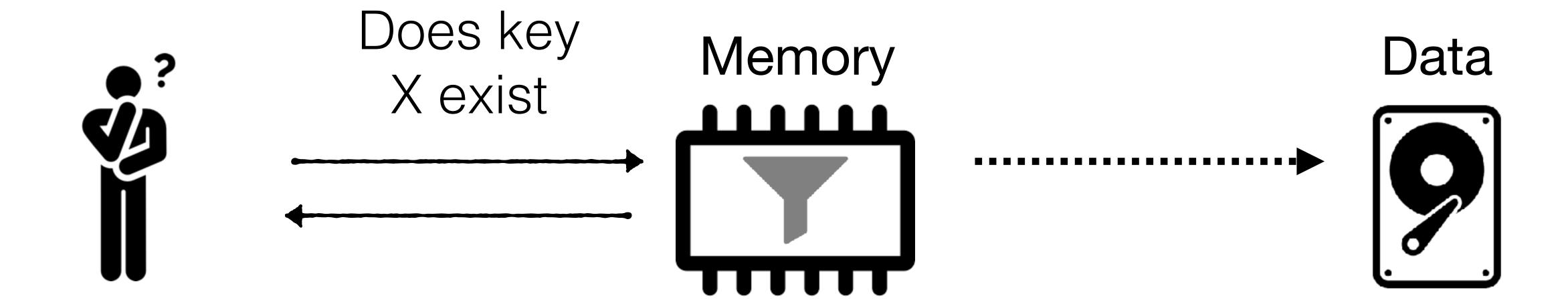
Dynamic Filters (Quotient & InfiniFilter) Research Topics in Database Management Niv Dayan

Two volunteers needed for next week's presentations

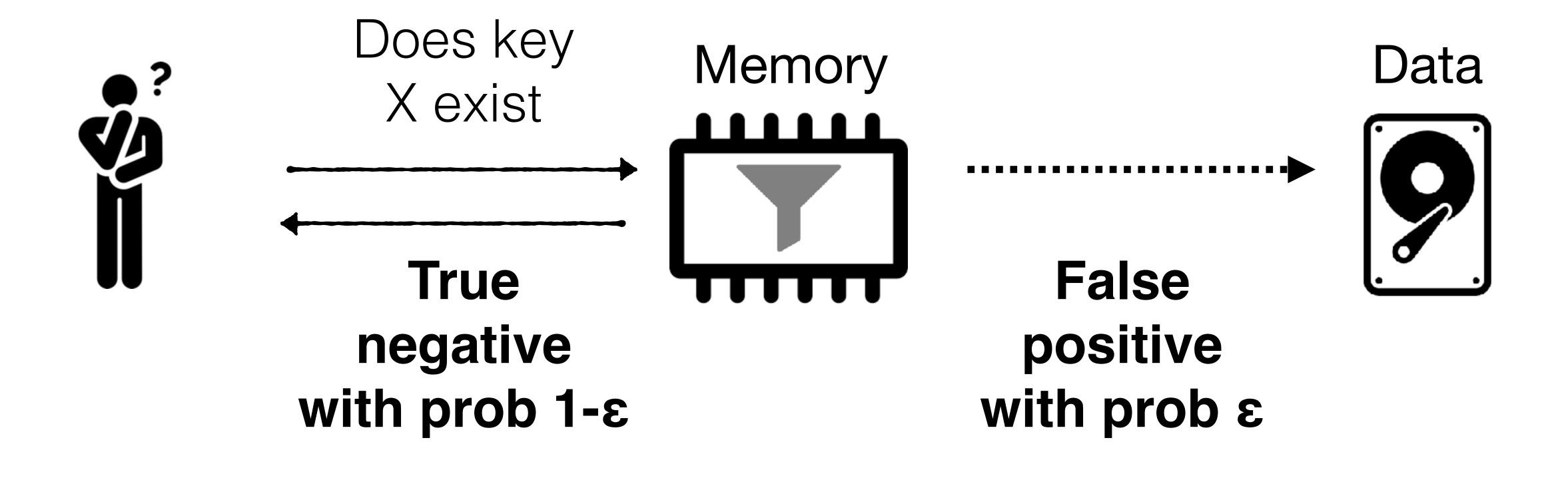
What is a Filter?

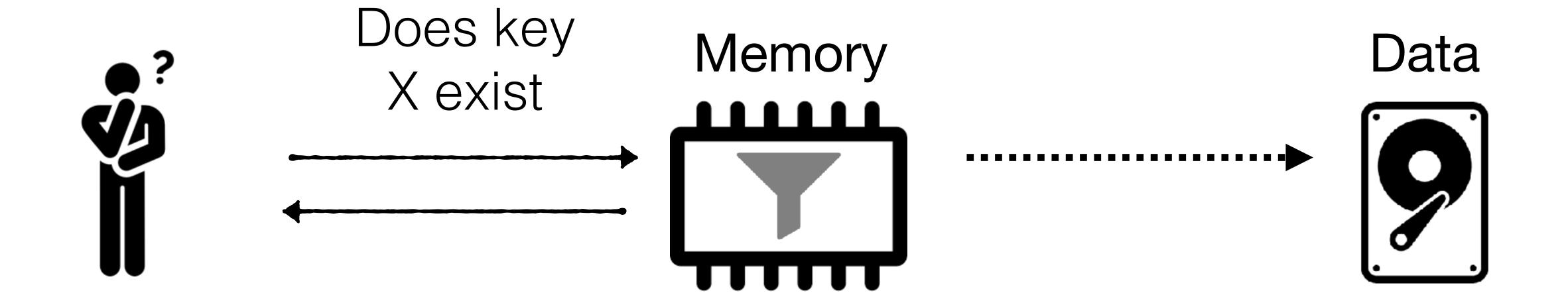
Does X exist? → X Y Z

If key X does not exist



If key X does not exist

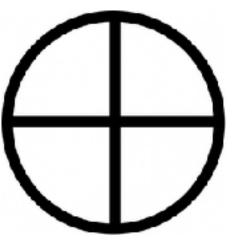




Saves storage accesses & network hops

Blocked Bloom

XOR

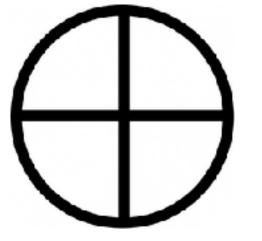


Faster

Lower FPR

Blocked Bloom

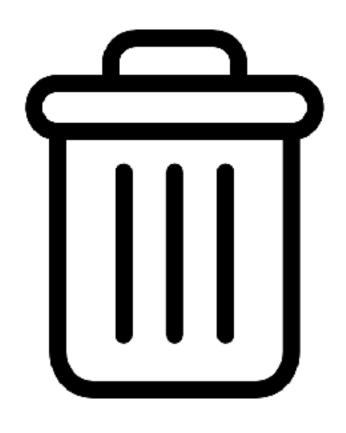
XOR



Static - no deletes or resizing

Supporting Dynamic Data

Supporting Dynamic Data



Deletes

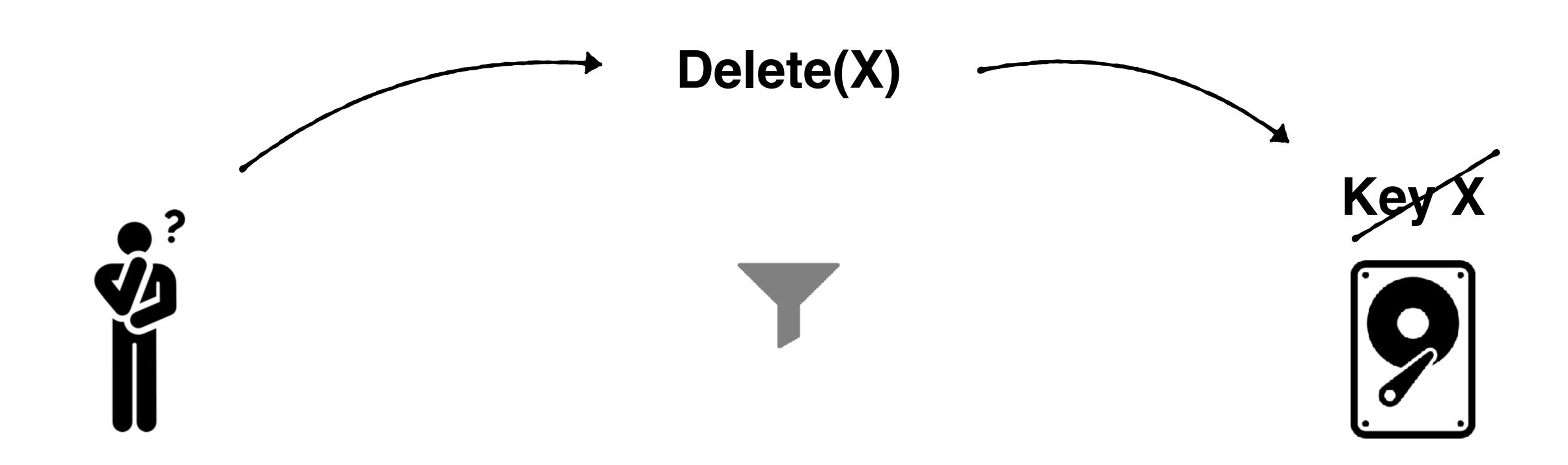
(First hour)

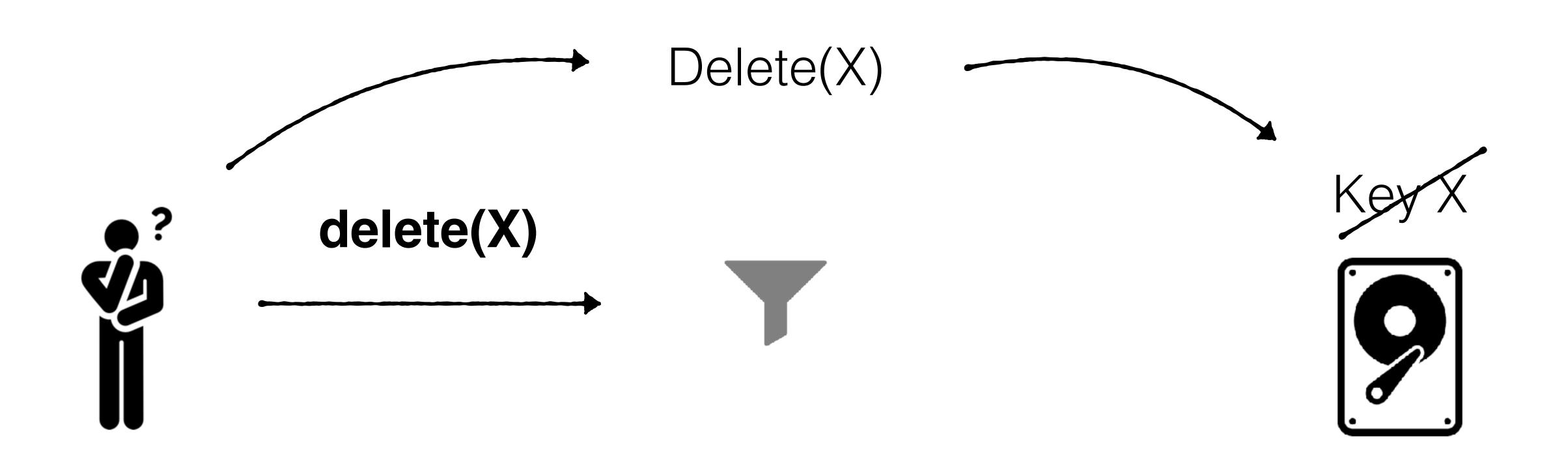
Resizing

(Second hour)

Why Support Deletes?

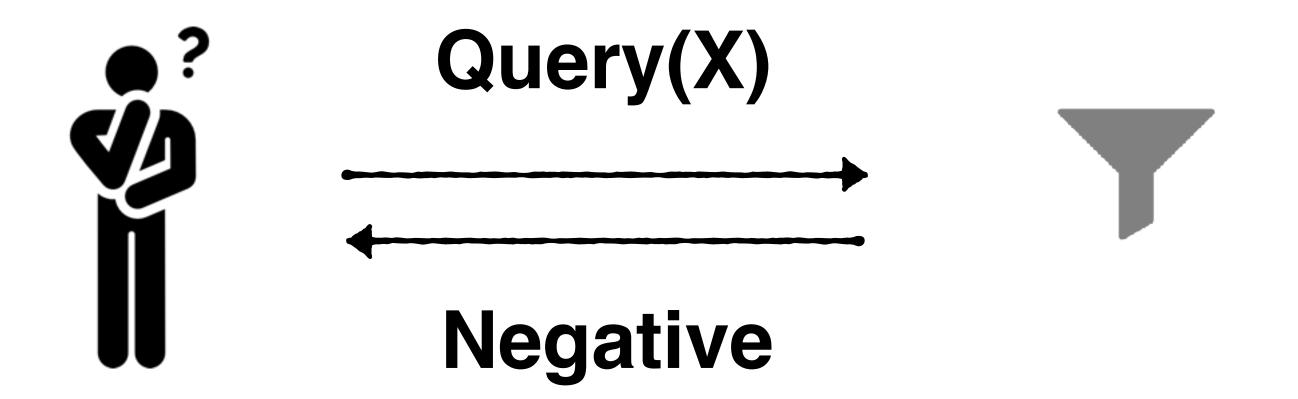
Why Support Deletes?





Why should we also delete from filter?

Desired Outcome



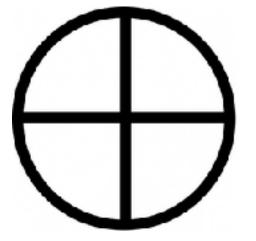
Desired Outcome

Only possible if filter supports deletes

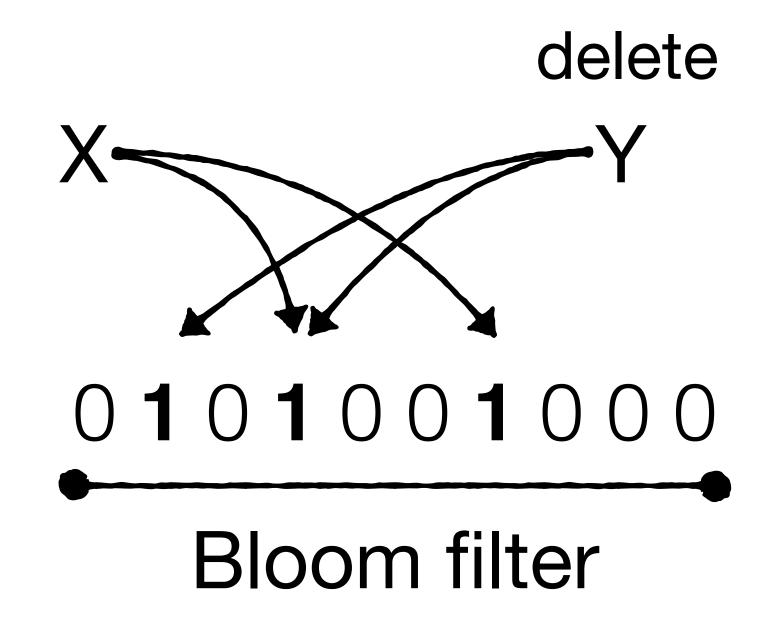
Why do last week's filters not support deletes?

Bloom

XOR

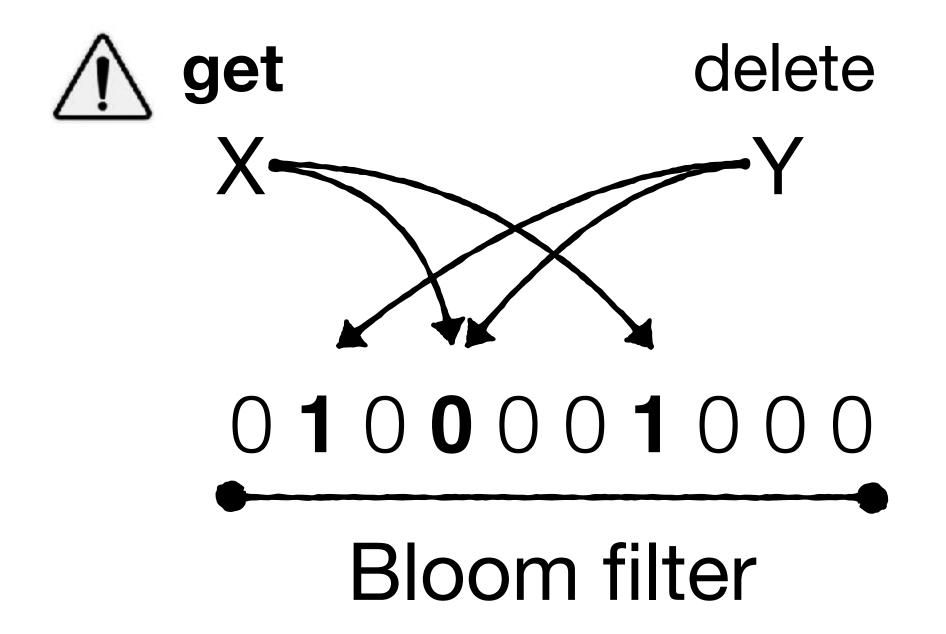


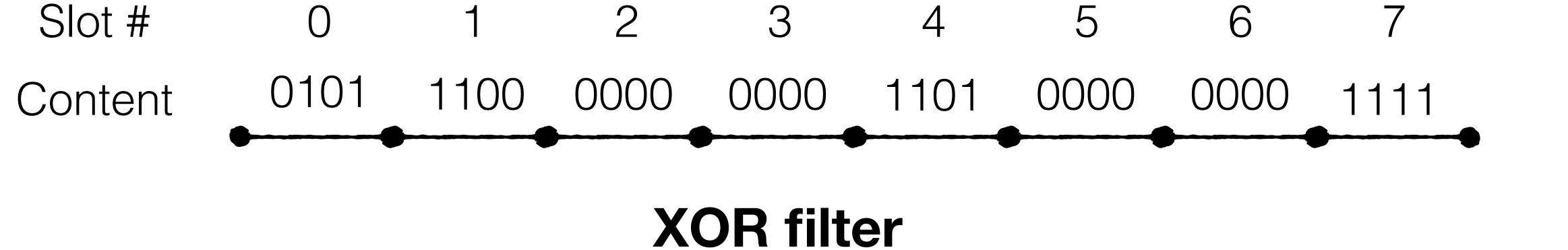
Multiple keys may map to each bit



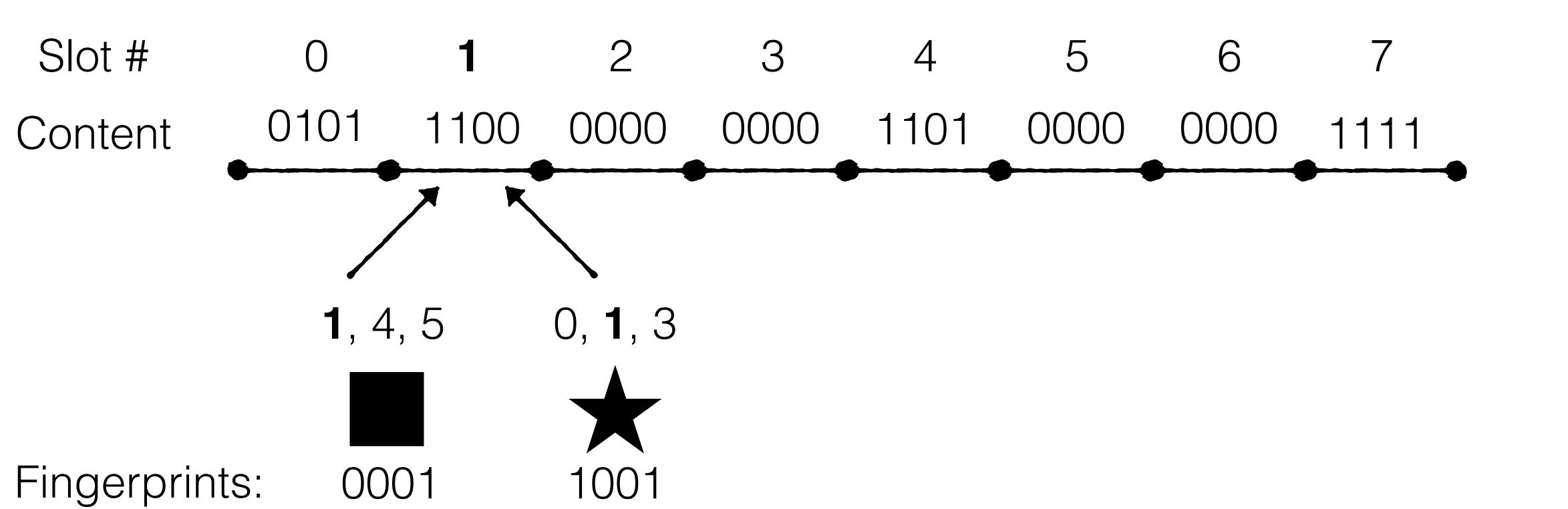
Multiple keys may map to each bit

Setting bits back to 0s can lead to false negatives

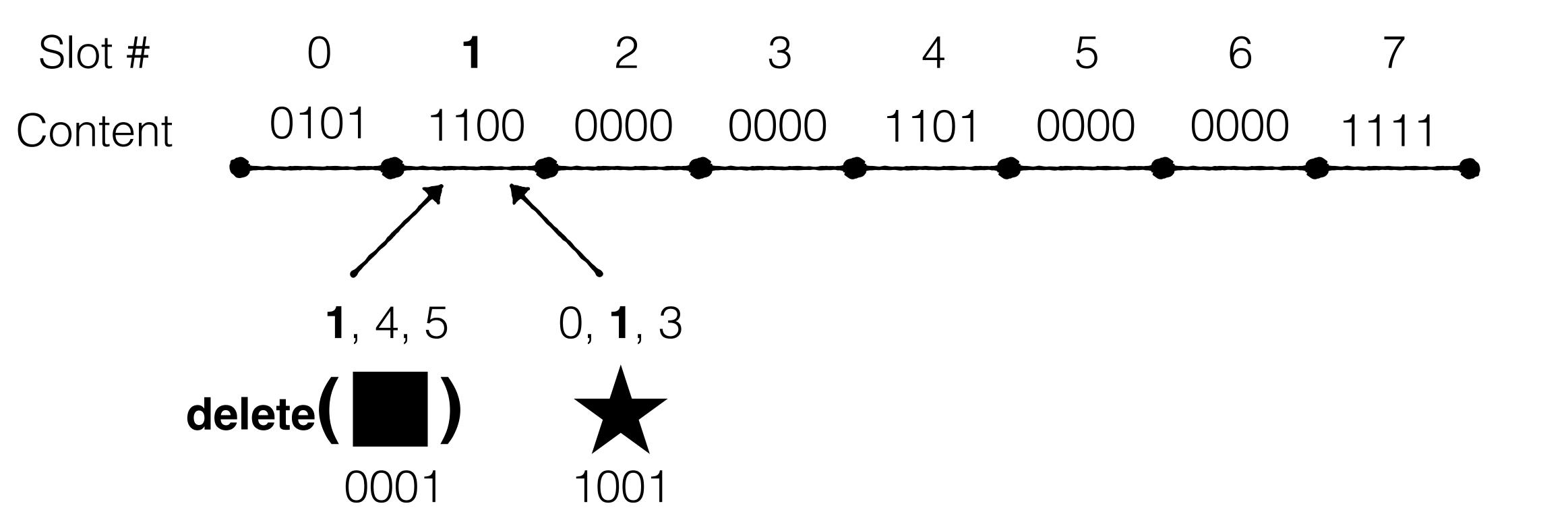


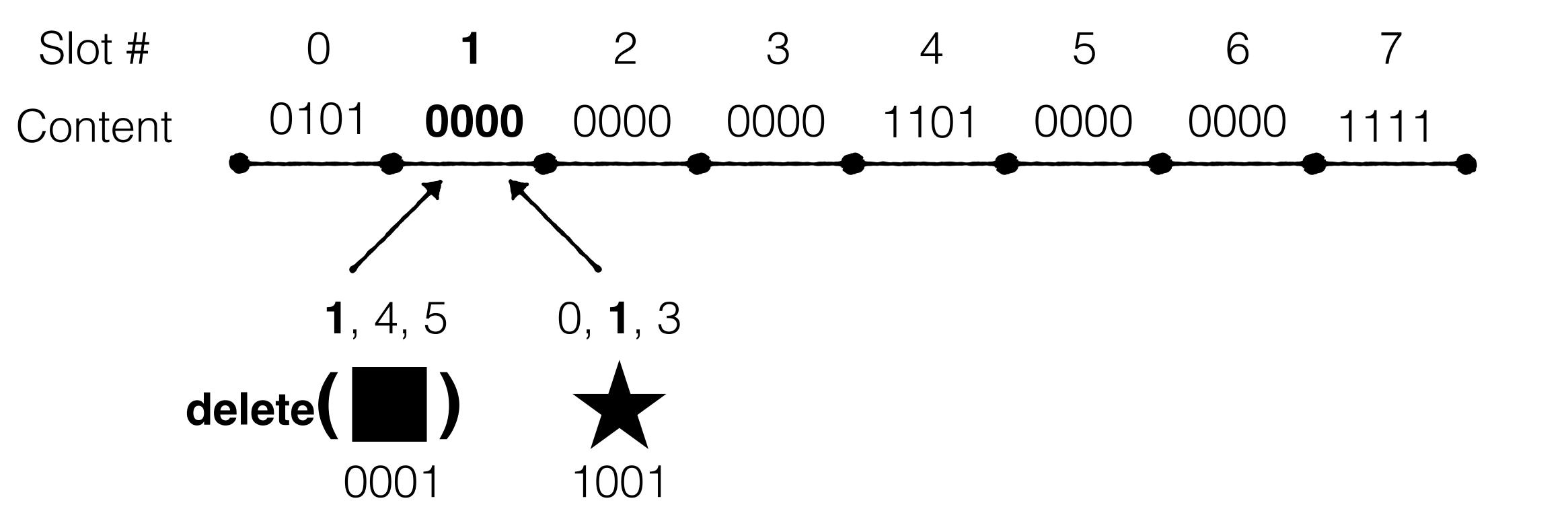


Multiple keys share slots

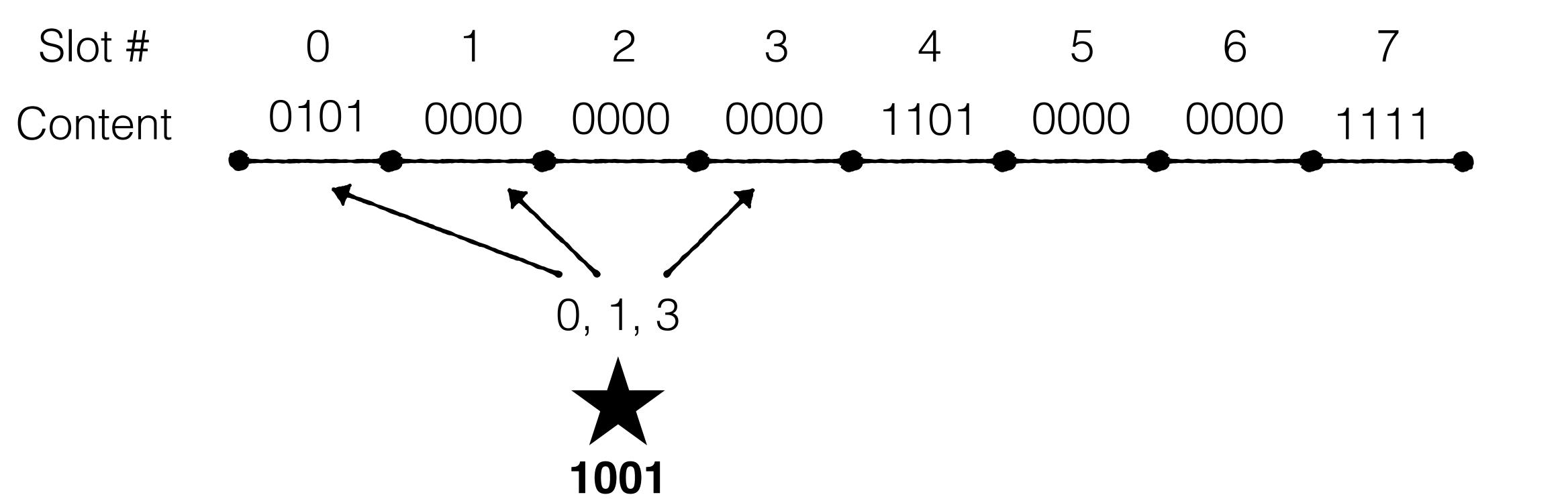


Multiple keys share slots



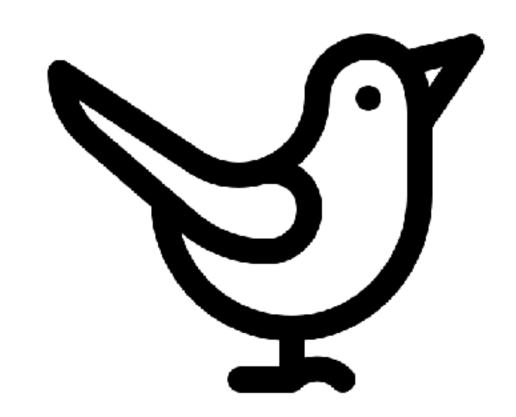


Resetting a slot for one entry will cause false negatives over other entries



How to support deletes without false negatives?

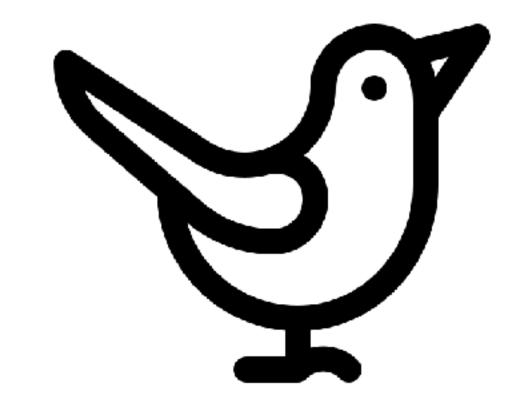
How to support deletes without false negatives?



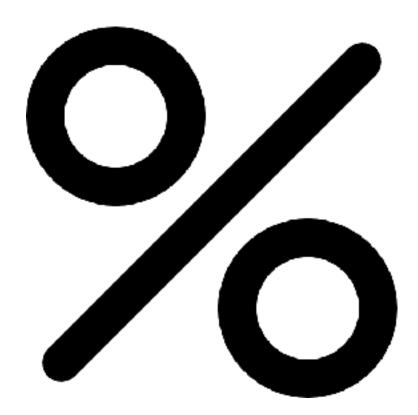
Cuckoo Filters

(Last semester)

How to support deletes without false negatives?

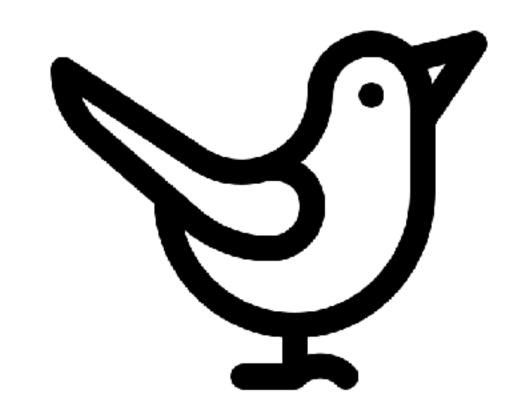


Cuckoo Filters
(Last semester)

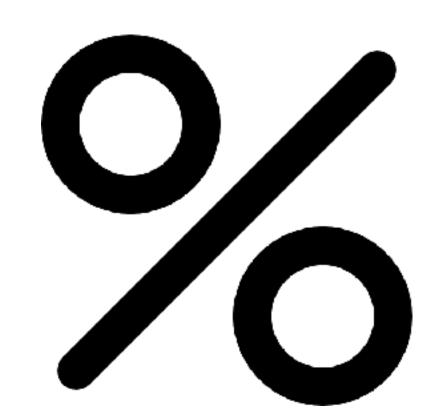


Quotient Filters
(Today)

Why cover another filter that supports deletes?

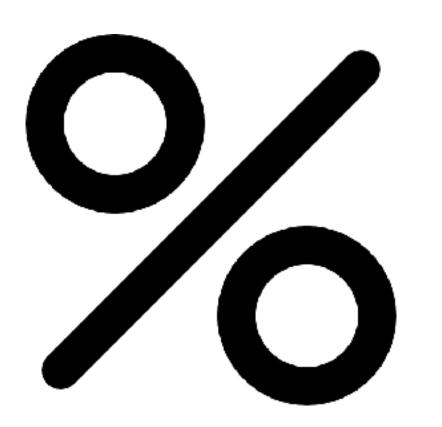


Cuckoo Filters
(Last semester)



Quotient Filters
(Today)

Showcase cool encoding/decoding techniques



Quotient Filters

Quotient Filters

Don't Thrash: How to Cache Your Hash on Flash. VLDB 2012.

Michael A Bender, Martin Farach-Colton, Rob Johnson, Bradley C Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane, Erez Zadok.

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Prashant Pandey, Michael A Bender, Rob Johnson, Rob Patro.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. SIGMOD 2021.

Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-Colton, Rob Johnson.

Which to focus on?

Don't Thrash: How to Cache Your Hash on Flash. VLDB 2012.

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. SIGMOD 2021.

Don't Thrash: How to Cache Your Hash on Flash. VLDB 2012. Worse memory & query efficiency

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. SIGMOD 2021.

Don't Thrash: How to Cache Your Hash on Flash. VLDB 2012. Worse memory & query efficiency

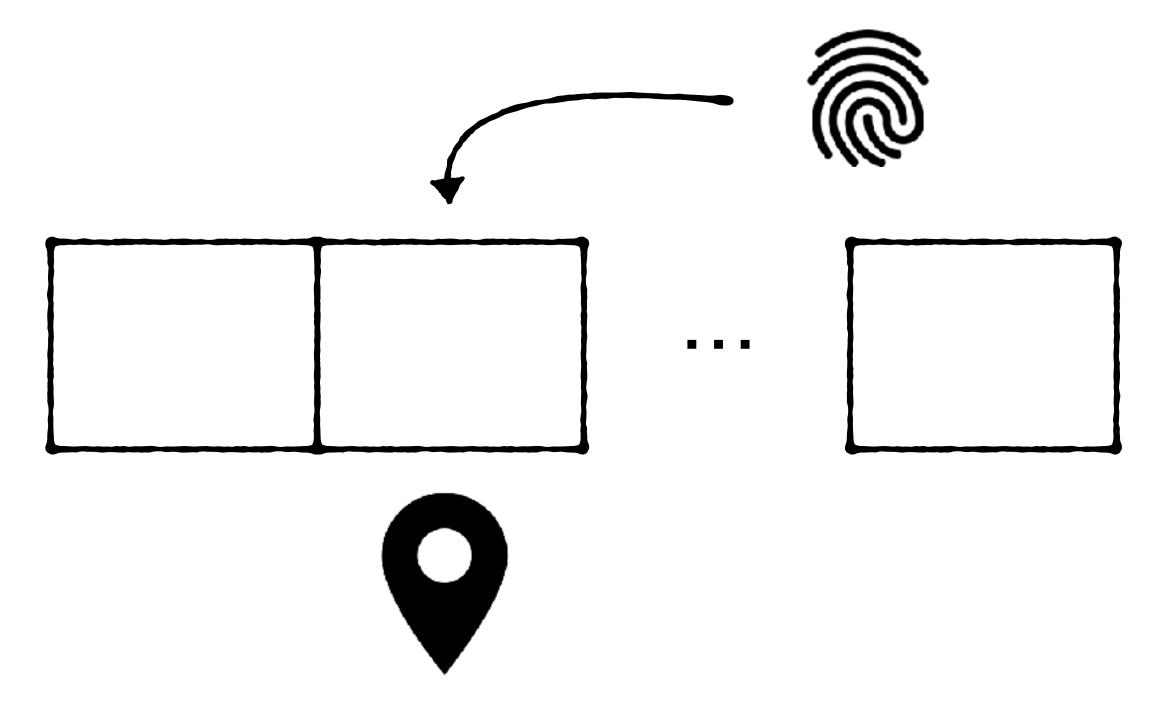
A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. SIGMOD 2021.

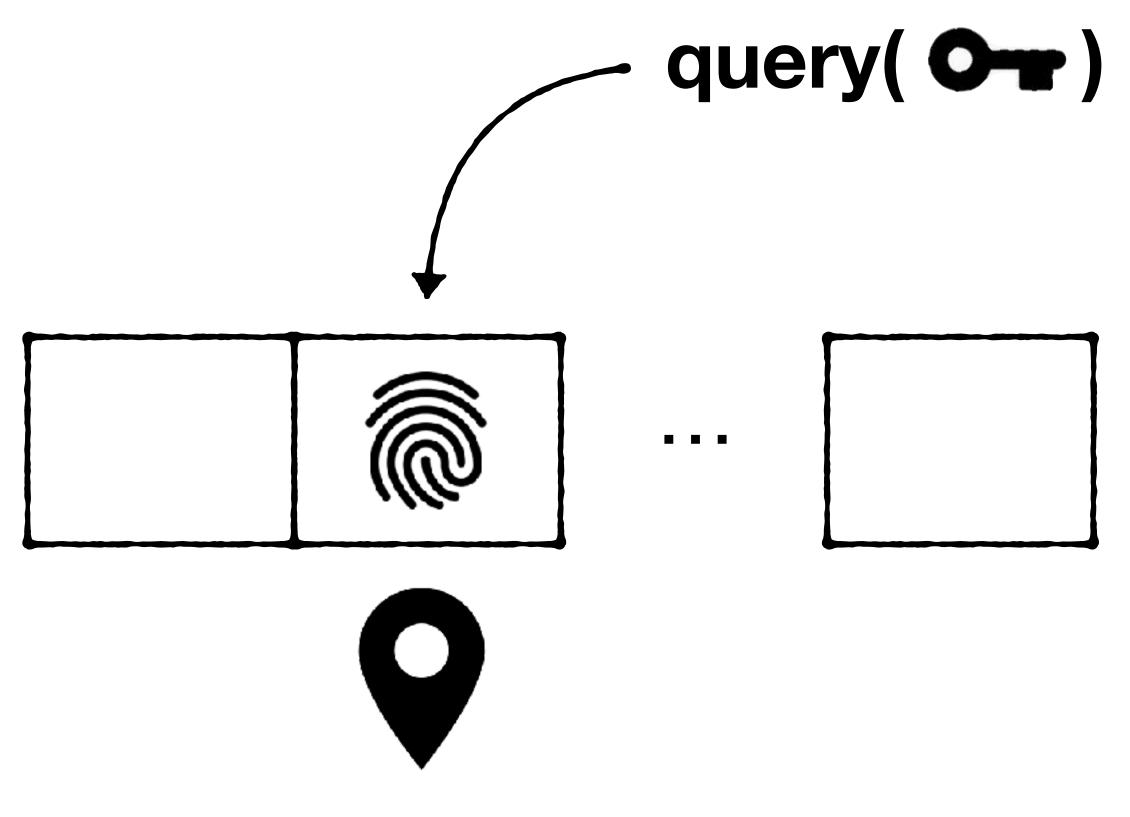
Uses SIMD - less tunable

Our focus

A General-Purpose Counting Filter: Making Every Bit Count. 2017.

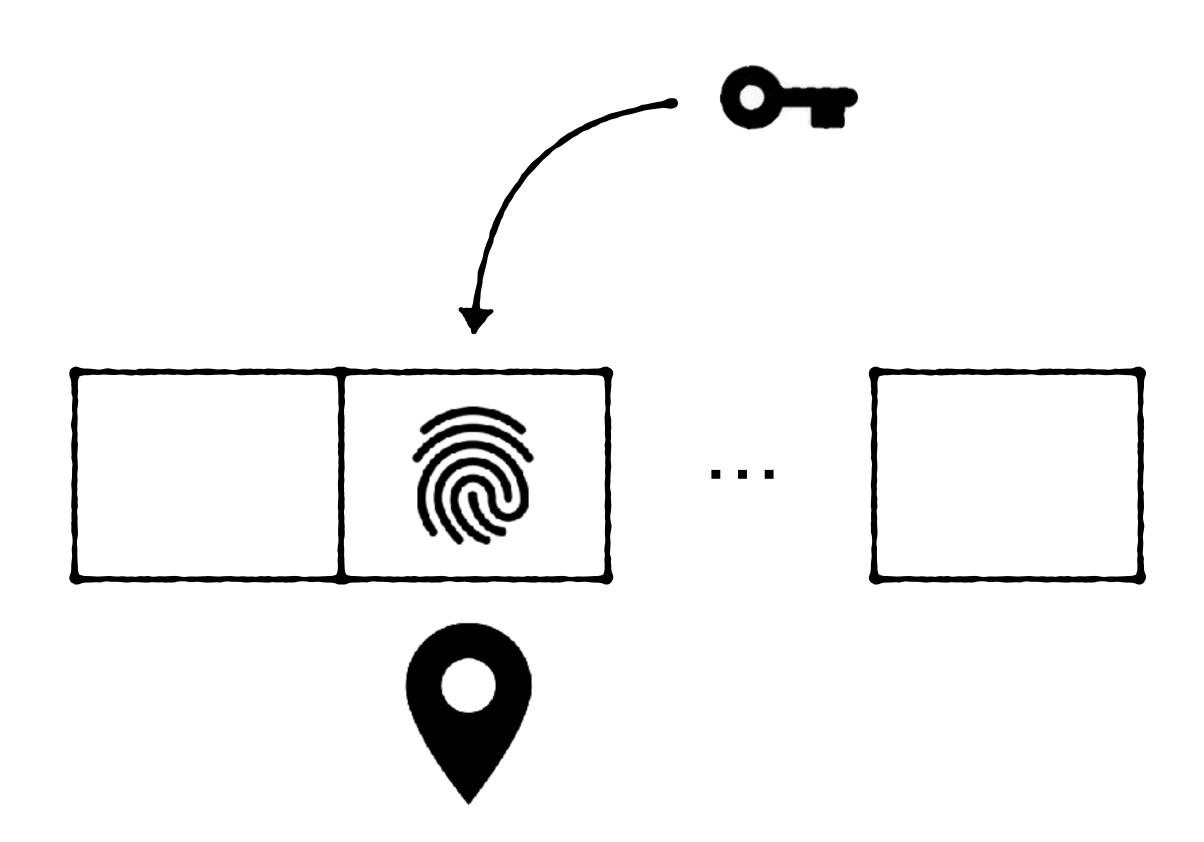


Canonical slot

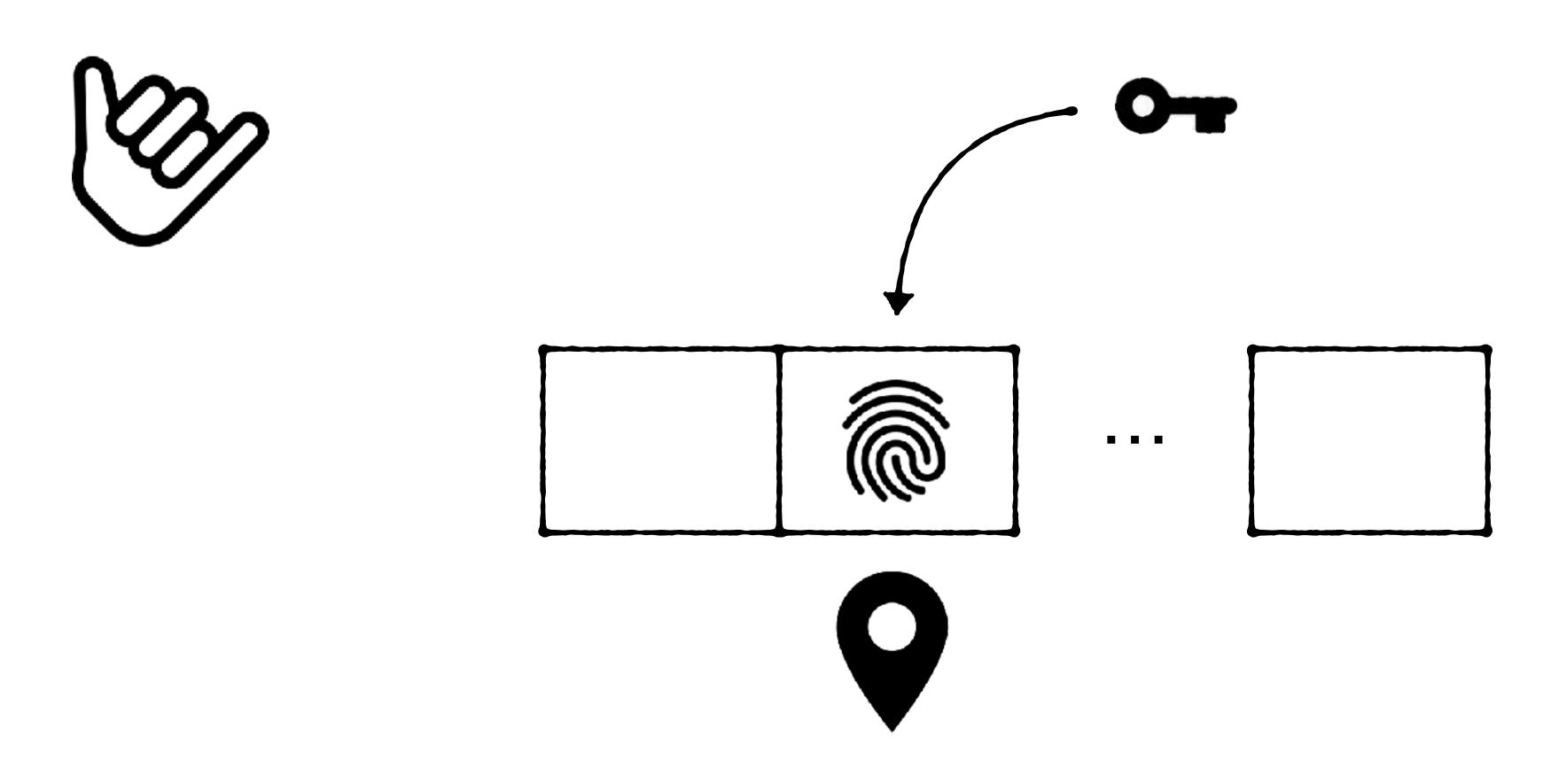


Canonical slot

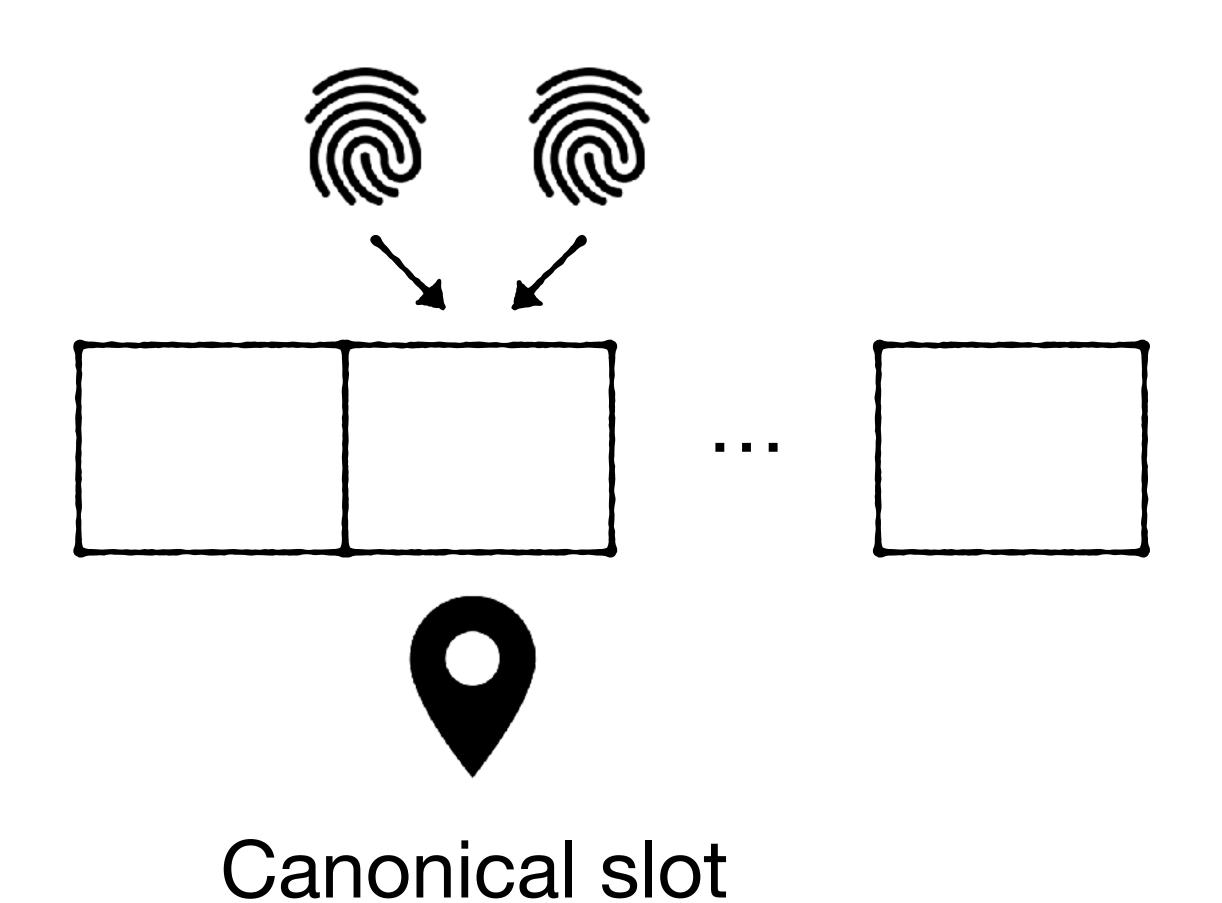
Each inserted key corresponds to exactly one entry



