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Cuckoo filter

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 
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hash(X) = 010010 01110 

To migrate, transfer one bit from fingerprint to address 
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Question 1 - Expanding Cuckoo Filters

Complication: in a cuckoo filter an entry can be in one of two buckets, 
the canonical address and the alternative address. Only the canonical 

address should be viewed as a part of the original hash.

Canonical or alternative address? 

address
Alternative = address

Canonical XOR h(fingerprint)
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Solution: add a bit to indicate whether the current address is canonical 
or alternative. If alternative, switch to canonical via XOR. 
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Question 1 - Expanding Cuckoo Filters

Every time we double the data size, we lose one bit from all fingerprints, 
meaning the false positive rate doubles. Hence, the false positive rate as 

we expand is: O(N · 2-M+3)

01110001110
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fingerprint
Shorter 


fingerprint
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As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

data Filters # hash accesses 
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As we have seen, the expected worst case query cost over Bloom filters for a 
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of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 
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As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).
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Question 2 - Cuckoo Filter for LSM-tree

False positive rate:

Memory (bits/entry) O(M + log2(L)) 

Filter accesses:

Construction:
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As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

Unified Cuckoo filter With Bloom filters

False positive rate:

Memory (bits/entry)

Filter accesses:

Construction:

Monkey

O(M+L) 

O(2-M · ln(2)) 

O(M) 

O(L · (L + M)) 

O(M + log2(L)) 

O(M+L) 

O(L · 2-M · ln(2)) 

O(M) 

O(L · M) 

O(1) 

O(2-M+3) 

O(L)
(This memory analysis here only account for the filters and not the fence pointers (internal nodes) being stored in memory)



Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 


(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Question 3 - Hot/Cold Data Separation
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(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation
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Question 3 - Hot/Cold Data Separation
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workload distribution estimation. 
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Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 For hot/cold separation estimation, assume all 
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(A) Estimate a lower bound and upper bound for write-amplification assuming 
no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 
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(never updated), 10% hot data, and 20% over-provisioning. 
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