/ —

Dynamic Filters (Quotient & InfiniFilter)

Research Topics in Database Management

Niv Dayan

Two volunteers needed for next week’s presentations

What is a Filter?

Set

Does X exist? —>

f key X does not exist

Does key
X exist

Memory

f key X does not exist

Does key

Memor
X exist 4

True
negative positive
with prob 1-¢ with prob ¢

Does key
X exist

Saves storage accesses & network hops

Blocked

Bloom XOR
Jd |
w o

Faster Lower FPR

Blocked
Bloom

<5 D

XOR

Static - no deletes or resizing

Supporting Dynamic Data

Supporting Dynamic Data

Deletes Resizing
(First hour) (Second hour)

Why Support Deletes?

h 4

Why Support Deletes?

True Key X

positive —
o

Query(X)

/—’ Delete(X) /\
e’ delete(X) W

) Y

Why should we also delete from filter?

Desired Outcome

Query(X)

) 4

4 .
Negative

Desired Outcome

Query(X)

4
Negative

!

Only possible if filter supports deletes

Why do last week’s filters not
support deletes?

Bloom XOR

W D

Multiple keys may map to each bit

delete
<
0101001000

e
Bloom filter

Multiple keys may map to each bit

Setting bits back to Os can lead to false negatives

/\ get delete
7
0100001000

% , ———
Bloom filter

Slot # 0 1 > 3 4 5 6 7T

Content 0101 1100 0000 0000 1101 0000 0000 1111
*r-———— —— 0 —— 0 — 0 —0—0——0———9

XOR filter

Multiple keys share slots

Slot # 0 1 > 3 4 5 6 7T
Content ~ 0101 1100 0000 0000 1101 0000 0000 1111

/N

1,45 01,3

B x

Fingerprints: 0001 1001

Multiple keys share slots

Slot # 0 1 > 3 4 5 6 7T
Content ~ 0101 1100 0000 0000 1101 0000 0000 1111

/N

1,45 01,3

delete(.) *

0001 1001

Slot # 0 1 > 3 4 5 6 7T
Content ~ 0101 0000 0000 0000 1101 0000 0000 1111

/N

1,45 01,3

delete(.) *

0001 1001

Resetting a slot for one entry will cause false negatives
over other entries

Slot # 0 1 > 3 4 5 6 7T
Content ~ 0101 0000 0000 0000 1101 0000 0000 {111

T~/

0, 1,3

*

1001

How to support deletes without false negatives?

How to support deletes without false negatives?

Cuckoo Filters
(Last semester)

How to support deletes without false negatives?

76

Cuckoo Filters Quotient Filters

(Last semester) (Today)

Why cover another filter that supports deletes?

76

Cuckoo Filters Quotient Filters

(Last semester) (Today)

Showcase cool encoding/decoding techniques

O

O

Quotient Filters

Quotient Filters

Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012.

Michael A Bender, Martin Farach-Colton, Rob Johnson, Bradley C Kuszmaul, Dzejla
Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane, Erez Zadok.

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.
Prashant Pandey, Michael A Bender, Rob Johnson, Rob Patro.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design.
SIGMOD 2021.

Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-Colton,
Rob Johnson.

Which to focus on?

Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012.

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design.
SIGMOD 2021.

Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012.
Worse memory & query efficiency

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design.
SIGMOD 2021.

Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012.
Worse memory & query efficiency

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design.
SIGMOD 2021.

Uses SIMD - less tunable

Our focus

A General-Purpose Counting Filter: Making Every Bit Count. 2017.

h
ash(O-w
) =

Q

R

E[] |

Canonical slot

f query(O=w)
g
0

Canonical slot

Each inserted key corresponds to exactly one entry

f O
¢

ECIE

Each inserted key corresponds to exactly one entry

Removing it won’t introduce false negatives for other entries
K h
N\

IR

&

Hash collisions - multiple fingerprints map to same
canonical slot

e ®
N

Canonical slot

Address using Robin Hood Hashing

®®
N

Address using Robin Hood Hashing
Variant of linear probing

®®
N

Each fingerprint is pushed rightwards yet stays as
close as possible to its “canonical slot”

e ®
N

Each fingerprint is pushed rightwards yet stays as
close as possible to its “canonical slot”

F(D)3
F(A)o F(E)s
F(B)o F(C) F(F)3 F(G)s F(H)e
! ! ! v !