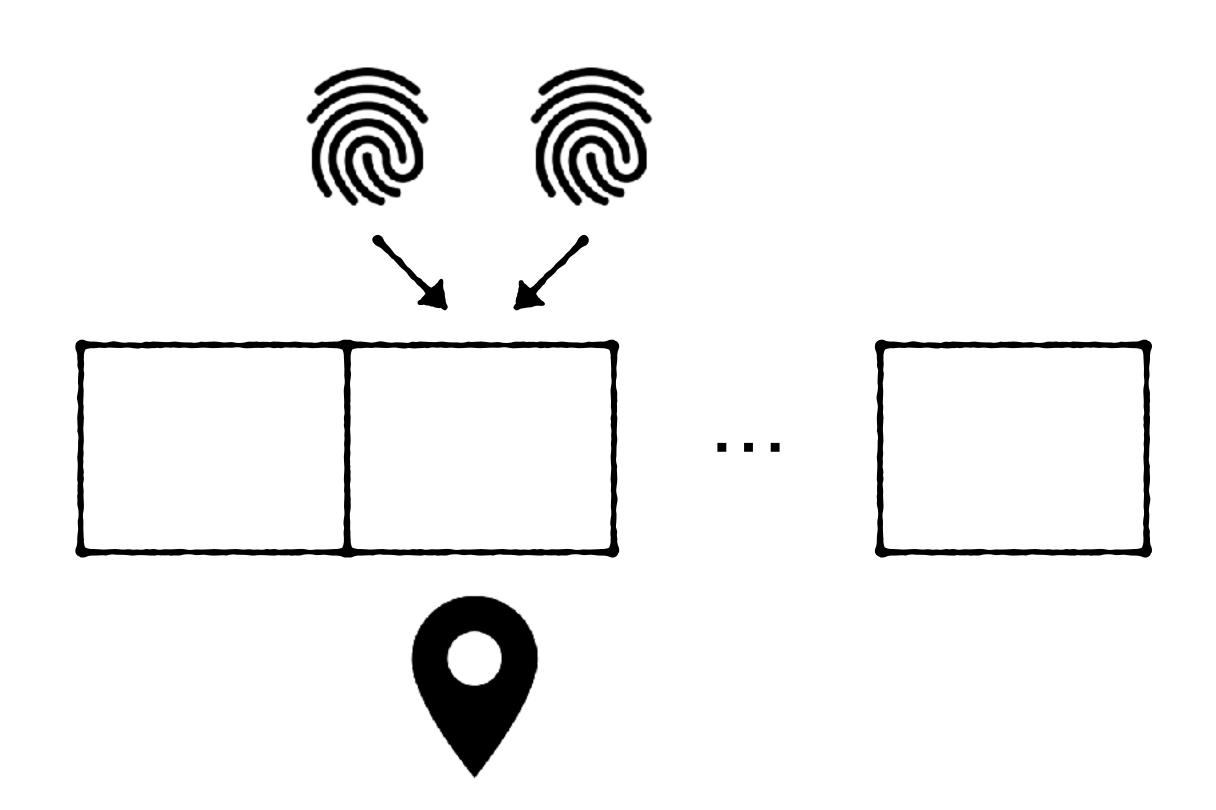
Each inserted key corresponds to exactly one entry Removing it won't introduce false negatives for other entries



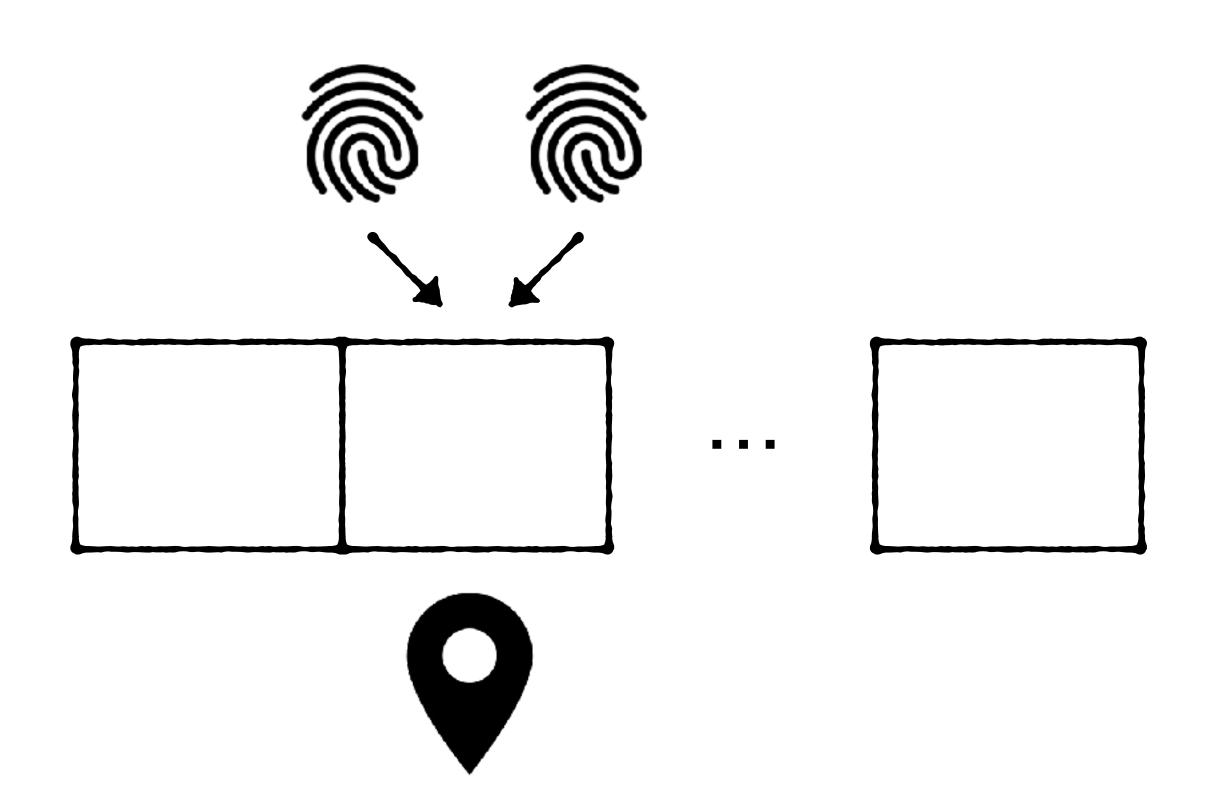
Hash collisions - multiple fingerprints map to same canonical slot



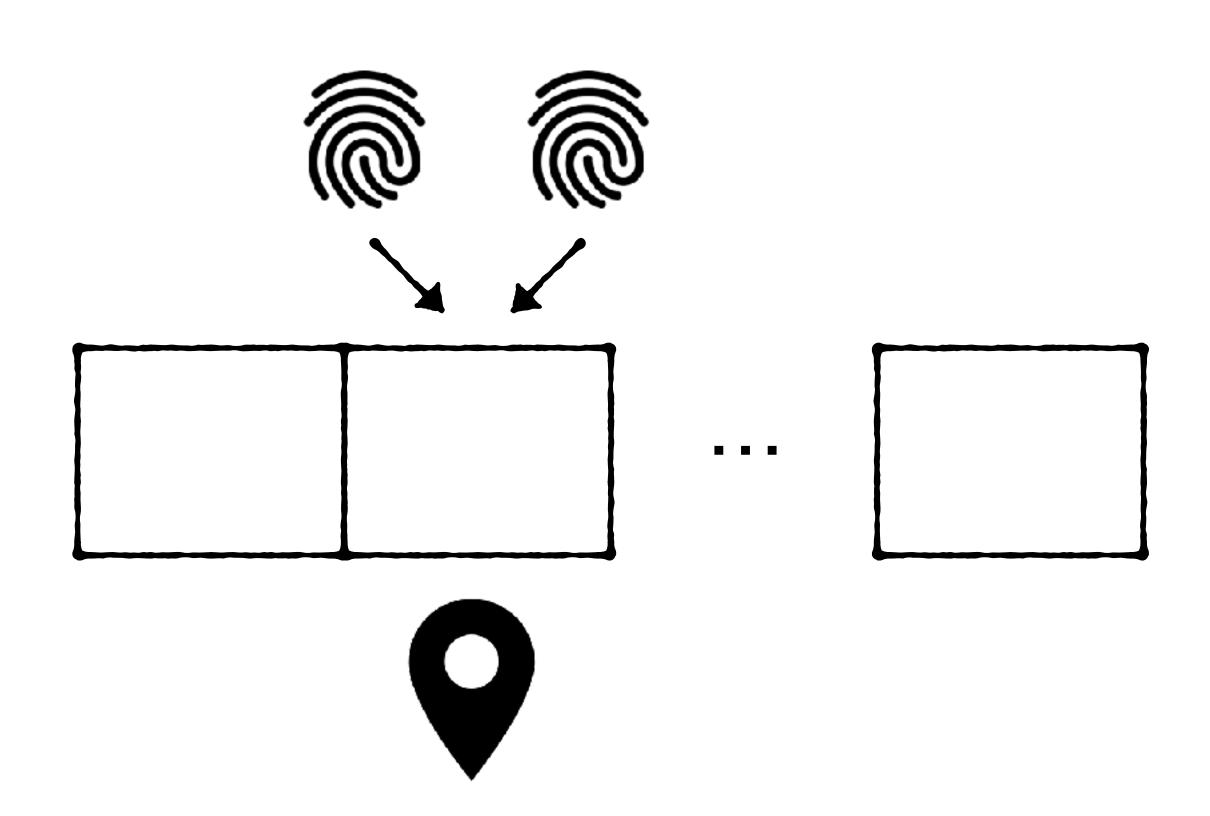
Address using Robin Hood Hashing



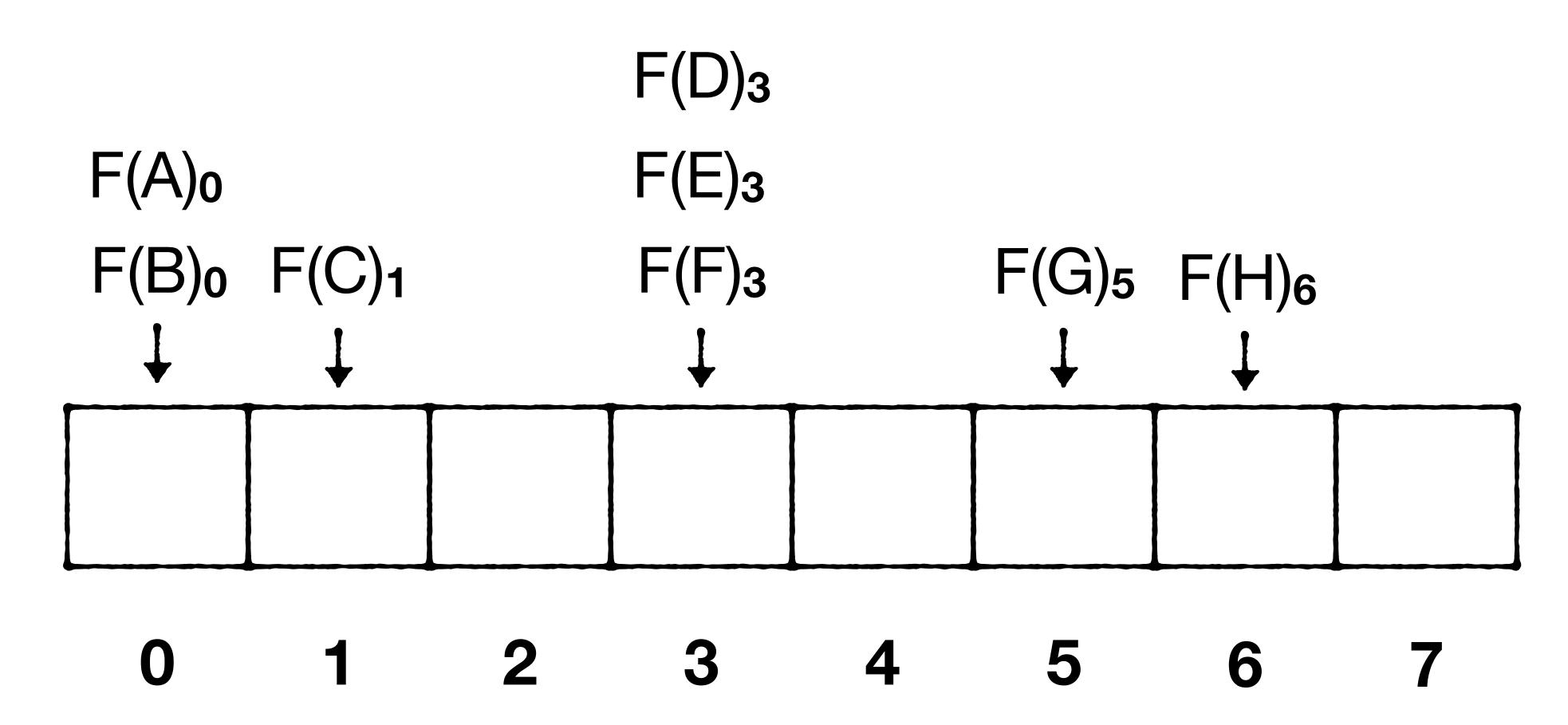
Address using Robin Hood Hashing Variant of linear probing

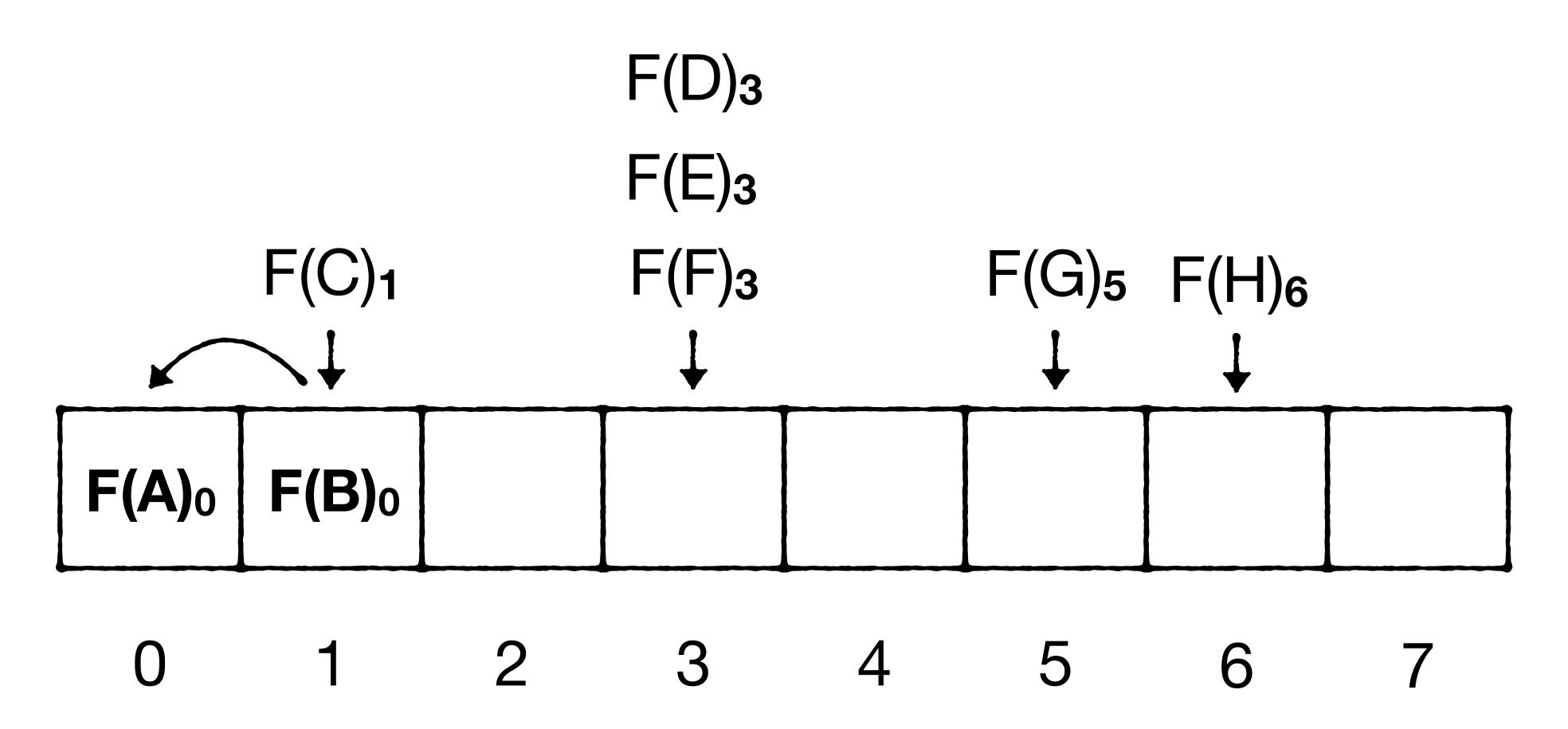


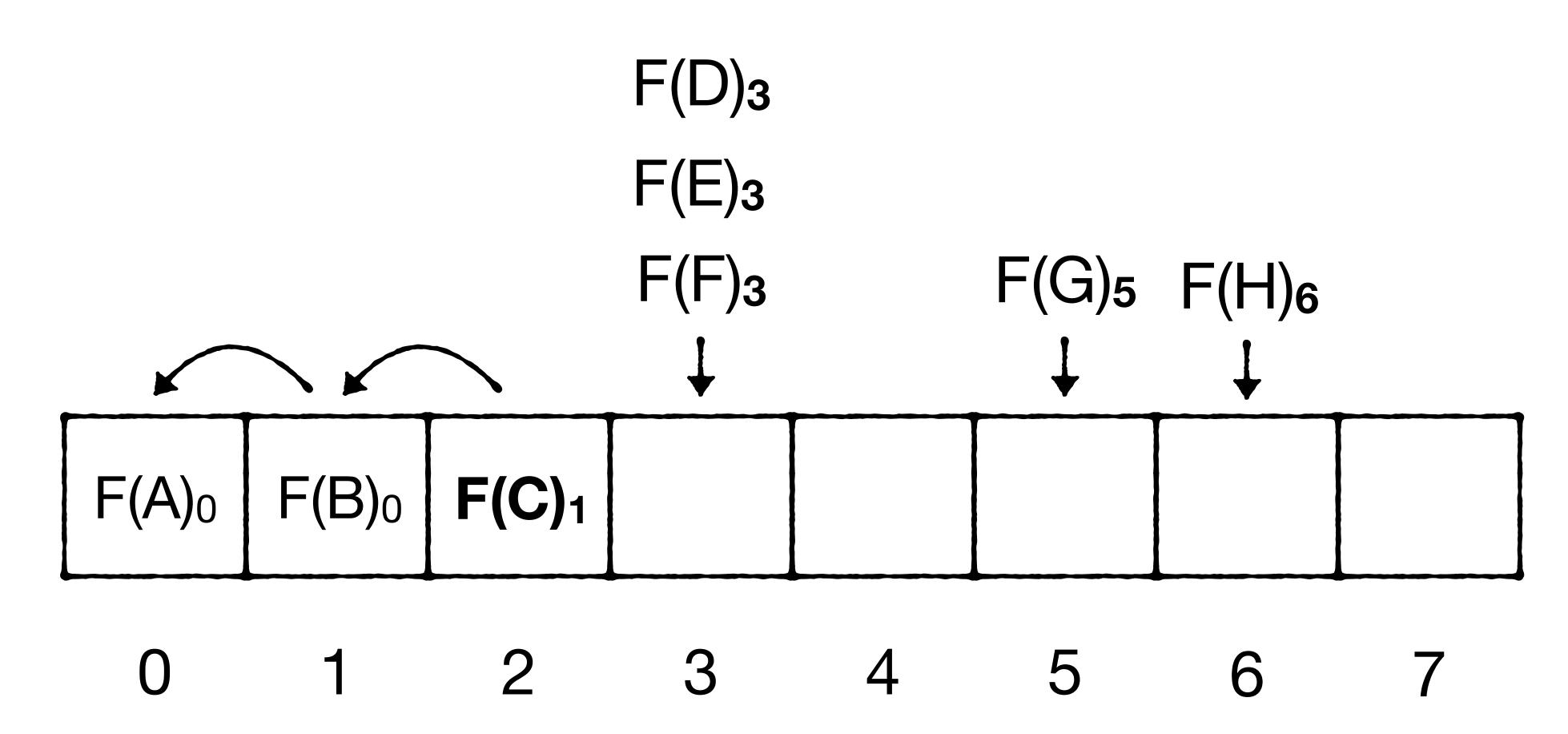
Each fingerprint is pushed rightwards yet stays as close as possible to its "canonical slot"

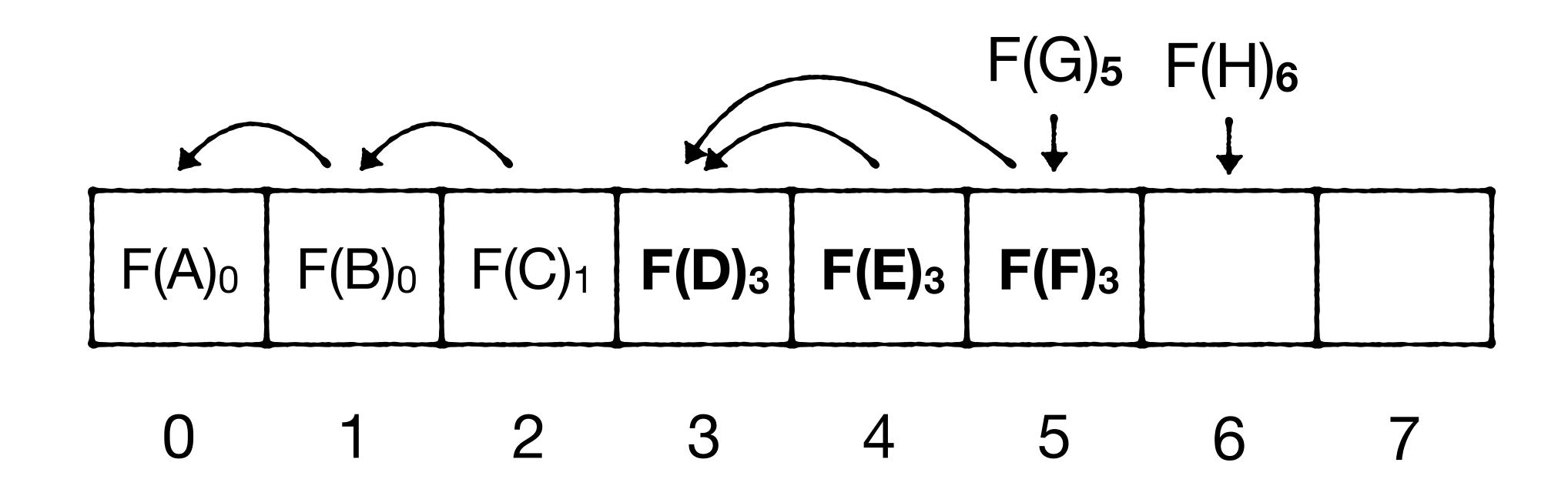


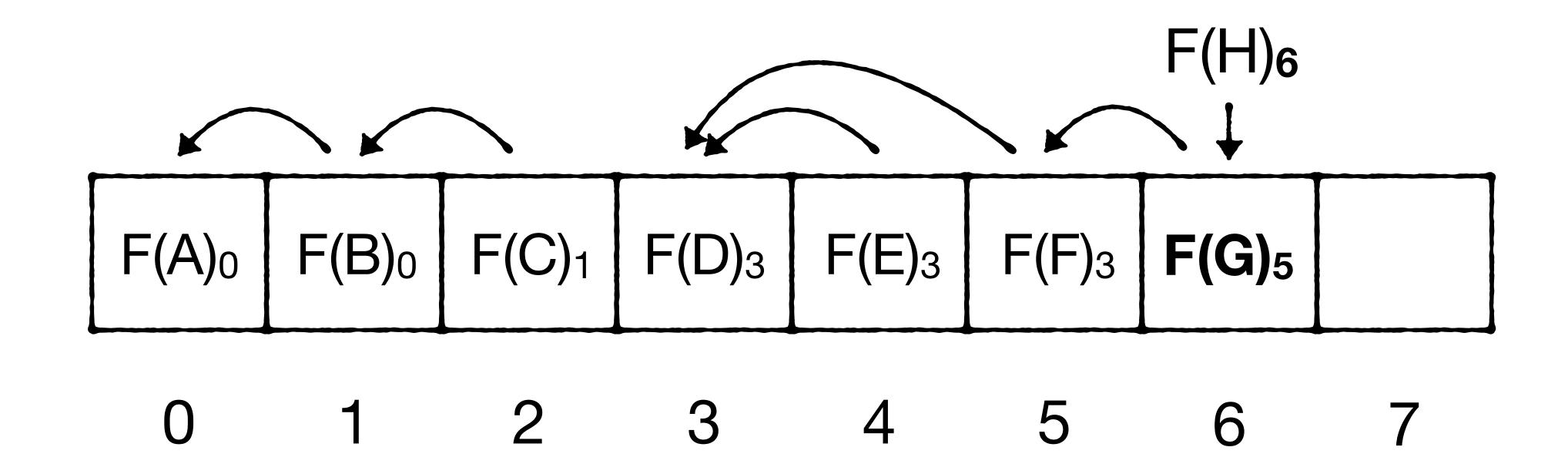
Each fingerprint is pushed rightwards yet stays as close as possible to its "canonical slot"

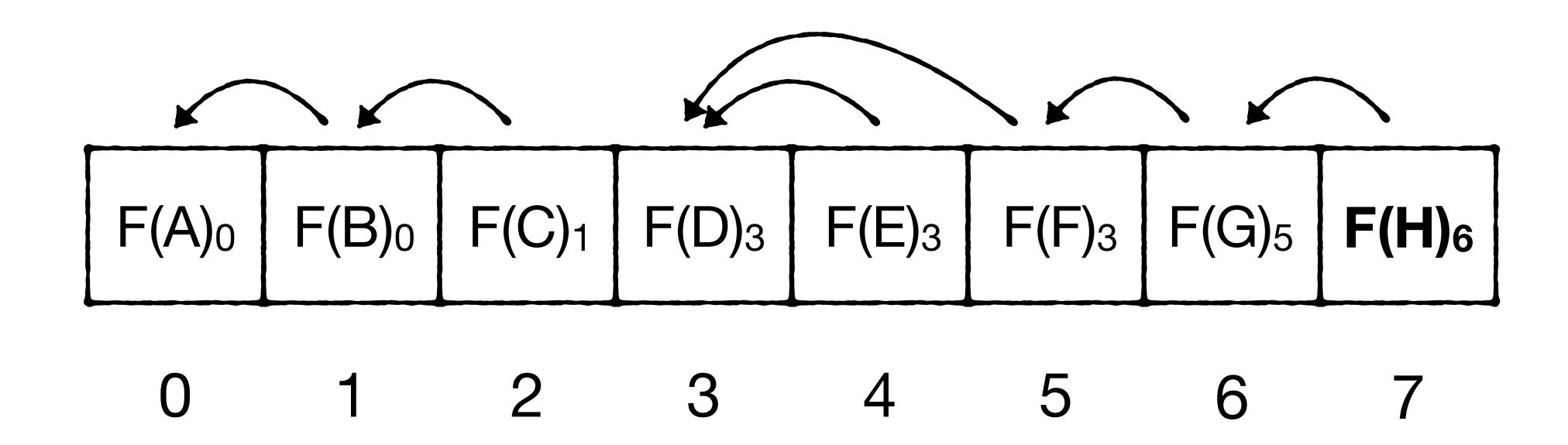




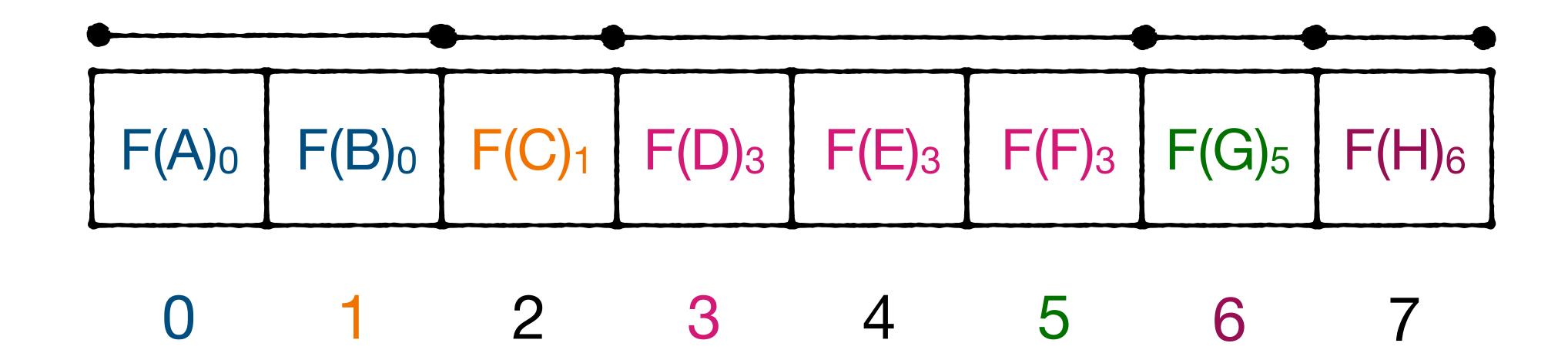




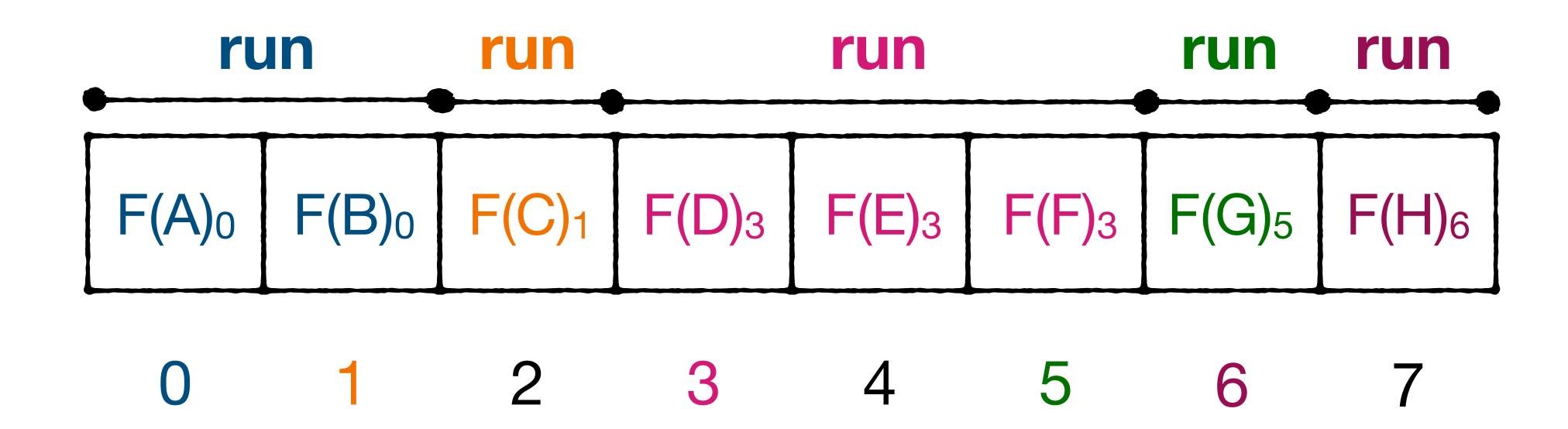




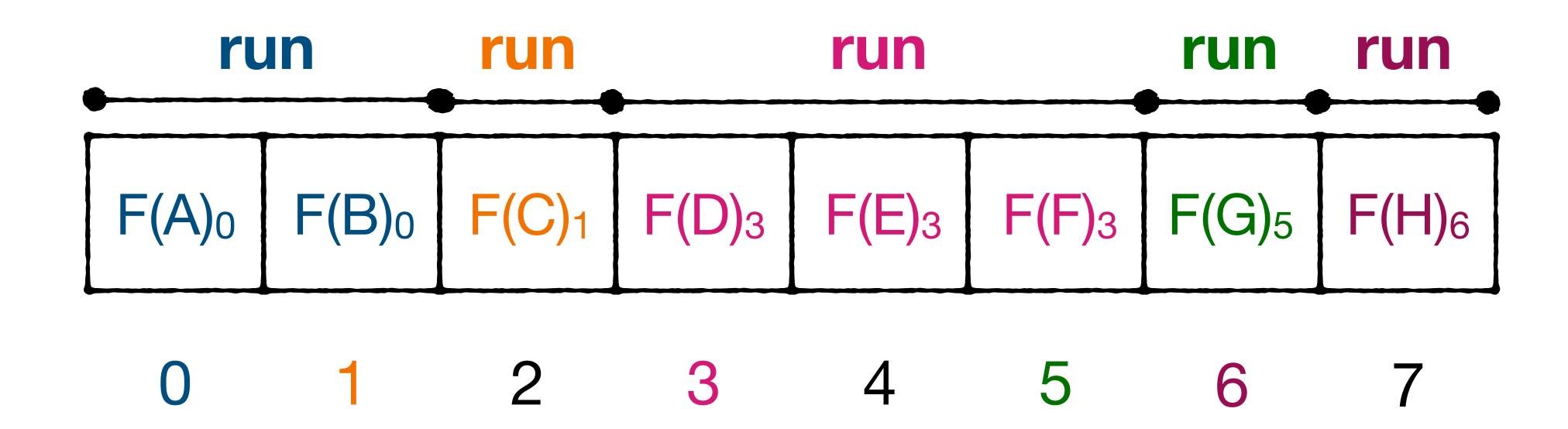
Note: fingerprints belonging to same canonical slot are contiguous

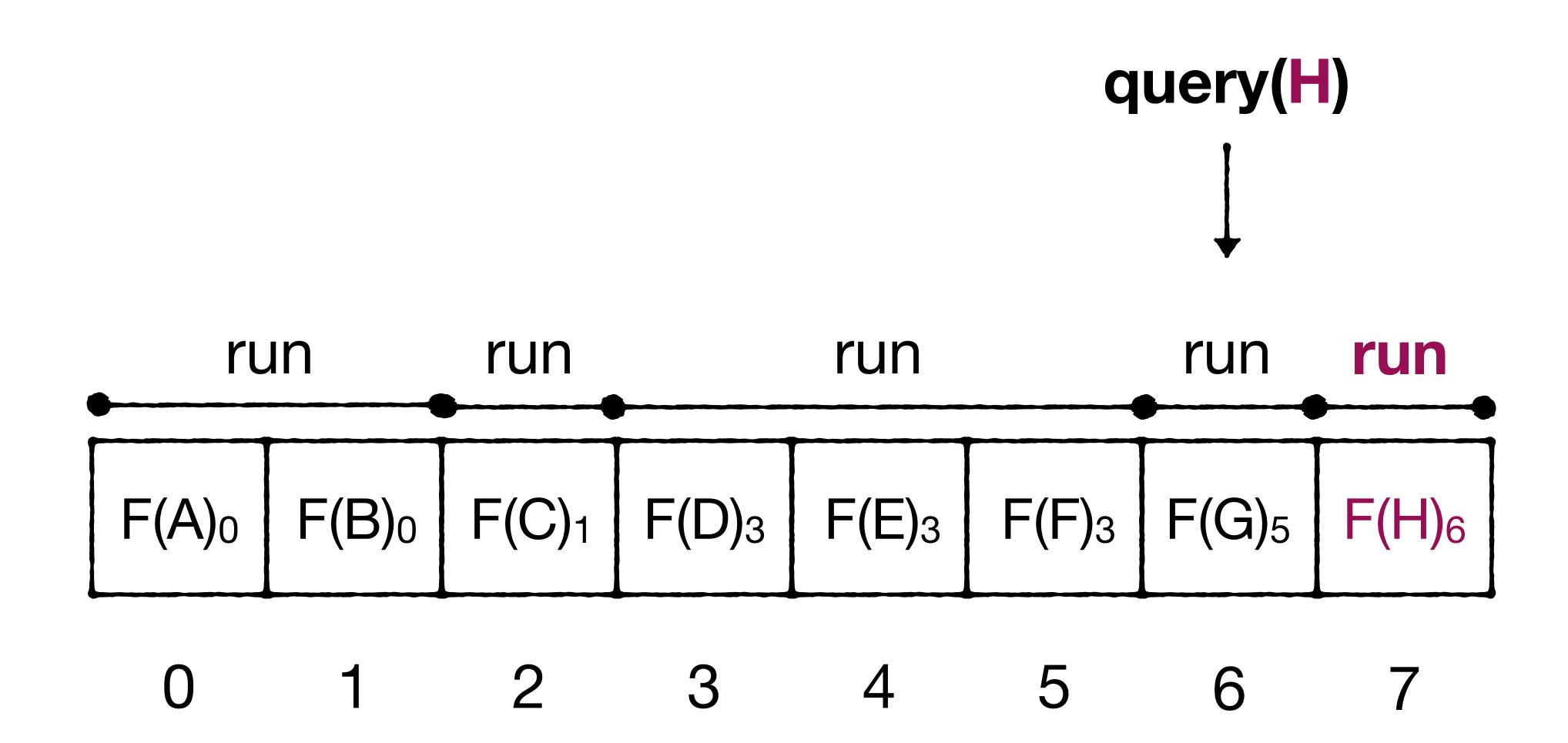


Note: fingerprints belonging to same canonical slot are contiguous

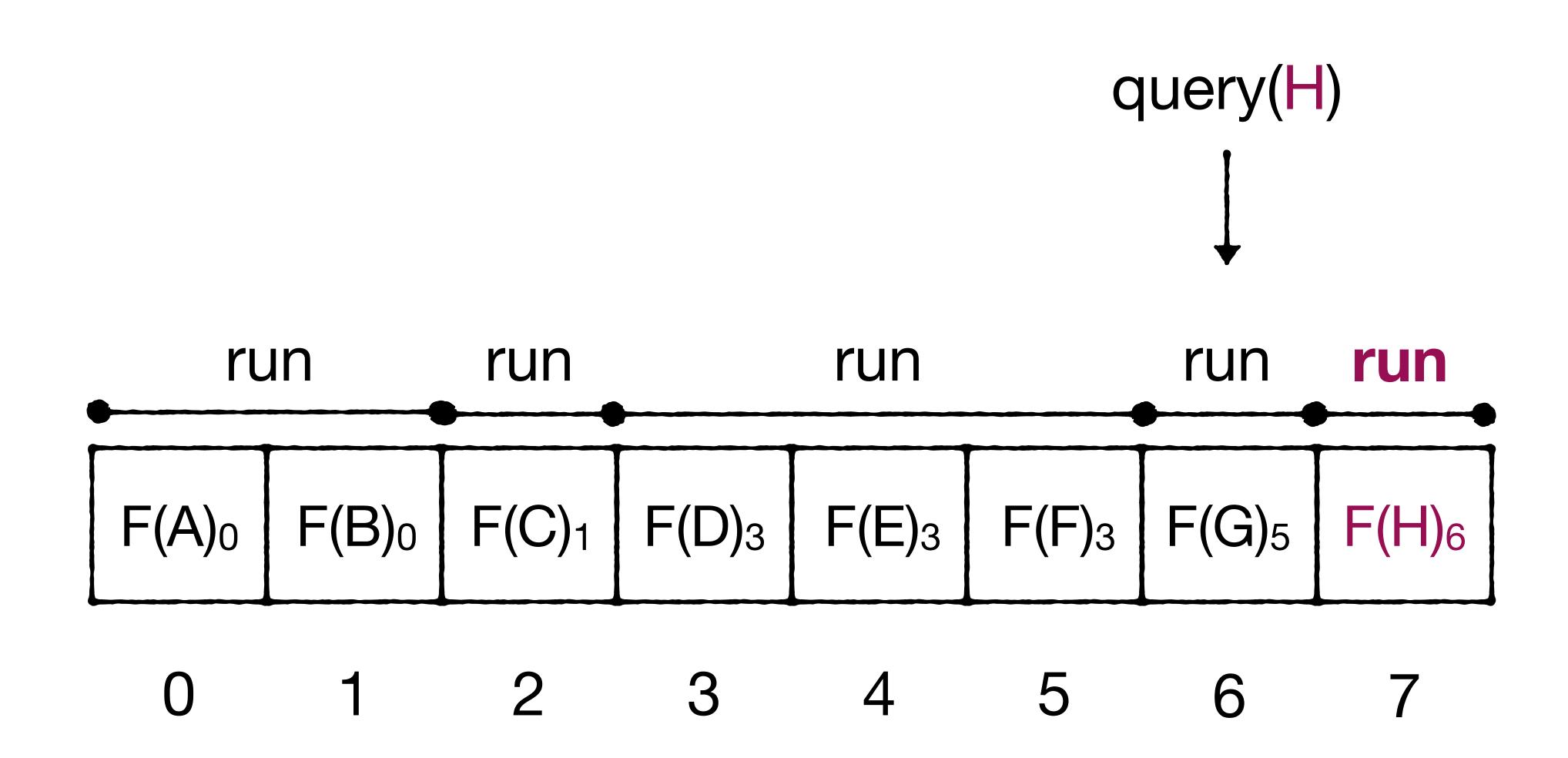


≈ On average, each run consists of 1 slot

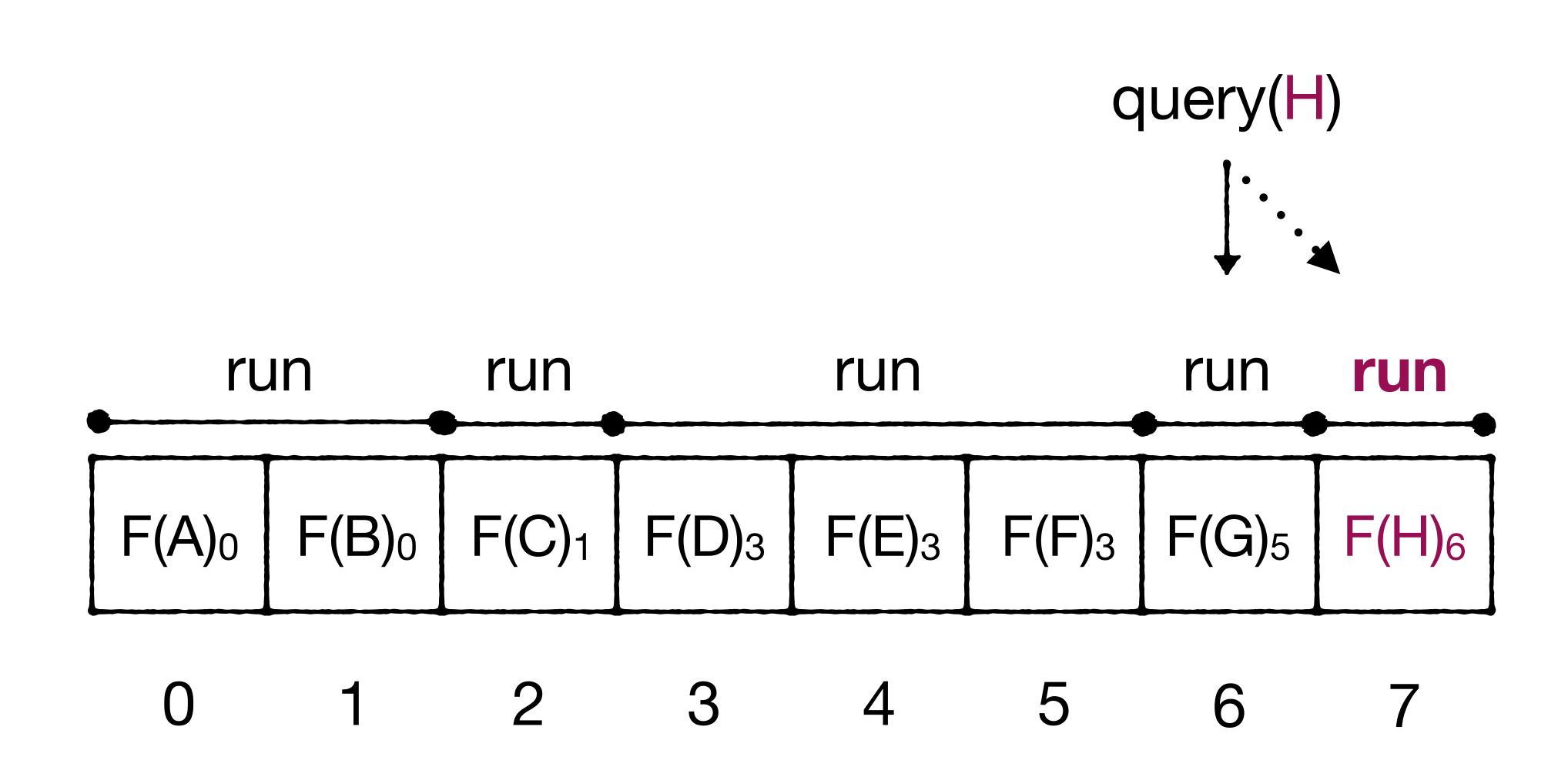




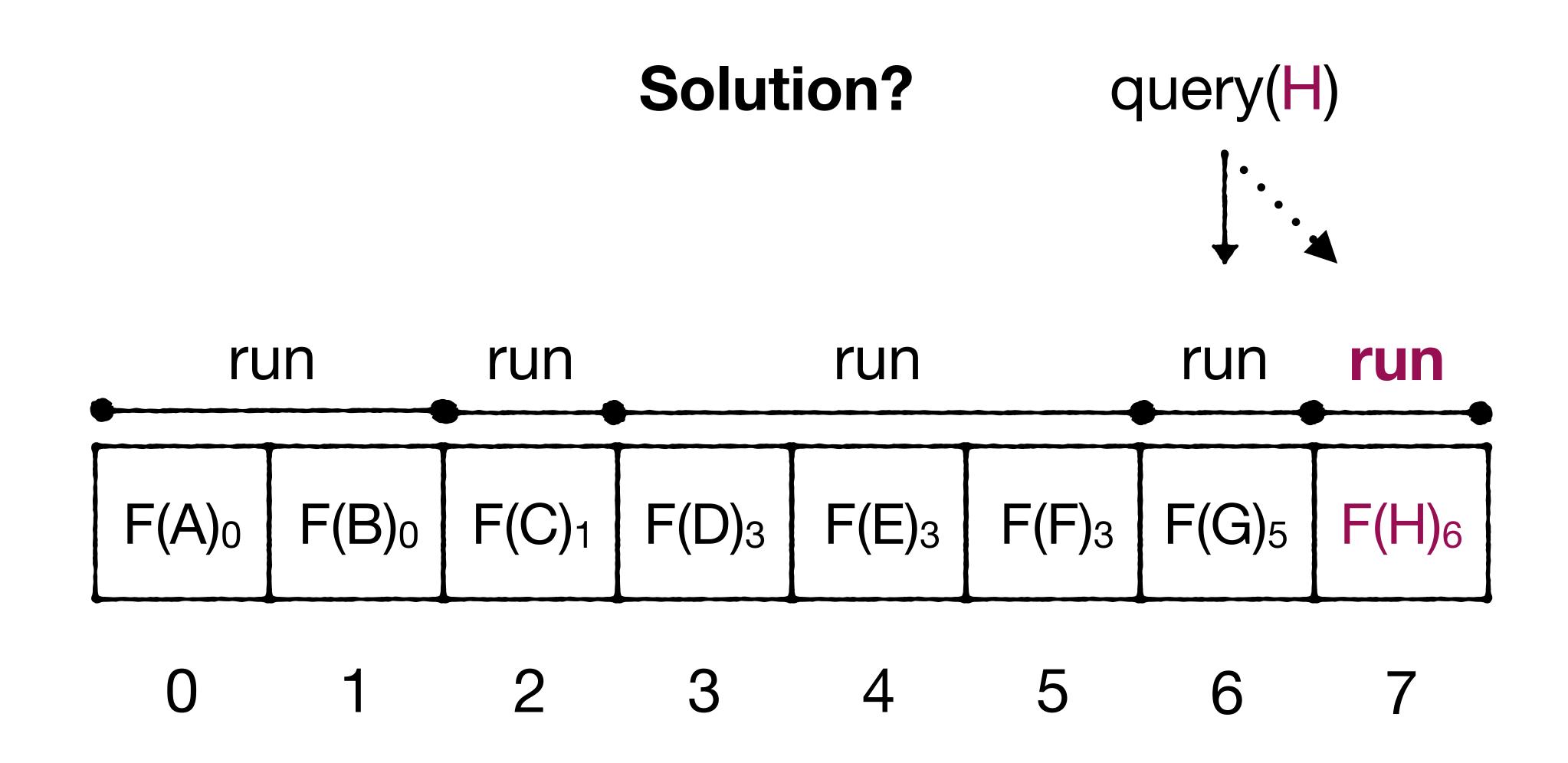
Problem?



