/O

1 +
1
2

⋅
L/P

1 − L/P

B-tree WA: ≈ B

Consider a B-tree subject to uniformly randomly distributed updates. There 
are 100 entries per page. The b-tree occupies 70% of the physical SSD 
capacity, while the rest is over-provisioned. What write-amplification would 
you expect? A back-of-the-envelope calculation is enough. 



Question 1

Now suppose the workload exhibits skew (some entries are more likely 
to be updated). Which mechanism of a database allows us to reduce 
write-amplification in this case, and why? 
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Hot pages in LRU/Clock 

buffer Pool

Updates

Storage
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write-amplification in this case, and why? 
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Question 2

We have a B-tree on an SSD. the workload is read-intensive, so we only care 
about read performance. Each node and each SSD page are 4 KB. Consider 
making each B-tree node take up two rather than one flash pages (i.e., 8KB 
rather than 4KB). This can make the tree shallower. Is this a good idea?



On SSD, cost is measured as # pages accessed
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On SSD, cost is measured as # pages accessed

Condition for being cheaper 
than standard B-tree
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But B is typically larger. So 
it’s not generally a good idea. 

Simplifies to: 
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We have a B-tree on an SSD. the workload is read-intensive, so we only care 
about read performance. Each node and each SSD page are 4 KB. Consider 
making each B-tree node take up two rather than one flash pages (i.e., 8KB 
rather than 4KB). This can make the tree shallower. Is this a good idea?

What if we use disk instead of SSD?



On disk, seek & rotational delay dominates, 
while data transfer is negligible. So this is a 
good idea. A node size in the area of a few 
MB is common for disk. Beyond that, we 

begin to incur a penalty for long sequential 
accesses. 
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Question 3

Returns one row

Consider a table with columns A, B and C. Suppose we employ buffered insertions 
at a cost of O(1/B) each. 

A B C Workload:

50%       Select * from table where A = “…”

50%       Insert ( ,  ,  )
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Should we employ a B-tree index on any of the columns? 
Estimate the overall I/O cost of both operations with & without it. 

(Back-of-the-envelope reasoning is sufficient)
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Query Insert 
≈I/O cost without index
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A B C
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Returns one row50%       Select * from table where A = “…”

I/O cost without index ≈ 0.5 · N/B

Query Insert 

0.5 · logB N  +    0.5 · (1/B + logB N) ≈  logB N I/O cost with index on A
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Consider a table with columns A, B and C. Suppose we employ buffered insertions 
at a cost of O(1/B) each. 

Should we employ a B-tree index on any of the columns? 
Estimate the overall I/O cost of both operations with & without it. 
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A B C

50%       Insert ( ,  ,  )

Returns one row50%       Select * from table where A = “…”

I/O cost without index
Query Insert 

I/O cost with index on A

Indexing column A significantly reduces overall costs. 

Consider a table with columns A, B and C. Suppose we employ buffered insertions 
at a cost of O(1/B) each. 

Should we employ a B-tree index on any of the columns? 
Estimate the overall I/O cost of both operations with & without it. 

≈
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50%  Select A from table where A = “…”

Question 4

A B C 50%  Select * from table where B > x and B < y

How should we index this table? B-tree or hash table? Clustered vs. 
unclustered? Estimate worst-case I/O cost with your plan for each 
query with these indexes assuming N=240 and B=210

A table has columns A, B and C. The workload consists of two query types:

Returns one row

Returns avg. 10 rows
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Question 4

A B C 50%  Select * from table where B > x and B < y

Clustered B-tree on B
⌈logB(N)⌉ + ⌈S/B⌉

4 + 1
≈1 I/O per query

A table has columns A, B and C. The workload consists of two query types:

How should we index this table? B-tree or hash table? Clustered vs. 
unclustered? Estimate worst-case I/O cost with your plan for each 
query with these indexes assuming N=240 and B=210

Unclustered Hash table on A

Returns one row

Returns avg. 10 rows