¥

F(Ch F(F)3 F(G)s F(H)s
N4 v oy
o 1 2 3 4 5 6 7

¥

F(F)s
i
3

F(G)s F(H)e
N\ N\ i It
Fenfrealren| ||| |
0 1 2 4 5 6 7

¥

F(G)s F(H)e
TN TN O~)

) O C
0] 2 3 4 o & /

F(H)e
TN N N

S e o o e
0 1 2 3 4 D o V4

Note: fingerprints belonging to same
canonical slot are contiguous

o o [e
0 2 3 4 5 o V4

Note: fingerprints belonging to same
canonical slot are contiguous

run

run run run
o o [e
0 2 3 4 o o V4

~ On average, each run consists of 1 slot

run

run run run run
o o [e
0 1 2 3 4 o o V4

query(H)

run run run run run
o o e
0 1 2 3 4 D o V4

Problem?

query(H)

l

run run run run r

un
o o e
0 1 3 4 D o V4

F(C
2

Problem? Fingerprint might have shifted to the right

query(H)

-

run run run run r

un
o o e
0 1 3 4 D o V4

F(C
2

Problem”? Fingerprint might have shifted to the right

Solution? query(H)
l a4
run run run run r

un
o o e
0 1 2 3 4 D o V4

Solution: delineate runs using 2 bitmaps

Occupied:
End:

run run run run I

un
[e e
0 1 3 4 D o V4

F(C
2

Occupied: 1 if there is a run belonging to this slot
End:

run I

Un run run run
o e e
0 1 2 3 4 D o V4

Occupied: 1 if there is a run belonging to this slot
End:

F(F)s

F(B)o F(E)3
] o] Telm
0 1 2 3 4 5 6 V4

Occupied: 1 1 0 1 0 1 1 0
End:

0] 2 3 4 O & /

Occupied: 1 1 0 1 0 1 1 0
End:

run I

Un run run run
e e e
0 1 2 3 4 D o V4

End: 1 for each slot where a run ends

run I

Un run run run
e e e
0 1 2 3 4 D o V4

End: 0 1

run I

Un run run run
e e e
0 1 2 3 4 D o V4

End: 0 1 1

run r

un run run run
e e e
0 1 2 3 4 D o V4

End: 0]] 0 0 1

run I

Un run run run
e e e
0 1 2 3 4 D o V4

End: 0]] 0 0] 1

run I

Un run run run
e e e
0 1 2 3 4 D o V4

End: 0]] 0 0]] 1

run I

Un run run run
e e
0 1 2 3 4 D o V4

Ith set occupied bit corresponds to ith set end bit

Occupied: 1 1 0 1 0 1 1 0
End: ™Sy 0 0 1 >

run I

Un run run run
e e e
0 1 2 3 4 D o V4

How to query?

Occupied: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1

0] 2 3 4 O & /

y
Occupied: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1

S e
0 1 2 3 4 D o V4

get(Z) return negative

y
Occupied: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1

S e
0 1 2 3 4 D o V4

y
Occupied: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1

S e
0 1 2 3 4 D o V4

y
Occupied: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1

S e
0 1 2 3 4 D o V4

Count # 1s (5) get(h)

y
Occupied: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1

Find matching 1 (5th)

S o
0 1 2 3 4 D o V4

Count # 1s (5) get(H)

+
Occupied: 1 1 0 1 0 1 1 0
Ena: 0 1 1 0 0 1 1 1
Find matching 1 (5th) Run

l end

Count # 1s (5) get(H)

¢
Occupied;: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1
Find matching 1 (5th) Run
l end
—

Scan until prior run end or
until reaching canonical slot

Can handle queries :)

Occupied: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1

0] 2 3 4 O & /

Can handle queries :) problem?