Problem? Fingerprint might have shifted to the right



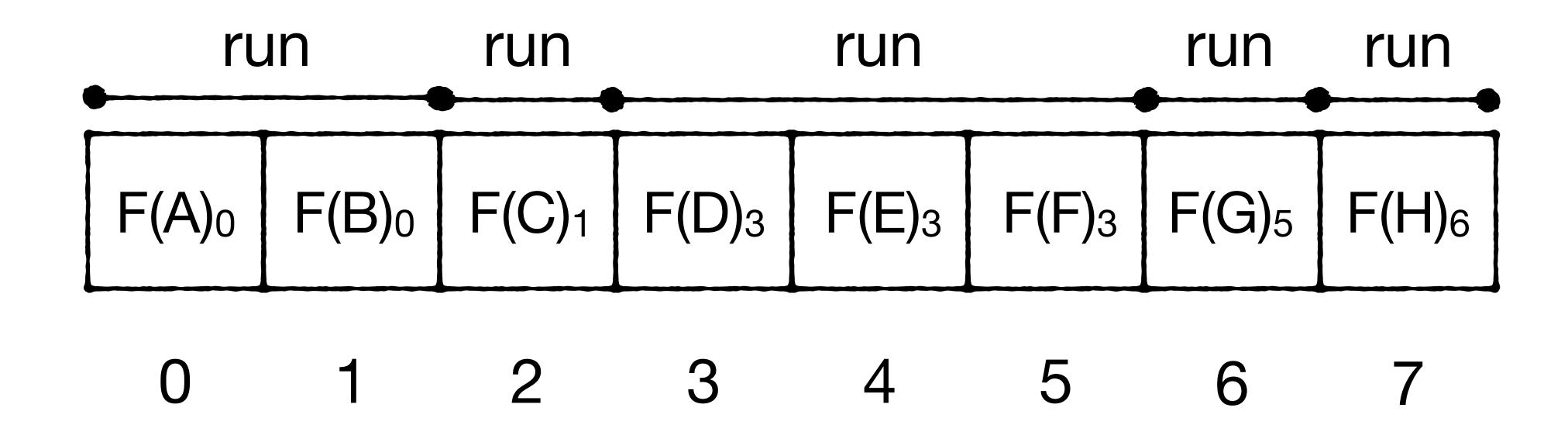
Problem? Fingerprint might have shifted to the right



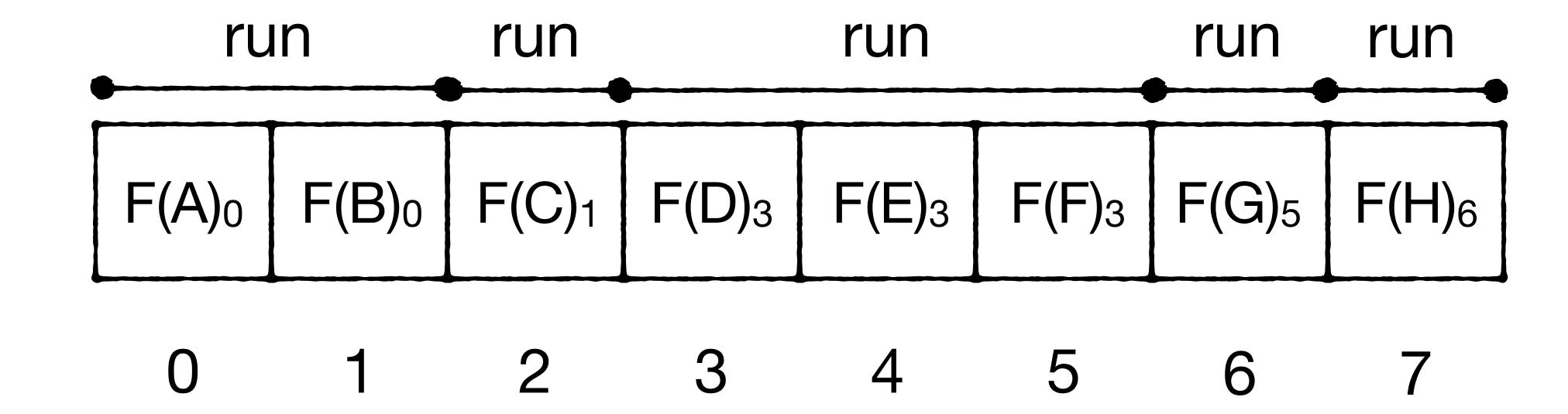
Solution: delineate runs using 2 bitmaps

Occupied:

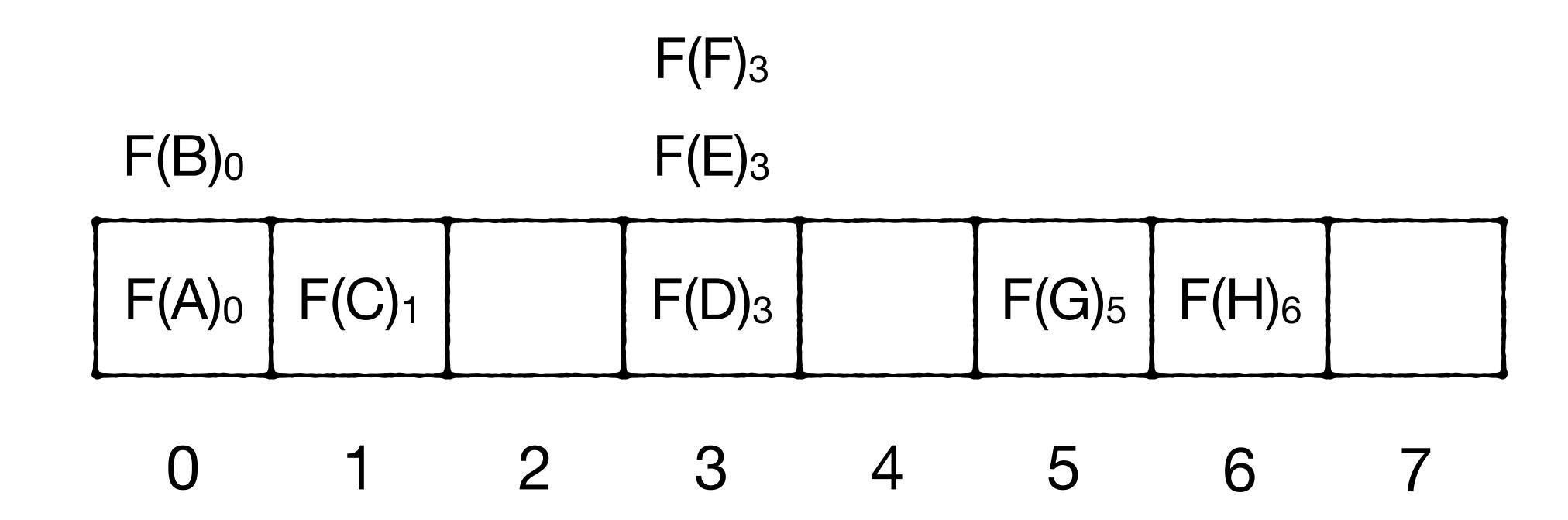
End:



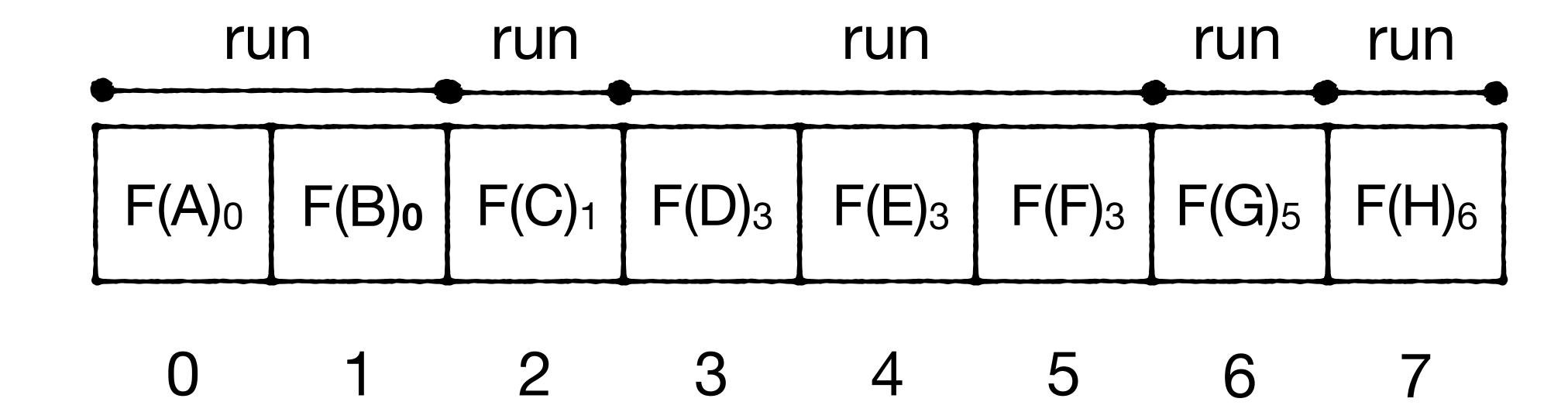
Occupied: 1 if there is a run belonging to this slot End:

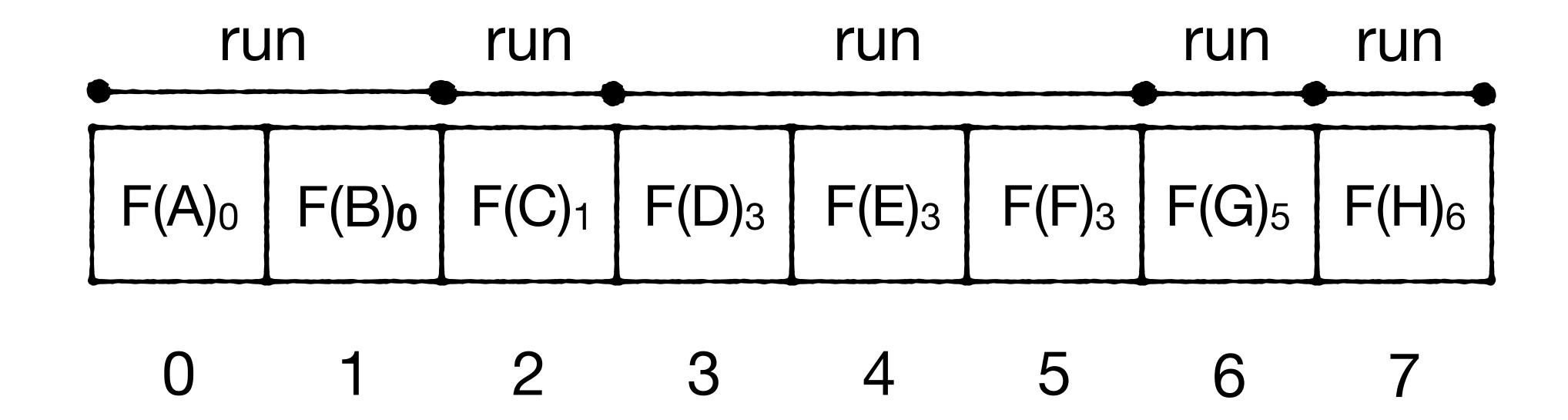


Occupied: 1 if there is a run belonging to this slot End:

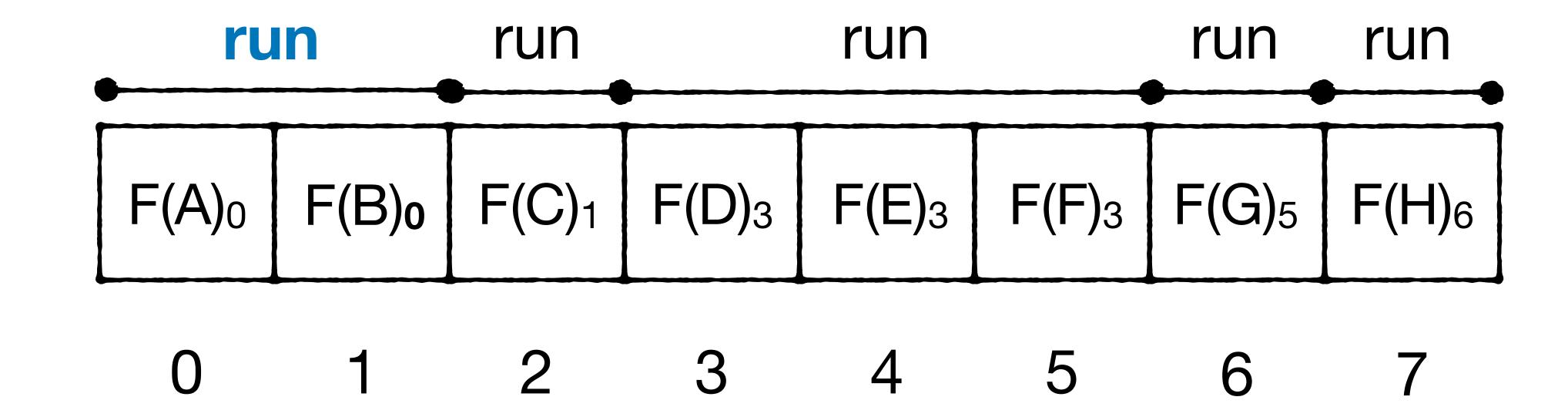


Occupied: End: $F(F)_3$ **F(E)**₃ $F(B)_0$ **F(G)**₅ F(H)₆ **F(D)**₃ 0 1 2 3 4 5 6 7 Occupied: 1 1 0 1 0 1 1 0 End:

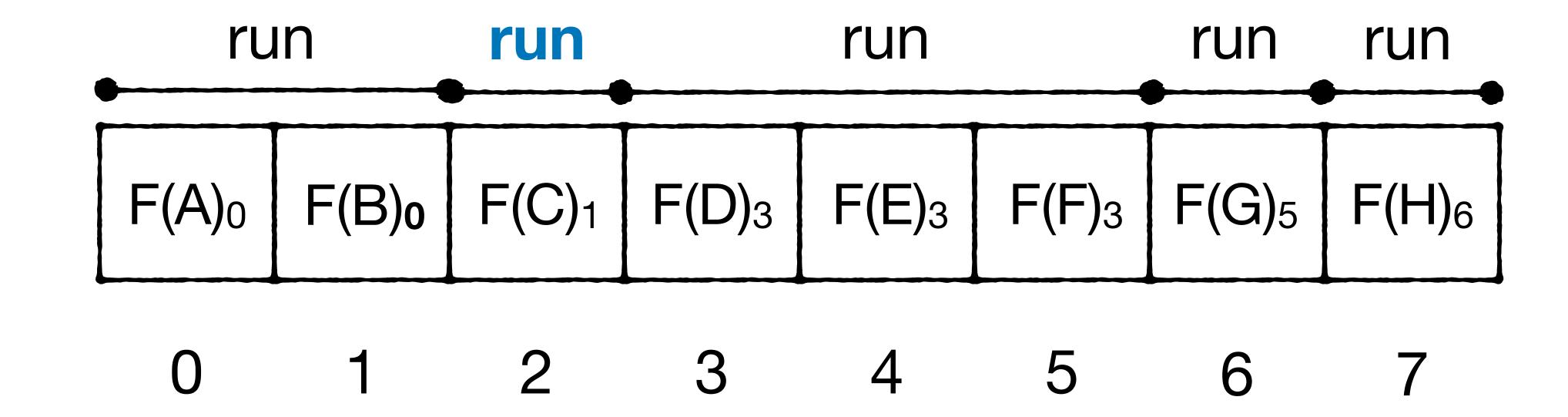




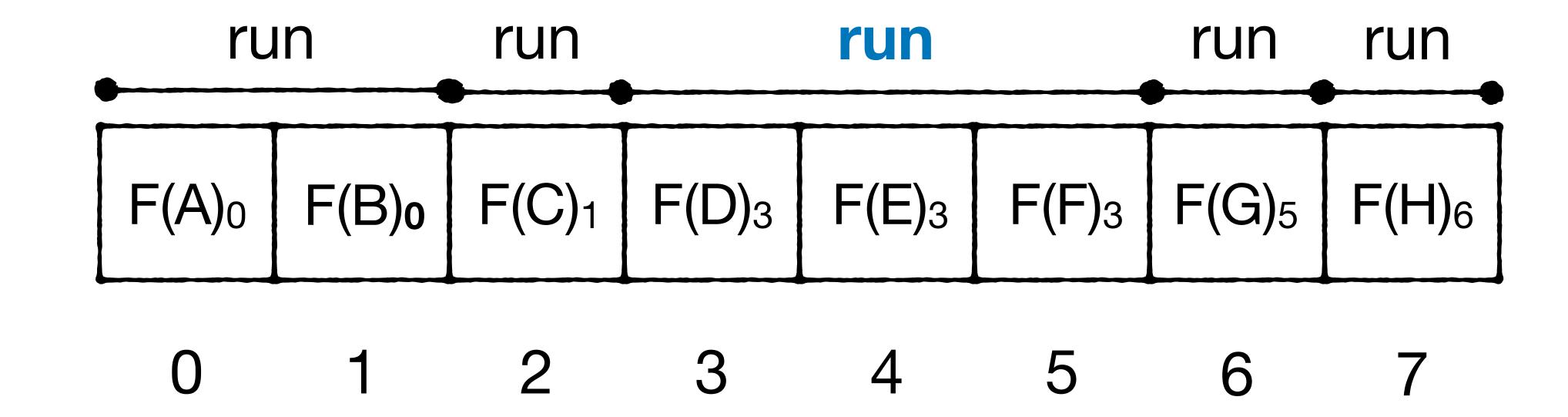
Occupied: 1 1 0 1 0 1 1 0 End: 0 1



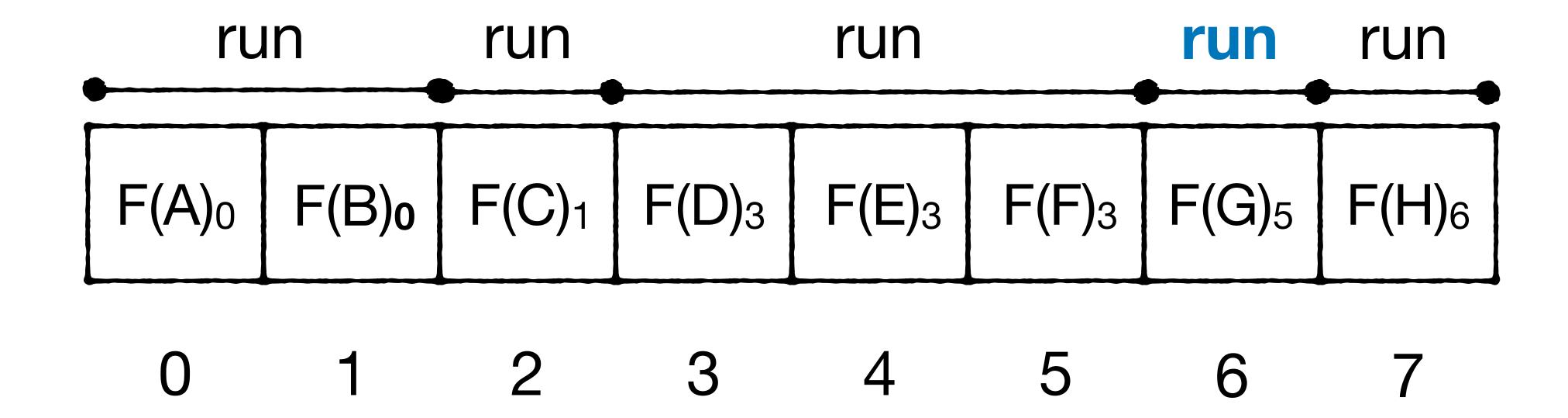
Occupied: 1 1 0 1 0 1 1 0 End: 0 1 1 1

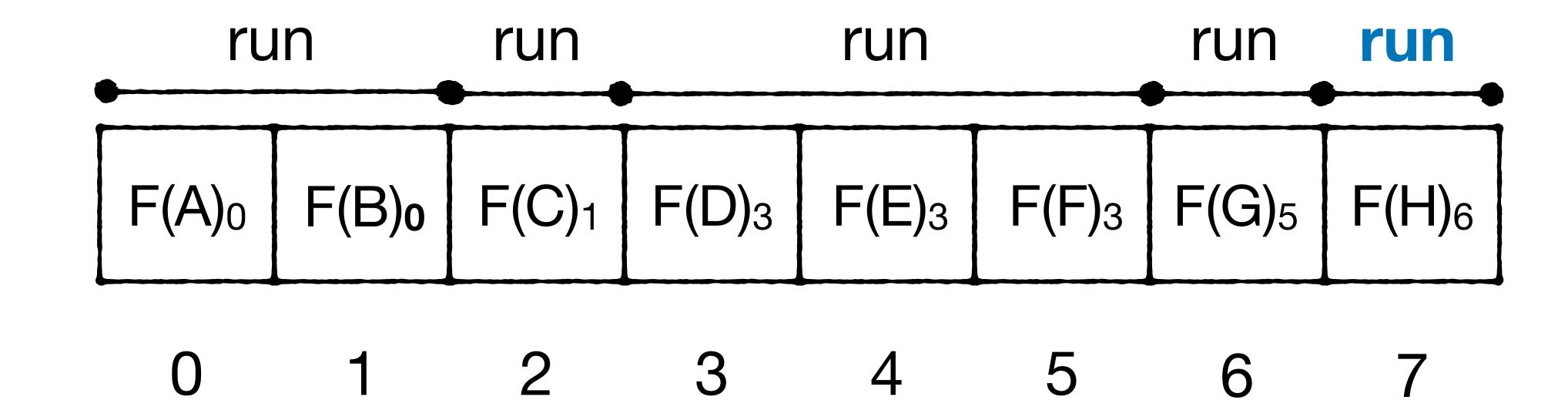


Occupied: 1 1 0 1 0 1 1 0 End: 0 1 1 1 0 0 1 1 0



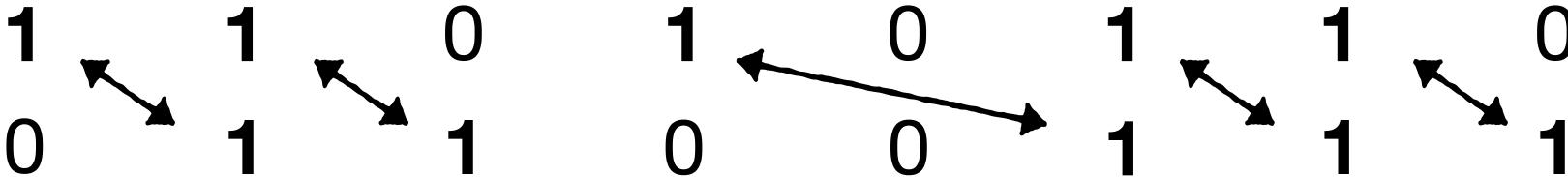
Occupied: 1 1 0 1 0 1 1 0 End: 0 1 1 1 0 0 1 1 1

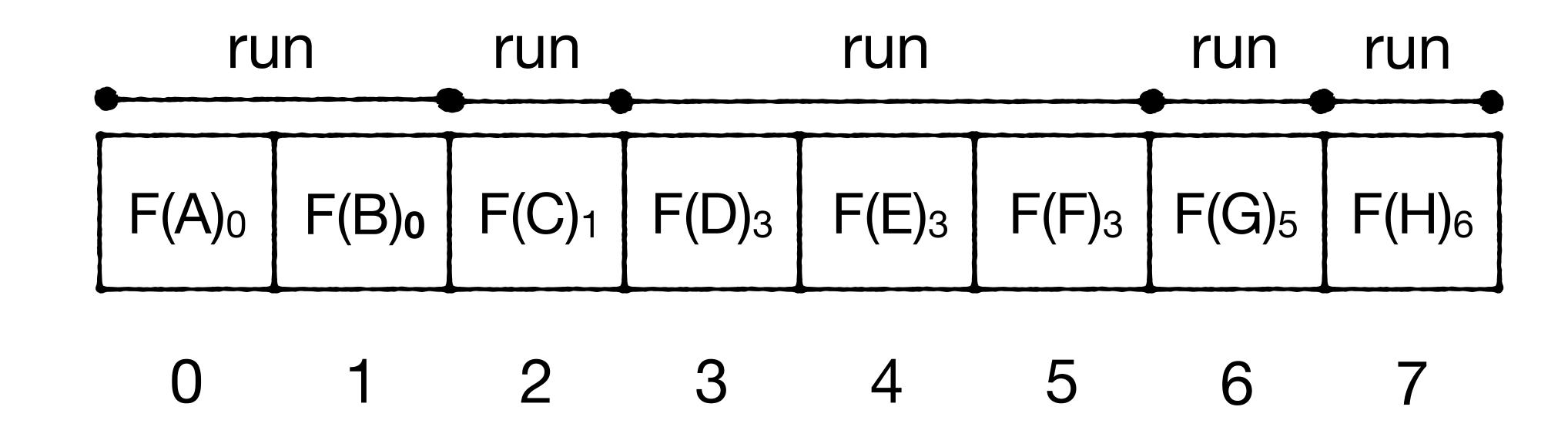




ith set occupied bit corresponds to ith set end bit

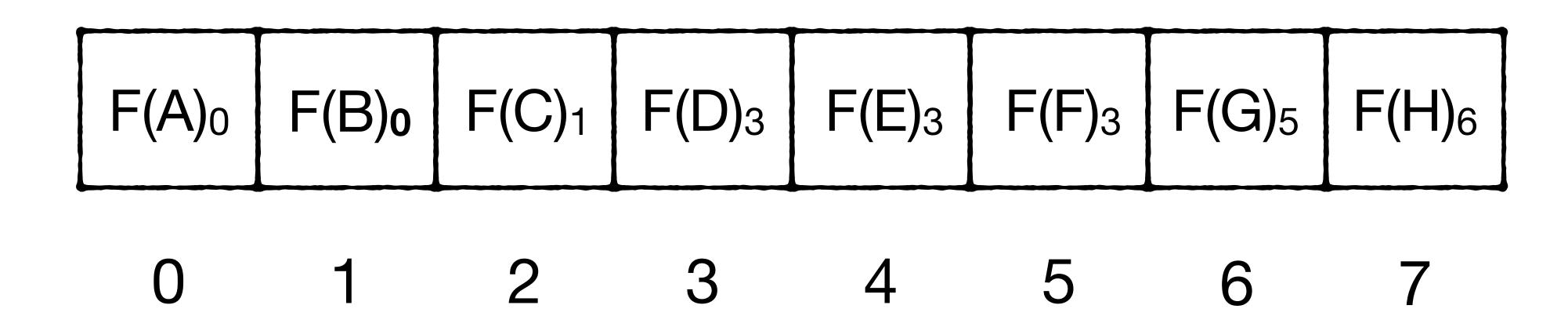
Occupied: 1, 1, End: 0, 1





How to query?

Occupied: 1 1 0 1 0 1 1 0 End: 0 1 1 1 1 1



get(Z)

Occupied: 1 1 0 1 0 1 1 0 End: 0 1 1 1 0 0 1 1 1

 F(A)₀
 F(B)₀
 F(C)₁
 F(D)₃
 F(E)₃
 F(F)₃
 F(G)₅
 F(H)₆

 0
 1
 2
 3
 4
 5
 6
 7

get(Z) return negative

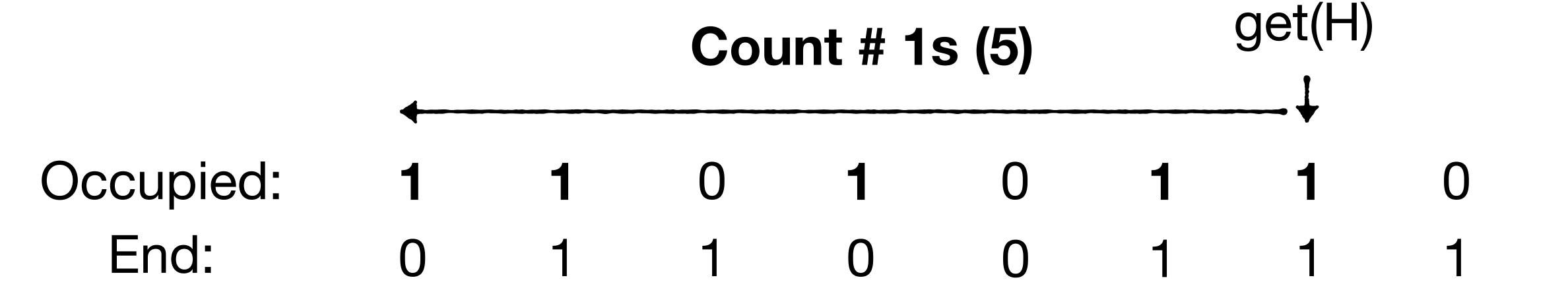
1

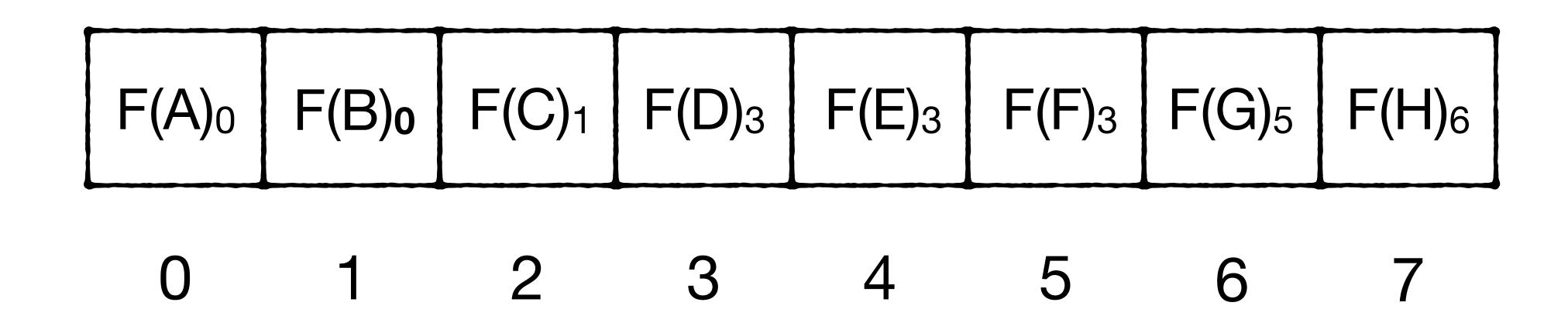
Occupied: 1 1 0 1 **0** 1 1 0 End: 0 1 1 1 0 0 1 1 1

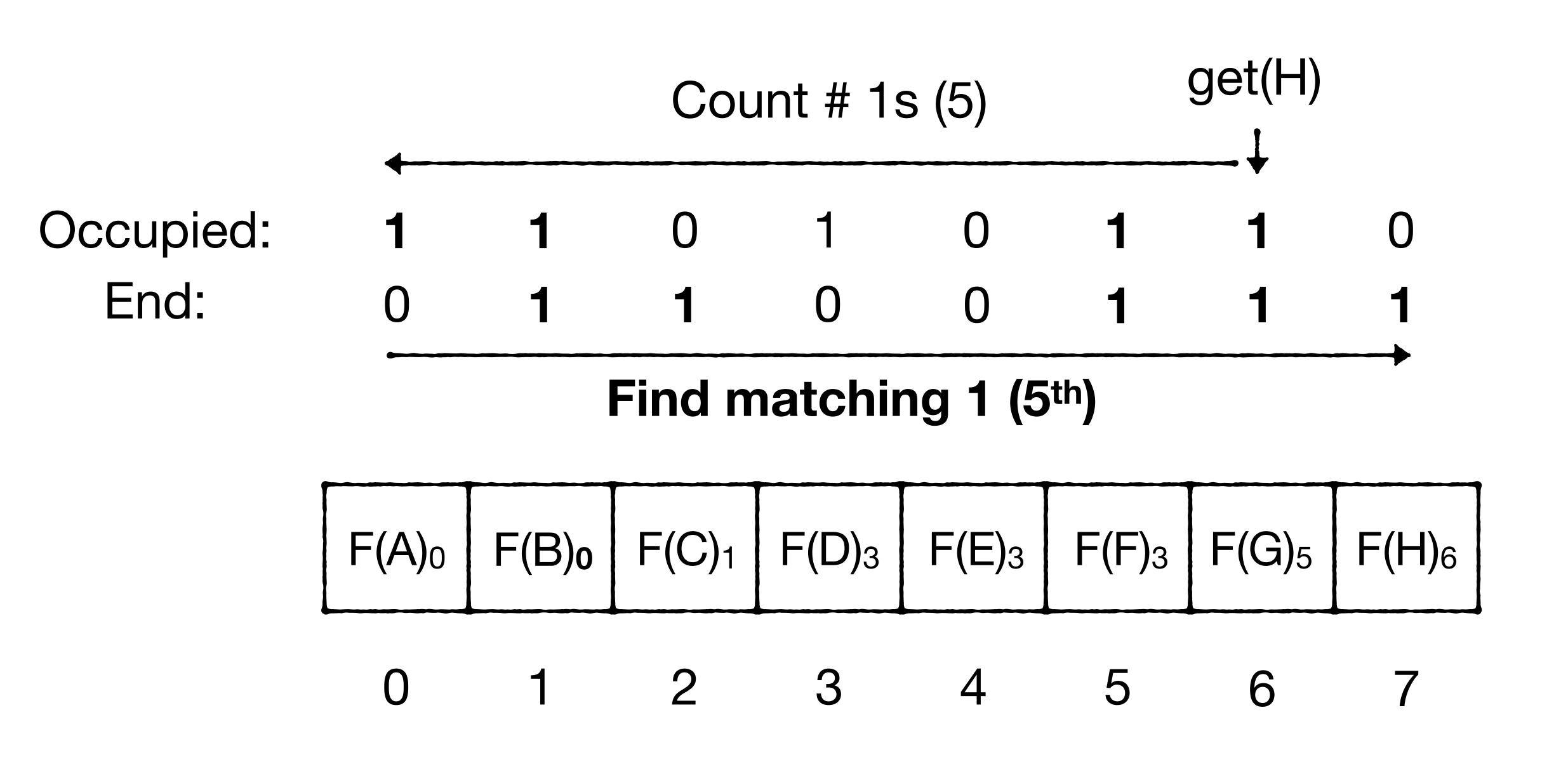
F(A) ₀	F(B) _o	F(C) ₁	F(D) ₃	F(E) ₃	F(F) ₃	F(G) ₅	F(H) ₆
0	1	2	3	4	5	6	7

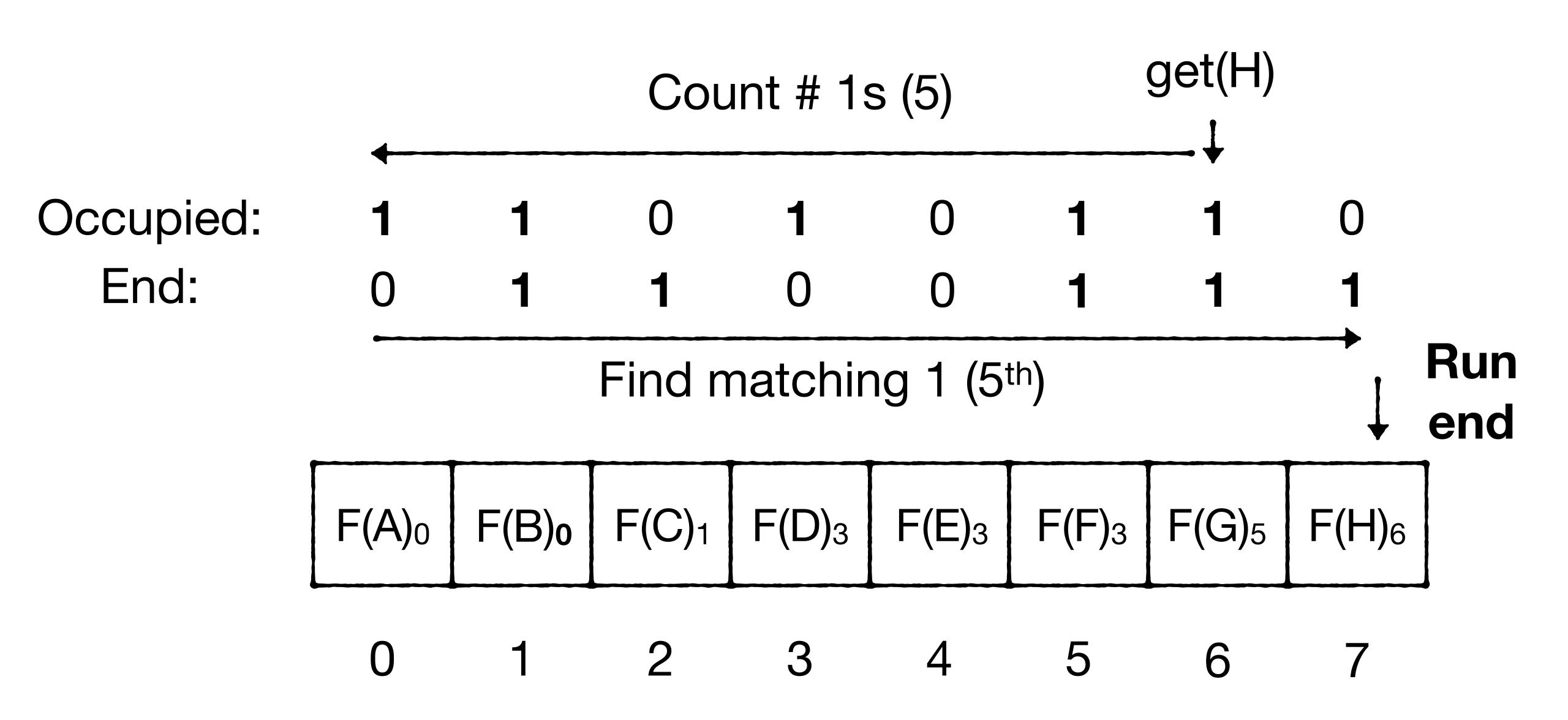
get(H)

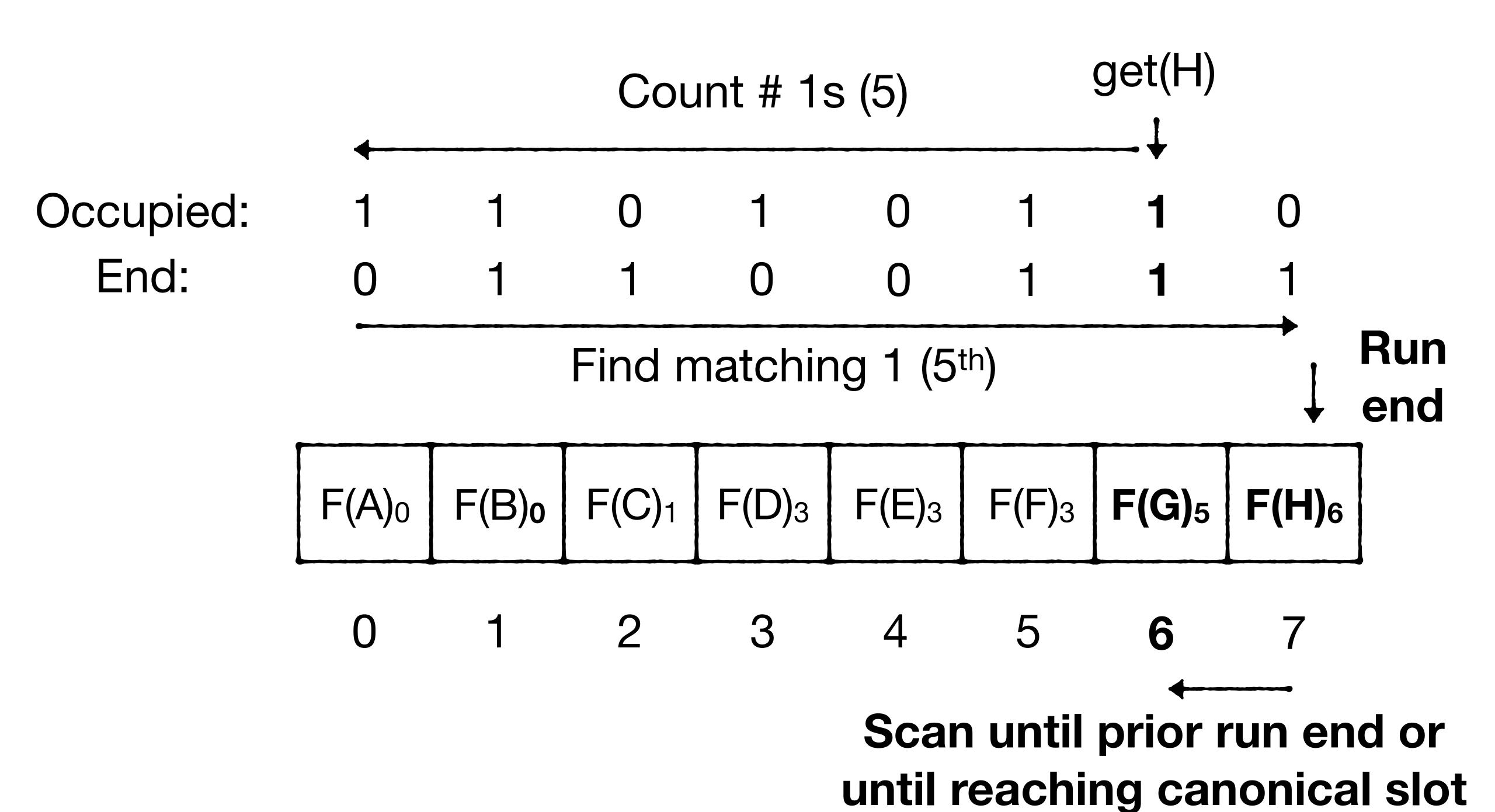
F(A) ₀	F(B) _o	F(C) ₁	F(D) ₃	F(E) ₃	F(F) ₃	F(G) ₅	F(H) ₆
0	1	2	3	4	5	6	7



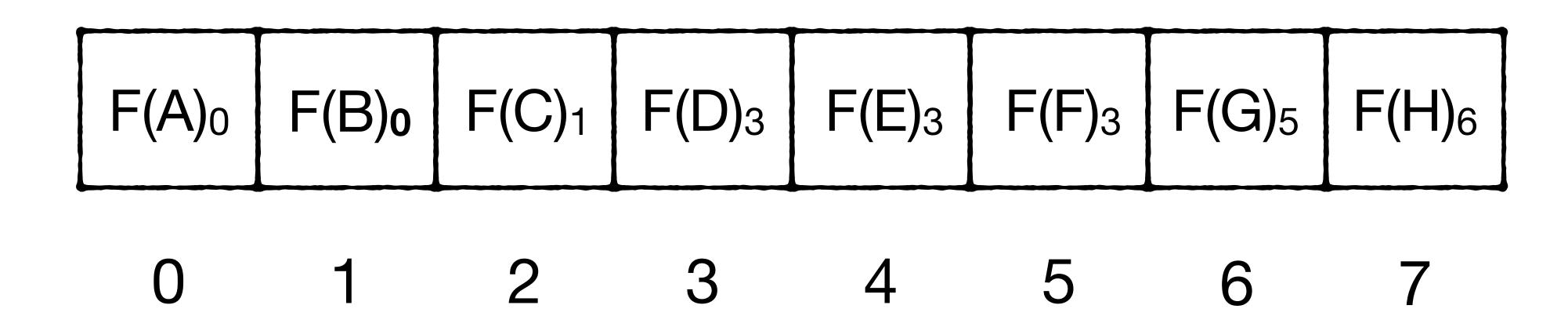




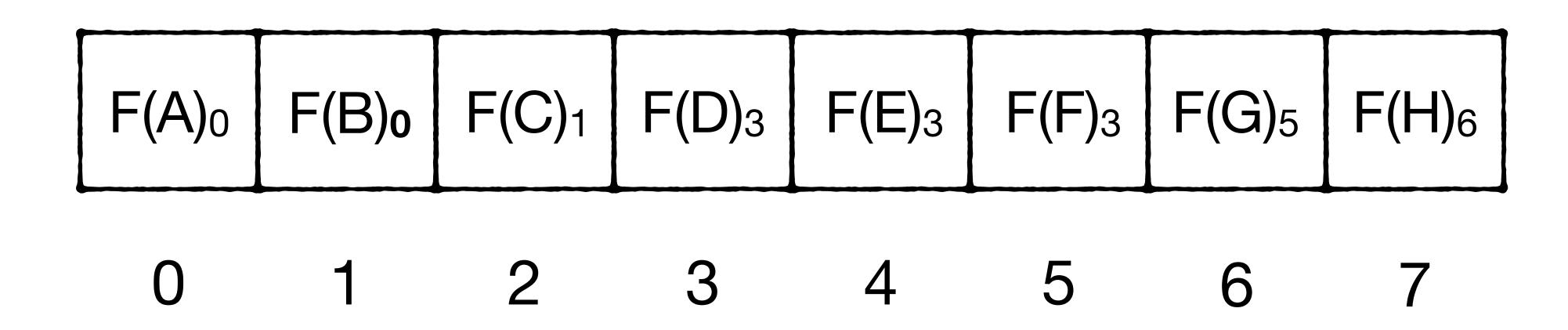




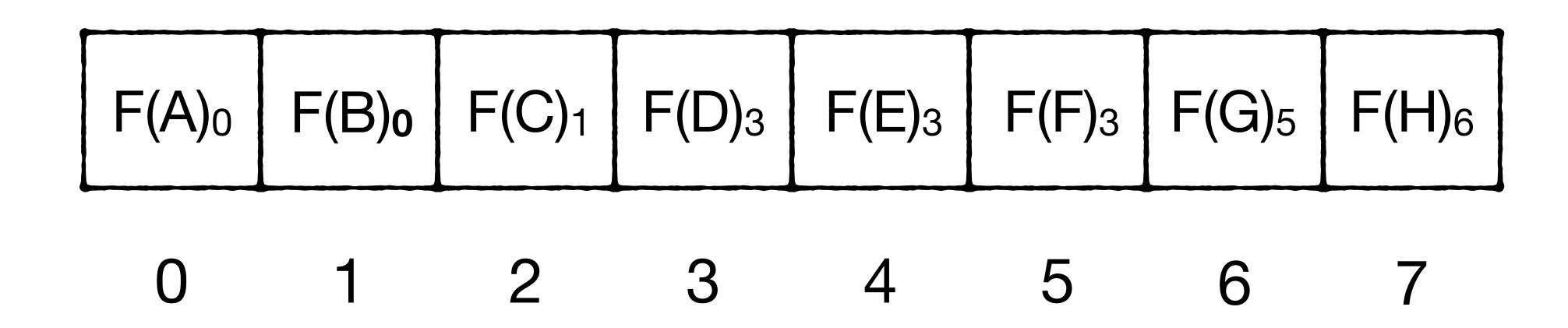
Can handle queries:)



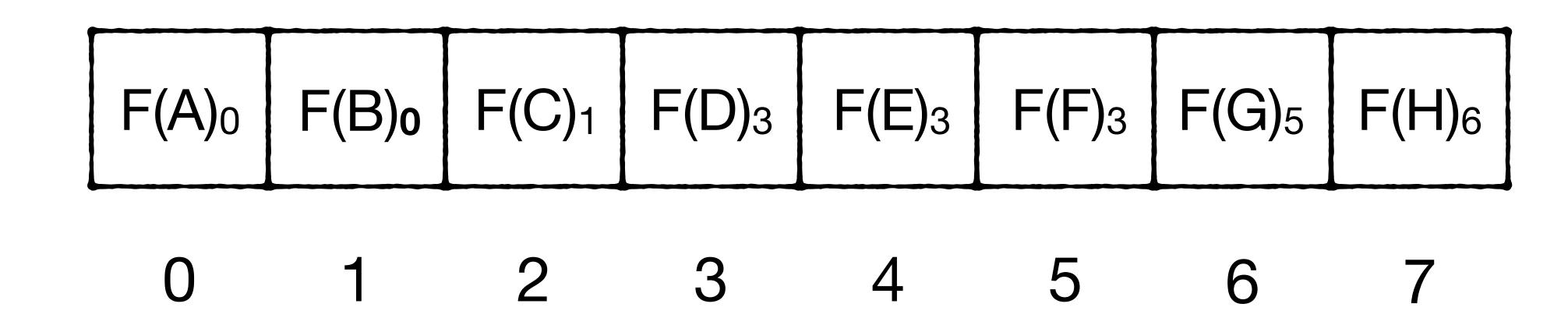
Can handle queries :) problem?



