
Niv Dayan

Tutorial on Circular Logs & 
Cuckoo Filters
Database System Technology



Cuckoo filter

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 

Question 1 - Expanding Cuckoo Filters

? ? ?



Cuckoo filter

Question 1 - Expanding Cuckoo Filters

Create new filter of double the size

Migrate entries 

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Cuckoo filter

Question 1 - Expanding Cuckoo Filters

Create new filter of double the size

Migrate entries 

Challenge: we do not have the full keys to rehash. We only have fingerprints. 

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

Challenge: we do not have the full keys to rehash. We only have fingerprints. 

Approach: view fingerprint and first bucket address as components of the same hash 

hash(X) = 01001 001110 
fingerprintaddress

00111001001

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

hash(X) = 01001 001110 

001110
01001

Challenge: we do not have the full keys to rehash. We only have fingerprints. 

Approach: view fingerprint and first bucket address as components of the same hash 

fingerprintaddress

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

hash(X) = 01001 001110 

001110
01001

To migrate, transfer one bit from fingerprint to address 

010010
01110

fingerprintaddress

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

hash(X) = 010010 01110 

To migrate, transfer one bit from fingerprint to address 

01110

Can still find in constant time in resulting filter 

001110
01001

fingerprintaddress

010010

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

Complication: in a cuckoo filter an entry can be in one of two buckets, 
the canonical address and the alternative address. Only the canonical 

address should be viewed as a part of the original hash.

Canonical or alternative address? 

address
Alternative = address

Canonical XOR h(fingerprint)

001110
01001

hash(X) = 010010 01110 
fingerprintaddress

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

Complication: in a cuckoo filter an entry can be in one of two buckets, 
the canonical address and the alternative address. Only the canonical 

address should be viewed as a part of the original hash.

001110
01001

0

Solution: add a bit to indicate whether the current address is canonical 
or alternative. If alternative, switch to canonical via XOR. 

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

Every time we double the data size, we lose one bit from all fingerprints, 
meaning the false positive rate doubles. Hence, the false positive rate as 

we expand is: O(N · 2-M+3)

01110001110
Longer 


fingerprint
Shorter 


fingerprint

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

data Filters # hash accesses 

≈2
≈2

M · ln(2)



As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

data Unified Cuckoo filter

<Fingerprint, level>

FP(X), 2
FP(Y), 3

…
X

Y

Level

1
2
3



As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

<M bit Fingerprint, level>

FP(X), 2
FP(Y), 3

…

False positive rate:

Memory (bits/entry) O(M + log2(L)) 

Filter accesses:

Construction:

Unified Cuckoo filter

O(1) 

O(2-M+3) 

O(L)



As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

False positive rate:

Memory (bits/entry) O(M + log2(L)) 

Filter accesses:

Construction:

Unified Cuckoo filter With Bloom filters

O(M+L) 

O(L · 2-M · ln(2)) 

O(M) 

O(L · M) 

O(1) 

O(2-M+3) 

O(L)



As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

Unified Cuckoo filter With Bloom filters

False positive rate:

Memory (bits/entry)

Filter accesses:

Construction:

Monkey

O(M+L) 

O(2-M · ln(2)) 

O(M) 

O(L · (L + M)) 

O(M + log2(L)) 

O(M+L) 

O(L · 2-M · ln(2)) 

O(M) 

O(L · M) 

O(1) 

O(2-M+3) 

O(L)
(This memory analysis here only account for the filters and not the fence pointers (internal nodes) being stored in memory)



Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 


(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Question 3 - Hot/Cold Data Separation

20%

10%
70%

Cold data

Invalid data

Hot data



Garbage-Collection Write-Amplification

1 +
1
2

⋅
L/P

1 − L/P

1 +
L/P

1 − L/P

L = logical data size

P = physical data size

Worst case

Uniformly random



Garbage-Collection Write-Amplification

1 +
1
2

⋅
L/P

1 − L/P

1 +
L/P

1 − L/P

L = logical data size

P = physical data size

Worst case

Uniformly random

= 1 +
L

P − L

= 1 +
1
2

⋅
L

P − L



Garbage-Collection Write-Amplification

L = logical data size

P = physical data size

Worst case

Uniformly random

= 1 +
L
O

= 1 +
1
2

⋅
L
O

1 +
1
2

⋅
L/P

1 − L/P

1 +
L/P

1 − L/P
= 1 +

L
P − L

= 1 +
1
2

⋅
L

P − L

O = Overprovisioned space (P-L)



(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Question 3 - Hot/Cold Data Separation

20%

10%
70%

Cold data

Invalid data

Hot data
Worst case WA:

Uniformly random:

= 1 +
L
O

= 1 +
1
2

⋅
L
O

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 Worst case WA:

Uniformly random:

= 1 +
L
O

= 1 +
1
2

⋅
L
O

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 

…

In worst-case, same amount of live 
data in each area

Worst case WA: = 1 +
L
O

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 



Question 3 - Hot/Cold Data Separation

Upper bound: 

Let C=0.7, H=0.1 and O=0.2 

= 1 +
H + C

O
= 1 +

0.8
0.2

= 5

…

In worst-case, same amount of live 
data in each area

= 1 +
L
O

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 For lower bound, let’s use our uniform 
workload distribution estimation. 

…

Garbage-collect

Older data

Uniformly random: = 1 +
1
2

⋅
L
O

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 For lower bound, let’s use our uniform 
workload distribution estimation. 

Garbage-collect

Older data

It works as a Lower bound since static data 
can only increase fraction of valid data in 

areas we garbage-collect

…

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 For lower bound, let’s use our uniform 
workload distribution estimation. 

…

Older data

Lower bound: = 1 +
1
2

⋅
H + C

O
= 1 +

1
2

⋅
0.8
0.2

= 3= 1 +
1
2

⋅
L
O

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation

(A) Estimate a lower bound and upper bound for write-amplification assuming 
no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 

Let C=0.7, H=0.1 and O=0.2 For hot/cold separation estimation, assume all 
over-provisioned space is applied on hot areas. 

Garbage-collect

Cold data

……

Hot data + over-provisioning



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 For hot/cold separation estimation, assume all 
over-provisioned space is applied on hot areas. 

Cold data

……

Hot data + over-provisioning

Estimation: = 1 +
1
2

⋅
H
O

= 1 +
1
2

⋅
0.1
0.2

= 1.25

(A) Estimate a lower bound and upper bound for write-amplification assuming 
no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 

= 1 +
1
2

⋅
L
O