Occupied: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1

0] 2 3 4 O & /

Scanning bitmaps takes O(N)

Occupied: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1

S e
0 1 2 3 4 D o V4

Scanning bitmaps takes O(N)
ldeas?

Occupied: 1 1 0 1 0 1 1 0
End: 0 1 1 0 0 1 1 1

S e
0 1 2 3 4 D o V4

Split filter into chunks (64 slots in practice)

Each chunk has offset field (8 bits)

Offset O Offset 4

Each chunk has offset field
Measures distance to first entry of chunk

Offset O Offset 4

Back to Example

get(H)

Offset Offset

Back to Example

get(H)

Offset 4 5 6 /

|
Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4 5 6 /

get(H)
Count # 1s (2) l

Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4 5 6 /

get(H)
Count # 1s (2) l

——

Occupied;: 0 1 1 0
End: 0 1 1 1
—_
Skip

Offset 4

get(H)
Count # 1s (2) l

.
Occupied;: 0 1 1 0
End: 0 1 1 1

Skip Find 2nd 1

Offset 4 5 6 /

get(H)
Count # 1s (2) l

.
Occupied;: 0 1 1 0
End: 0 1 1 1

—_—

Skip Find 2"0' 1

Offset 4

get(H)
Count # 1s (2) l

.
Occupied;: 0 1 1 0
End: 0 1 1 1

—_—

Skip Find znd 1

Offset 4

. — .
Scan until next run end or canonical slot

Target run may have been pushed to next chunk

Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4

Target run may have been pushed to next chunk

get(l)
¥
Occupied;: 0 1 1 1
End: 0 1 1 1

Offset 4 5 6 /

Target run may have been pushed to next chunk
get(l)

Occupied;: 0 1 1 1
End: 0 1 1 1

....- e

Offset 4

Sequential cache misses
get(l)

Occupied;: 0 1 1 1
End: 0 1 1 1

Offset 4

Queries in O(C), where C=64 is chunk size @

D —
Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4 5 6 /

Queries in O(C), where C=64 is chunk size
Can we do O(1)?

.
Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4 5 6 /

Rank & Select

.
Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4 5 6 /

Rank & Select

Can parse a 64-bit bitmap in constant time

Occupied: 0 1 1 0
End: 0 1 1 1

Offset 4 5 6 /

Rank & Select

Can parse a 64-bit bitmap in constant time

64 bits
Occupied: O 1 1 0 0
End: 0 1 1 1 1

J4+2 |43

Offset | j+1 |+63

Rank(i) counts # 1s before the ith bit

Select (i)

Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4 5 6 /

Rank (i) counts # 1s before the ith bit

Select(i) returns the offset of the ith 1

Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4

Rank (i) counts # 1s before the ith bit (1) How to use?

Select (i) returns the offset of the ith 1 (2) How to implement?

Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4

Back to example: get(H)

Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4 5 6 /

(A) Count # of runs ends belonging to previous chunks

Occupied;: 0 1 1 0
End: 0 1 1 1

e

a = Rank(Offset)

Offset 4

(A) Count # of runs ends belonging to previous chunks

Occupied: 0 1 1 0
End: 0 1 1 1

*

a = Rank(2) = 1

Offset 4

(B) Count # of run ends belonging to this chunk before target

Occupied: O 1 1 0O

End: 0 1 1 1
L
a = Rank(2

Offset 4

(B) Count # of run ends belonging to this chunk before target

b = Rank(targetSlot - firstChunkS/ot)

G

Occupied;: 0 1 1 0

End: 0 1 1 1
L
a = Rank(2

Offset 4

(B) Count # of run ends belonging to this chunk before target

b = Rank(6 - 4)

G

Occupied;: 0 1 1 0

End: 0 1 1 1
L
a = Rank(2

Offset 4

(B) Count # of run ends belonging to this chunk before target

b = Rank(2) = 1

G

Occupied;: 0 1 1 0

End: 0 1 1 1
L
a = Rank(2

Offset 4

(C) skip to the (a+b)t run end

b = Rank(2) = 1

Occupied;: 0 1 1 0

End: 0 1 1 1
% e
a = Rank(2

Offset 4

(C) skip to the (a+b)th run end

Occupied;: 0 1 1 0
End: 0 1 1 1

Select(a + b)