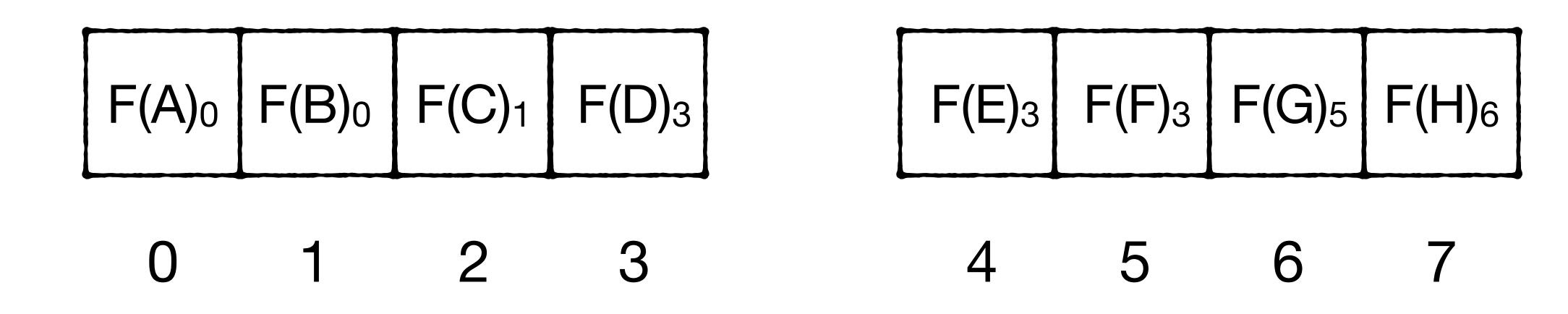
Scanning bitmaps takes O(N)



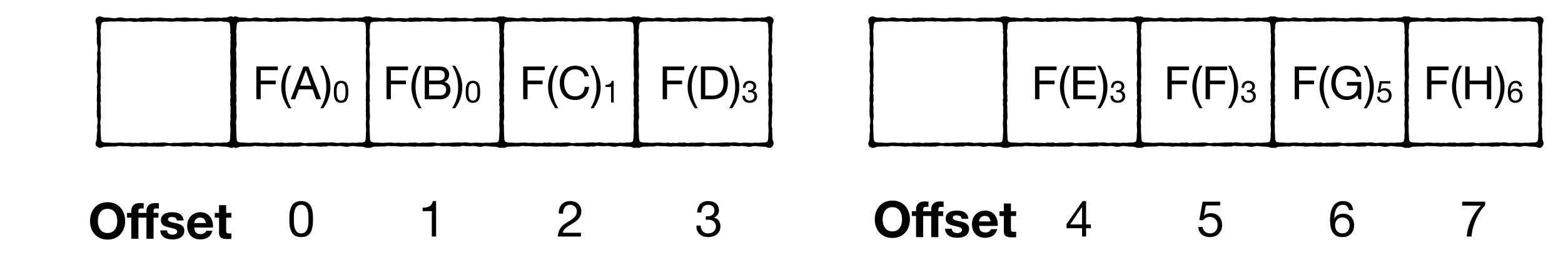
Scanning bitmaps takes O(N) Ideas?



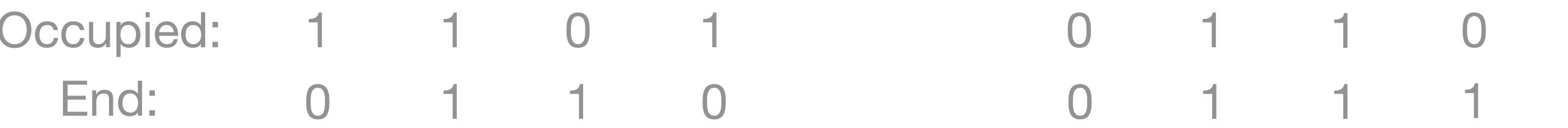
Split filter into chunks (64 slots in practice)

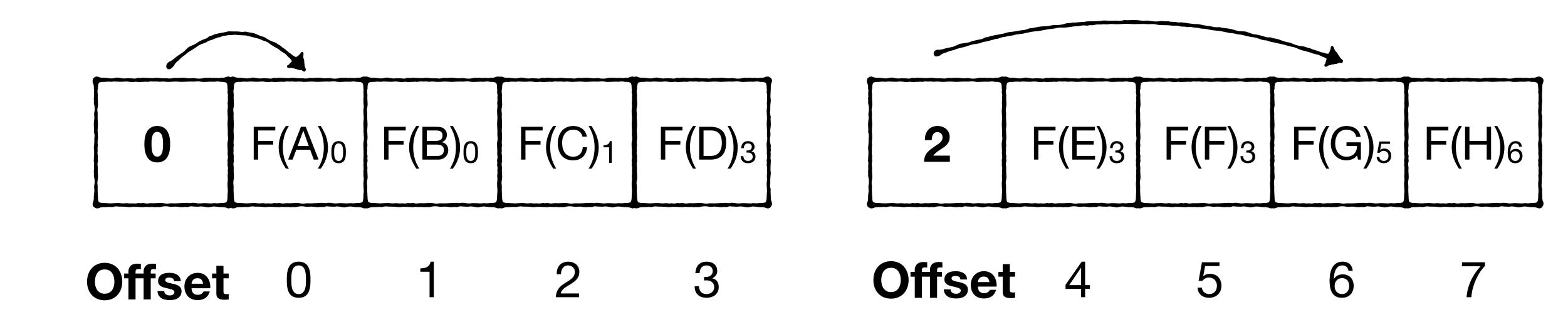


Each chunk has offset field (8 bits)

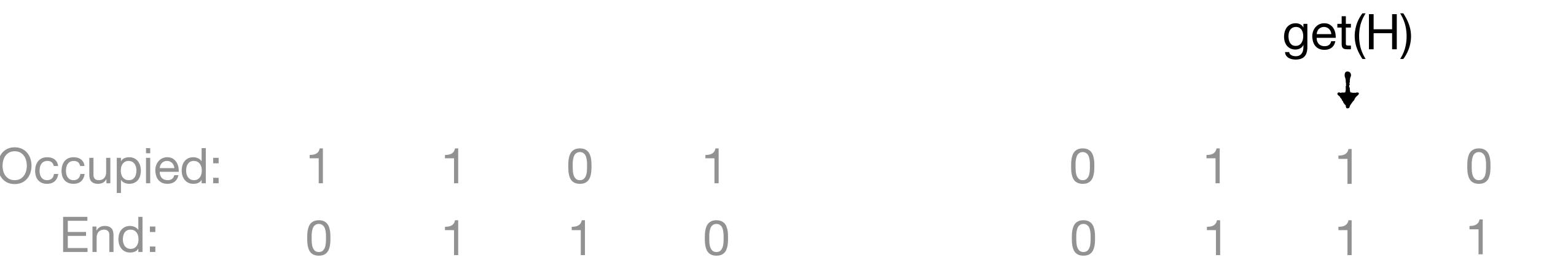


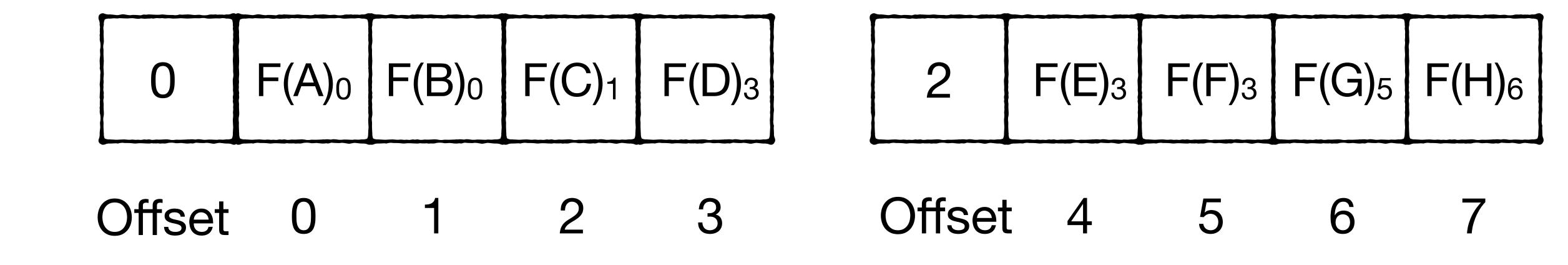
Each chunk has offset field Measures distance to first entry of chunk



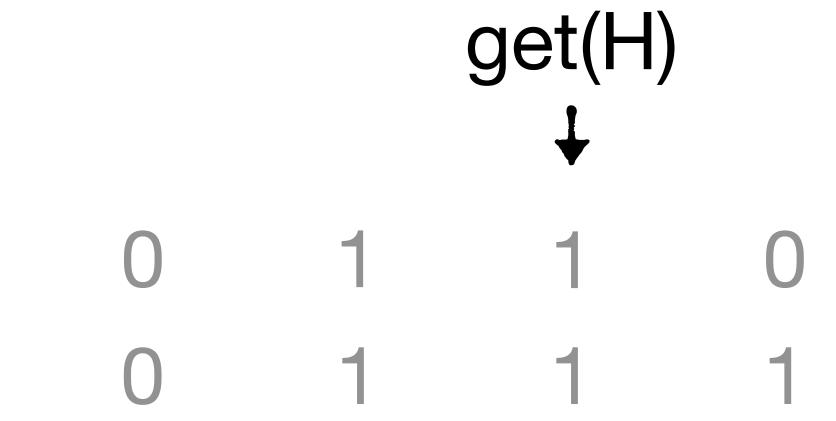


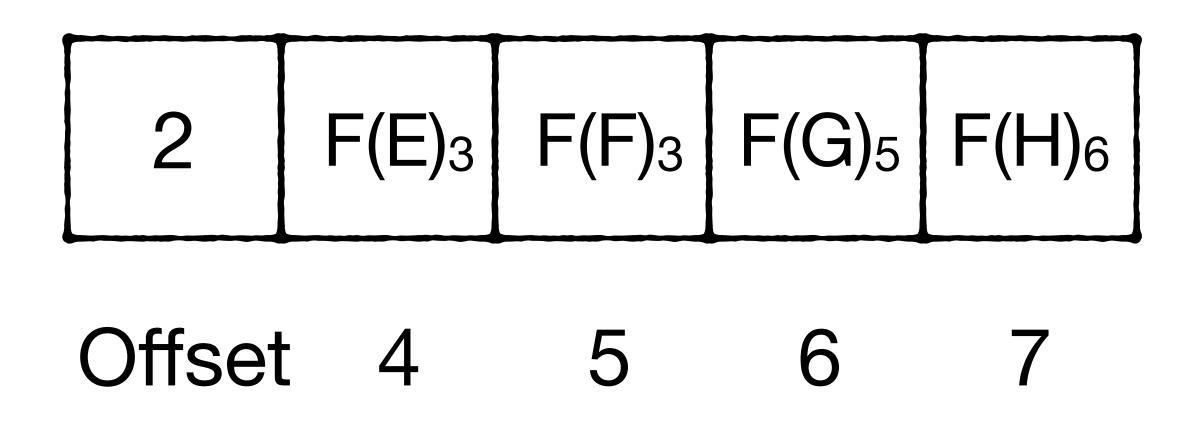
Back to Example





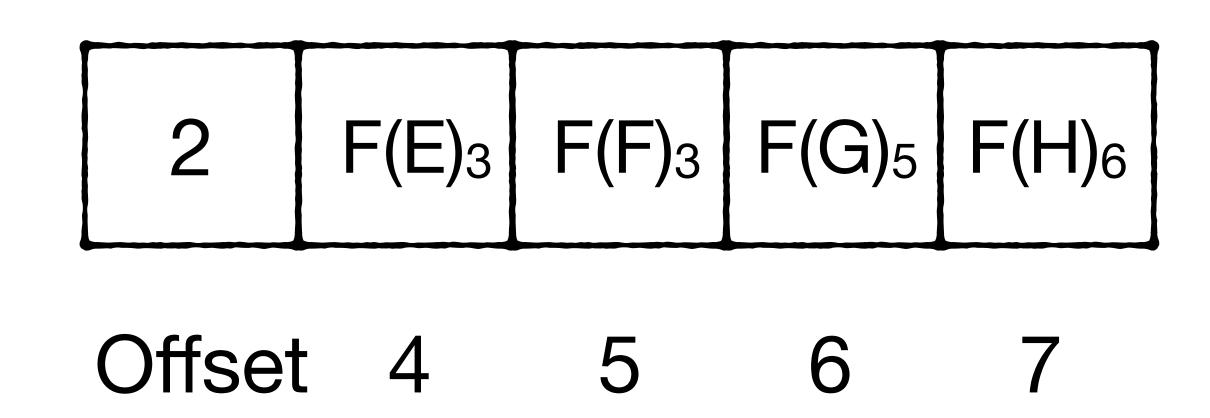
Back to Example

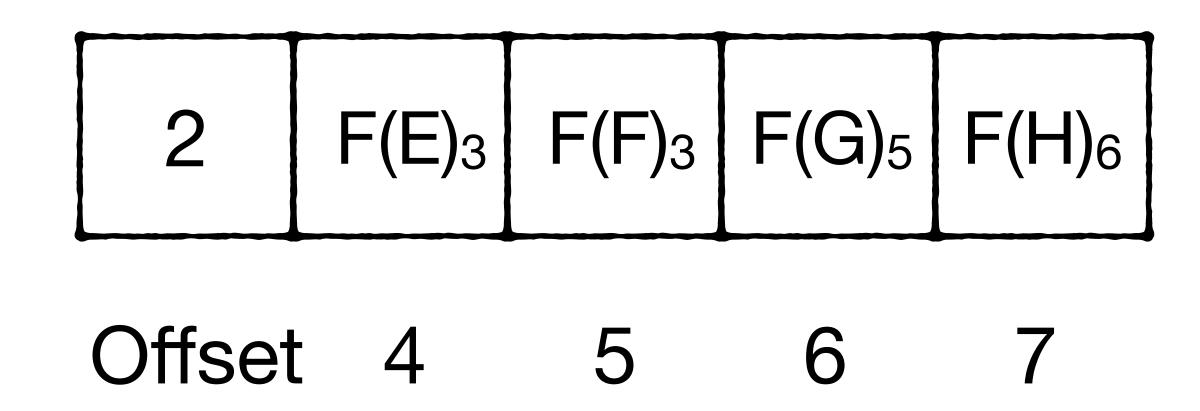


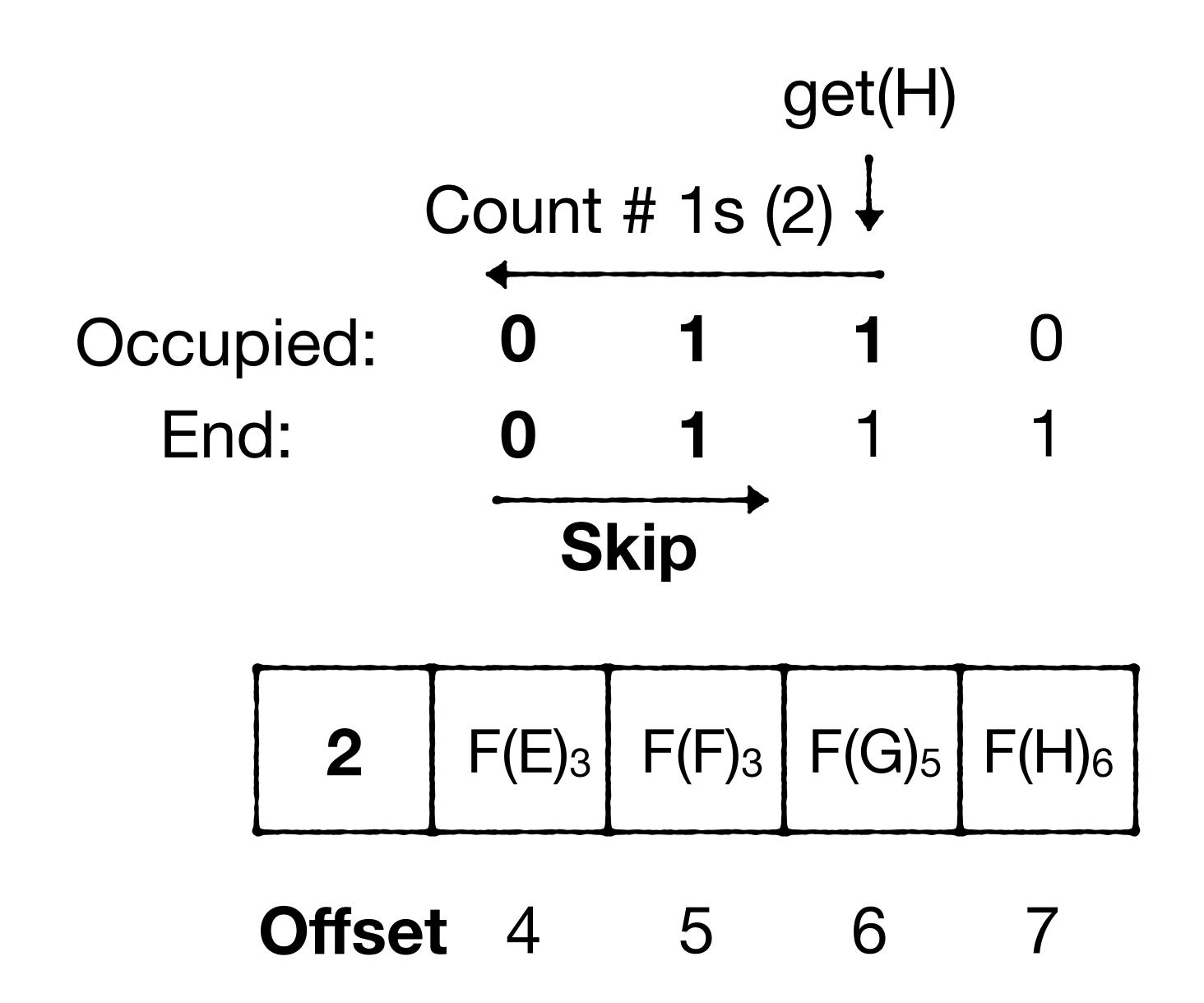


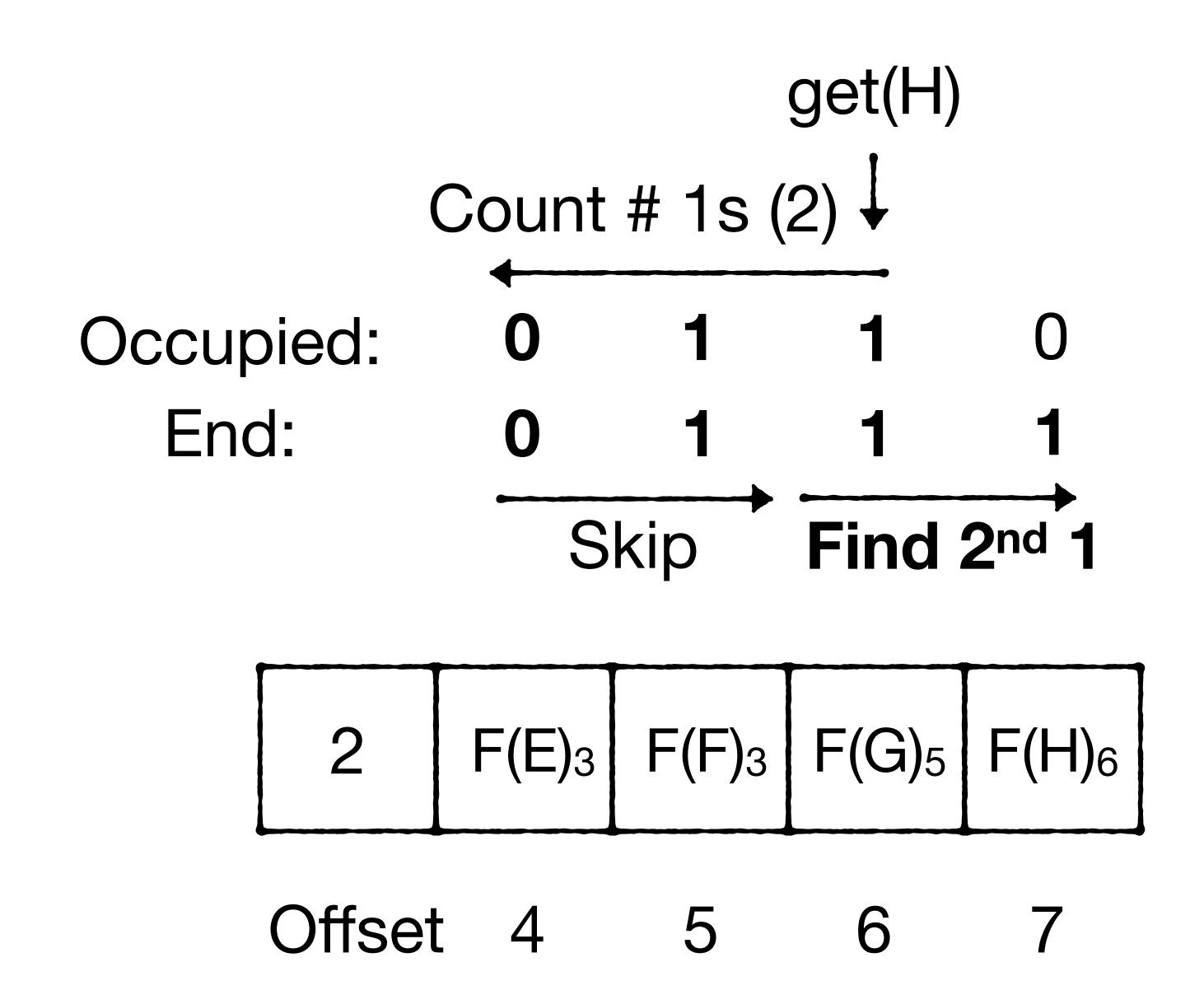
get(H)

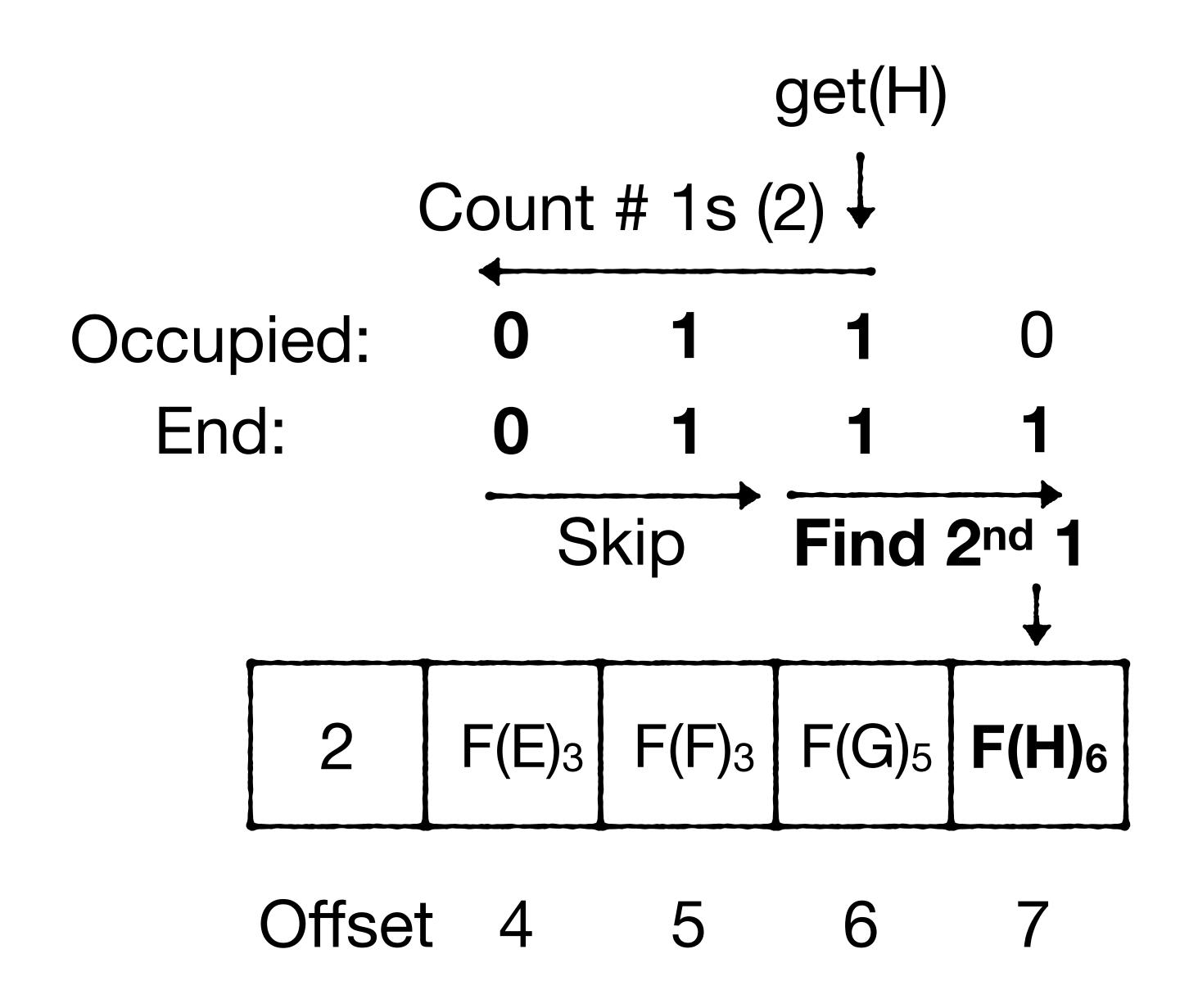
Occupied: 0 1 1 0 End: 0 1 1 1 1

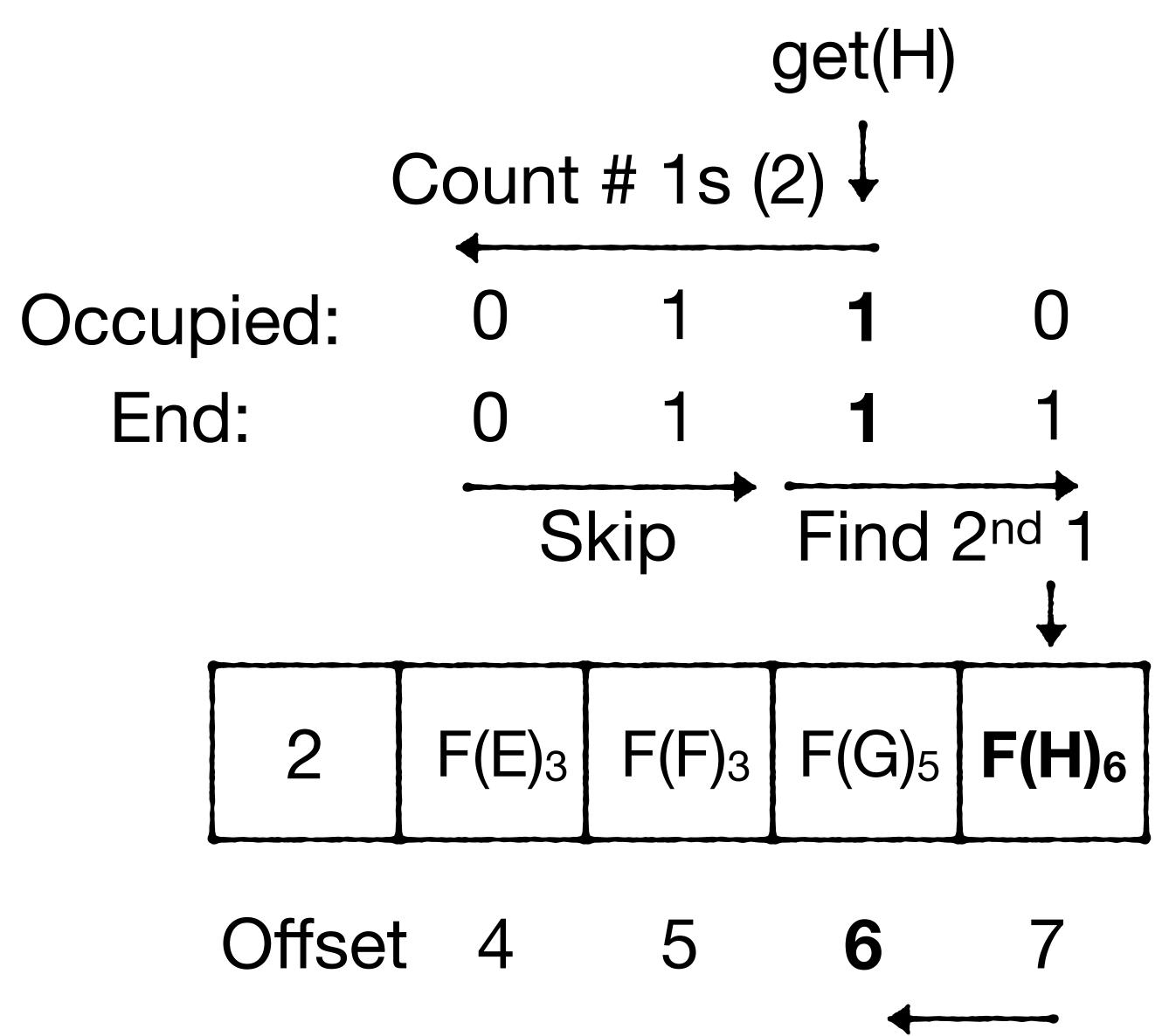












Scan until next run end or canonical slot

Target run may have been pushed to next chunk

Occupied: 0 1 1 0 End: 0 1 1 1

2 F(E)₃ F(F)₃ F(G)₅ F(H)₆ Offset 4 5

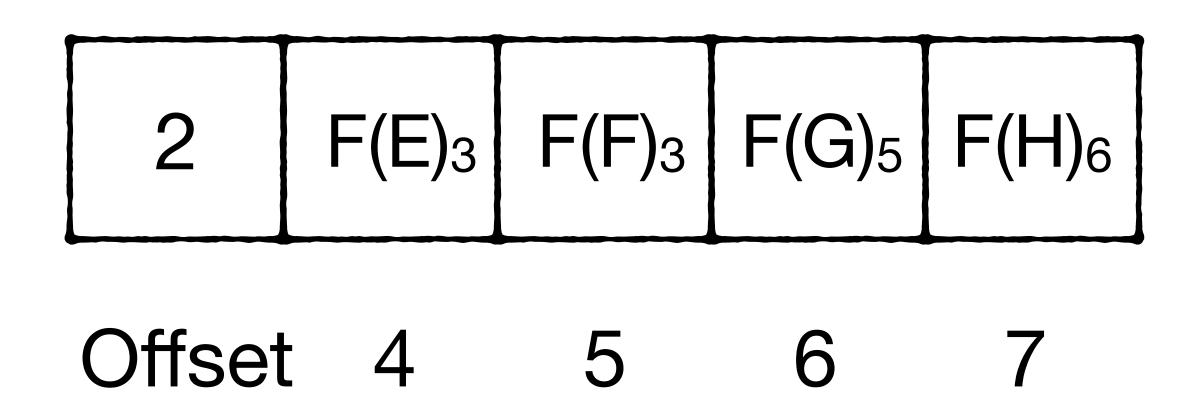
Target run may have been pushed to next chunk

 get(I)

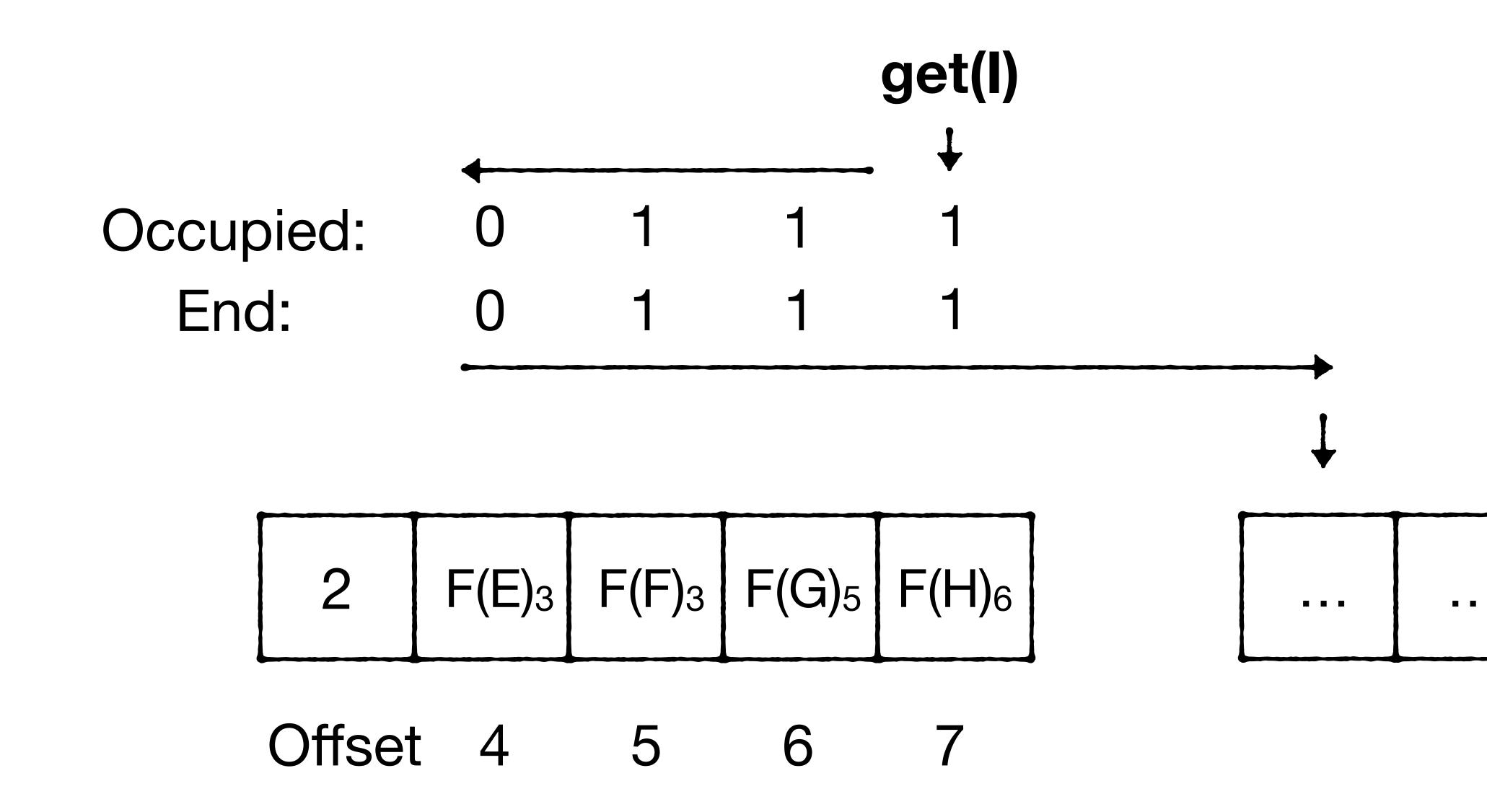
 ↓

 Occupied:
 0
 1
 1
 1

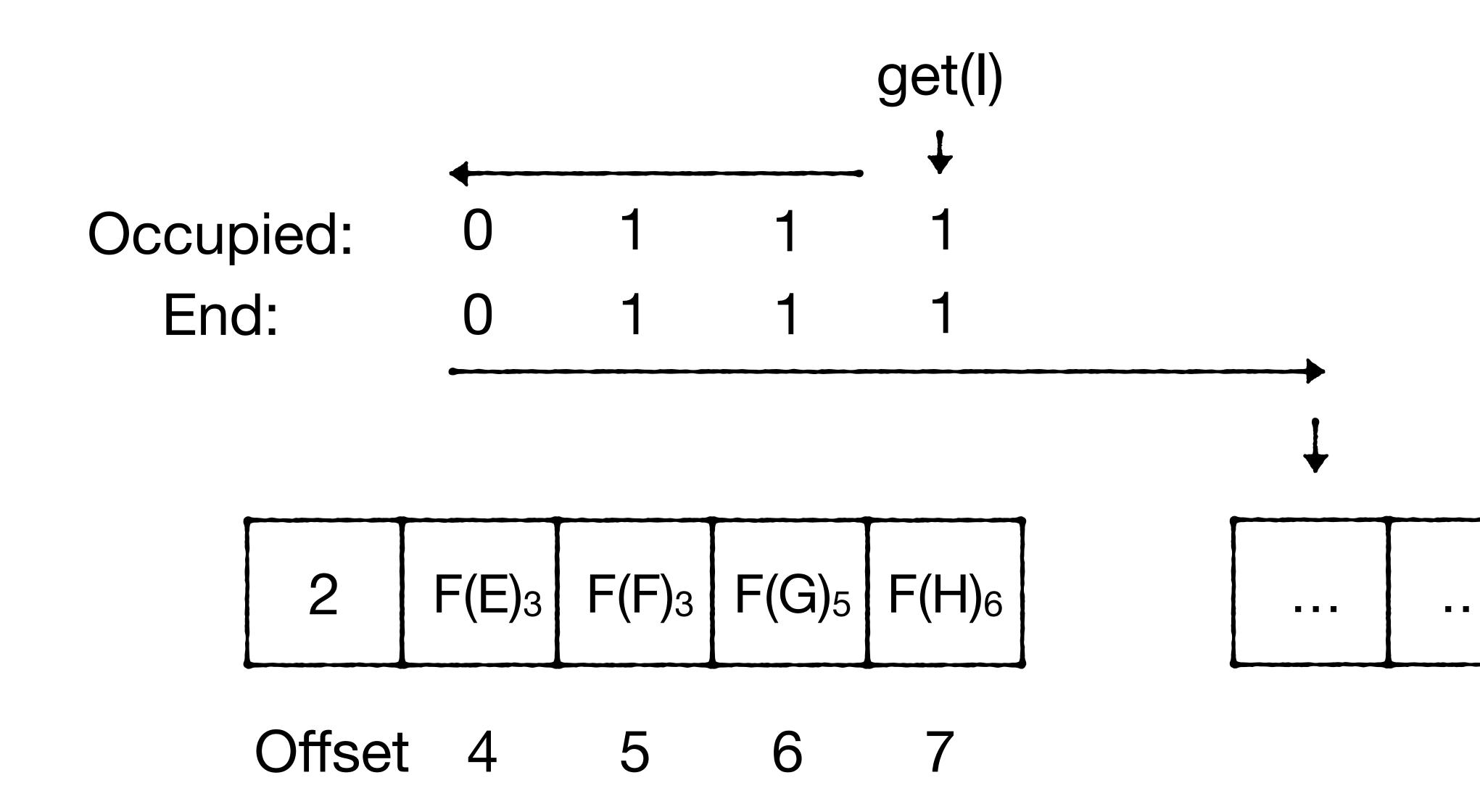
 End:
 0
 1
 1
 1



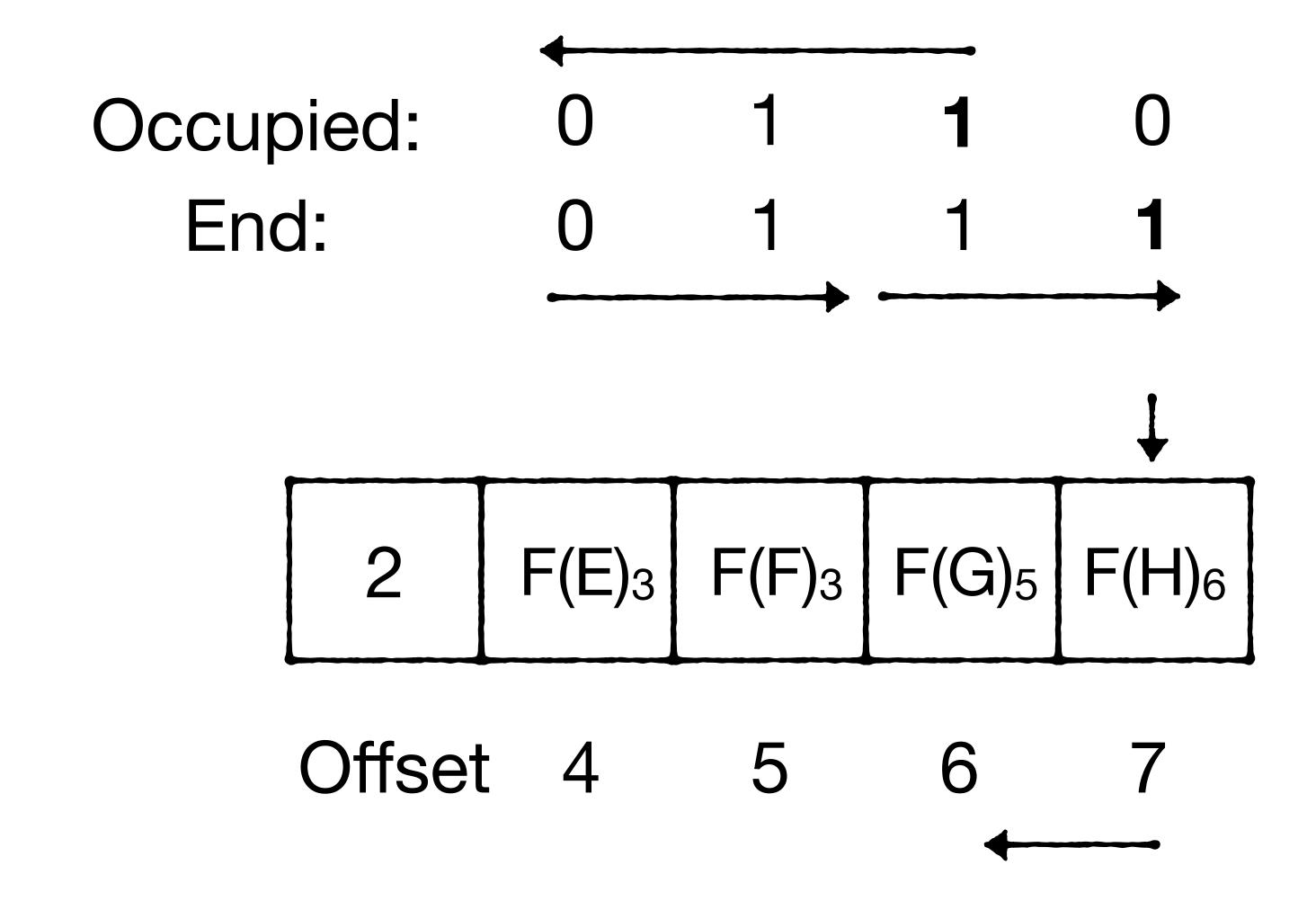
Target run may have been pushed to next chunk



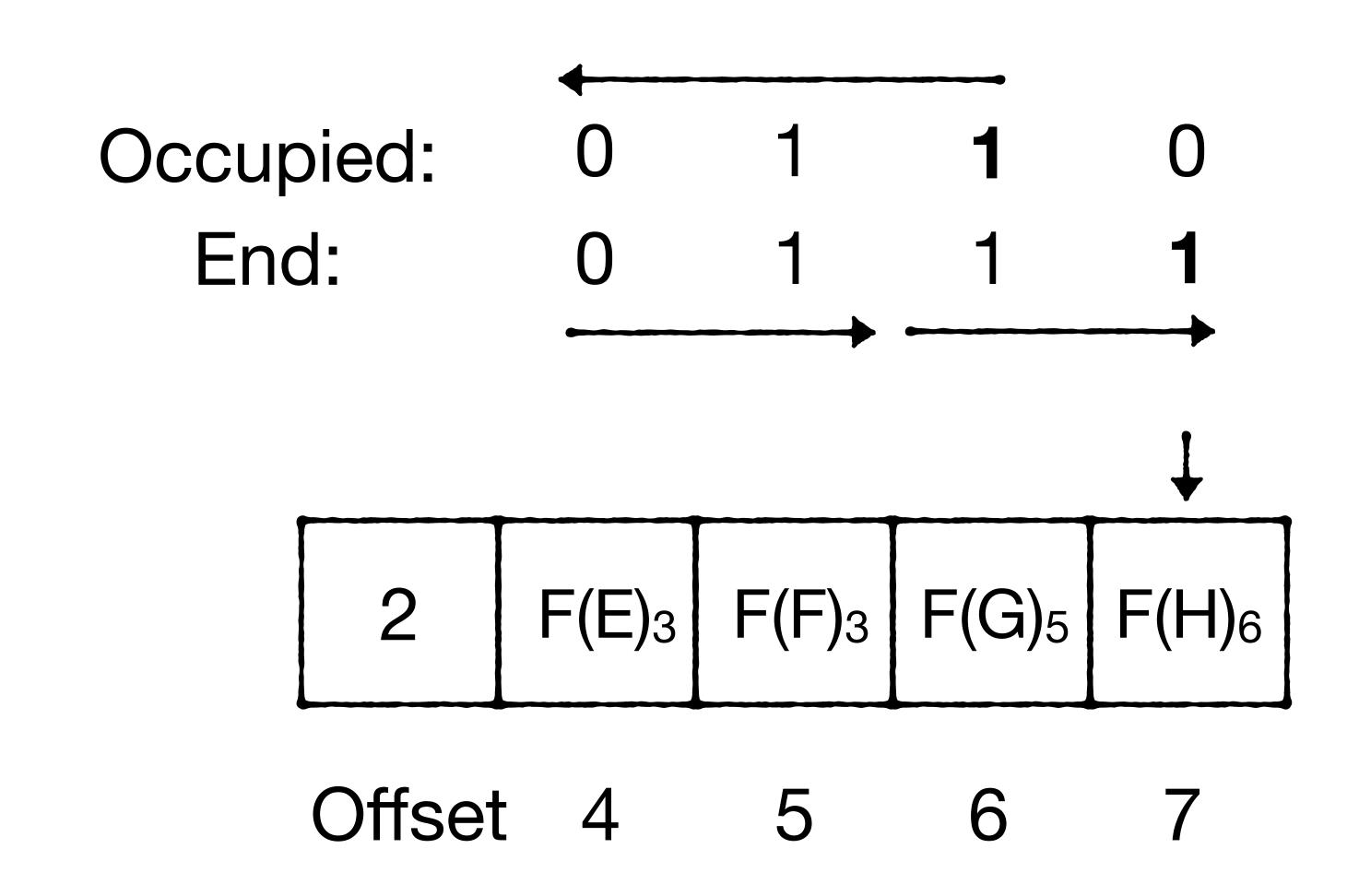
Sequential cache misses



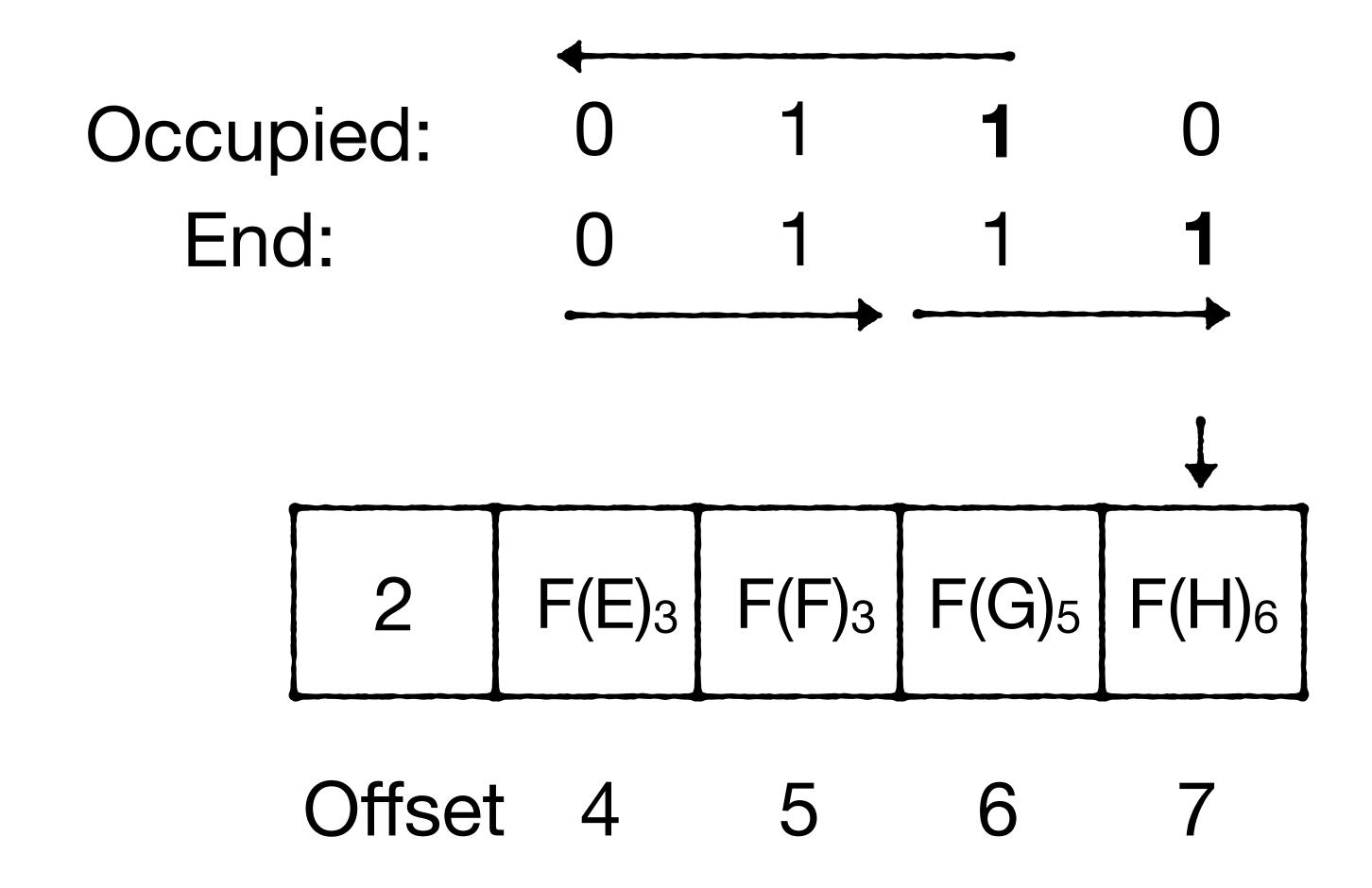
Queries in O(C), where C=64 is chunk size



Queries in O(C), where C=64 is chunk size Can we do O(1)?



Rank & Select



Rank & Select

Can parse a 64-bit bitmap in constant time

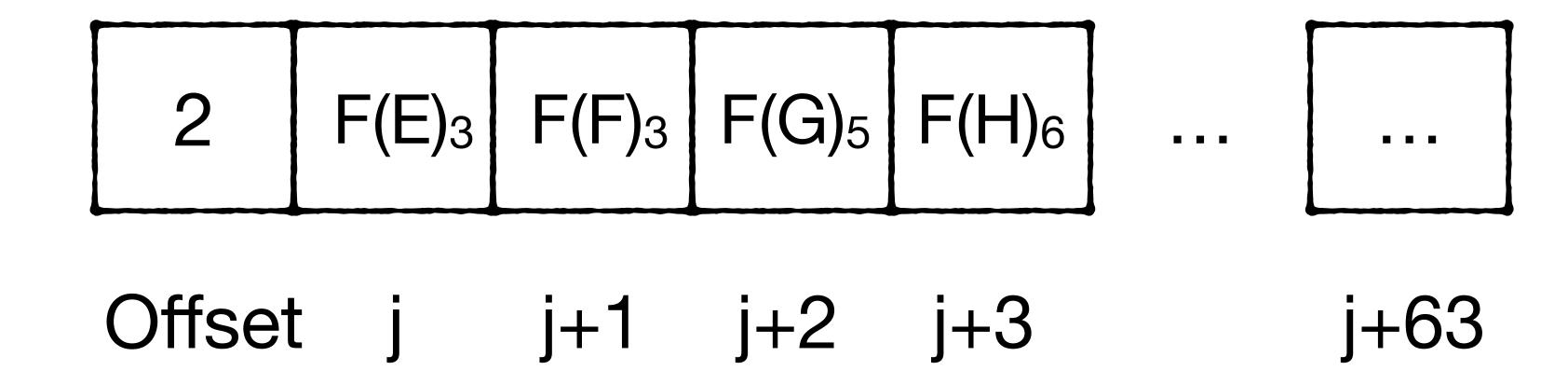
Occupied: 0 1 1 0 End: 0 1 1 1

 $| F(E)_3 | F(F)_3 | F(G)_5 | F(H)_6$ Offset 4 5 6 7

Rank & Select

Can parse a 64-bit bitmap in constant time

Occupied:	64 bits					
	0	1	1	0		0
End:	0	1	1	1		1



Rank(i) counts # 1s before the ith bit Select(i)

Occupied: 0 1 1 0 End: 0 1 1 1

2
$$F(E)_3$$
 $F(F)_3$ $F(G)_5$ $F(H)_6$
Offset 4 5 6 7

Rank (i) counts # 1s before the ith bit Select(i) returns the offset of the ith 1

Occupied: 0 1 1 0 End: 0 1 1 1 1

2
$$F(E)_3$$
 $F(F)_3$ $F(G)_5$ $F(H)_6$
Offset 4 5 6 7

Rank (i) counts # 1s before the ith bit Select (i) returns the offset of the ith 1

(1) How to use?

(2) How to implement?

Occupied: 0 1 1 0 End: 0 1 1 1

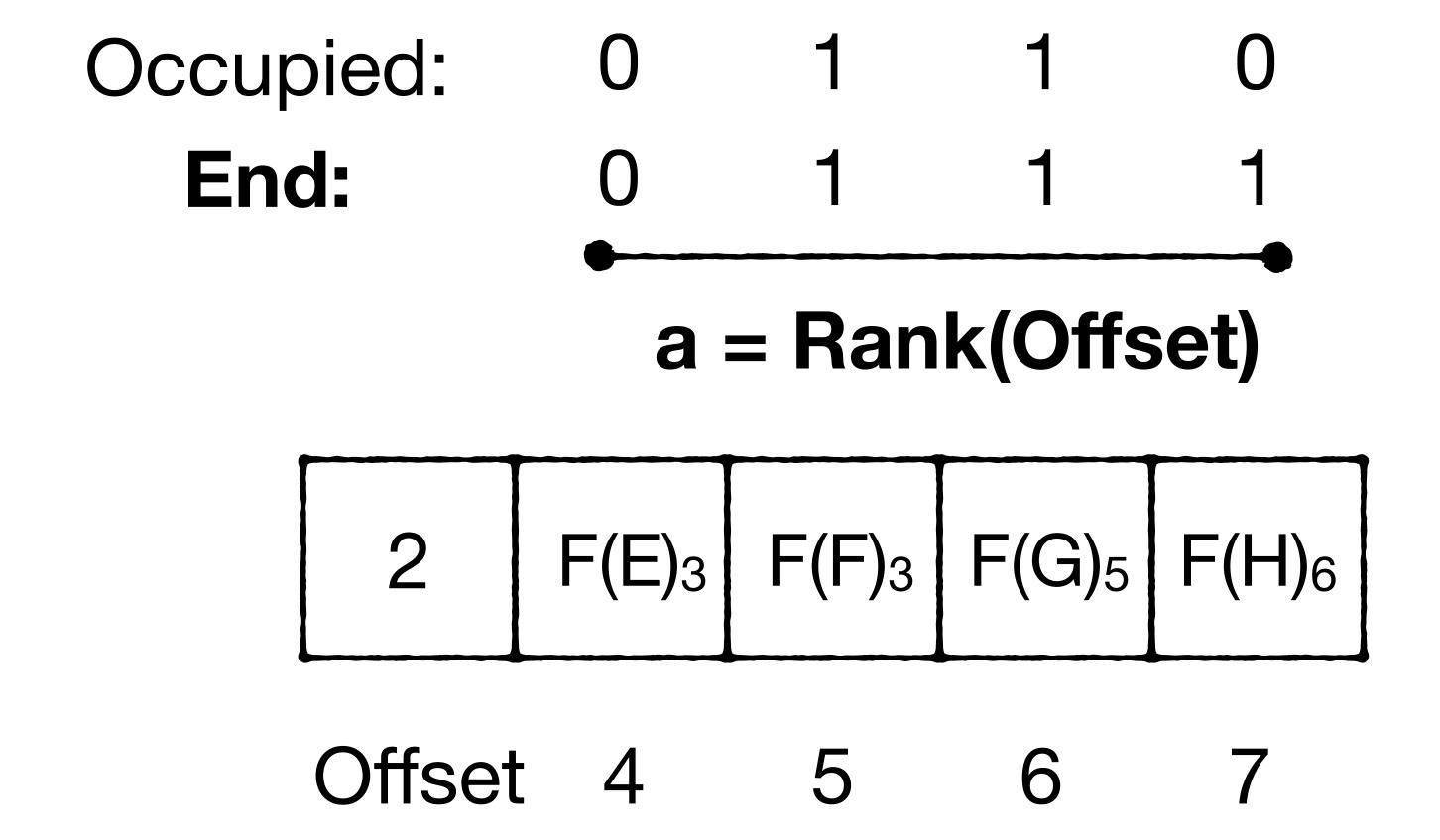
2
$$F(E)_3$$
 $F(F)_3$ $F(G)_5$ $F(H)_6$
Offset 4 5 6 7

Back to example: get(H)

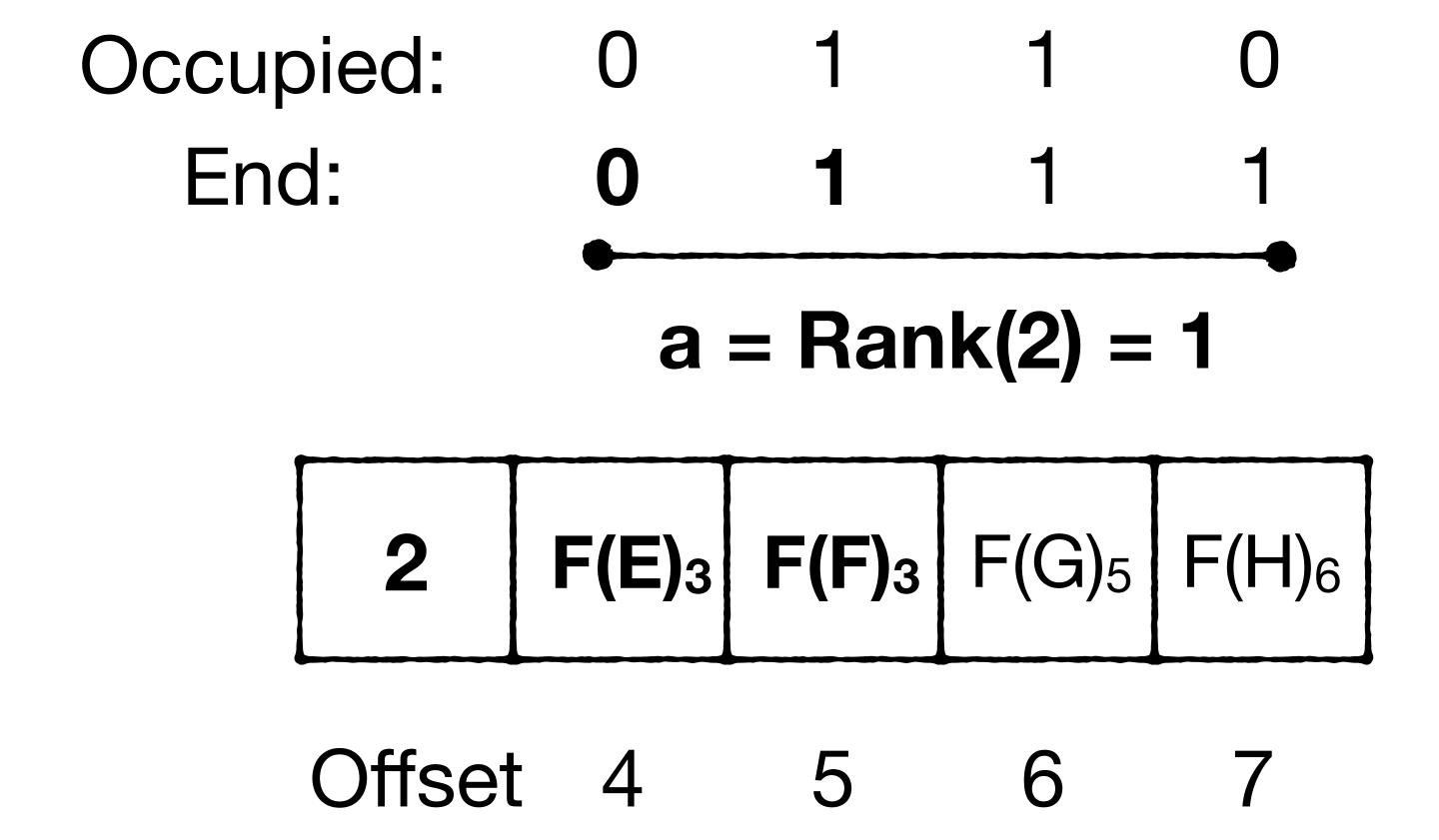
Occupied: 0 1 1 0 End: 0 1 1 1 1

2 $F(E)_3$ $F(F)_3$ $F(G)_5$ $F(H)_6$ Offset 4 5 6 7

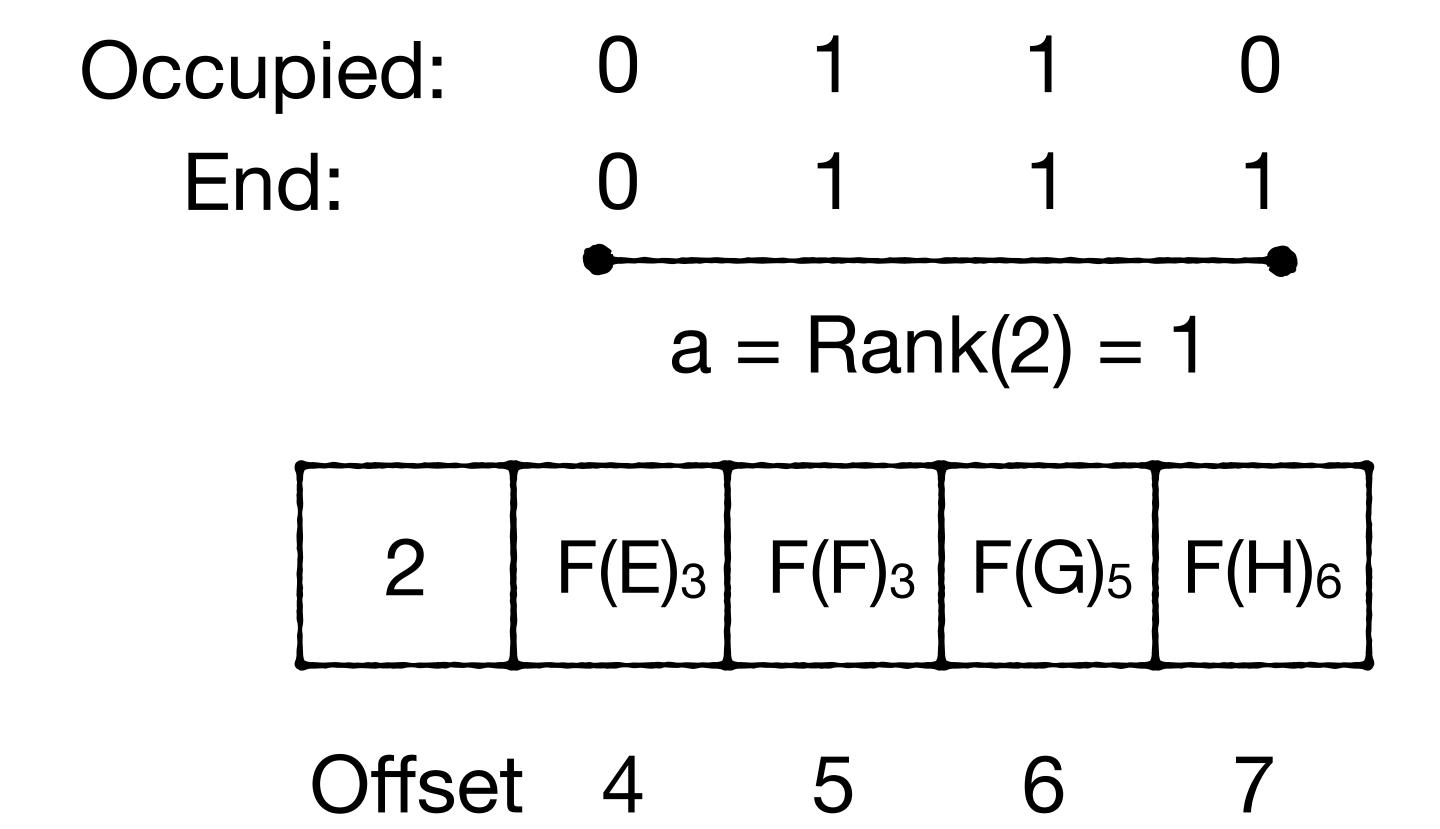
(A) Count # of runs ends belonging to previous chunks



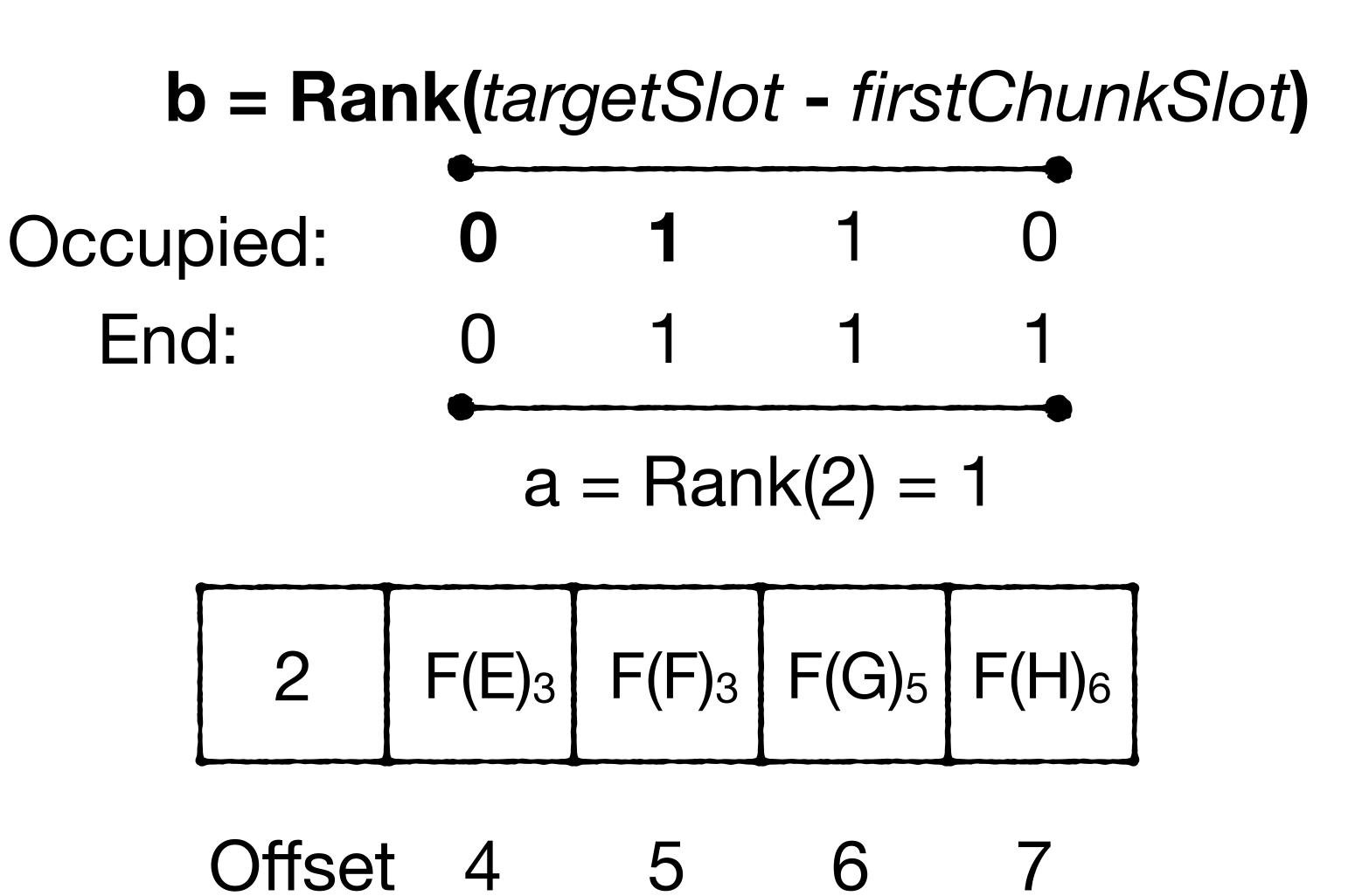
(A) Count # of runs ends belonging to previous chunks



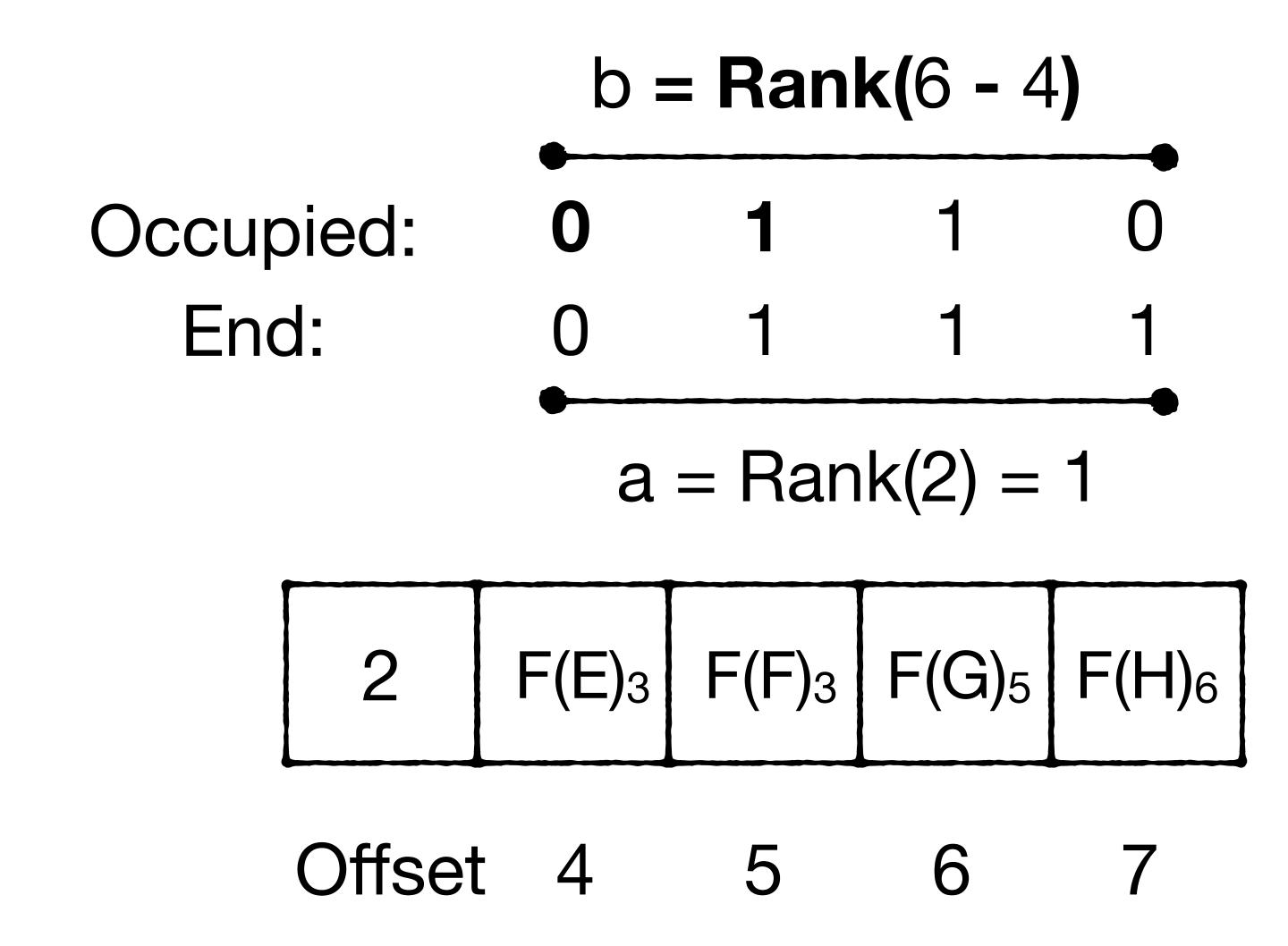
(B) Count # of run ends belonging to this chunk before target



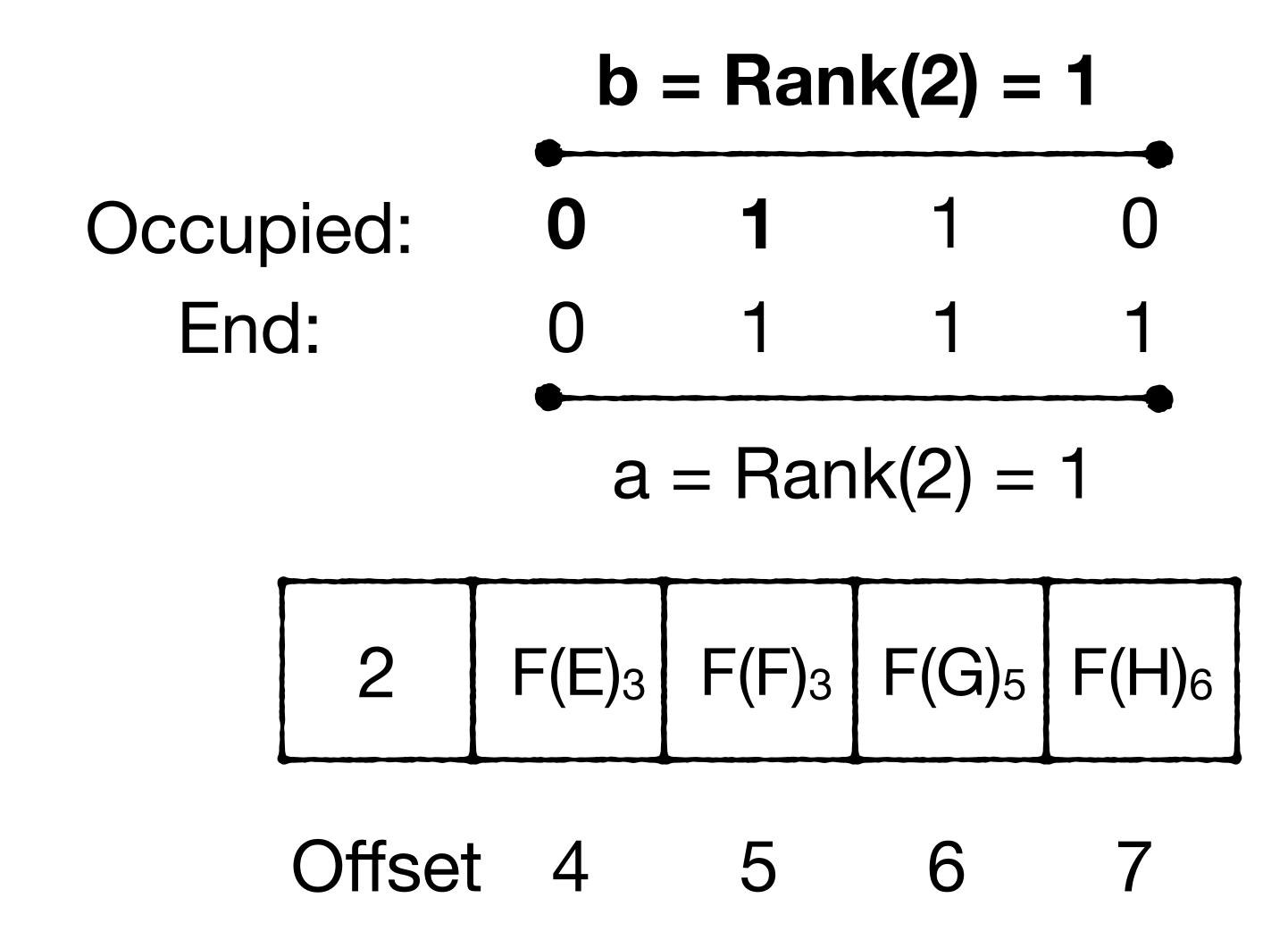
(B) Count # of run ends belonging to this chunk before target



(B) Count # of run ends belonging to this chunk before target



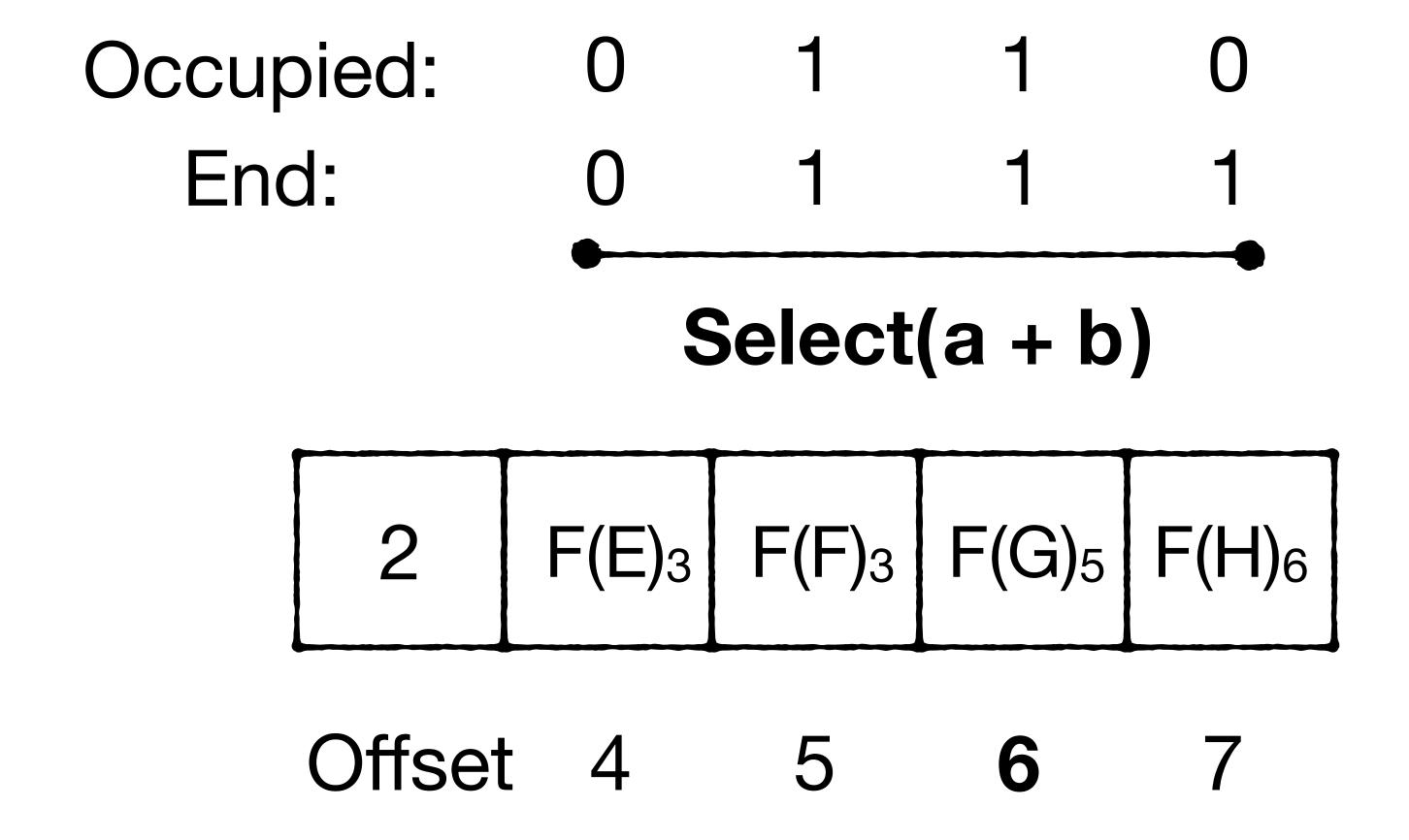
(B) Count # of run ends belonging to this chunk before target

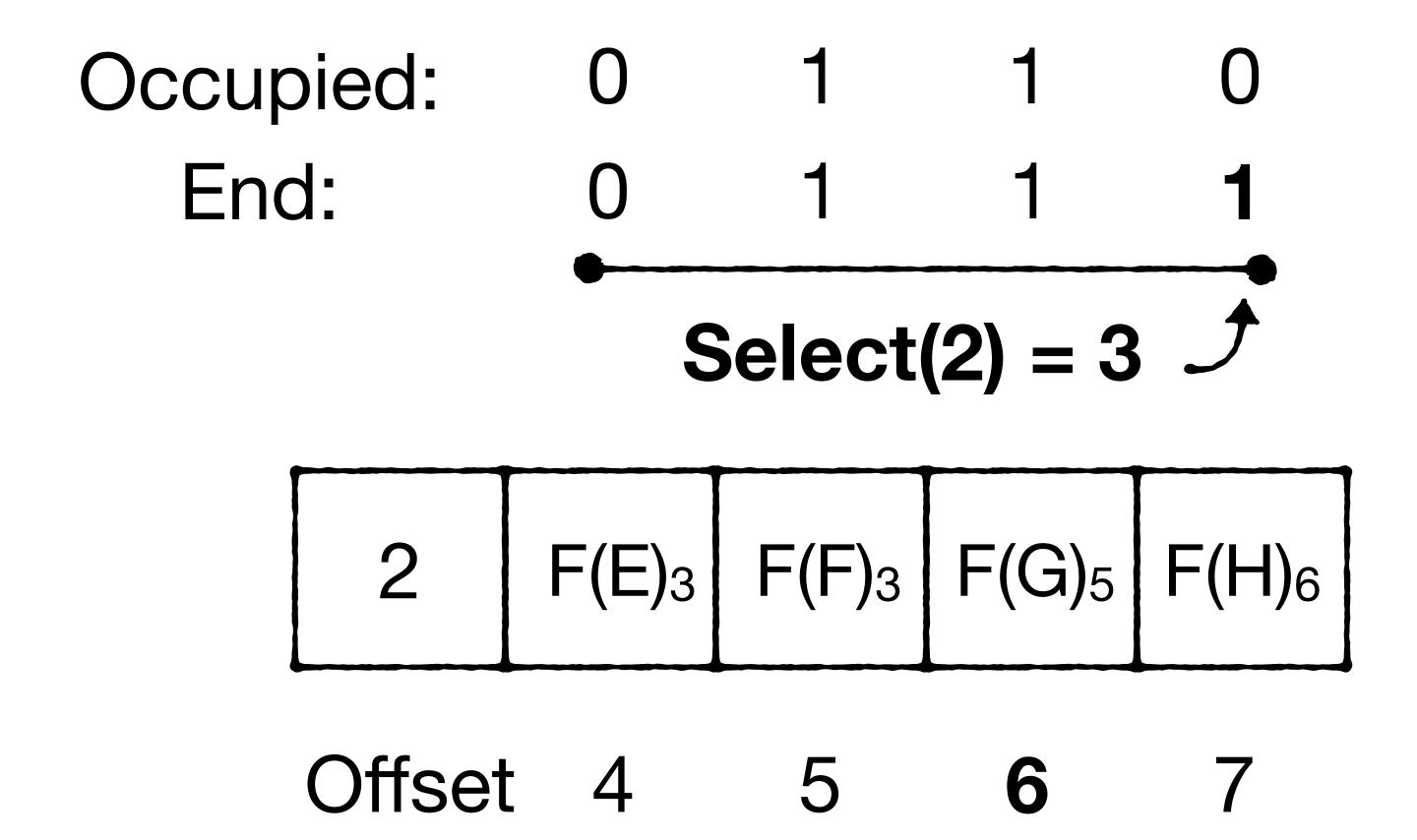


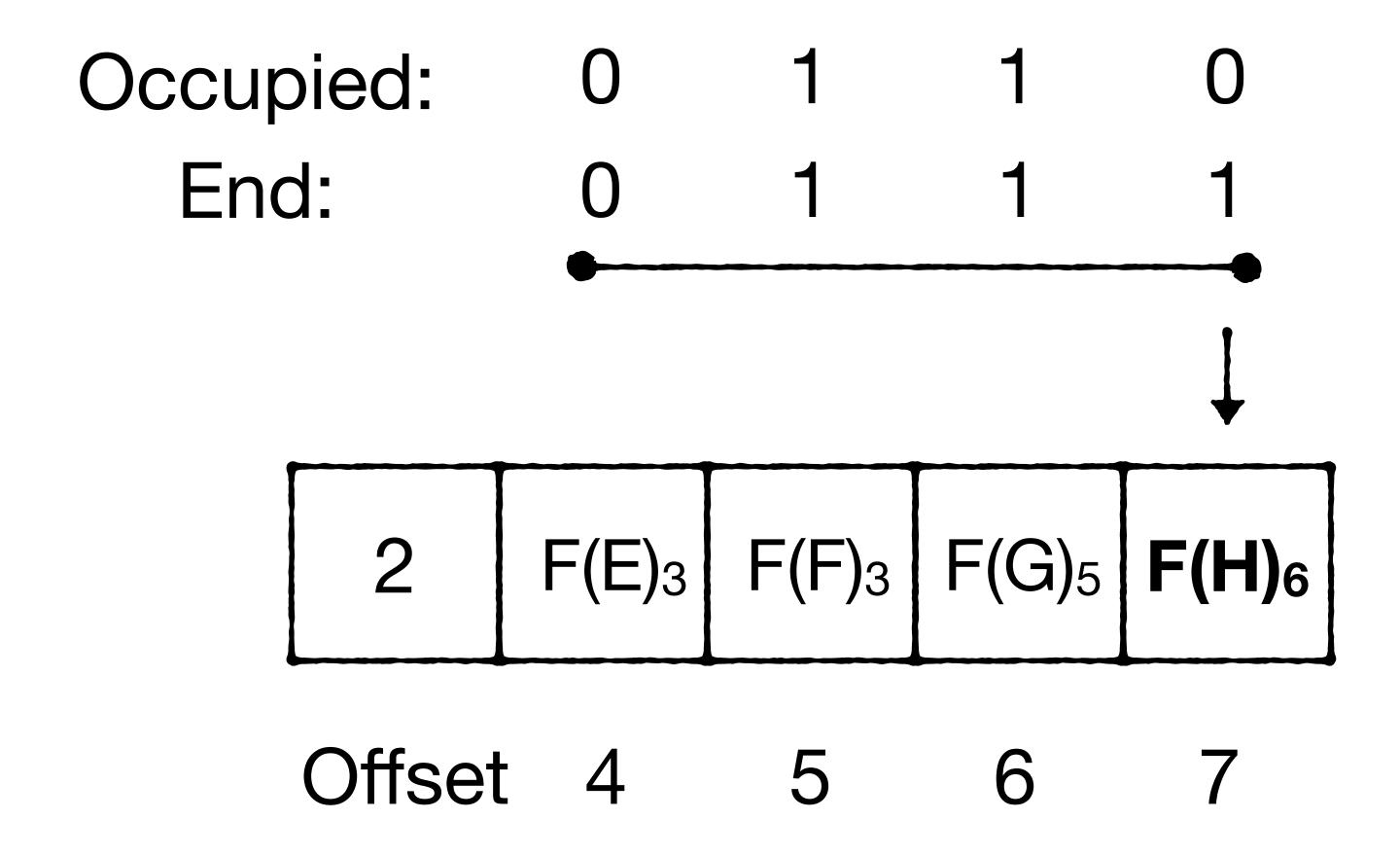
Occupied:
$$0 1 1 0$$
End: $0 1 1 1$

$$a = Rank(2) = 1$$

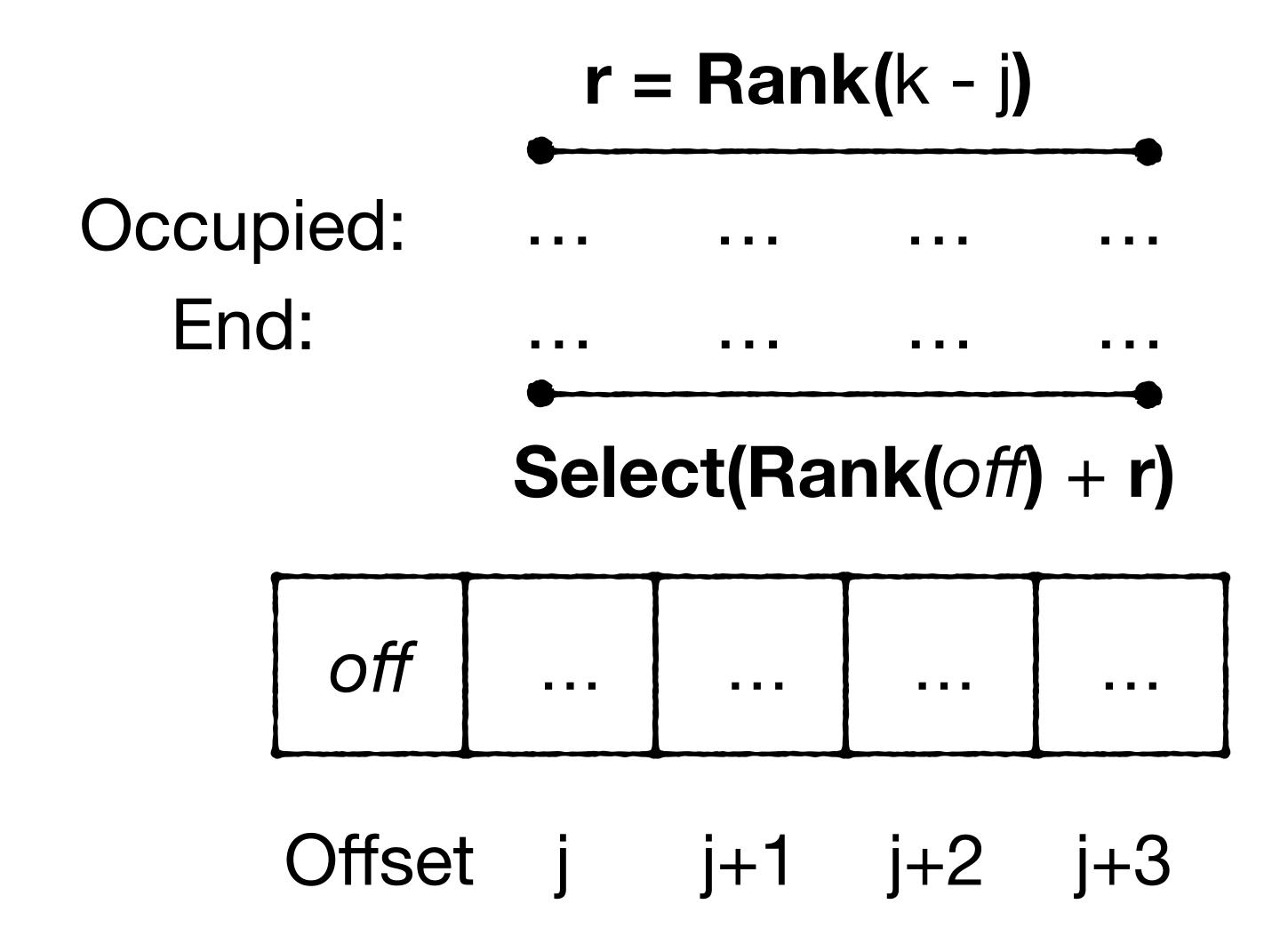
$$2 F(E)_3 F(F)_3 F(G)_5 F(H)_6$$
Offset $4 5 6 7$







General algorithm to bring us to end of slot k's run



Implementing Rank and Select Efficiently

Implementing Rank and Select Efficiently

No looping

rank(i) = popcount(B & (2ⁱ - 1))

Bitmap (64 bits long)

Bitmap (64 bits long)

Least significant bits

Most significant bits

Mask out irrelevant more significant bits

rank(i) = popcount(B & (2i - 1))

e.g., B = 01101011

$$rank(i) = popcount(B & (2i - 1))$$

e.g.,
$$B = 0.1101011$$
 rank(6) = 3

$$rank(i) = popcount(B & (2i - 1))$$

e.g.,
$$B = 01101011$$

$$rank(6) = 3$$

mask:
$$2^6 - 1 = 111111100$$

$$rank(i) = popcount(B & (2i - 1))$$

rank(6) = 3

$$rank(i) = popcount(B & (2i - 1))$$

e.g.,
$$B = 0.1101011$$
 rank(6) = 3

$$popcount(0 1 1 0 1 0 0 0) = 3$$

select(i) = tzcnt(pdep(2i, B))

Count trailing zeros

Count trailing zeros

$$tzcnt(00011101) = 3$$

Scatter bits in first operand at 1s in second operand

select(i) = tzcnt(pdep(2i, B))

Available on x86

https://www.felixcloutier.com/x86/

$$select(i) = tzcnt(pdep(2^i, B))$$

e.g.,
$$B = 01101011$$

$$select(i) = tzcnt(pdep(2^i, B))$$

e.g.,
$$B = 01101011$$
 Select(2) = 4

$$B = 01101011$$

$$Select(2) = 4$$

$$2^2 = 0010000$$

$$select(i) = tzcnt(pdep(2^i, B))$$

Scatter bits in first operand at 1s in second operand

$$select(i) = tzcnt(pdep(2^i, B))$$

$$B = 0 1 1 0 1 0 1 1$$

$$Select(2) = 4$$

pdep
$$(00100000, B) = 00001000$$

1

Only the 1 at relevant position is now set

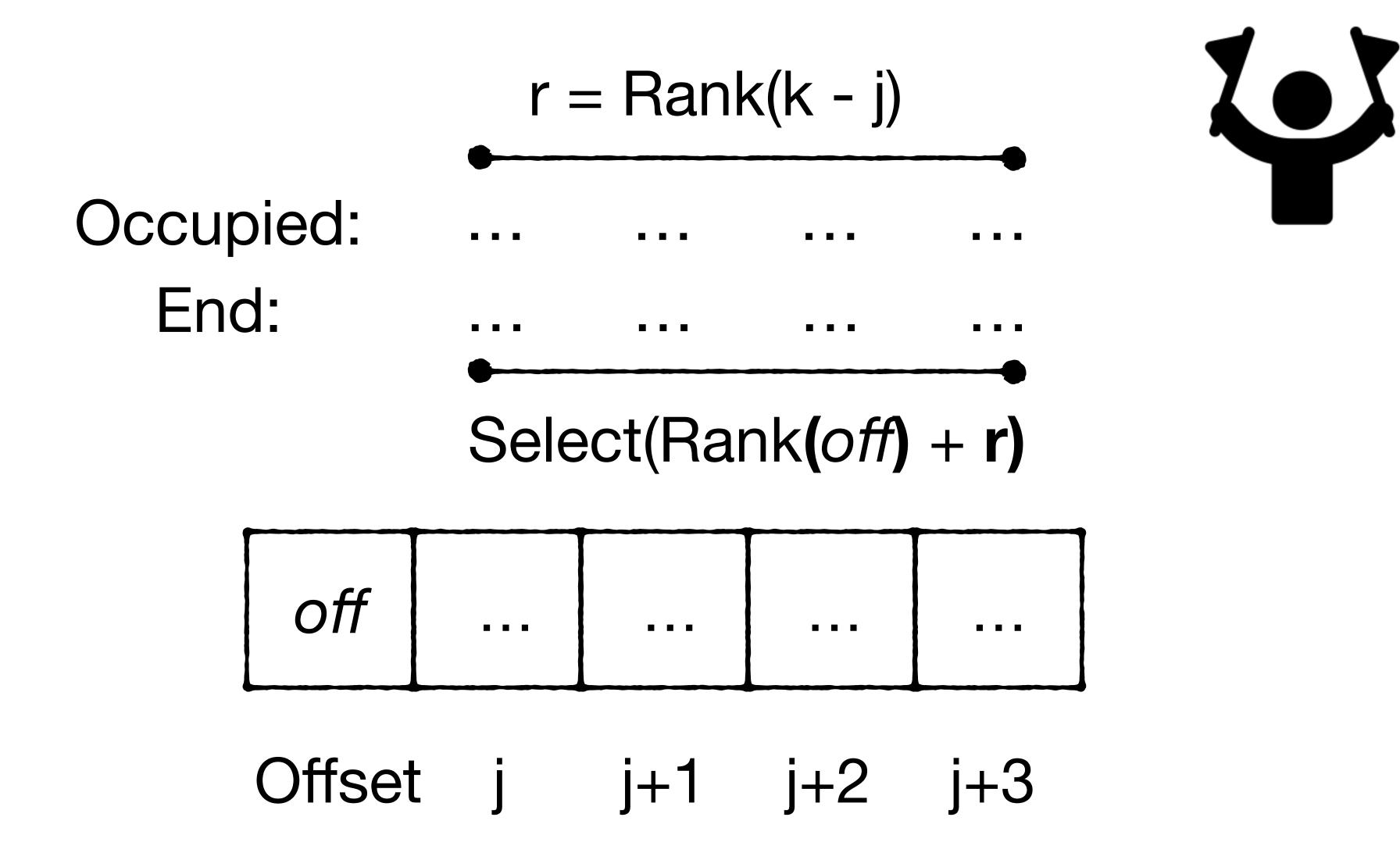
$$select(i) = tzcnt(pdep(2^i, B))$$

$$B = 0 1 1 0 1 0 1 1$$

$$Select(2) = 4$$

$$tzcnt(00001000) = 4$$

queries in O(1) due to fast rank and select



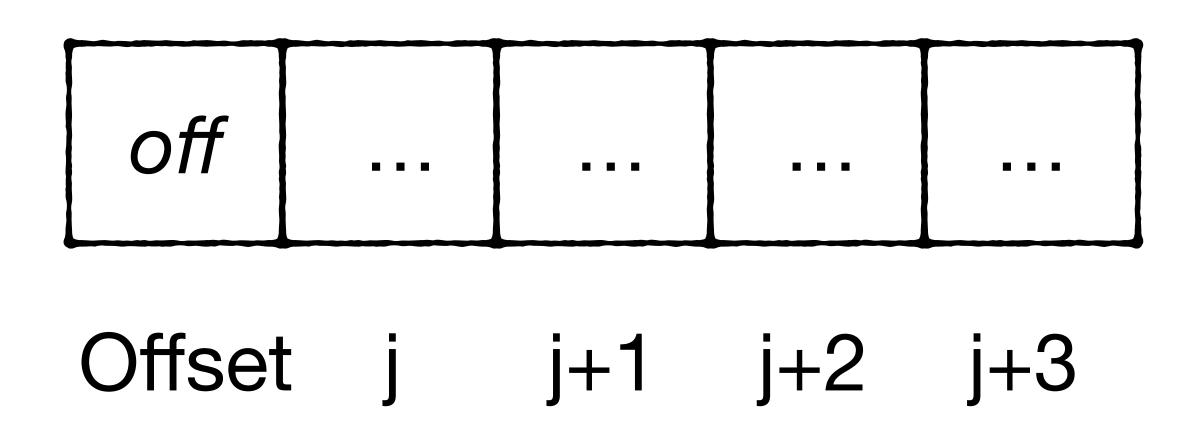
Insertions?