Offset 4

(C) skip to the (a+b)th run end

Occupied;: 0 1 1 0
End: 0 1 1 1

Select(2) =

Offset 4

(C) skip to the (a+b)th run end

Occupied;: 0 1 1 0
End: 0 1 1 1

Offset 4

General algorithm to bring us to end of slot k’s run

r = Rank(k - j)

G

Occupied;:
End:

2

Select(Rank(off) + r)

o]]
J4+2 |43

Offset | j+1

Implementing Rank and Select Efficiently

Implementing Rank and Select Efficiently

No looping

Implementing Rank Efficiently

rank(i) = popcount(B & (2! - 1))

Implementing Rank Efficiently

rank(i) = popcount(B & (2' - 1))
T
Bitmap (64 bits long)

Implementing Rank Efficiently

rank(i) = popcount(B & (2' - 1))
T
Bitmap (64 bits long)

,r--————
Least Most

significant bits significant bits

Implementing Rank Efficiently

rank(i) = popcount(B & (2! - 1))
T
Total # of 1s

Implementing Rank Efficiently

rank(i) = popcount(B & (2i - 1))
T

Mask out irrelevant more significant bits

e.g.,

rank(i) = popcount(B & (2 - 1))

B=0110101 1

e.g.,

rank(i) = popcount(B & (2 - 1))

B=01101011

¢—— 0

rank(6) = 3

rank(i) = popcount(B & (2 - 1))

e.g., B=01101011 rank(6) = 3

mask: 2°-1=11111100

e.g.,

rank(i) = popcount(B & (2 - 1))

B=01101011

&
11111100

01101000

rank(6) = 3

e.g.,

rank(i) = popcount(B & (2 - 1))

B=01101011

popcount(01101000)= 3

rank(6) = 3

Implementing Select Efficiently

Implementing Select Efficiently

select(i) = tzcnt(pdep(2', B))

Implementing Select Efficiently

select(l) = tzcnt(pdep(2!, B))
1
Bitmap (64 bits long)

Implementing Select Efficiently

select(l) = tzcnt(pdep(2!, B))
1

Count trailing zeros

Implementing Select Efficiently

select(l) = tzcnt(pdep(2!, B))
1

Count trailing zeros
tzcnt(00011101) = 3

Implementing Select Efficiently

select(i) = tzent(pdep(2!, B))
T

Scatter bits In first operand at 1s in second operand

Implementing Select Efficiently

select(l) = tzent(pdep(2!, B))
N

Available on x86

https://www.felixcloutier.com/x86/

e.g.,

Implementing Select Efficiently

select(l) = tzcnt(pdep(2!, B))

B=0110101 1

e.g.,

Implementing Select Efficiently

select(l) = tzcnt(pdep(2!, B))

B=0110101 1 Select(2) = 4
T

e.g.,

Implementing Select Efficiently

select(l) = tzcnt(pdep(2!, B))

B=0110101 1 Select(2) =4

22=00100000

Implementing Select Efficiently

select(l) = tzcnt(pdep(2!, B))

e.g., B=0110101 1 Select(2) = 4

pdep(00100000,B)=00001000

Scatter bits in first operand at 1s in second operand

e.g.,

Implementing Select Efficiently

select(l) = tzcnt(pdep(2!, B))

B=0110101 1 Select(2) =4

ndep(00100000,B)=00001000
T

Only the 1 at relevant
position IS how set

e.g.,

Implementing Select Efficiently

select(l) = tzcnt(pdep(2!, B))

B=0110101 1 Select(2) =4

tzcnt(00001000)= 4

queries in O(1) due to fast rank and select

r = Rank(k - J) 1‘;
e
Occupied: ...

End:

e

Select(Rank(off) + r)

CAESEIEIES
42 J+3

Offset | j+1

Insertions?