off

Offset j j+1 j+2 j+3

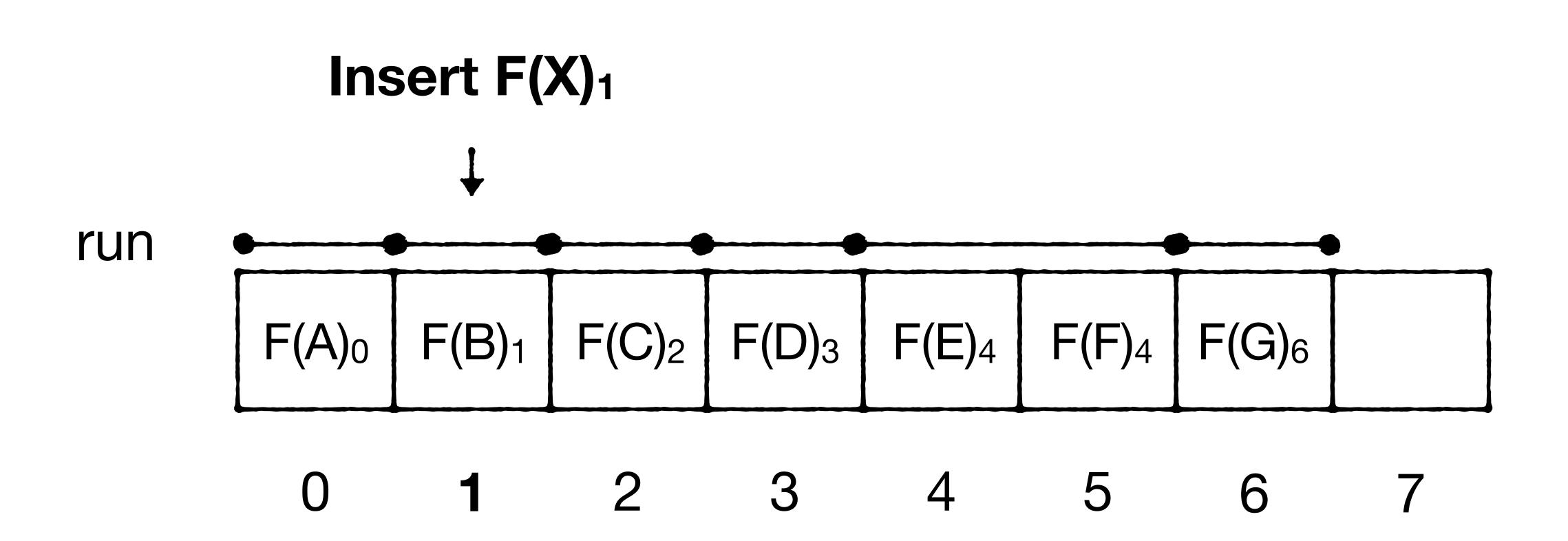
Insertions

Find target run, push colliding entries to right, insert

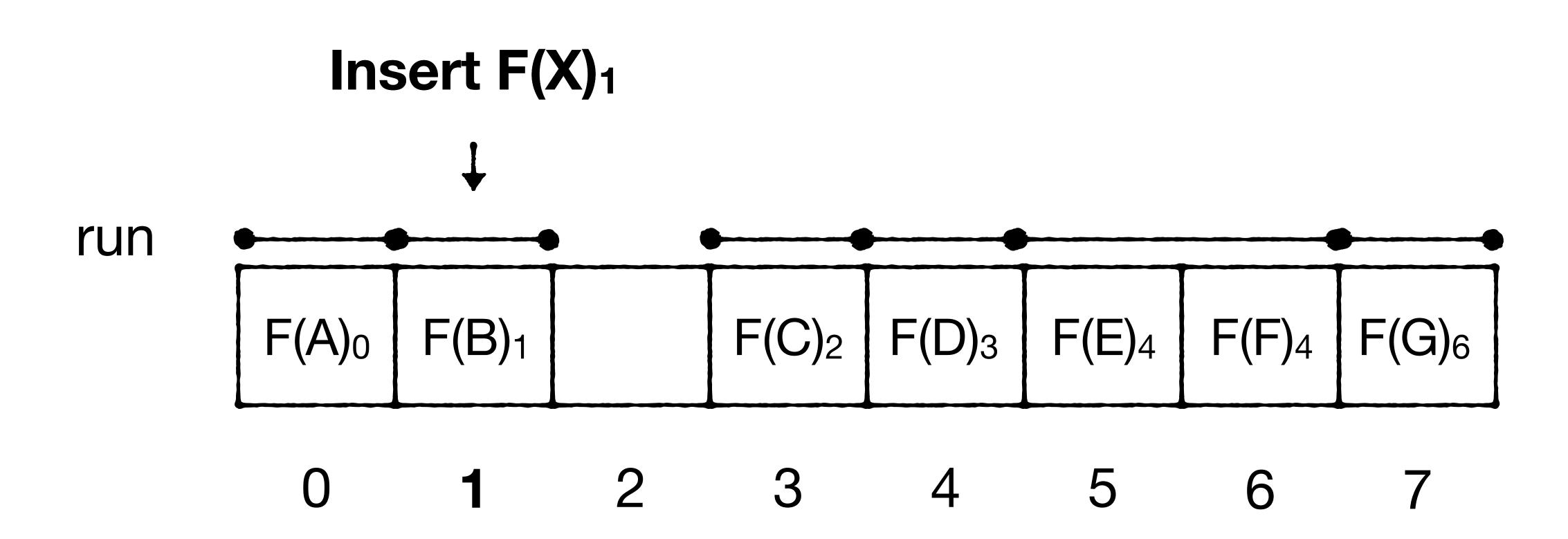


Insertions

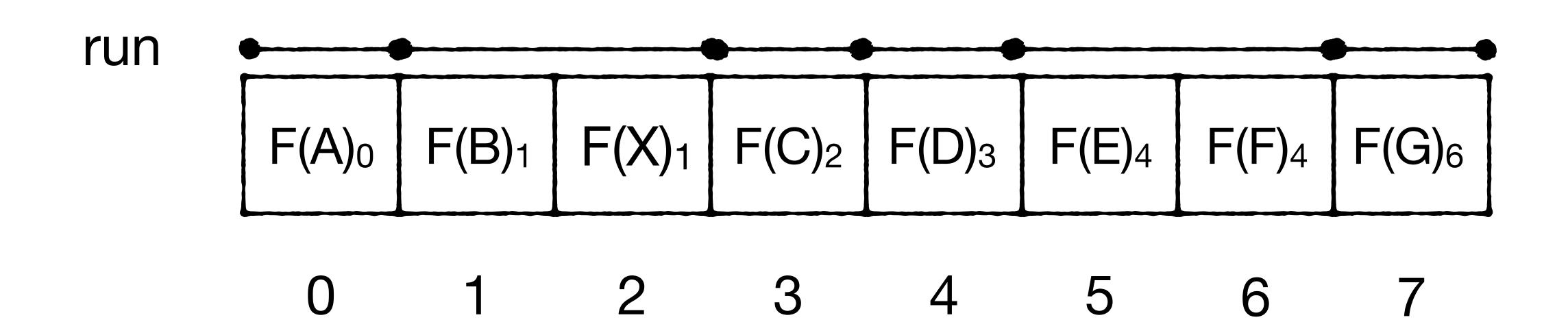
Find target run, push colliding entries to right, insert



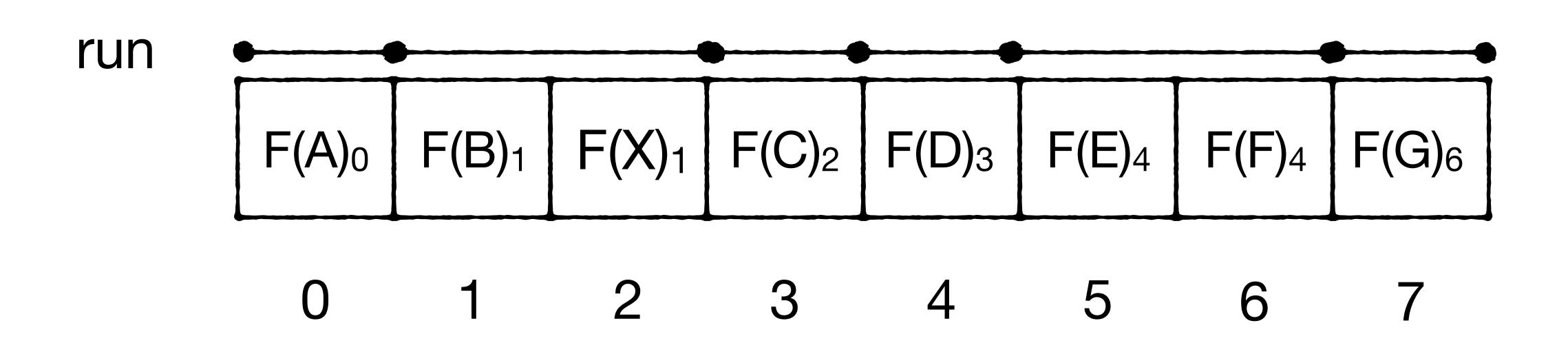
Find target run, push colliding entries to right, insert

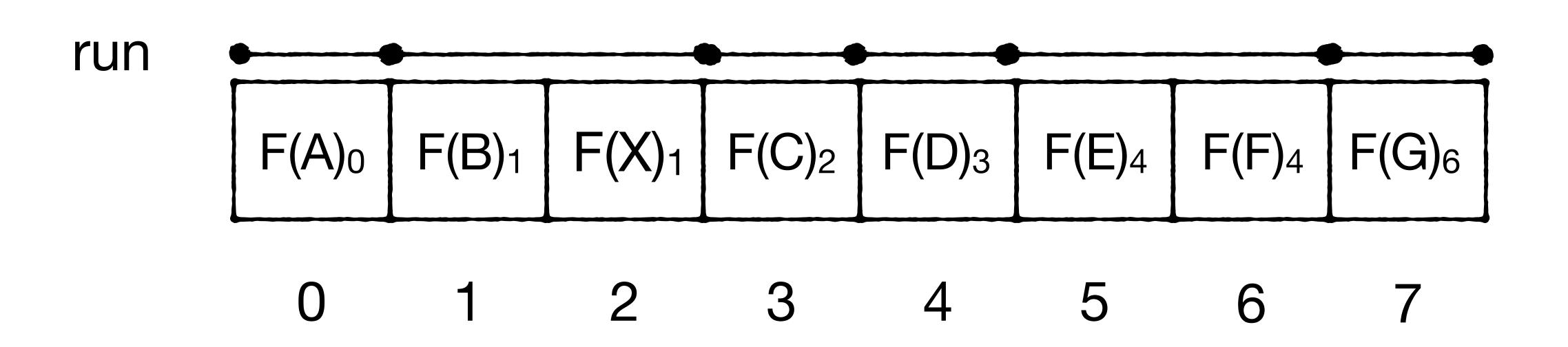


Find target run, push colliding entries to right, insert



Find target run, push colliding entries to right, insert **Problem?**

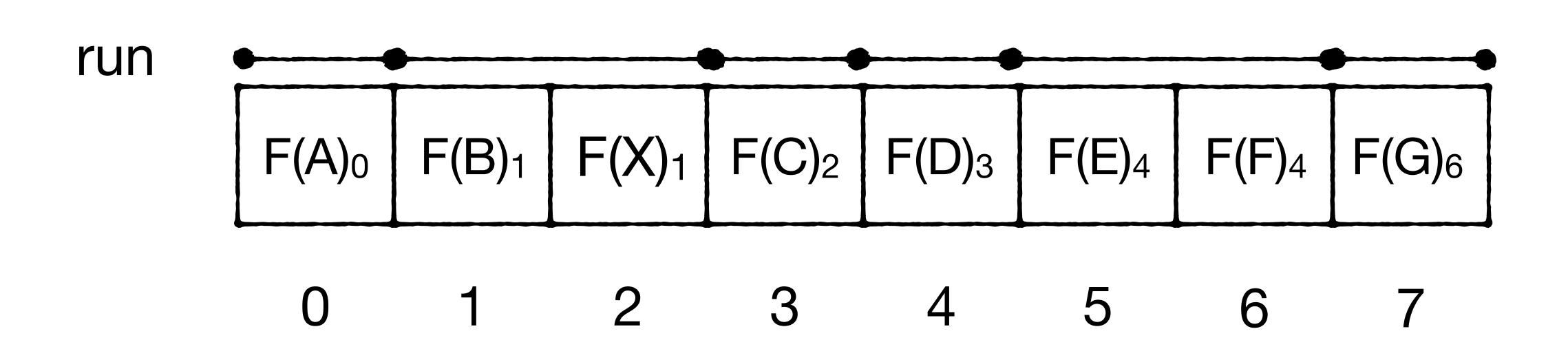




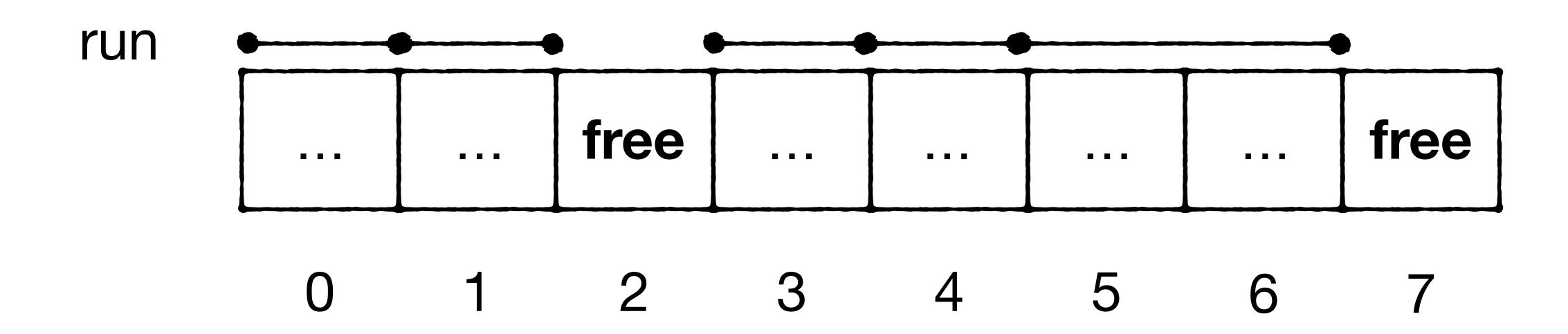
Find target run, **push colliding entries to right**, insert

†

potentially O(N) - **solution**?

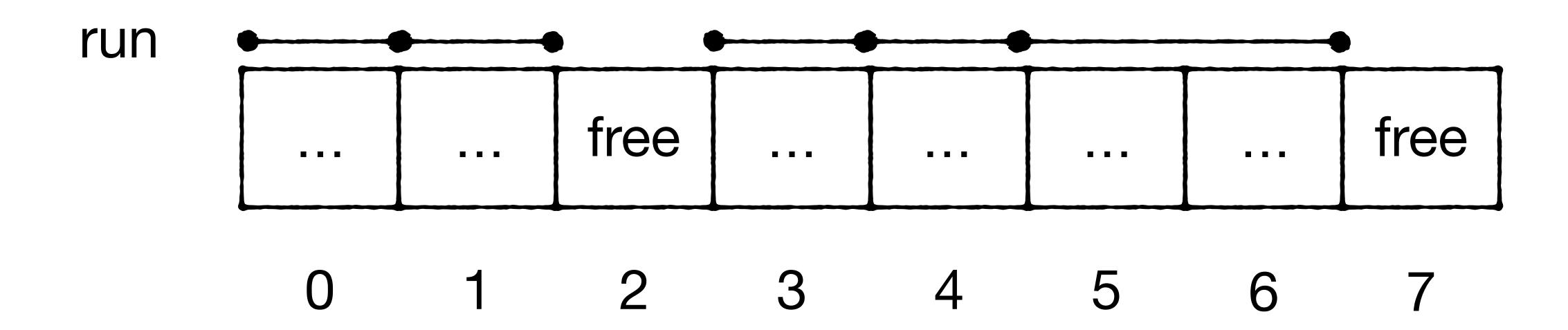


Keep at least 5% spare capacity



Keep at least 5% spare capacity

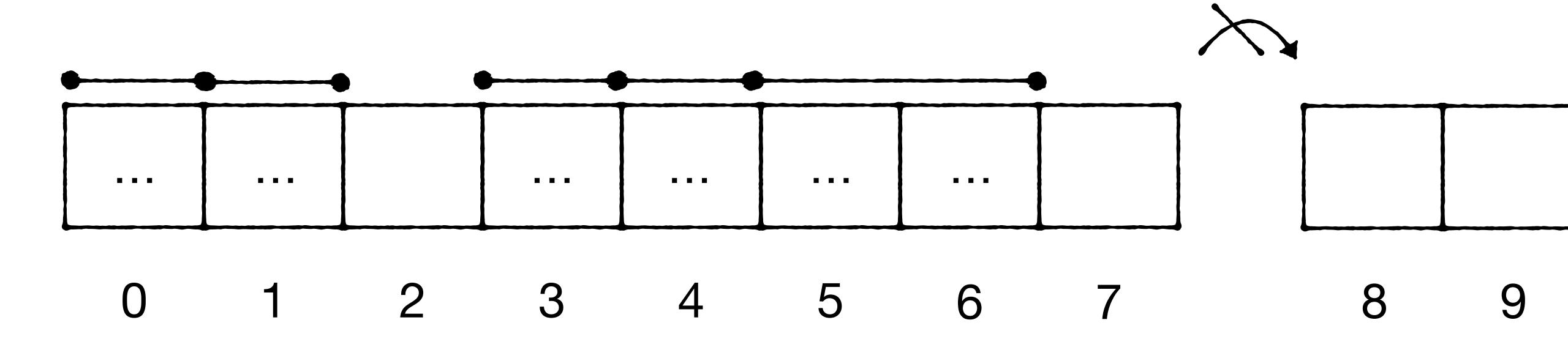
Push at most 20 entries on avg due to hashing



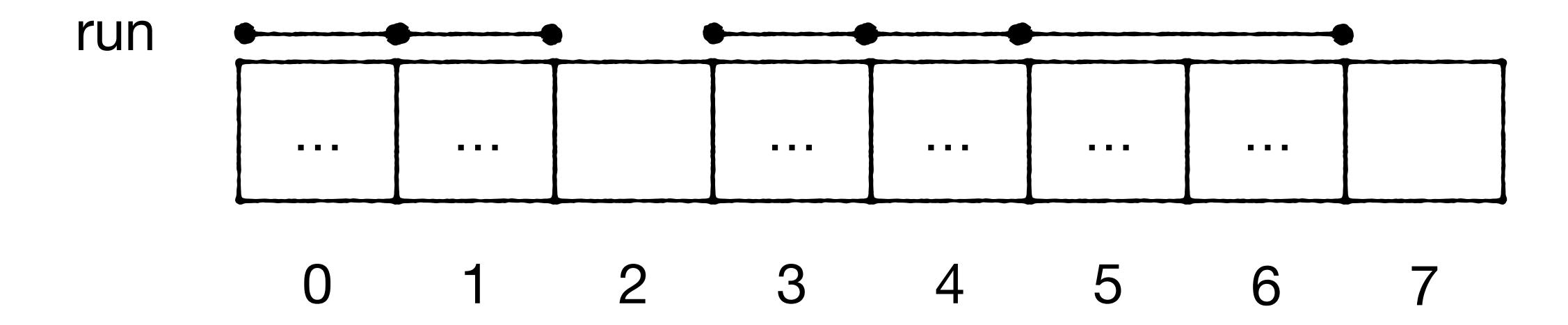
Keep at least 5% spare capacity

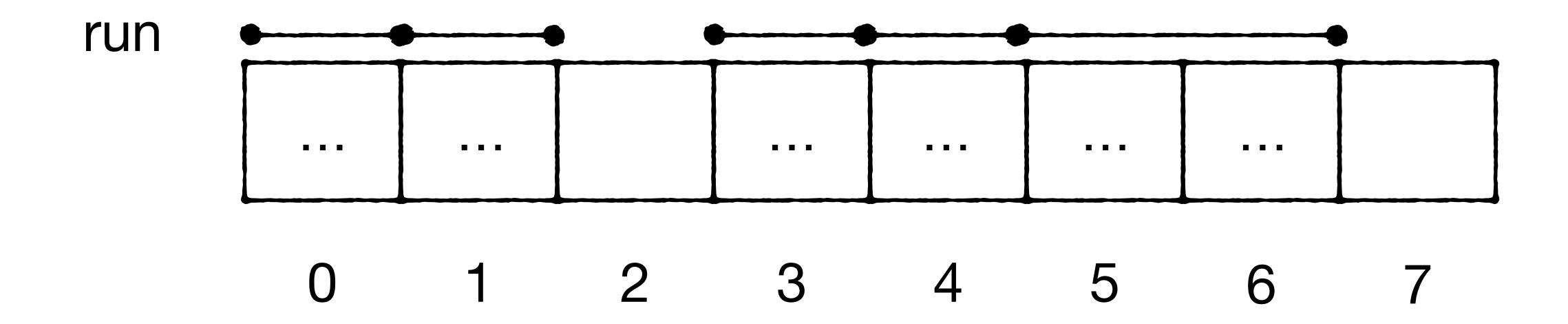
Push at most 20 entries on avg due to hashing

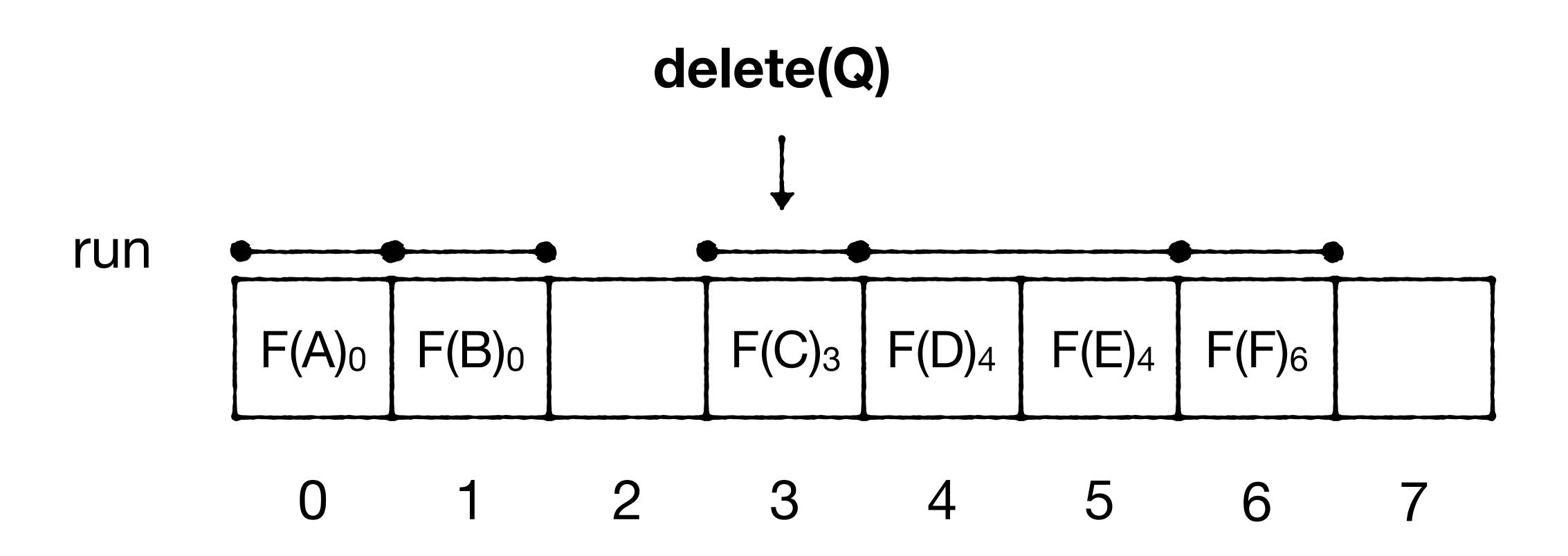
Most insertions don't spill to the next chunk



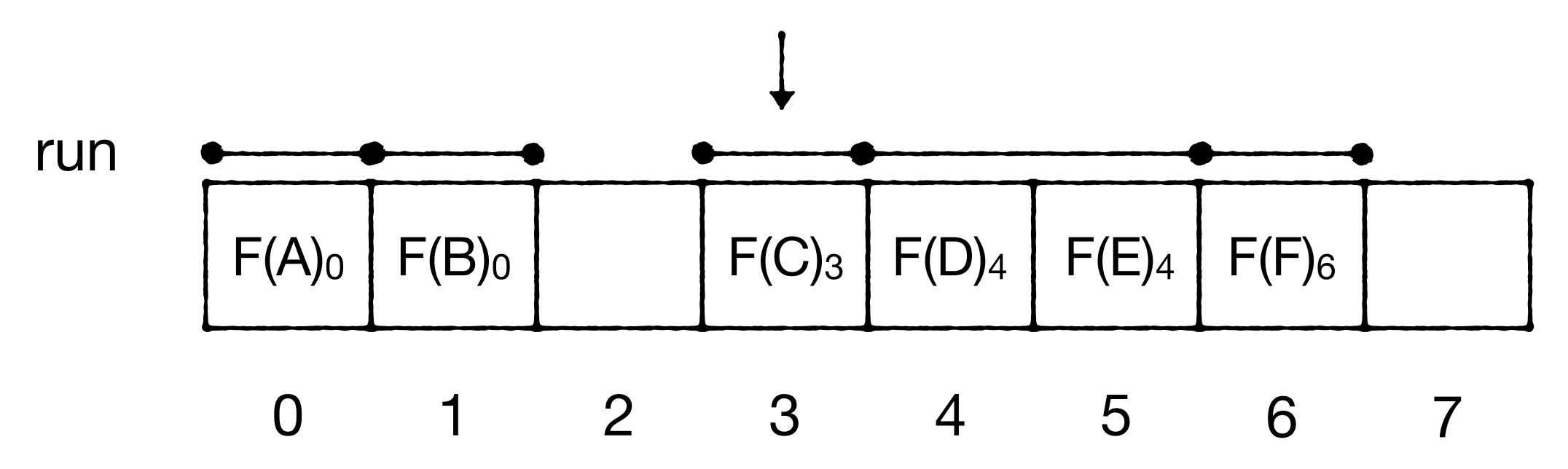
deletes?

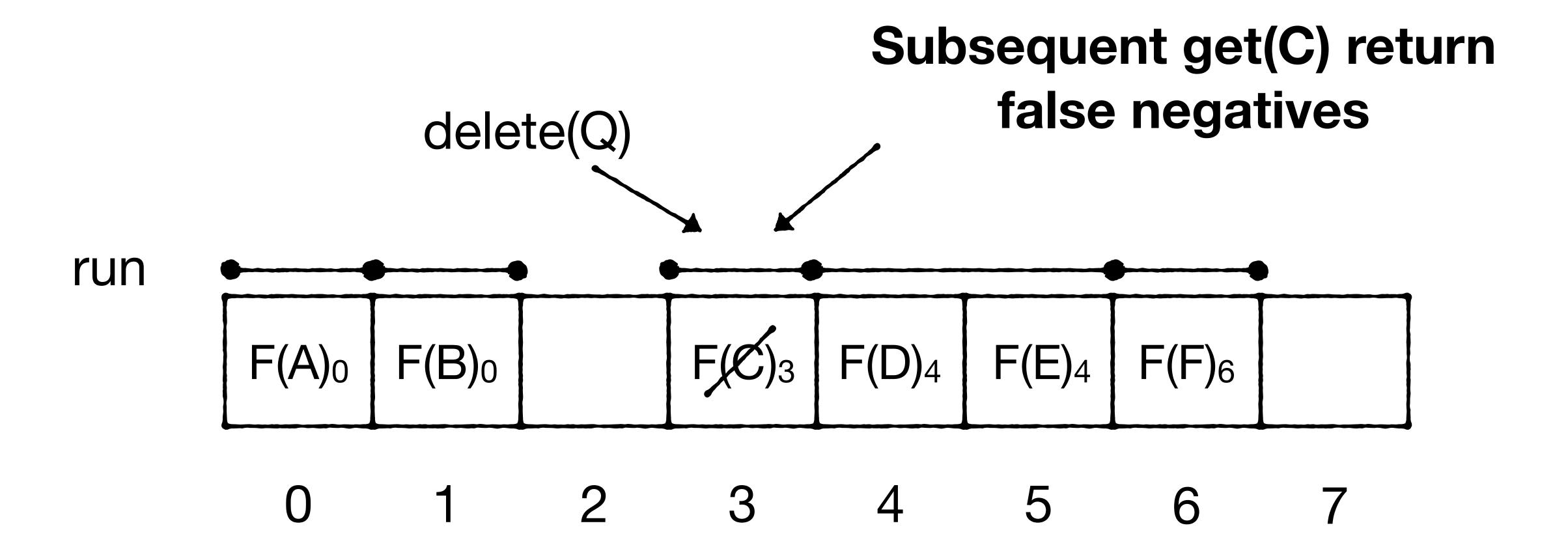




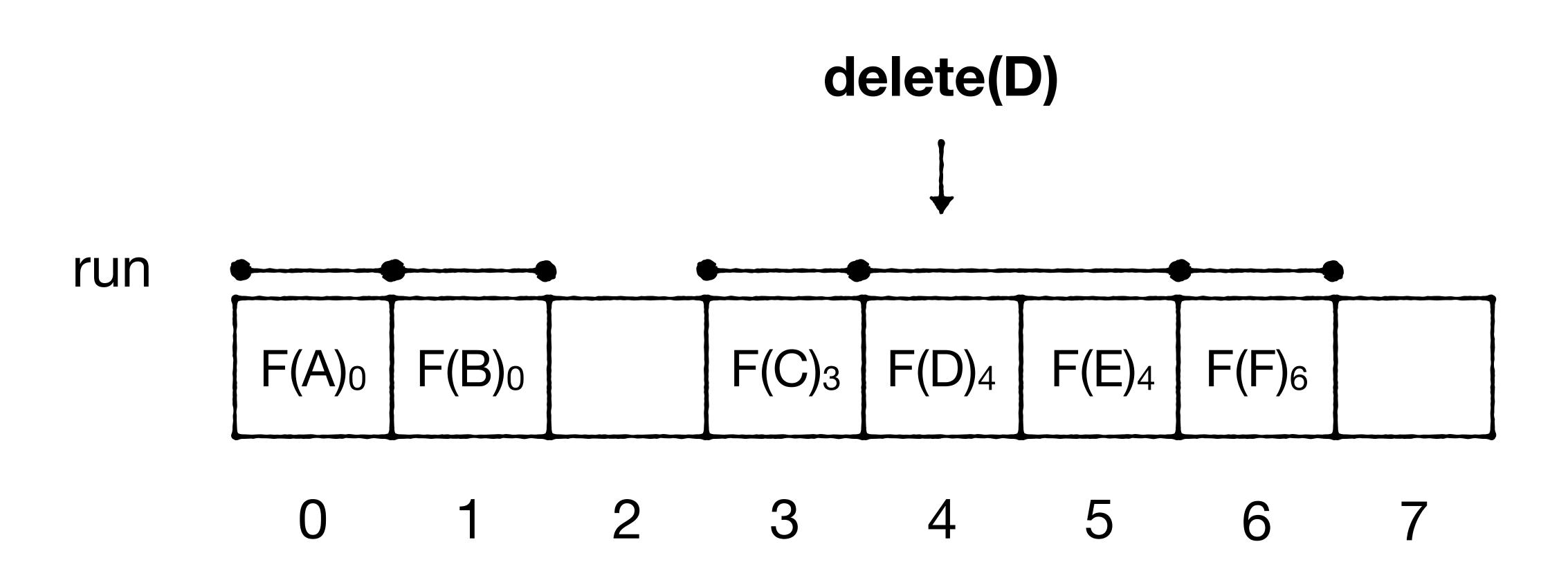


delete(Q) - matches C's FP at slot 3



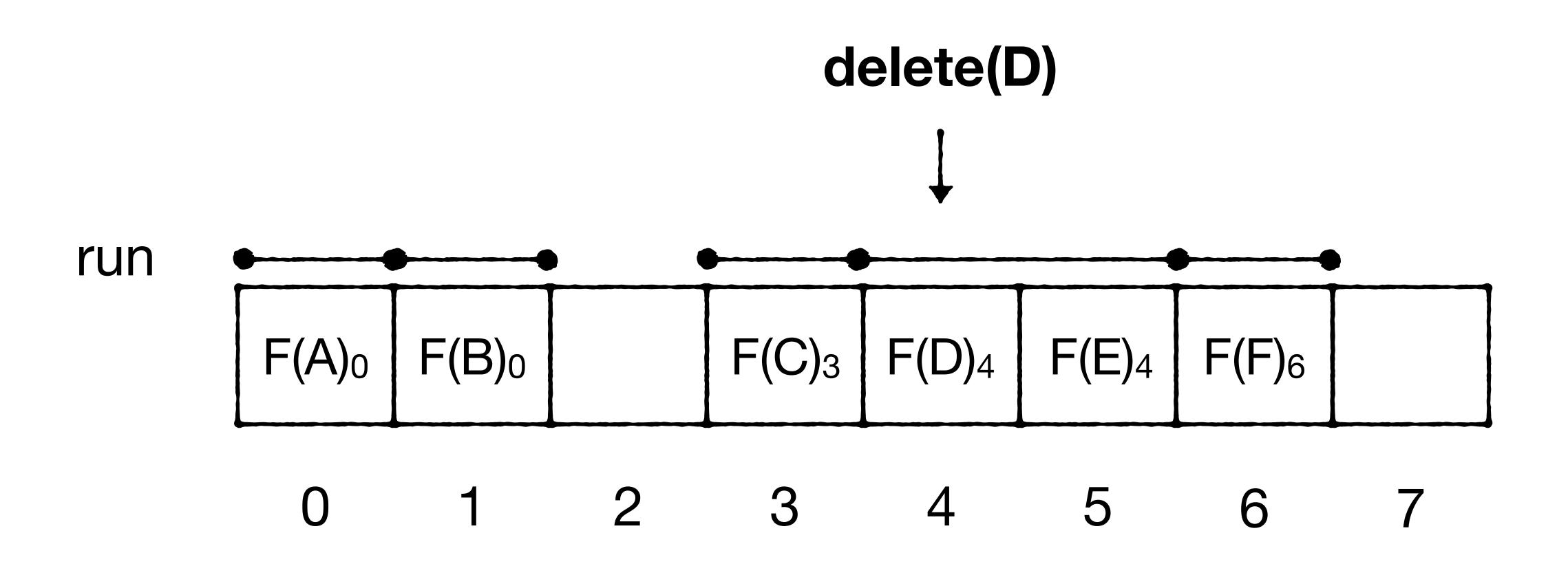


How to delete an entry we know exists?



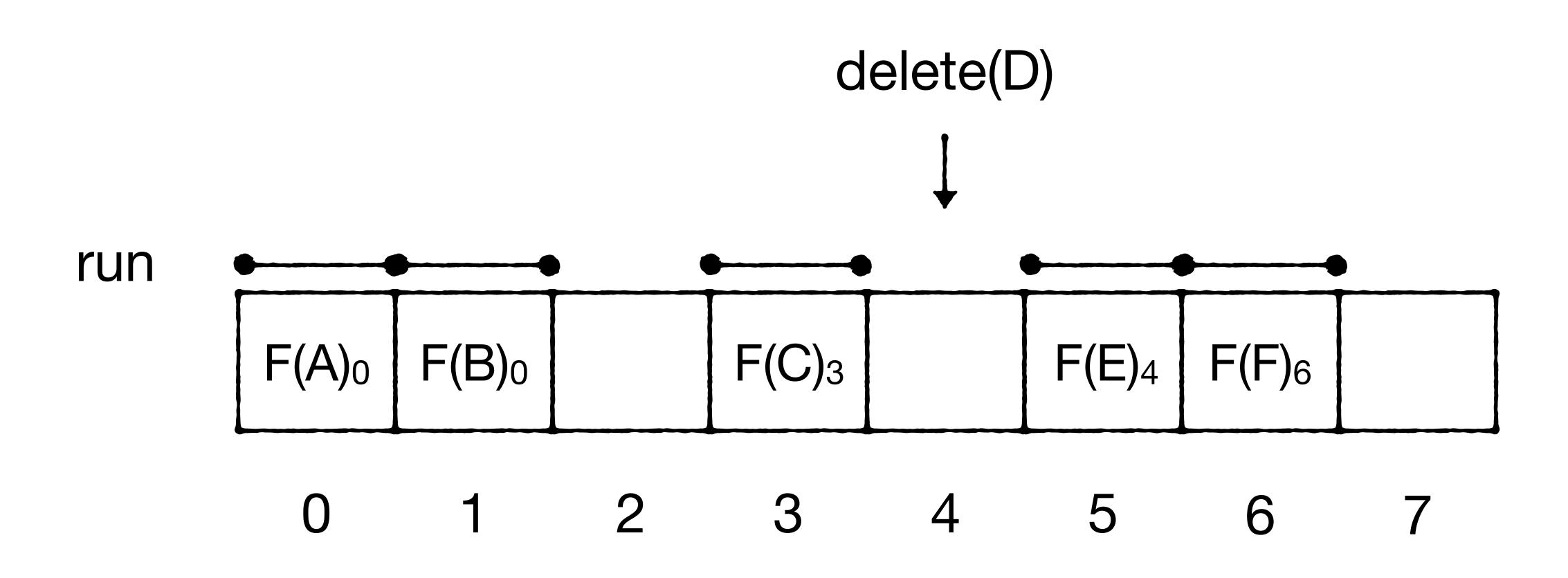
How to delete an entry we know exists?

(1) Find run, remove matching fingerprint

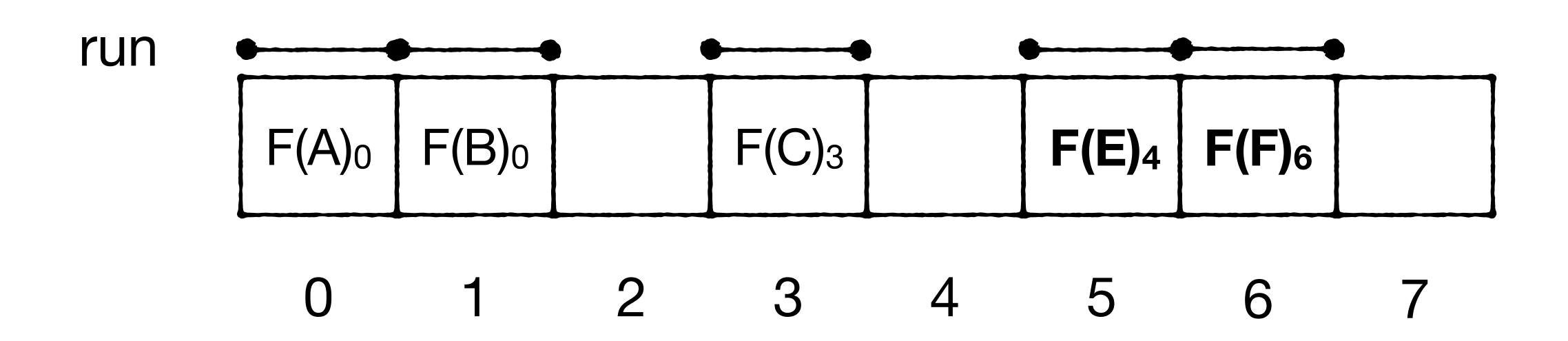


How to delete an entry we know exists?

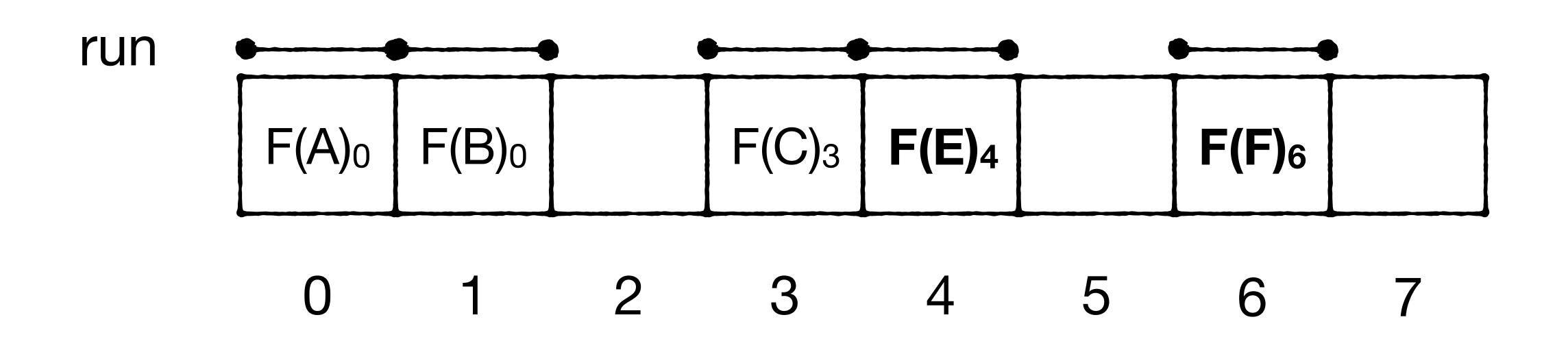
(1) Find run, remove matching fingerprint



(2) shift entries leftwards if needed to maintain contiguous runs as close as possible to their canonical slot



(2) shift entries leftwards if needed to maintain contiguous runs as close as possible to their canonical slot



Query/insert/delete

False positive rate

Query/insert/delete

O(1) expected time

False positive rate

Query/insert/delete

O(1) expected time

False positive rate

 $\approx \alpha \cdot 2^{-(M/N-2.125)/\alpha}$

Query/insert/delete

O(1)

False positive rate

 $\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$

Bits / entry budget

Query/insert/delete

O(1)

False positive rate

$$\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$$

Metadata bits
(2 bitmaps and offsets field)

Query/insert/delete

O(1)

False positive rate

 $\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$

Load factor, α < 0.95

Query/insert/delete

O(1)

False positive rate

$$\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$$

Avg run length

Bloom

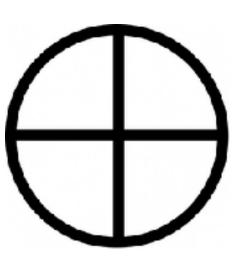
Quotient

XOR

Idealized

 $\approx 2 - M/N \cdot 0.69$

 $\approx \alpha \cdot 2^{-(M/N-2.125)/\alpha}$



 $\approx 2 - M/N \cdot 0.81$

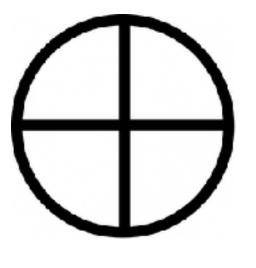
 $\approx 2 - M/N$

Bloom

Quotient

XOR

Idealized



 $\approx 2 - M/N \cdot 0.69$

 $\approx \alpha \cdot 2^{-(M/N-2.125)/\alpha}$

 $\approx 2 - M/N \cdot 0.81$

 $\approx 2 - M/N$

Lower than Bloom for M/N > 10

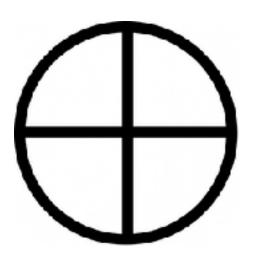
Bloom

Quotient

XOR

Idealized

 $\approx 2 - M/N \cdot 0.69$



 $\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$

 $\approx 2 - M/N \cdot 0.81$

 $\approx 2 - M/N$

Lower than Bloom for M/N > 10

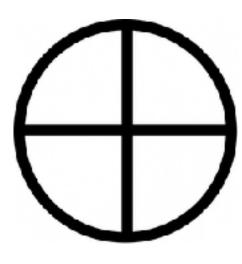
Supports deletes:)

Performance (cache misses)

Blocked Bloom

Quotient

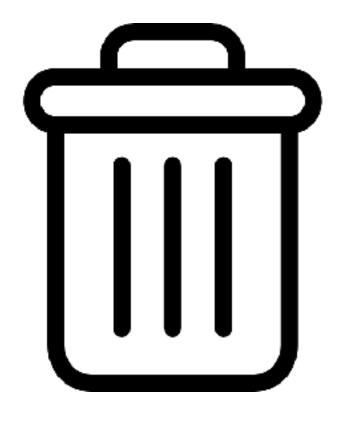
XOR



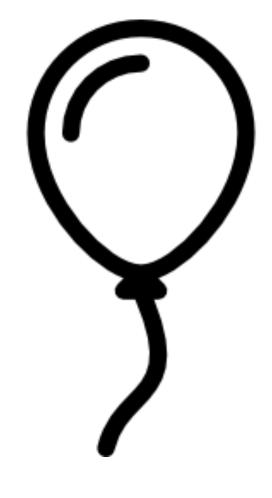
1

≈ 1-2 on avg
sequential

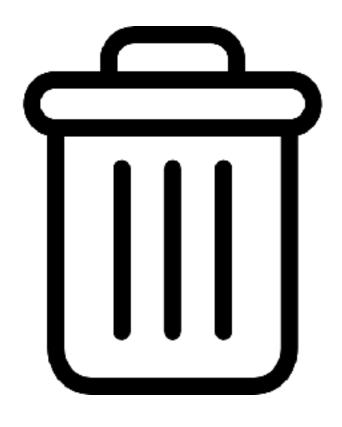
3 andon



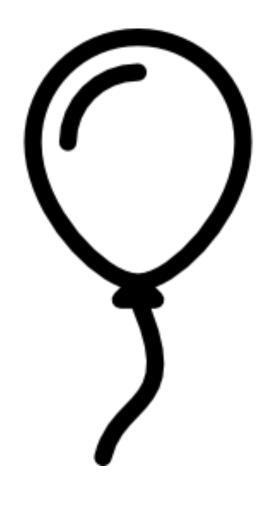
Deletes



Resizing



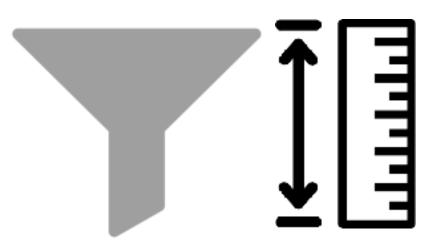
Deletes



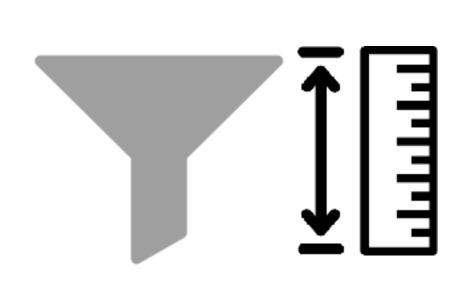
Resizing

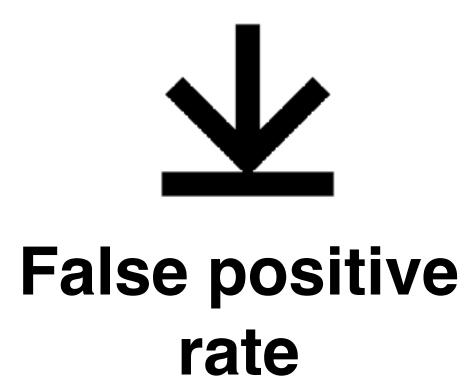
Break

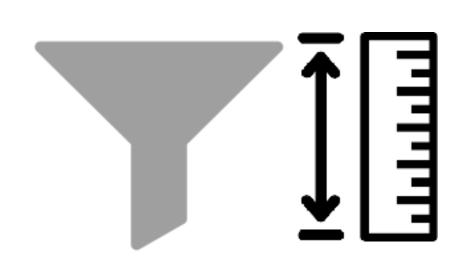
Allocated with fixed capacity

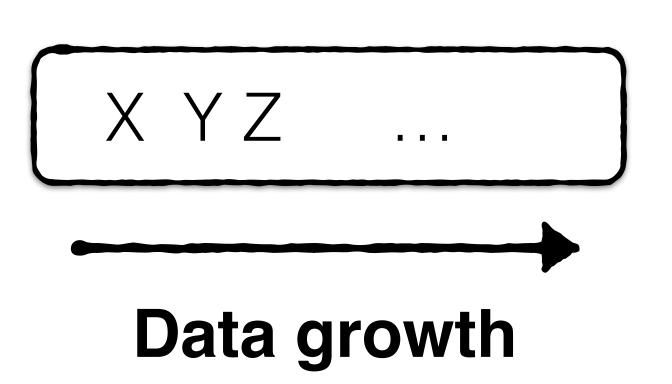


Allocated with fixed capacity



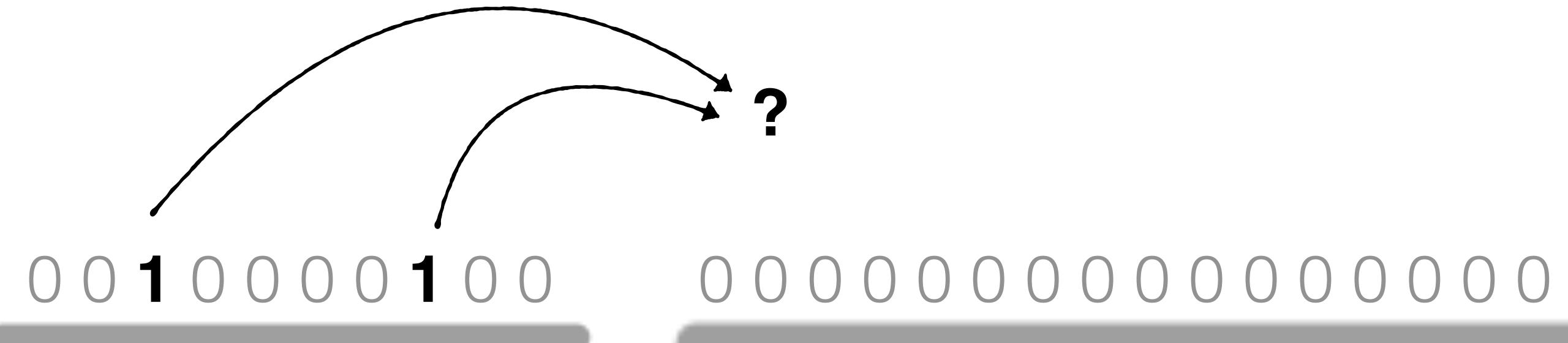






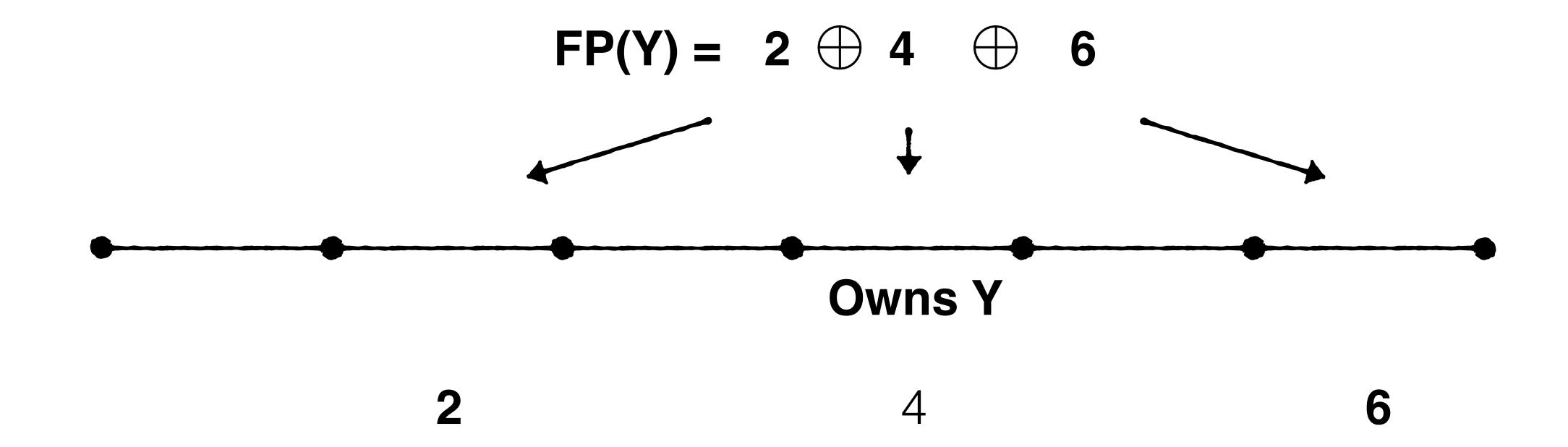
How to Expand Filters Efficiently?

Bloom Filters: unexpandable



XOR Filters: unexpandable

Can't recover original fingerprints without accessing the original data



Expansion Workarounds

Expansion Workarounds

Pre-Allocation

Memory

Expansion Workarounds

Pre-Allocation

Memory

Reconstruction

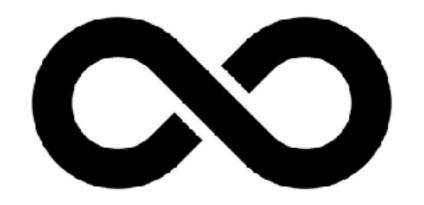
Full scan

Agenda

Chaining

Quotient Filter

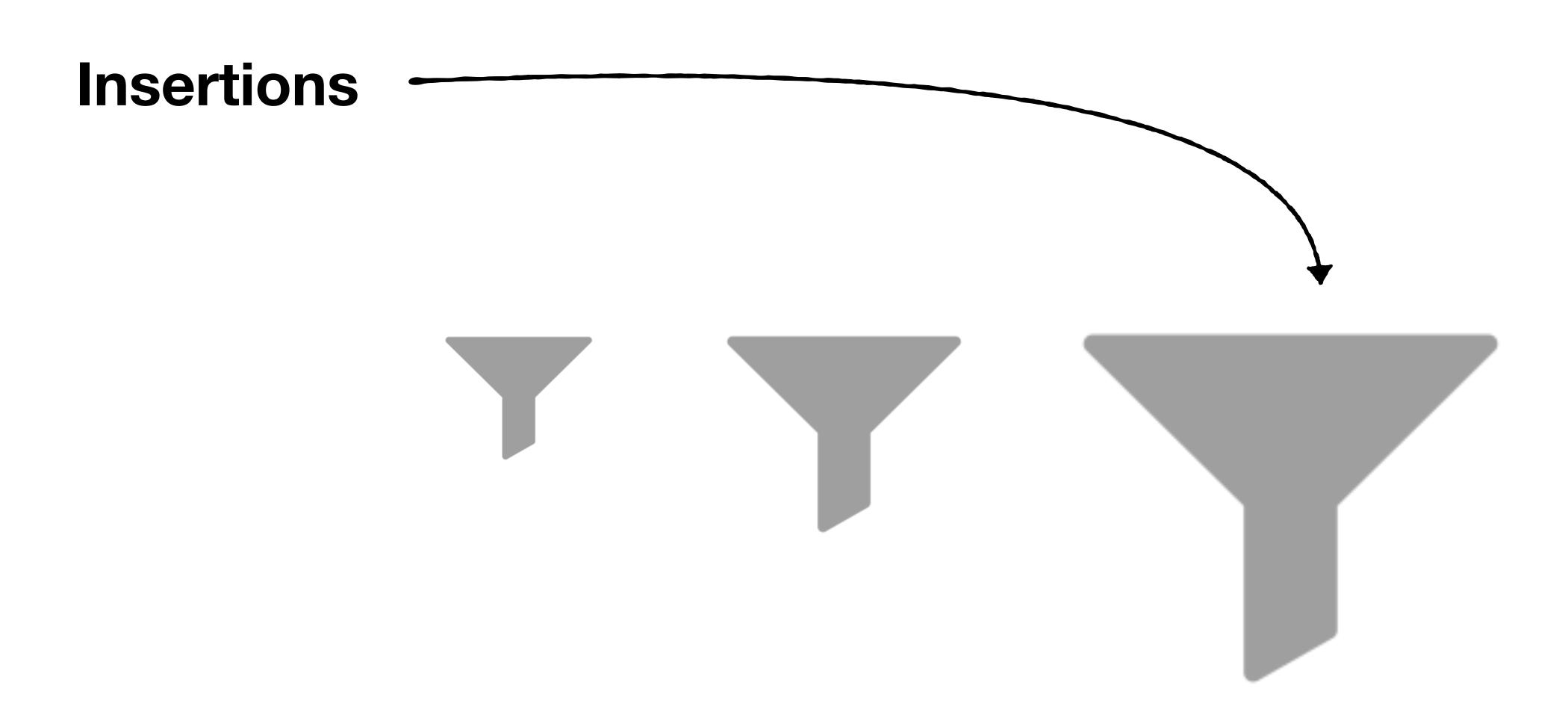
InfiniFilter & Aleph Filter



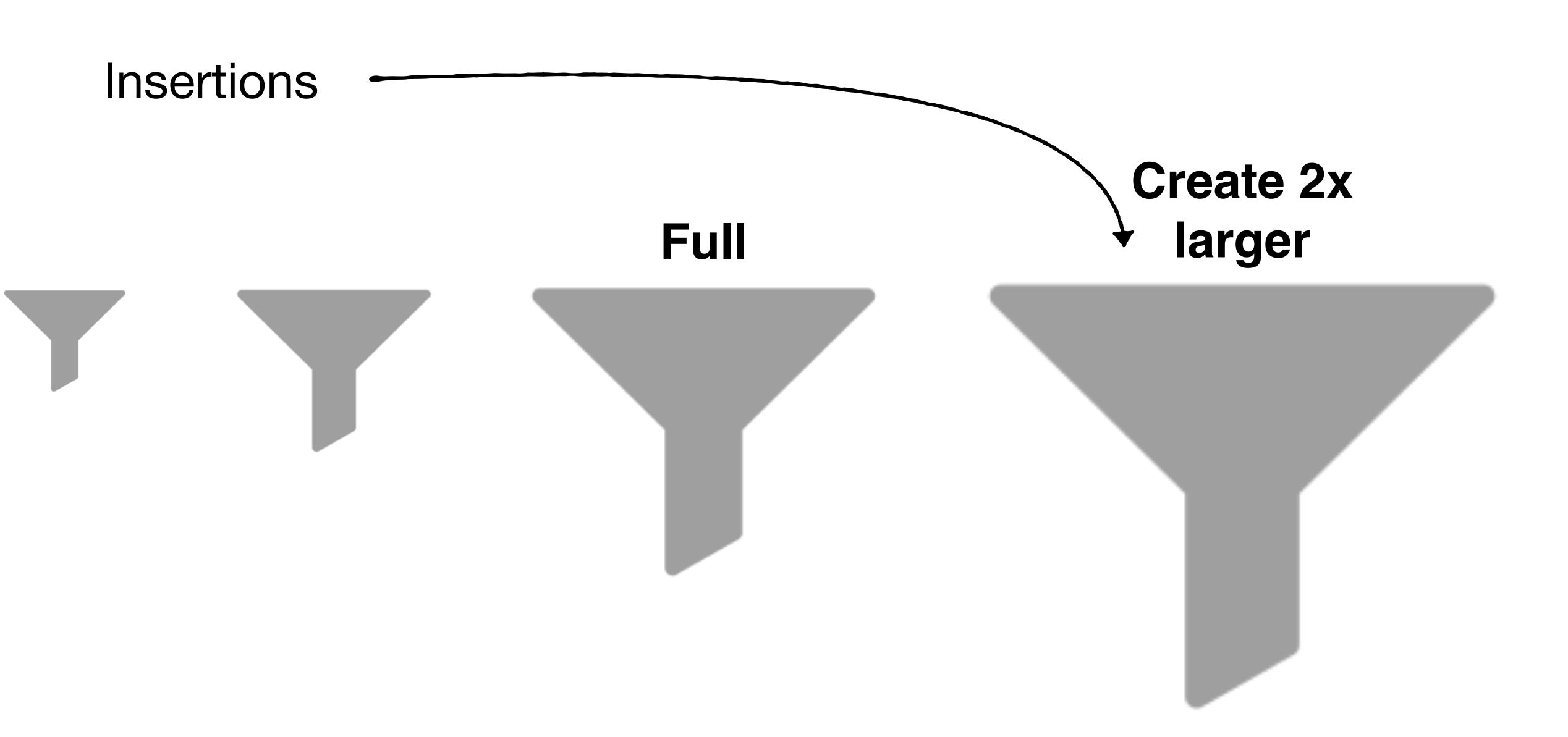
Chaining

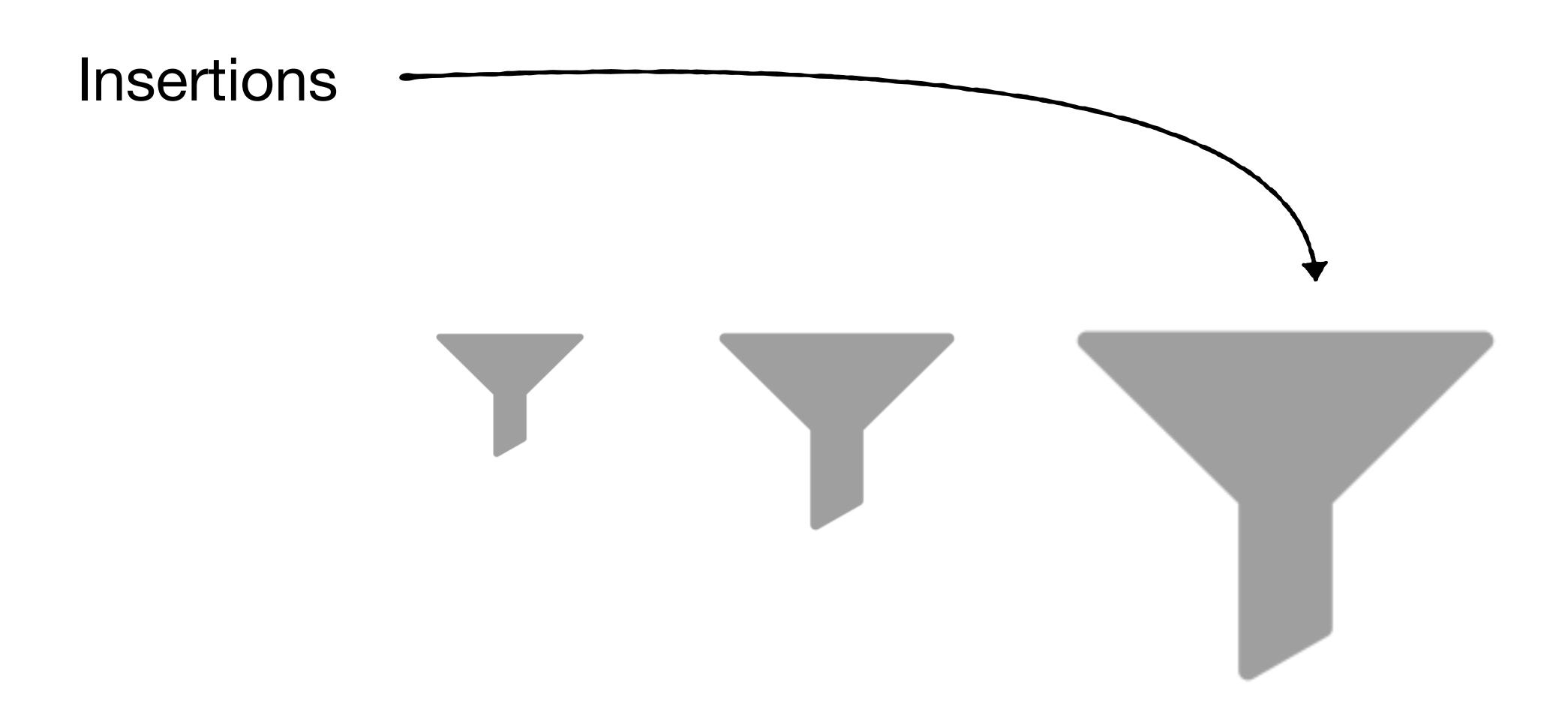
Create 2x larger filter when former reaches capacity

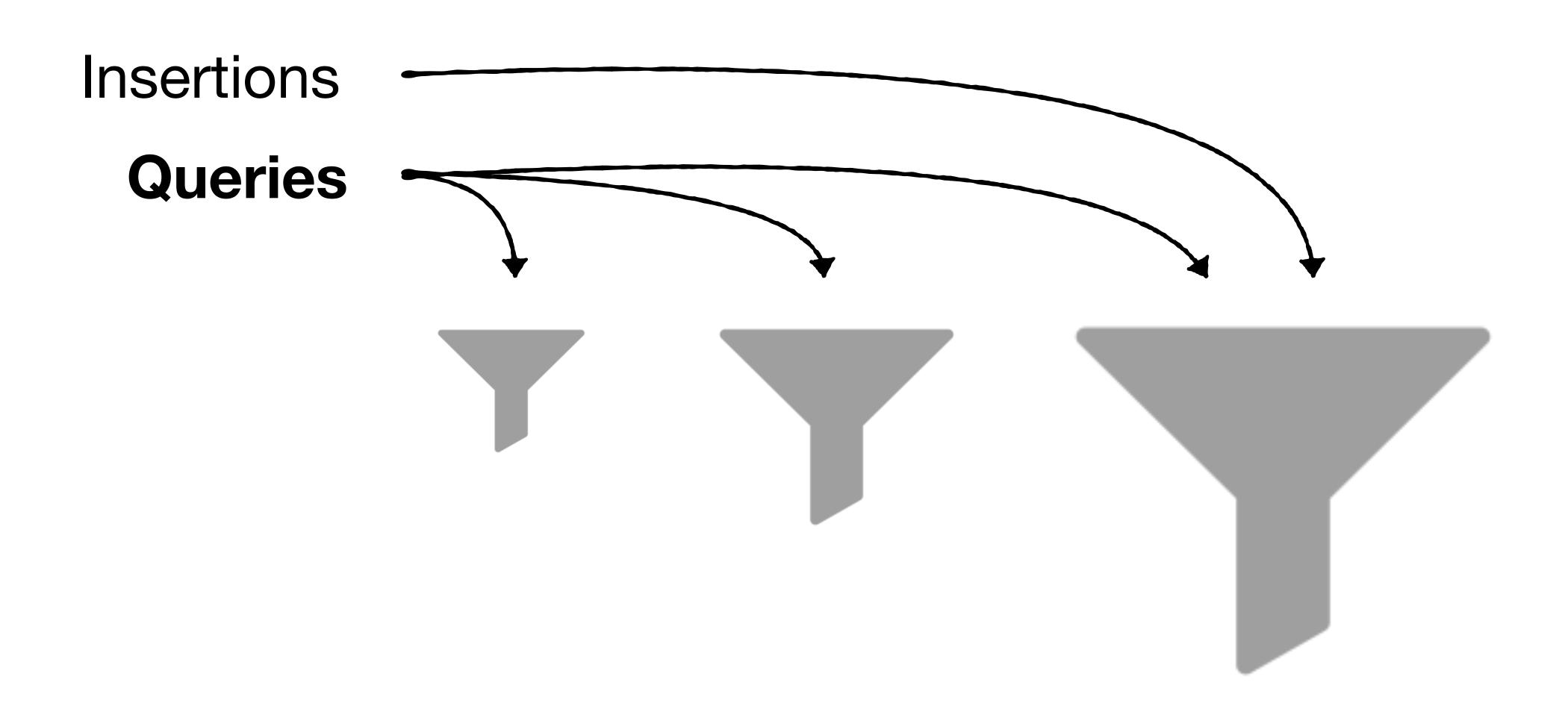
Chaining

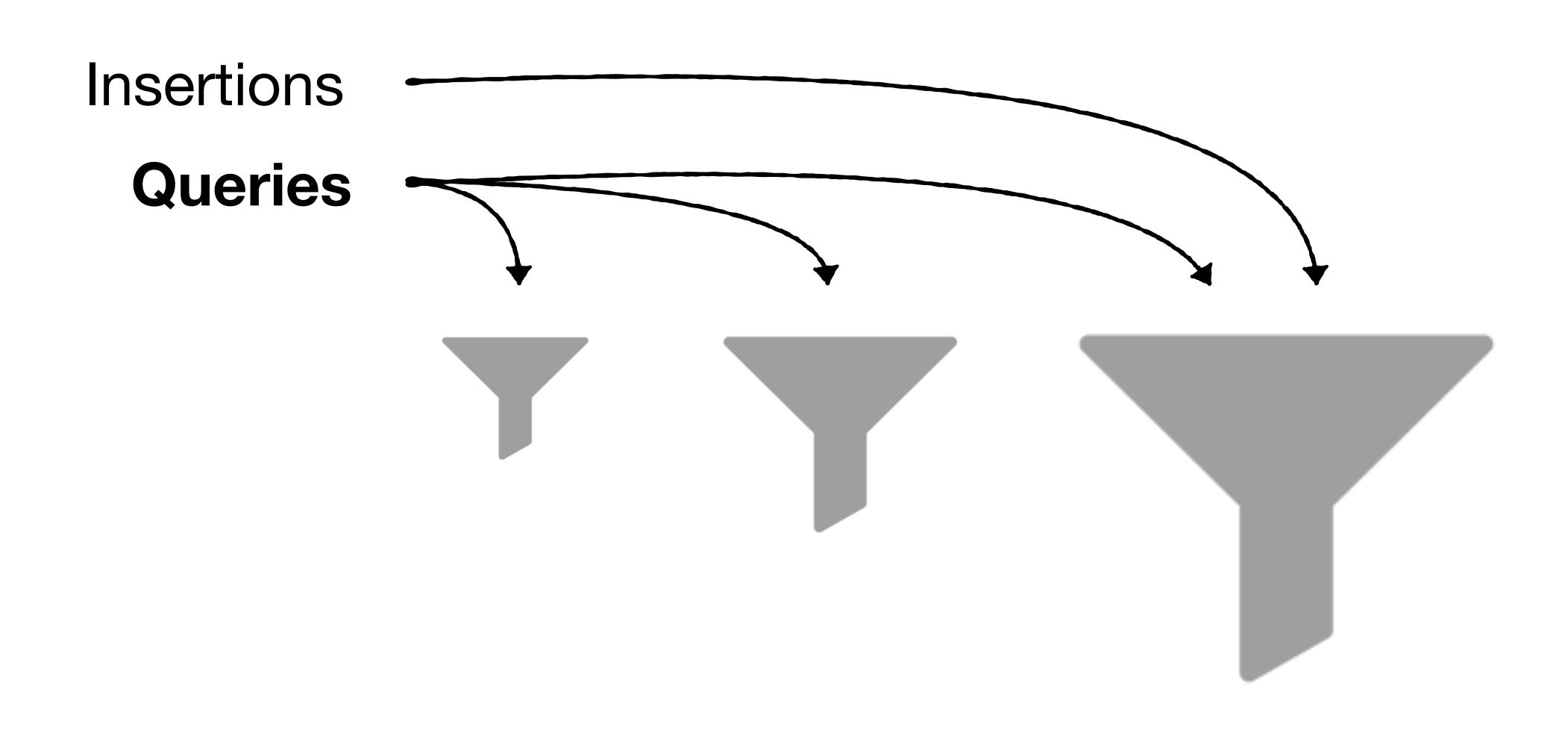


Chaining

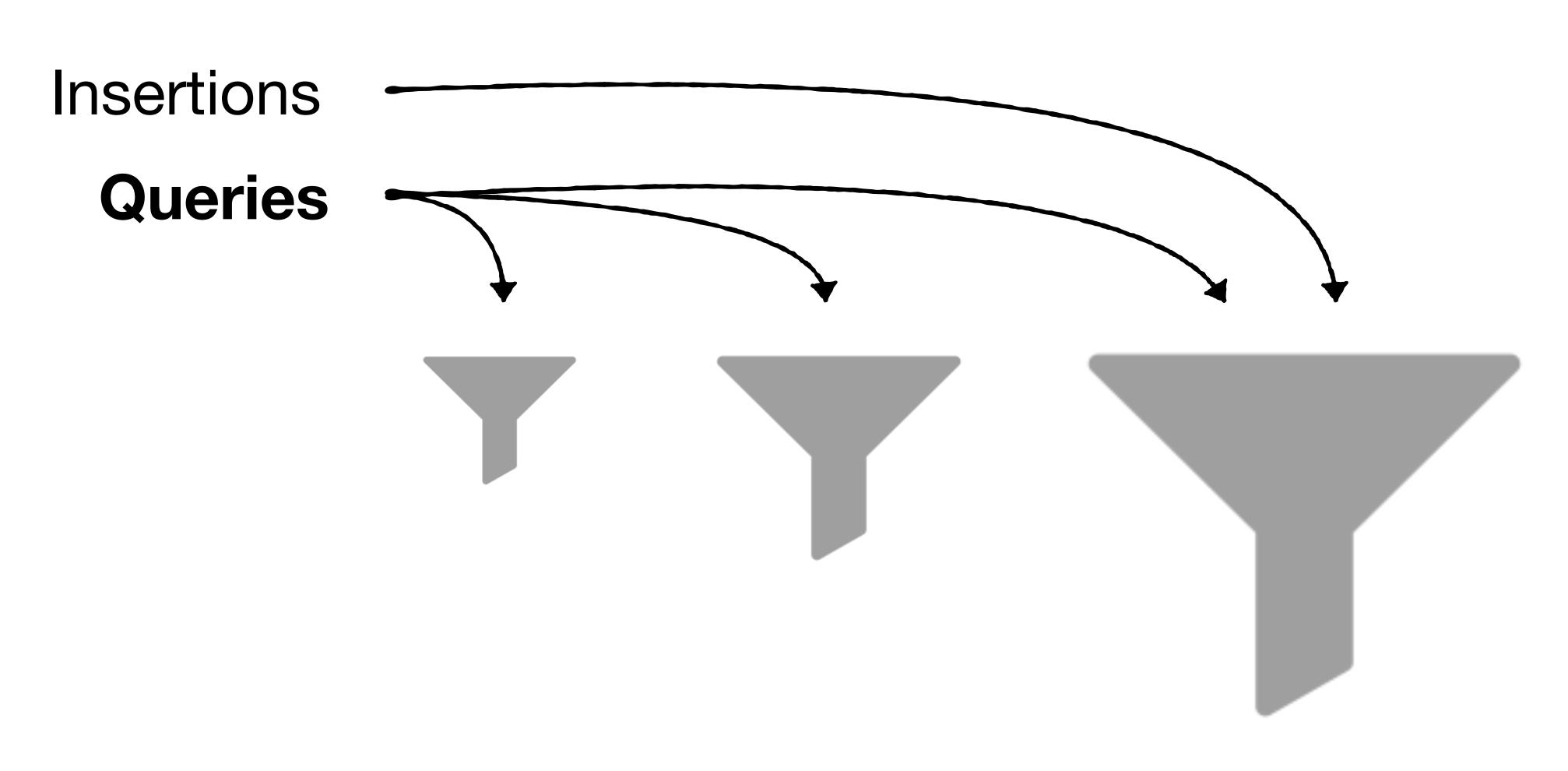




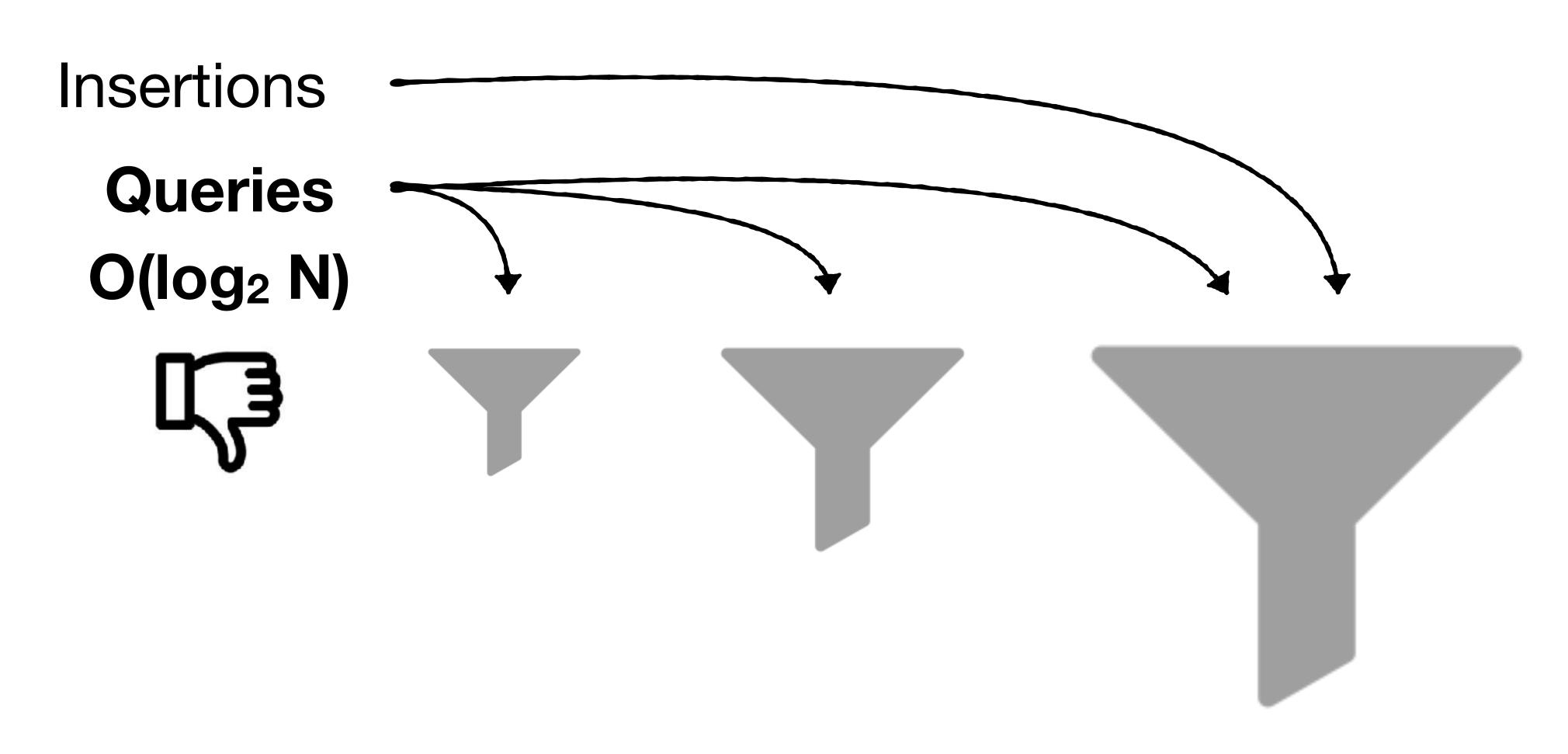




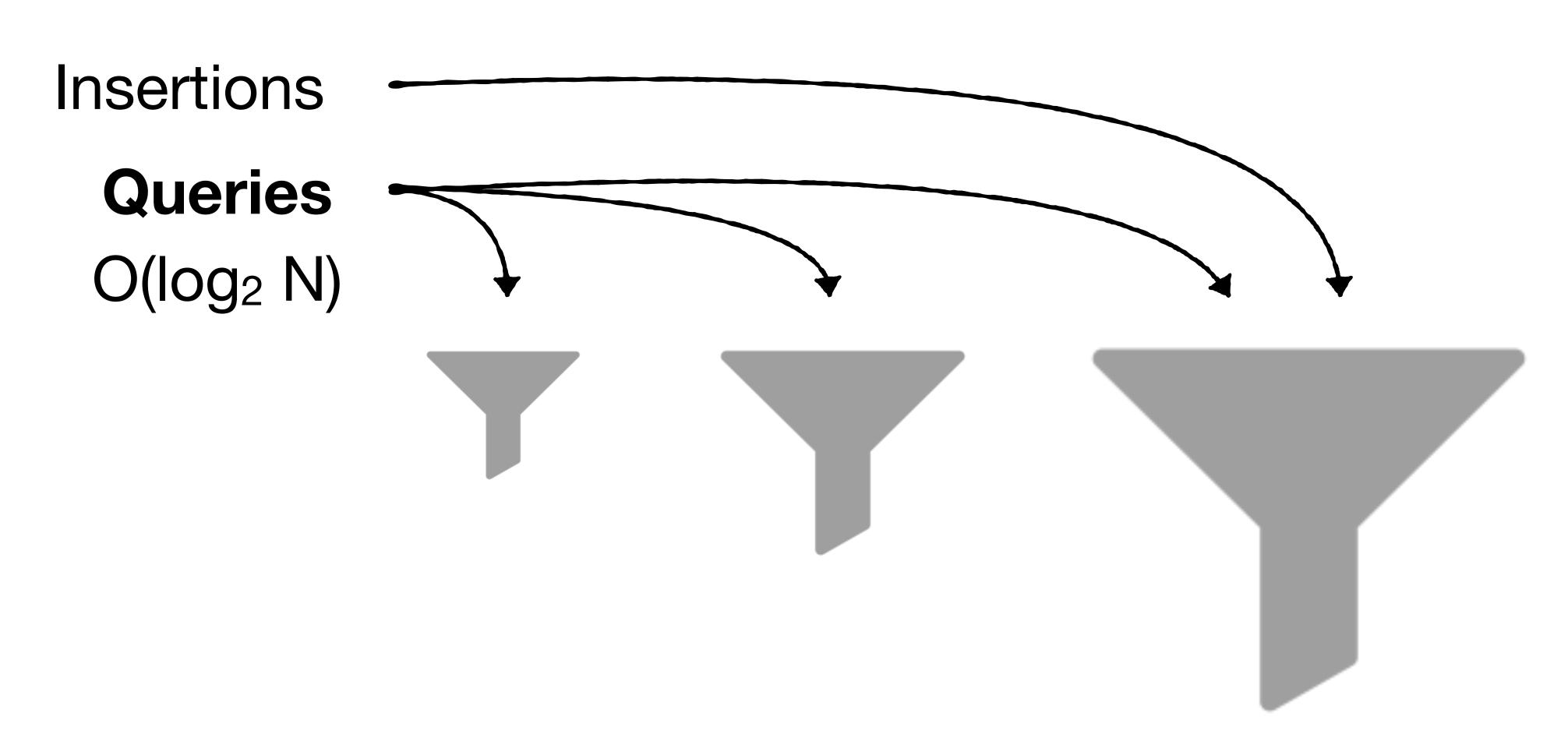
Downsides?



Downsides?



Downsides?

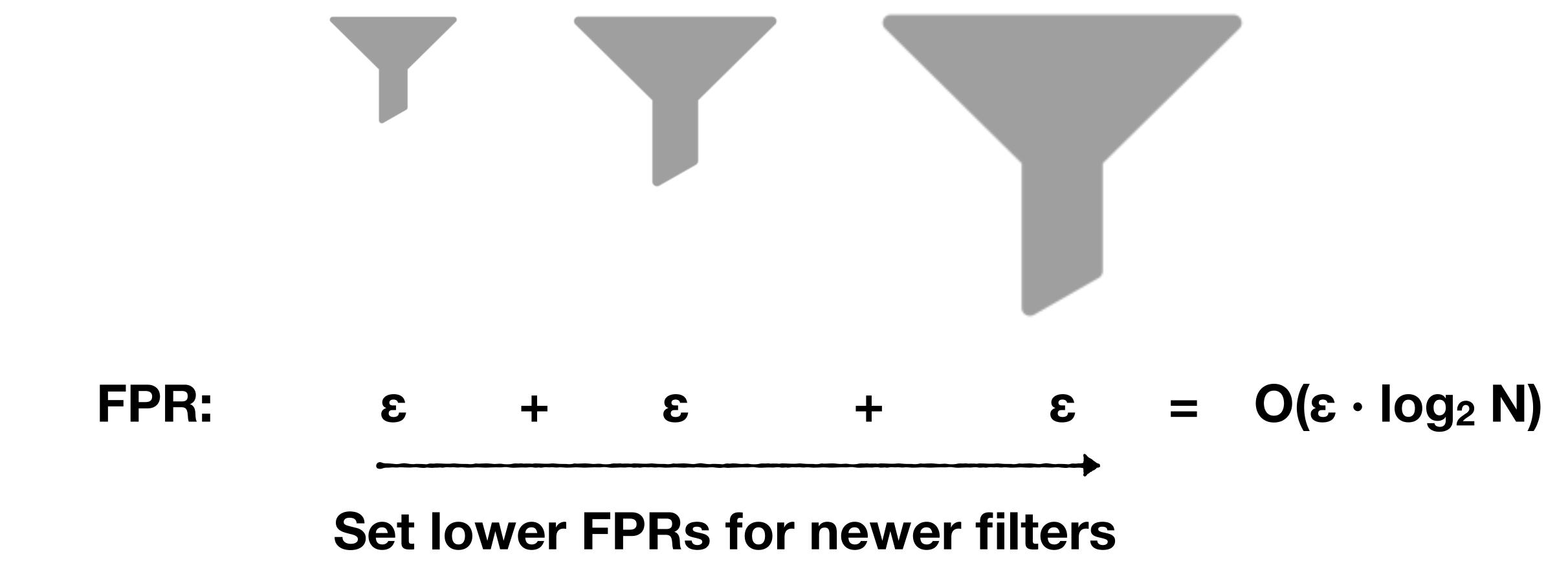


FPR: $\epsilon + \epsilon + \epsilon = O(\epsilon \cdot \log_2 N)$

Suppose we want to keep it ε?

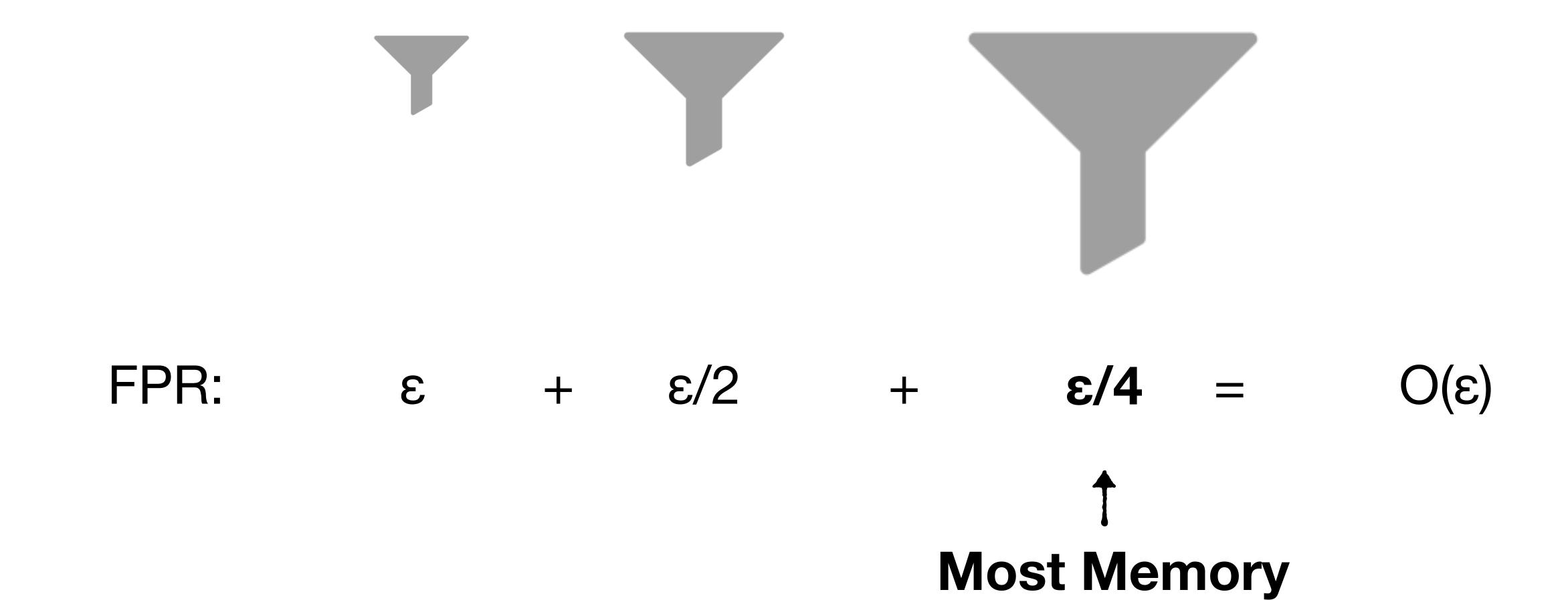
FPR: $\epsilon + \epsilon + \epsilon = O(\epsilon \cdot \log_2 N)$

Suppose we want to keep it ϵ ?



Geometrically decreasing. Any issue?

FPR:
$$\varepsilon + \varepsilon/2 + \varepsilon/4 = O(\varepsilon \cdot \log_2 N)$$



Most data, lowest FPR

FPR: $\varepsilon + \varepsilon/2 + \varepsilon/4 = O(\varepsilon)$

Bits / entry: log(4/ε)

FPR: $\epsilon + \epsilon/2 + \epsilon/4 = O(\epsilon)$

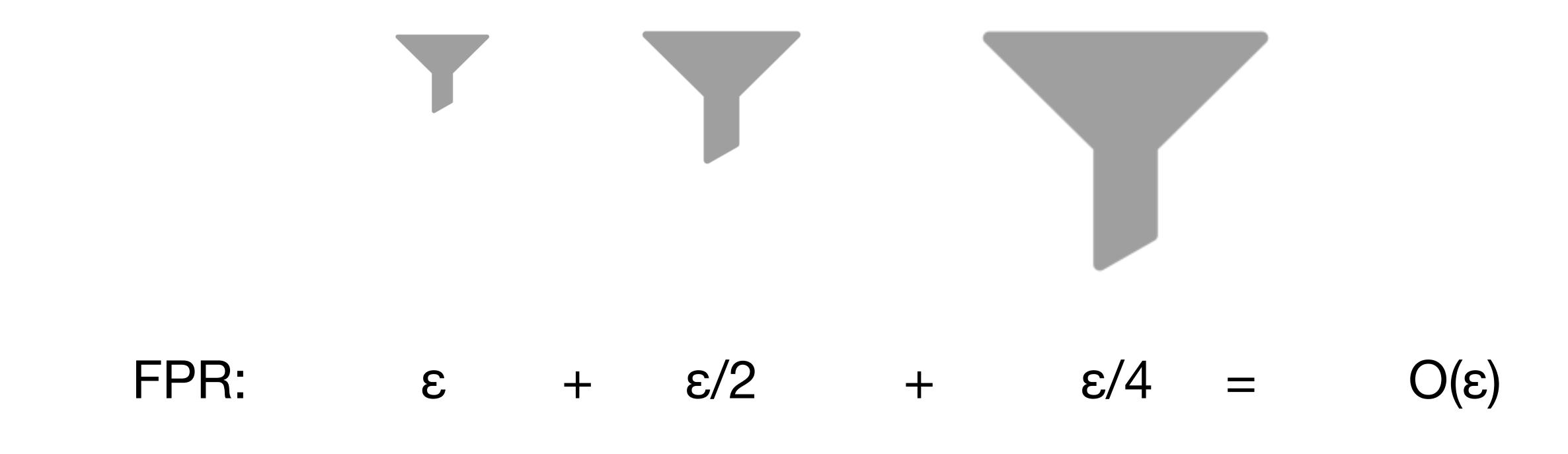
Bits / entry: log(2^{logN}/ε)

Can we better scale memory?

FPR:
$$\epsilon$$
 + $\epsilon/2$ + $\epsilon/4$ = $O(\epsilon)$

Bits / entry:

The FPRs should decrease more slowly but still converge



Bits / entry

Reciprocal of square numbers

$$1/1^2 + 1/2^2 + 1/3^2 = 7$$

Solved by Euler in 1734

$$1/1^2 + 1/2^2 + 1/3^2 = \pi^2/6$$

Solved by Euler in 1734

$$1/1^2 + 1/2^2 + 1/3^2 = \pi^2/6$$

$$= 1.645$$

Solved by Euler in 1734

$$1/1^2 + 1/2^2 + 1/3^2 = \pi^2/6$$

Polynomially decreasing yet still convergent

FPR:
$$\varepsilon/1^2 + \varepsilon/2^2 + \varepsilon/3^2 = \varepsilon \cdot \pi^2/6$$

FPR: $\varepsilon/1^2 + \varepsilon/2^2 + \varepsilon/3^2 = \varepsilon \cdot \pi^2/6$

Bits / entry: $log(3^2/\epsilon)$

FPR:
$$\varepsilon/1^2 + \varepsilon/2^2 + \varepsilon/3^2 = \varepsilon \cdot \pi^2/6$$

Bits / entry: $log(log(N)^2/\epsilon)$

FPR:
$$\varepsilon/1^2 + \varepsilon/2^2 + \varepsilon/3^2 = \varepsilon \cdot \pi^2/6$$

Bits / entry: $2 log_2 log_2(N) + log(/\epsilon)$

FPR: ≈ ε

Bits / entry: $2 \log_2 \log_2(N) + \log(/\epsilon) < \log N + \log(1/\epsilon)$

FPR: ≈ ε

Bits / entry: 2 log₂ log₂ (N) + log(1/ε)

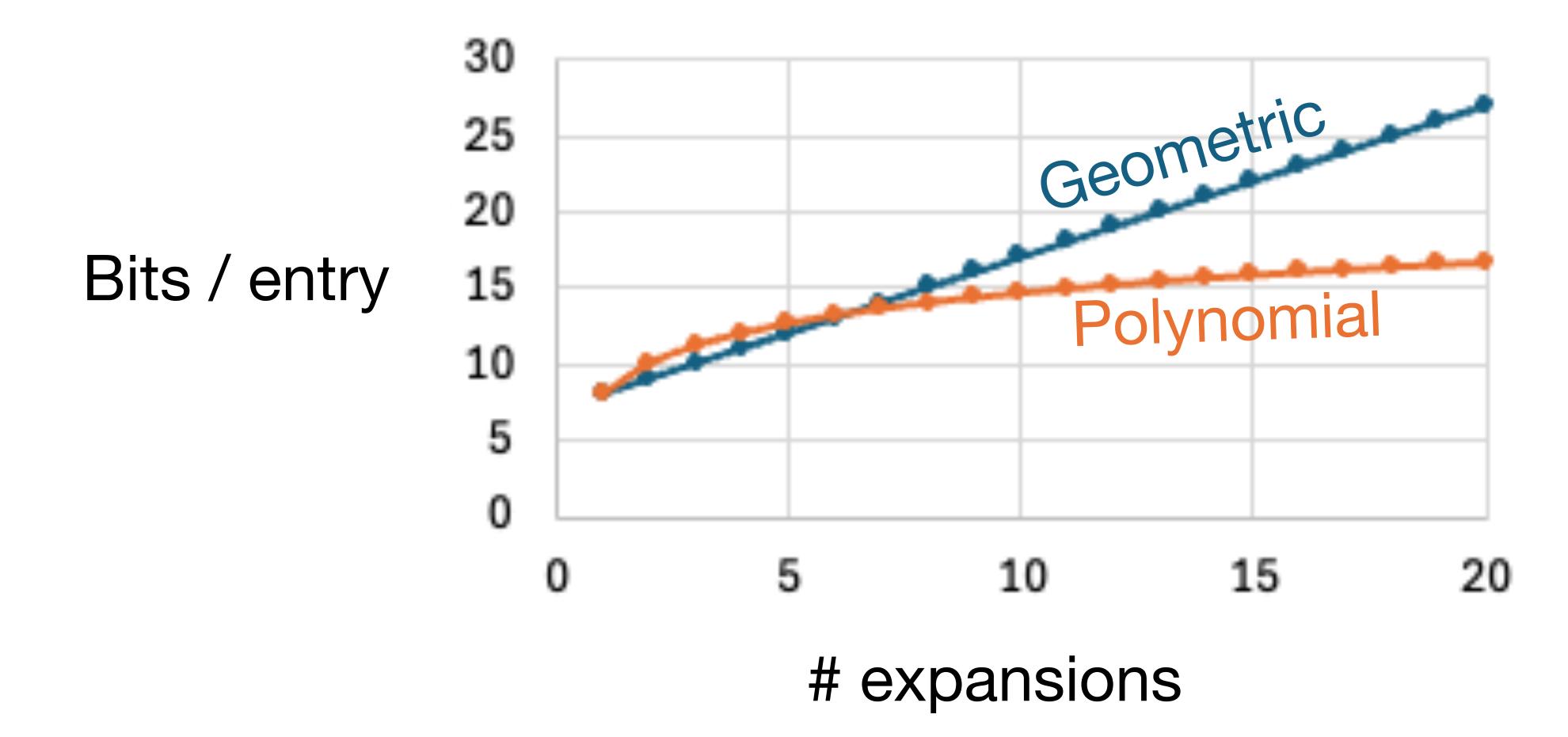
Close to lower bound

How to Approximate A Set Without Knowing Its Size In Advance Rasmus Pagh, Gil Segev, Udi Wieder. FOCS 2013.

FPR: ≈ ε

How to Approximate A Set Without Knowing Its Size In Advance Rasmus Pagh, Gil Segev, Udi Wieder. FOCS 2013.