Offset | j+1

o]]
J4+2 |43

Insertions

Find target run, push colliding entries to right, insert

Offset | j+1

o]]
J4+2 |43

Insertions

Find target run, push colliding entries to right, insert

Insert F(X)1

+
] oo e]
0 1 2 3 4 5 6 /

run

Insertions

Find target run, push colliding entries to right, insert

Insert F(X)1

run > —o—0

+
ol | e[oo
0 1 2 3 4 5 6 /

Insertions

Find target run, push colliding entries to right, insert

run

] o
0 1 2 3 4 5 6 /

Insertions

Find target run, push colliding entries to right, insert

Problem?

run

] o
0 1 2 3 4 5 6 /

Insertions

Find target run, push colliding entries to right, insert

'

potentially O(N)

] o
0 1 2 3 4 5 6 /

run

Insertions

Find target run, push colliding entries to right, insert

'

potentially O(N) - solution?

run

] o
0 1 2 3 4 5 6 /

Insertions

Keep at least 5% spare capacity

run > —o—

0] 2 3 4 5 6 /

Insertions

Keep at least 5% spare capacity

Push at most 20 entries on avg due to hashing

run > —o—

ol el [] e
0] 2 3 4 5 6 /

Insertions

Keep at least 5% spare capacity
Push at most 20 entries on avg due to hashing

Most insertions don’t spill to the next chunk

AN
o——
0 1 2 3 4 5 o [

8 9

deletes?

run > —o—

0] 2 3 4 5 6 /

Can only delete entry we know exists. Why?

run > —o—

0] 2 3 4 5 6 /

Can only delete entry we know exists. Why?

delete(Q)

}

e el m]
0 1 3 4 5 6 /

2

run

Can only delete entry we know exists. Why?

delete(Q) - matches C’s FP at slot 3

}

e el m]
0 1 3 4 5 6 /

2

run

Can only delete entry we know exists. Why?

Subsequent get(C) return

Q) false negatives
run o—o—

o] ool
0 1 2 3 4 5 6 V4

delete

How to delete an entry we know exists?

delete(D)

I
e el m]
0 1 2 3 4 5 6 /

run

How to delete an entry we know exists?

(1) Find run, remove matching fingerprint

delete(D)

!
G T 0 0 G T
0] 2 3 4 o 6 /

run

How to delete an entry we know exists?

(1) Find run, remove matching fingerprint

delete(D)

(2) shift entries leftwards if needed to maintain contiguous runs
as close as possible to their canonical slot

ru — o ——9o — o ~——o——o

(2) shift entries leftwards if needed to maintain contiguous runs
as close as possible to their canonical slot

ru > — > —° o—e

Analysis

Query/insert/delete

False positive rate

Analysis

Query/insert/delete O(1) expected time

False positive rate

Analysis

Query/insert/delete O(1) expected time

False positive rate =~ Q- 2(WN-2.125)/a

Analysis
Query/insert/delete O(1)

False positive rate ~ Q- 2(WN-2.125)/a

T

Bits / entry budget

Analysis
Query/insert/delete O(1)

False positive rate ~ Q- 2(M/N-2.125)/a

T

Metadata bits
(2 bitmaps and offsets field)

Analysis
Query/insert/delete O(1)

False positive rate ~ Q- 2(M/N-2.125)a

T

Load factor, a < 0.95

Analysis
Query/insert/delete O(1)

False positive rate ~ Q- 2(M/N-2.125)a

T

Avg run length

Bloom Quotient XOR |dealized

) SO
\’I % @) /*.::

~ 2 -M/N-0.69 ~0 © 2-(WN - 2.125)/a ~ 2 -M/N-0.81 ~ D -M/N

Bloom Quotient XOR |dealized

17V, O , /.,
\’I % D - /.*::

~ 2 -M/N-0.69 ~0 © 2-(WN - 2.125)/a ~ 2 -M/N-0.81 ~ D -M/N

Lower than Bloom for M/N > 10

Bloom Quotient XOR |dealized

17V, O ! /.,
\’I % D - ,*.::

~ D -M/N-0.69 ~ Q- 2(M/N-2.125) ~ 2 -M/N-0.81 ~ 2 -M/N

Lower than Bloom for M/N > 10

Supports deletes :)

Performance (cache misses)

Blocked Bloom Quotient XOR
\‘I

% O

T ~1-2 on avg 3
sequential random

Deletes Resizing

I

Deletes Resizing

I

Break

ity
' apaci
d with fixed c
te
Alloca

IE

Allocated with fixed capacity

False positive Insertion/query/
rate delete cost

i "% %

X Y/

-—_—>
Data growth

How to Expand Filters Efficiently?

? X Y/

-—>
Data growth

Bloom Filters: unexpandable

//\\?

001000017100 0000000000000000

XOR Filters: unexpandable

Can’t recover original fingerprints without
accessing the original data

FP(Y)= 2 D 4 D

/

Owns Y

T~

Expansion Workarounds

Expansion Workarounds

Pre-Allocation

A

SIZE

XL |

Memory

I

Expansion Workarounds

Pre-Allocation Reconstruction

) ®

SIZE

XL |

Memory Full scan

N3 I3

Chaining

8

Agenda

Quotient Filter

P @

) i.‘)

Al

InfiniFilter &
Aleph Filter

o0

Chaining

ity
apaci
ches ¢

er rea

filter when form

er fi

2Xx larg

Create

LA 4

Chaining

T Y

Chaining

Insertions
‘_—__\Create 2X
Full larger

Works with any filter

Insertions
Queries m

Works with any filter
Downsides?

Insertions
Queries m

Works with any filter
Downsides?

Insertions
Queries .____—\
O(log2 N)

"TYY

Works with any filter
Downsides?

Insertions
Queries m
O(logz N)

FPR?

FPR:

Suppose we want to keep it €?

FPR: £ + £ + £

O(e - log2 N)

Suppose we want to keep it €7

LA 4

FPR: € + € + > = O(e-logz N)

-
Set lower FPRs for newer filters

Geometrically decreasing. Any issue?

FPR: € + €/2 + e/4d = Ofe-logz N)

FPR: € + &/2 + e/l4 = O(€)
1

Most Memory
Most data, lowest FPR

FPR:

Bits / entry:

e/2

+

e/4

log(4/¢)

O(e)

FPR:

Bits / entry:

e/2

+

e/d =

log(2logN/g)

O(e)

Can we better scale memory?

FPR: € + &/2 + e/d = O(€)

Bits / entry: [@ log2N + log(1/€)

The FPRs should decrease more slowly but still converge

FPR: € + &/2 + e/d = O(€)

Bits / entry: ﬂ@ log2N + log(1/¢)

Reciprocal of square numbers

1/12 + 1/22 + 1/32 =

Solved by Euler
In 1734

112+ 1/2° + 1/32 2/6

Solved by Euler
In 1734

112+ 1/2° + 1/32 2/6

1.645

Solved by Euler
N 1/34

1/12 + 1/22 + 1/32 = 12/6

Polynomially decreasing yet still convergent

FPR: e/12 + g/22 + £/ 32

€ - T2/6

) 4

) 4

FPR: e/12 + &/22 + £/ 32 € - T2/6

Bits / entry: log(32/¢€)

) 4

) 4

FPR: e/12 + &/22 + /32 = € - T2/6

Bits / entry: log(log(N)2/€)

) 4

) 4

FPR: e/12 + &/22 + /32 = € - T2/6

Bits / entry: 2 logzlog2(N) + log(/¢)

FPR: = €

Bits / entry: 2 log2log2(N)+ log(/e) < logN + log(1/¢)

FPR: = €

Bits / entry: 2 logzlogz (N) + log(1/¢)

~———
Close to lower bound

\l/

How to Approximate A Set Without Knowing Its Size In Advance
Rasmus Pagh, Gil Segev, Udi Wieder. FOCS 2013.

FPR: = €

Bits / entry: 2 logzlogz (N) + log(1/¢)

~———
Close to lower bound

\l/

How to Approximate A Set Without Knowing Its Size In Advance
Rasmus Pagh, Gil Segev, Udi Wieder. FOCS 2013.

Much of what follows originates from here :) j

Bits / entry

30

25
20
15

10
5
0

10

expansions

15

20

InfiniFilter &

Chaining Quotient Filters Aleph Filter

Quotient Filters are Semi-Expandable

Semi-Expandable

- § -

hash(O=w)

I
na
w

Q

0

One bit narrower
——

“Te] [

0

Twice as many buckets

-MM/N + 2.125) / a
False positive rate (FPR) = a - 2

(M/N - logz(N) + 2.125) /

|

Lose 1 fingerprint bit In
each expansion

False positive rate (FPR) = a - 2

(M/N - logz(N) + 2.125) /

False positive rate (FPR) = a ‘2\/

Remove constants

(M/N - logz(N))

|

Simplify

False positive rate (FPR) = 2

-M/N
False positive rate (FPR) = N - 2

T

Linear increase with data size

-M/N
False positive rate (FPR) = N - 2

Supports up to M/N expansions

-M/N
False positive rate (FPR) = N - 2

Supports up to M/N expansions

O(1) operations

> <l

InfiniFilter &
Aleph Filter

o0

Chaining Quotient Filters

2 FPR

expansions

InfiniFilter: Expanding Filters to Infinity and Beyond
Niv Dayan, loana Bercea, Pedro Reviriego, Rasmus Pagh. S|IGMOD 2023

0,0

InfiniFilter

pooo

Quotient filter

InfiniFilter

Variable-sized fingerprints

InfiniFilter

(1) sacrifice one bit
during expansion

/—_\
HERE HEELEEEEE

InfiniFilter

(1) sacrifice one bit (2) Newer entries get
during expansion longer fingerprints

/—_\ /\
BEQE BELUERQEE

Unary age counter Fingerprint

AGE @

Unary age counter Fingerprint
22
0
@

0 expansions ago

Unary age counter Fingerprint
N
10 R

1 expansions ago

Unary age counter Fingerprint

110 R

2 expansions ago

Unary age counter Fingerprint

110 R

Delimiter

Unary age counter Fingerprint

110 R

All remaining slot bits

Fix
e
d-lengt
h

®

Expansion

AGE

001

D

AGE

001

D

011

N

1001

AGE

001

D

O
2

011

©

AGE

011

001

Longer fingerprints can be inserted
after expansion

:

o)

Half of entries have F bit fingerprints

,/l\.
e | |8 B@

Quarter have F-1 bit fingerprints

N
o |e|0|®8|0|0

Eighth have F-2 bit fingerprints

®[-[=[6[=]|8®

weighted false positive rate log2(N) - 2-F

L

©-[=[6[=]|8®

false positive rate = logz(N) - 2-MN < N - 2-M/N

with quotient
filter

Rehash(O-w) &

rejuvenate
fingerprint

cel=[6=]8®

Rehash(O=w) & 1 FPR

rejuvenate

|og N.2-M/N —» 9-M/N
fingerprint

Increase slot width at rate of = 2 log2 log2 N

A

Q

FPR ~ logN - 2-MN

FPR =~ Wﬁ . 9-M/N - 2logzlogz N

FPR ~ 2-MN

After F expansions, oldest fingerprints run out of bits

I

Unary padding occupies whole slot

EEIDEEICE
I

Unary padding occupies whole slot

Any query Positive

N/
EEIDEOEE

How to continue expanding?

I-..II
W i

Aleph Filter: To Infinity in Constant Time
Niv Dayan, loana Bercea, Rasmus Pagh. VLDB 2024

| 2

T I T

Duplicate

query(old key)

. query(old key) N

* positive whichever bucket °

. the key belongs to o

< y

Expand Indefinitely with O(1) performance

. query(old key) N

° positive whichever bucket °
. the key belongs to .

< y

Expandable Filters Complicate Deletes

Identify how many void entries to remove

SN
] A T

Expandable Filters Complicate Deletes

Multiple fingerprints of diff lengths may match key to delete

/\
LI

Expandable Filters Complicate Deletes

Solutions exist in the papers :)

LI

Two volunteers needed for next week’s presentations

Thank you!