Much of what follows originates from here:)

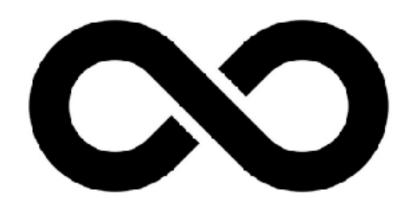


Chaining

Quotient Filters

InfiniFilter & Aleph Filter

queries

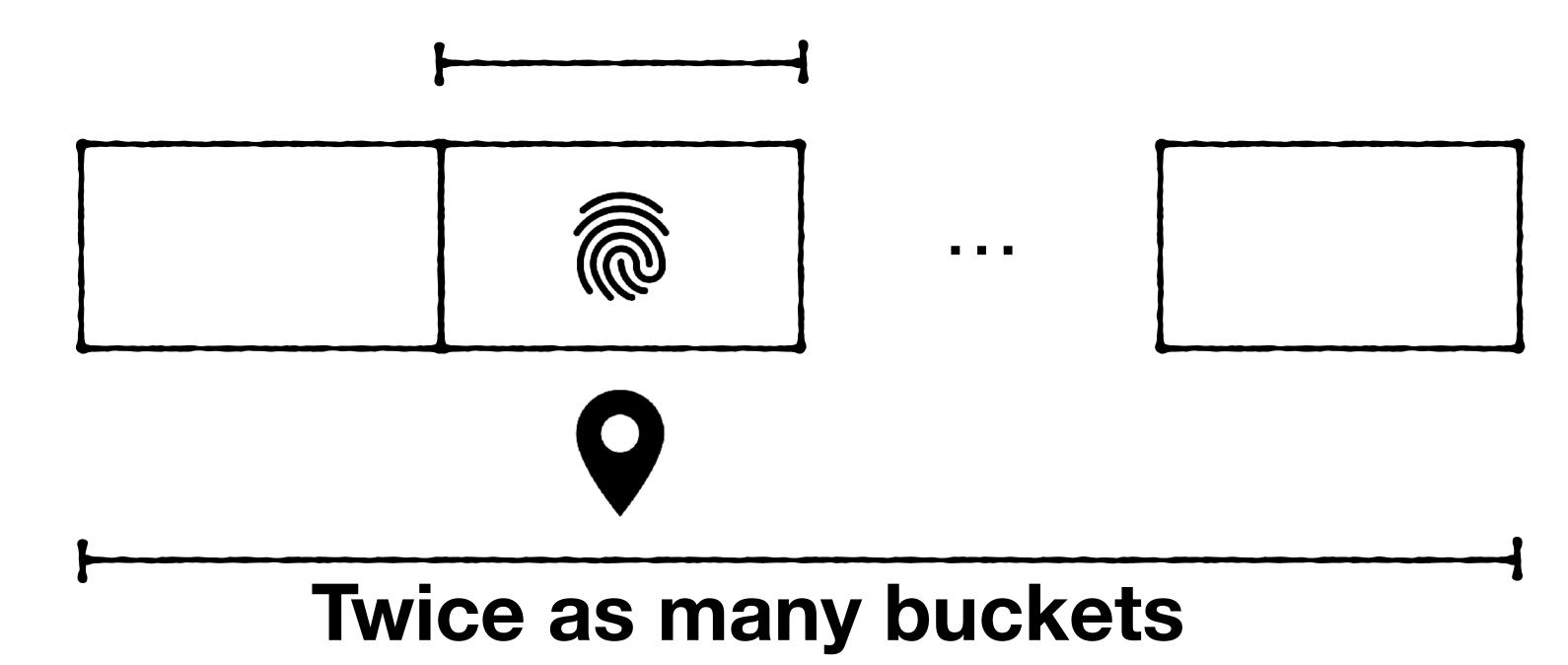


Quotient Filters are Semi-Expandable

Semi-Expandable

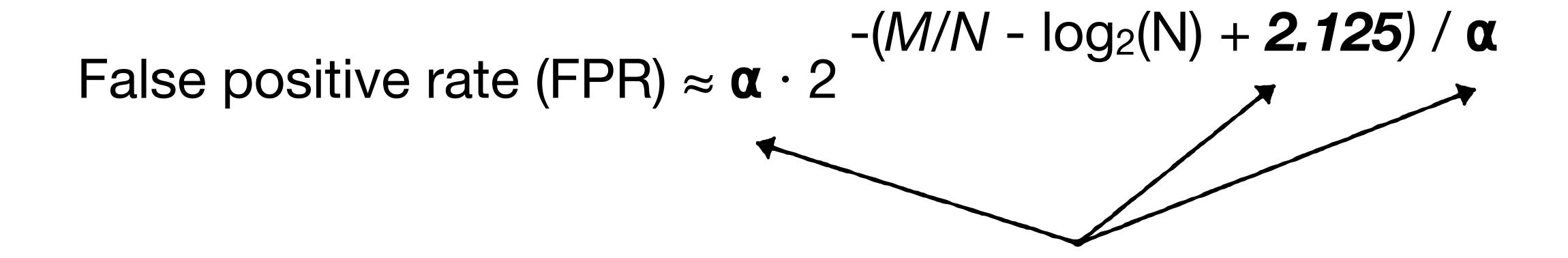
One bit narrower

One bit narrower



 $-(M/N + 2.125) / \alpha$ False positive rate (FPR) $\approx \alpha \cdot 2$

Lose 1 fingerprint bit in each expansion



Remove constants

False positive rate (FPR) ≈ 2 $-(M/N - log_2(N))$

Simplify

False positive rate (FPR) $\approx \mathbf{N} \cdot 2$

Linear increase with data size

-M/N False positive rate (FPR) \approx N · 2

Supports up to M/N expansions

False positive rate (FPR) $\approx N \cdot 2$

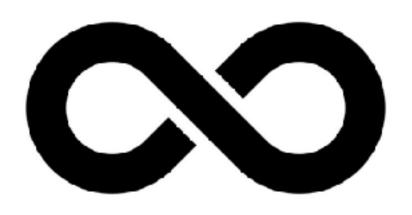
Supports up to M/N expansions

O(1) operations

Chaining

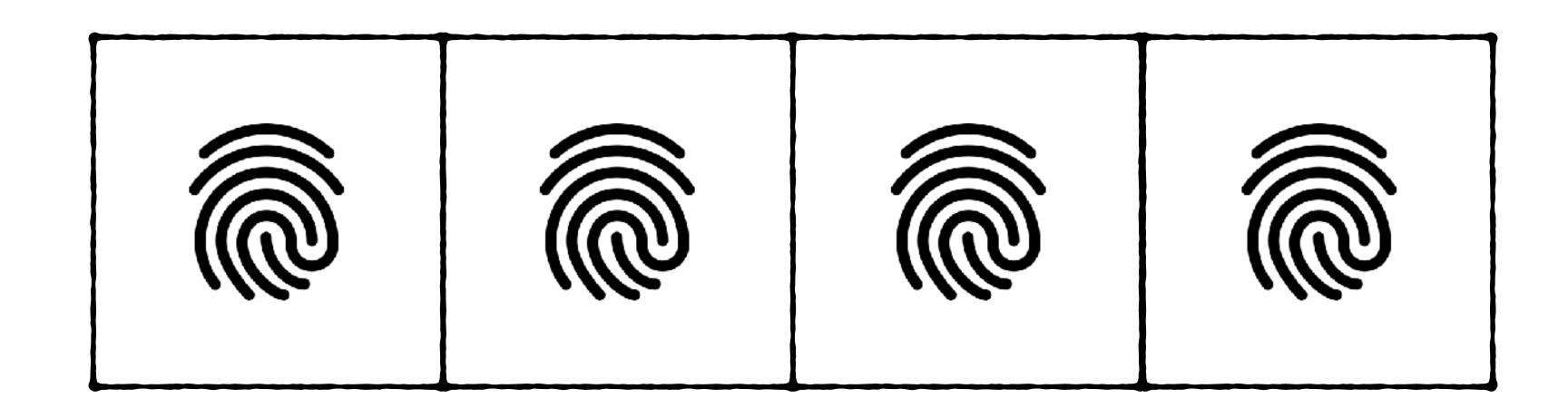
Quotient Filters

InfiniFilter & Aleph Filter

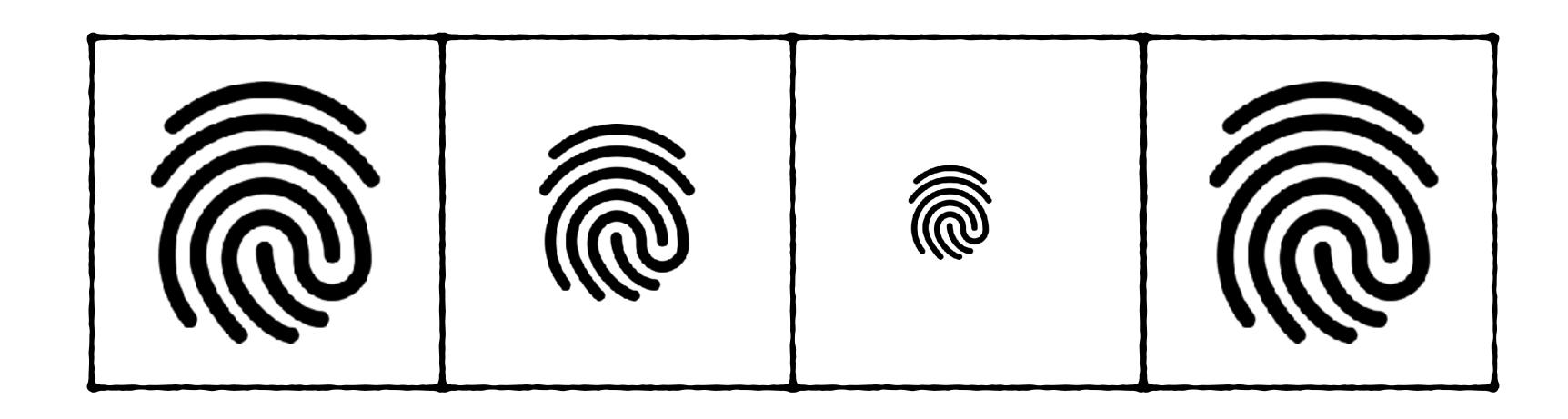


InfiniFilter: Expanding Filters to Infinity and Beyond

Niv Dayan, Ioana Bercea, Pedro Reviriego, Rasmus Pagh. SIGMOD 2023

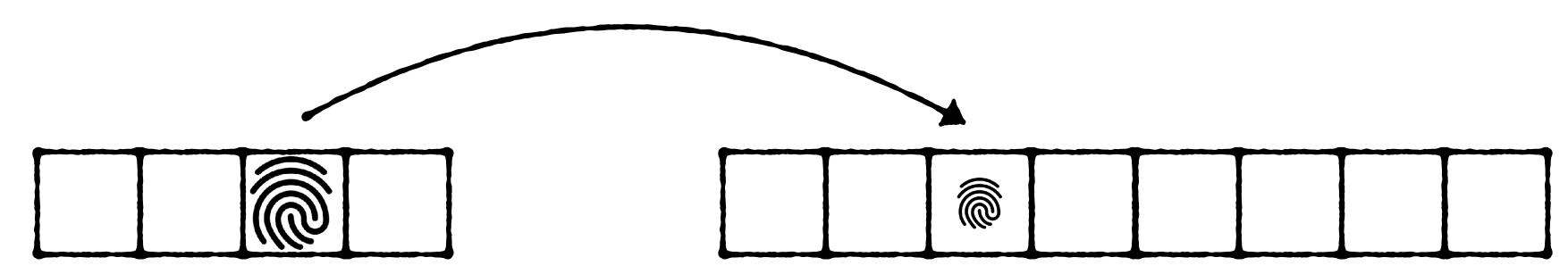


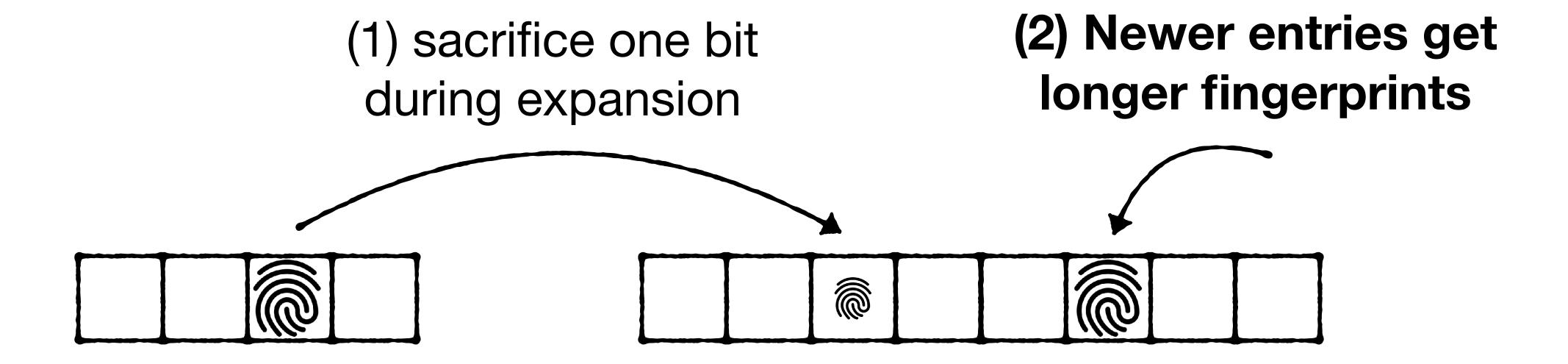
Quotient filter

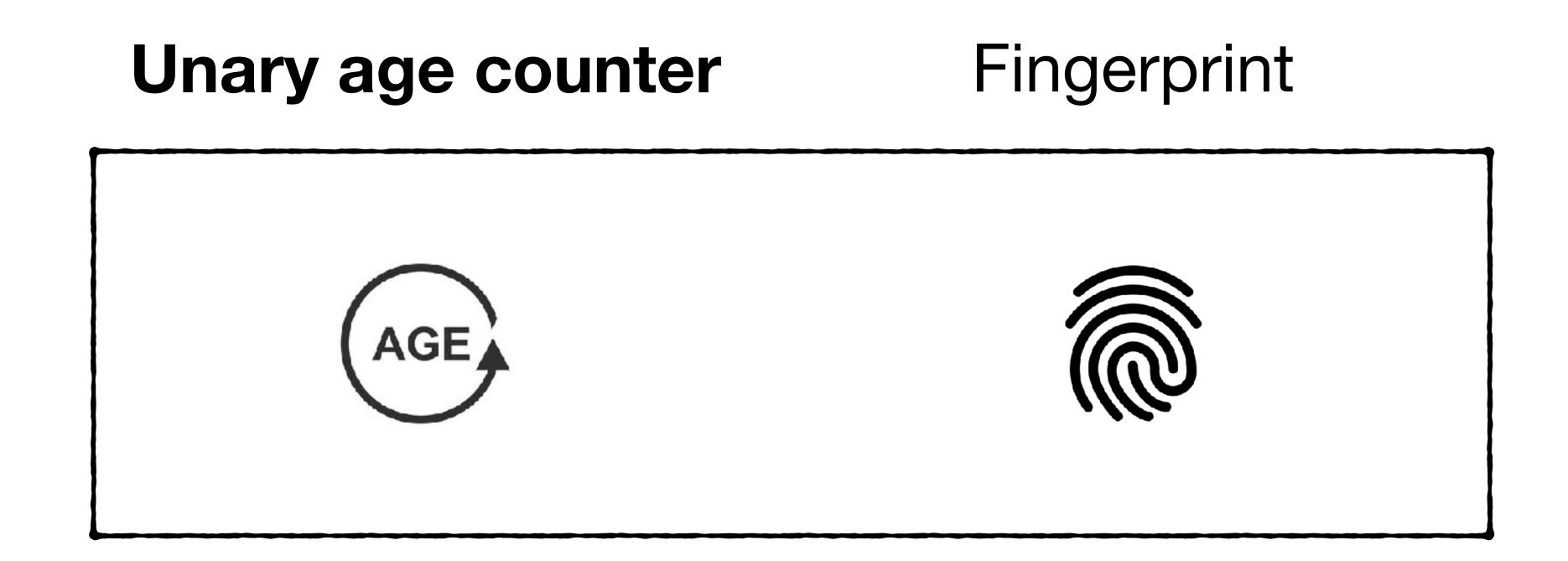


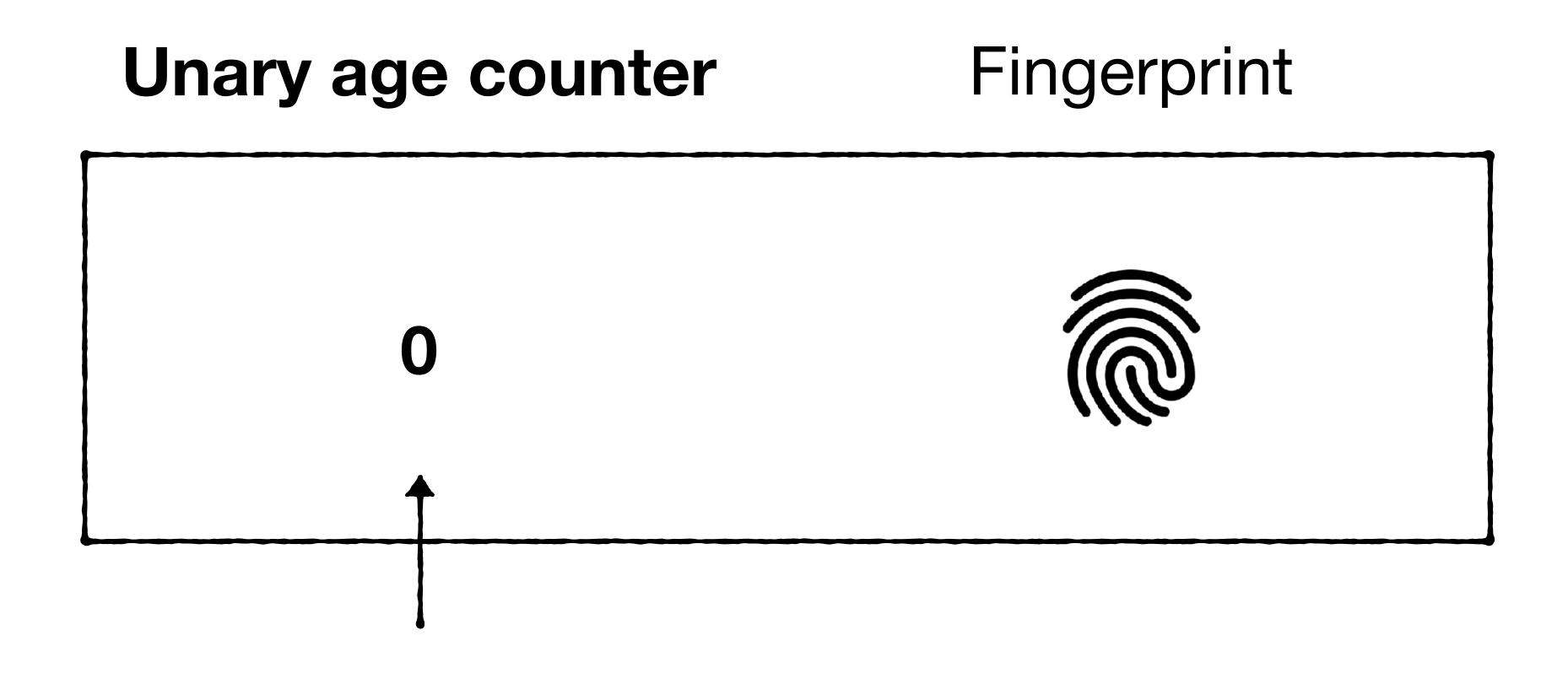
Variable-sized fingerprints

(1) sacrifice one bit during expansion

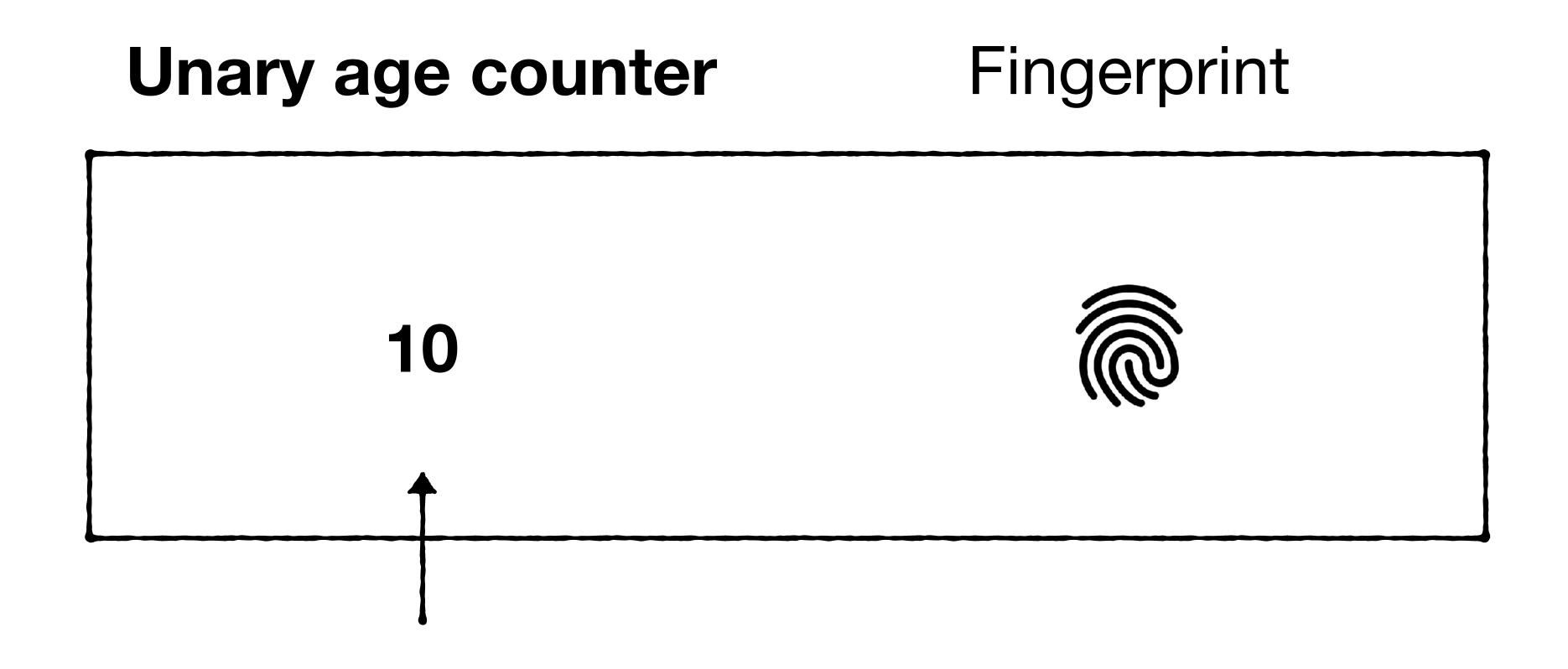




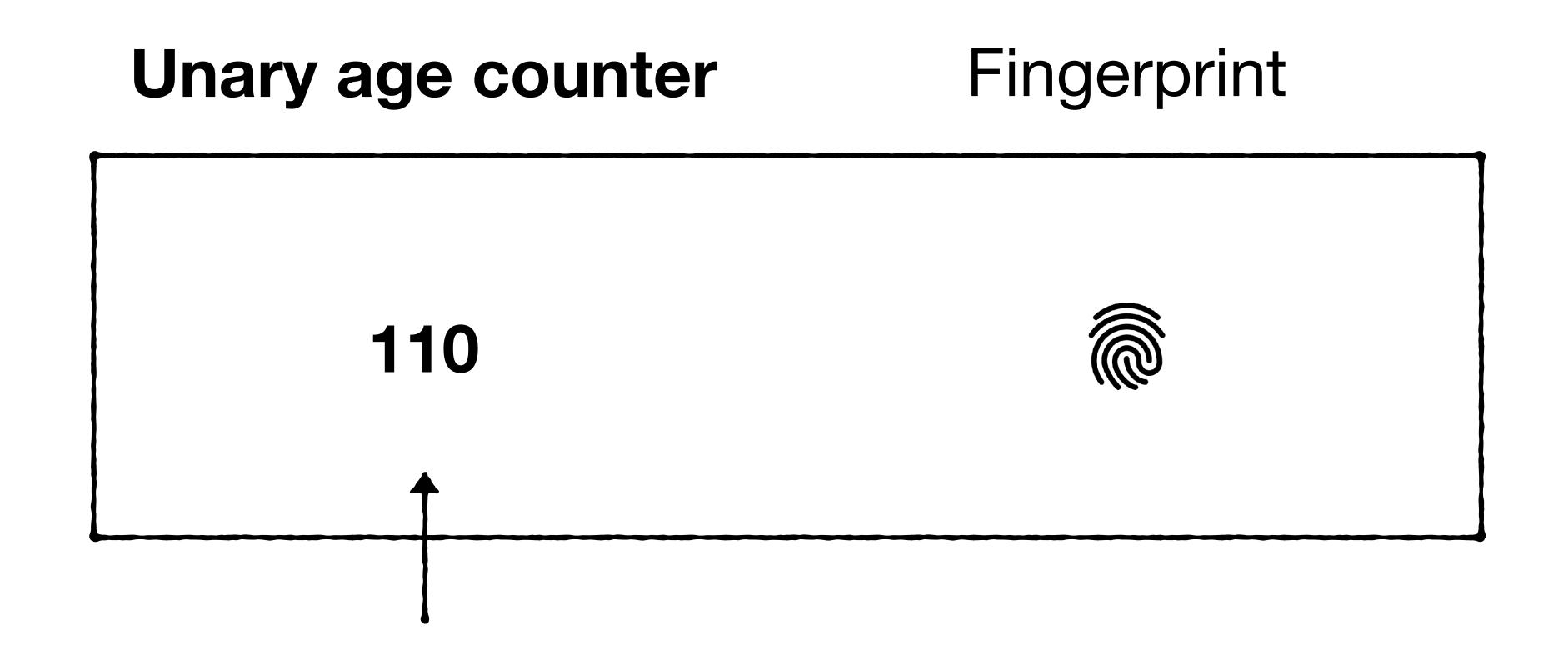




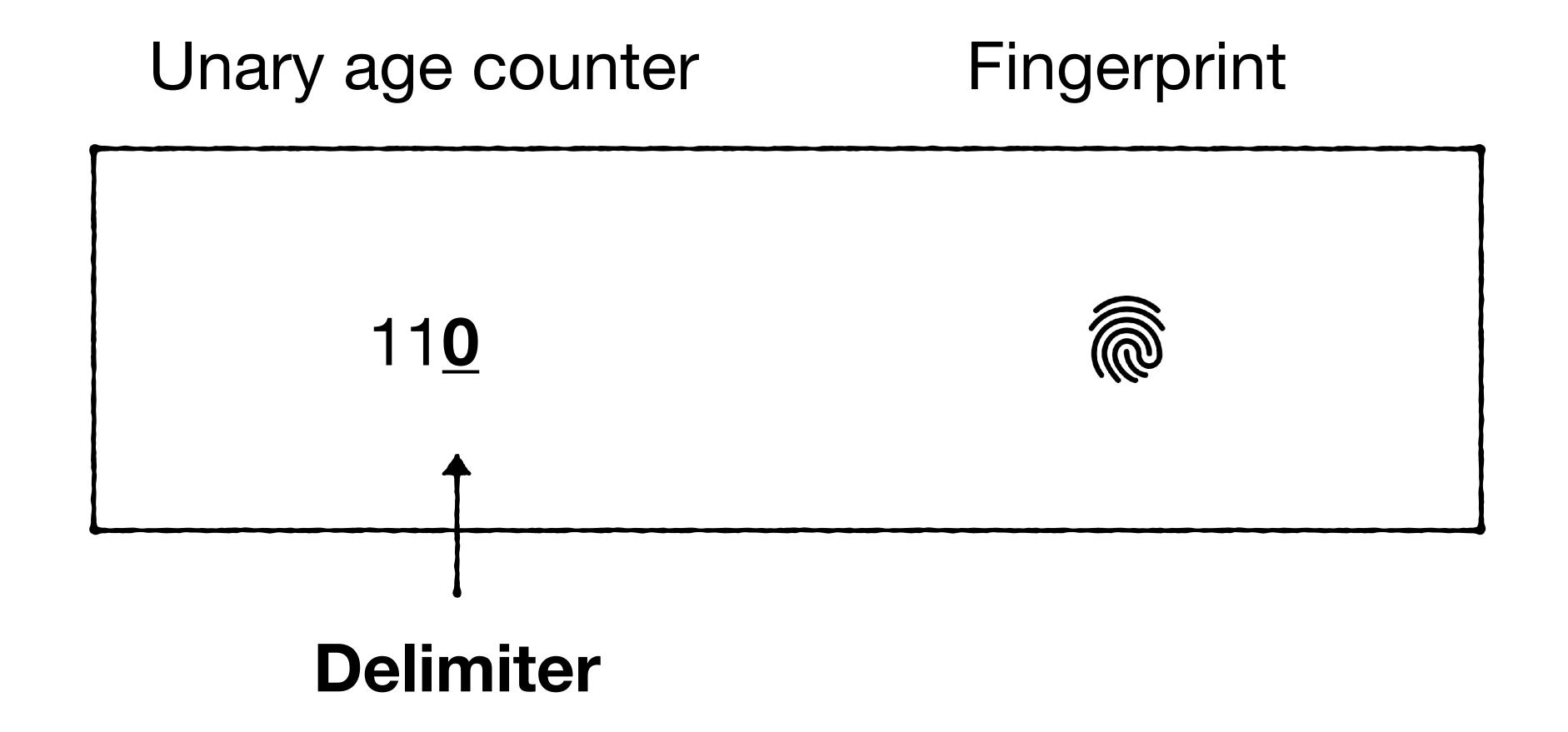
0 expansions ago

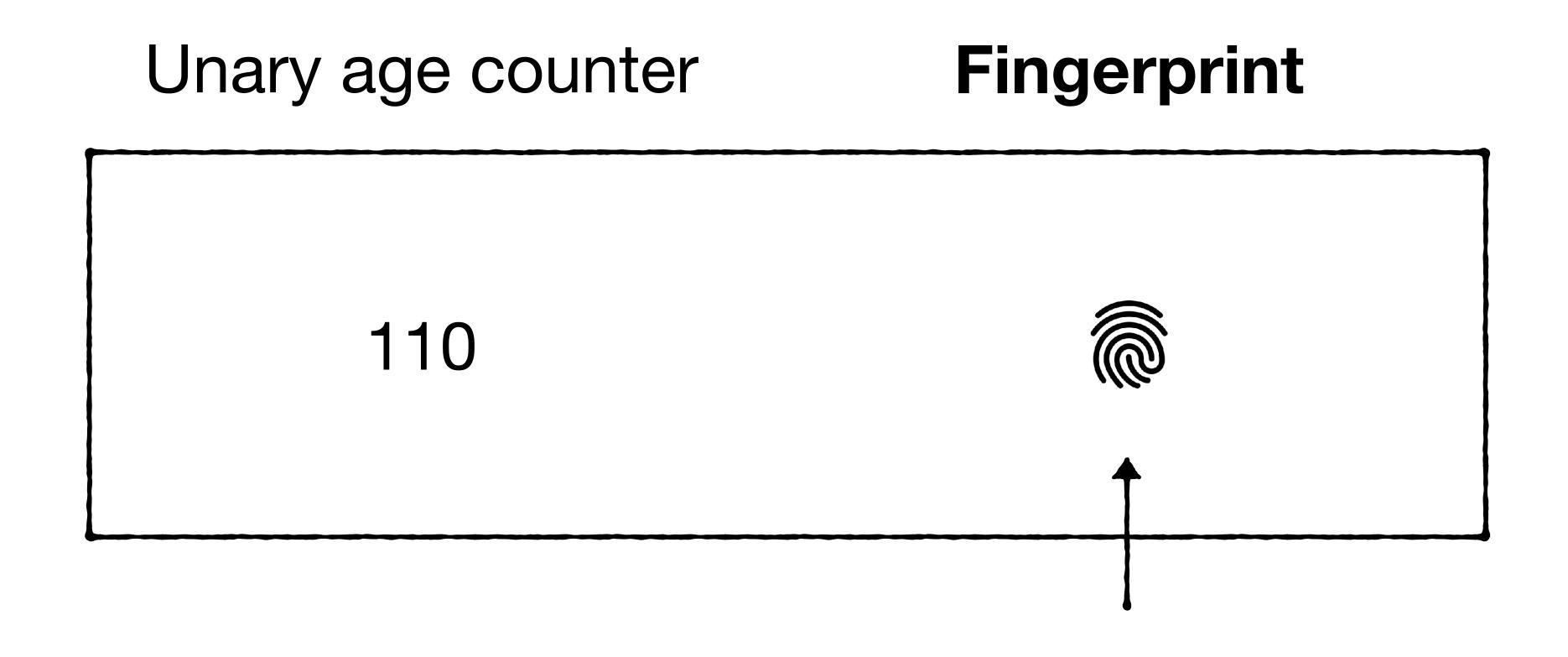


1 expansions ago



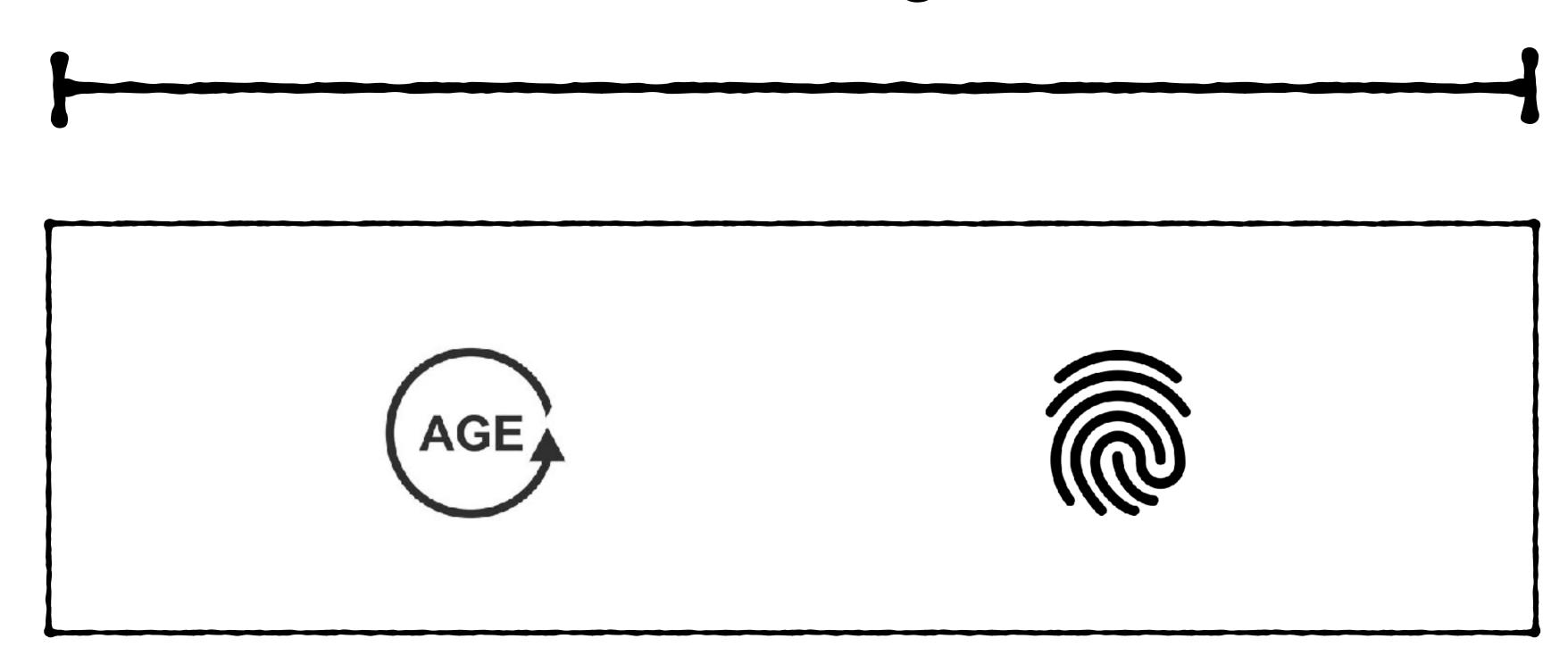
2 expansions ago



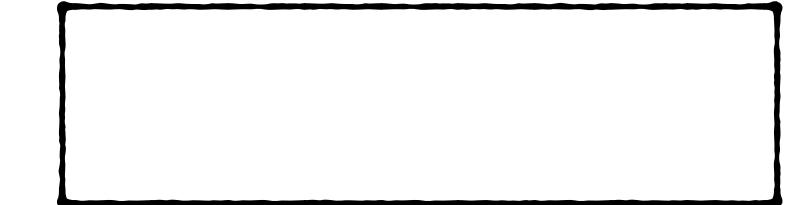


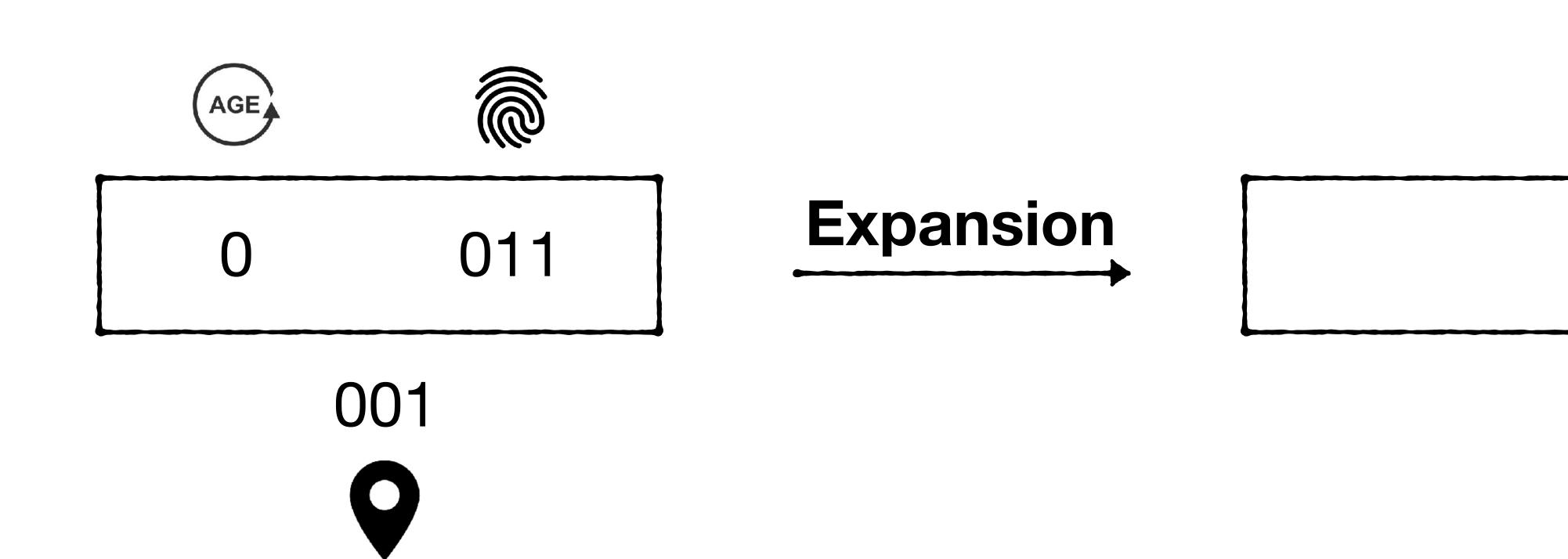
All remaining slot bits

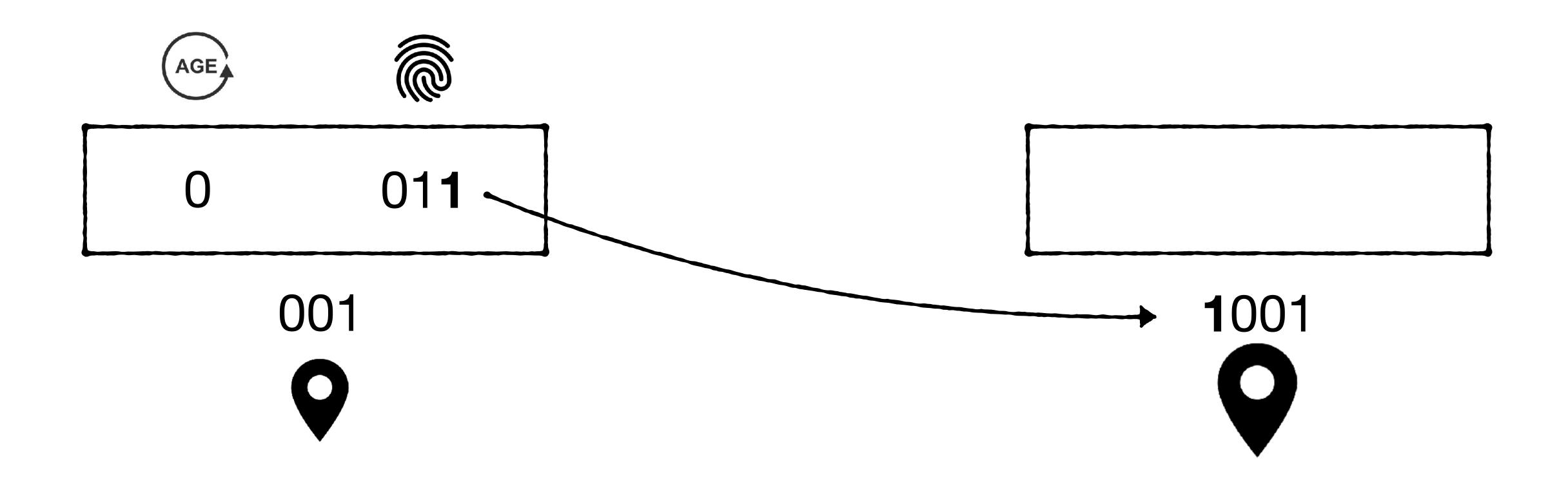
Fixed-length

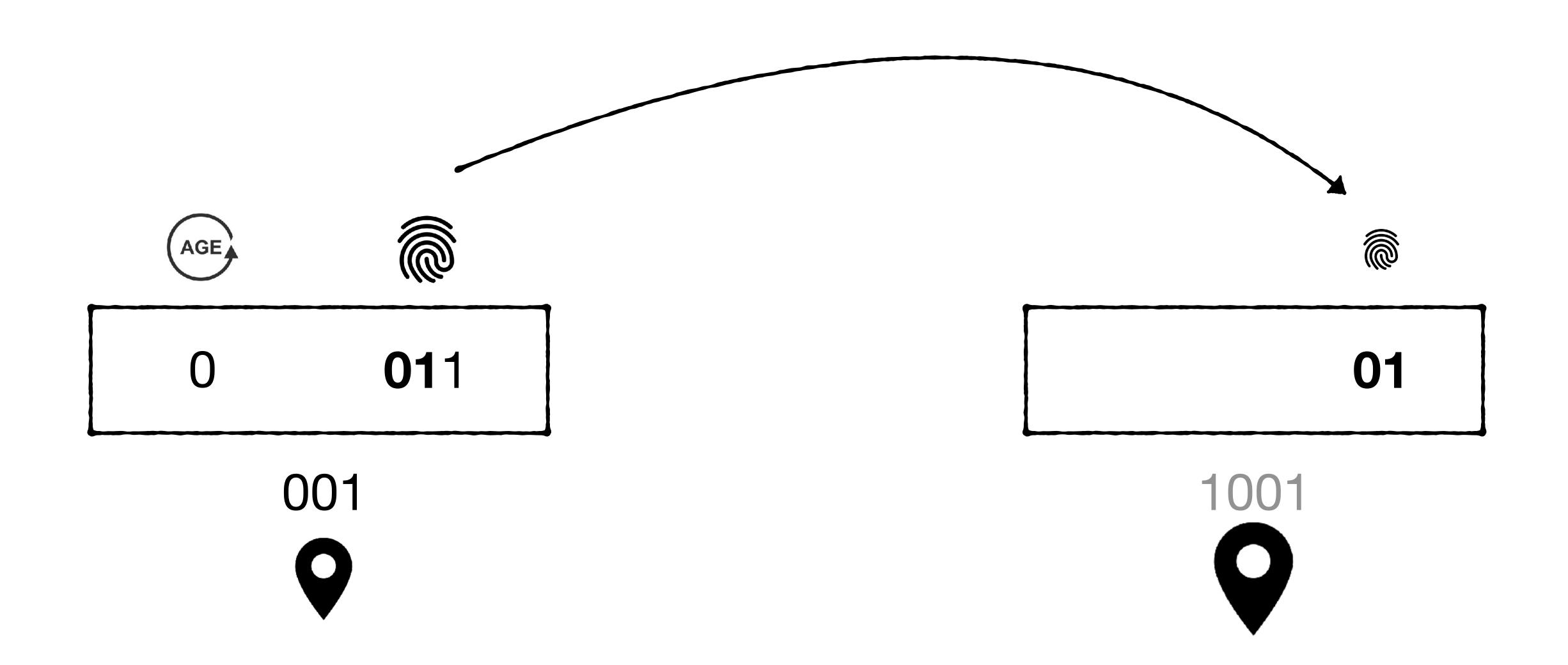


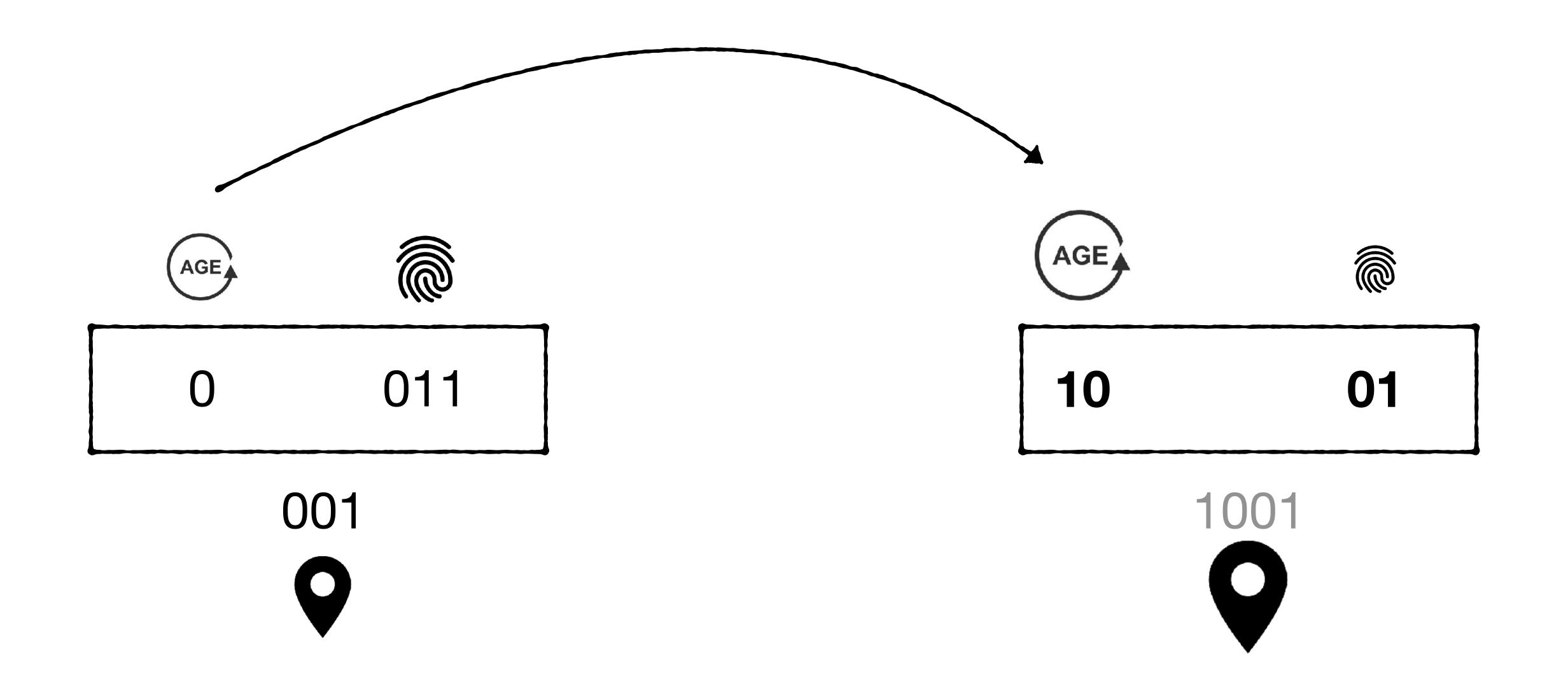
Expansion



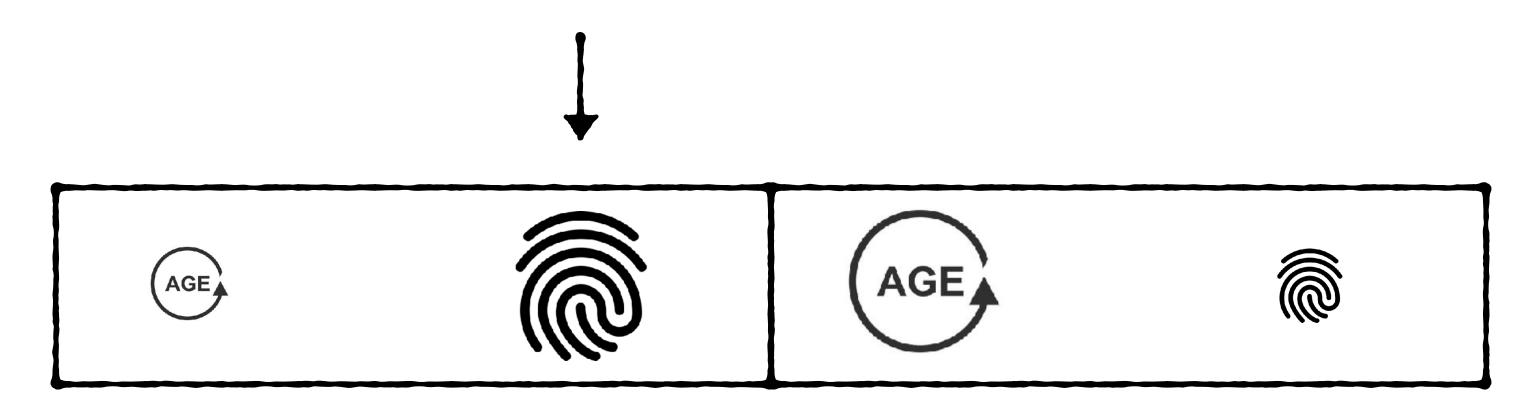




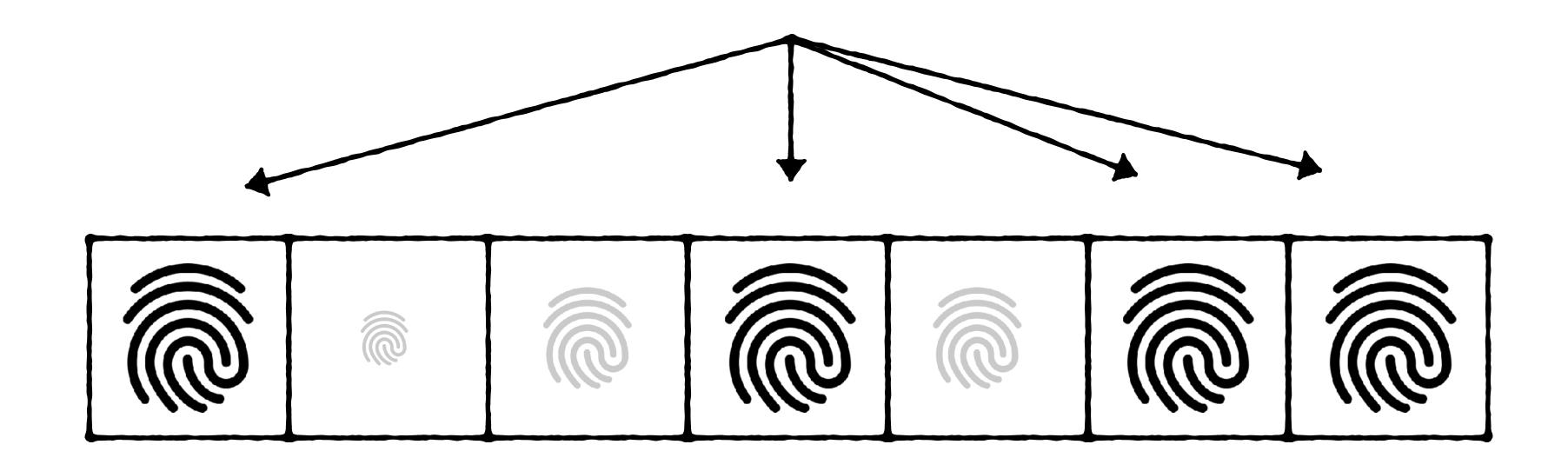




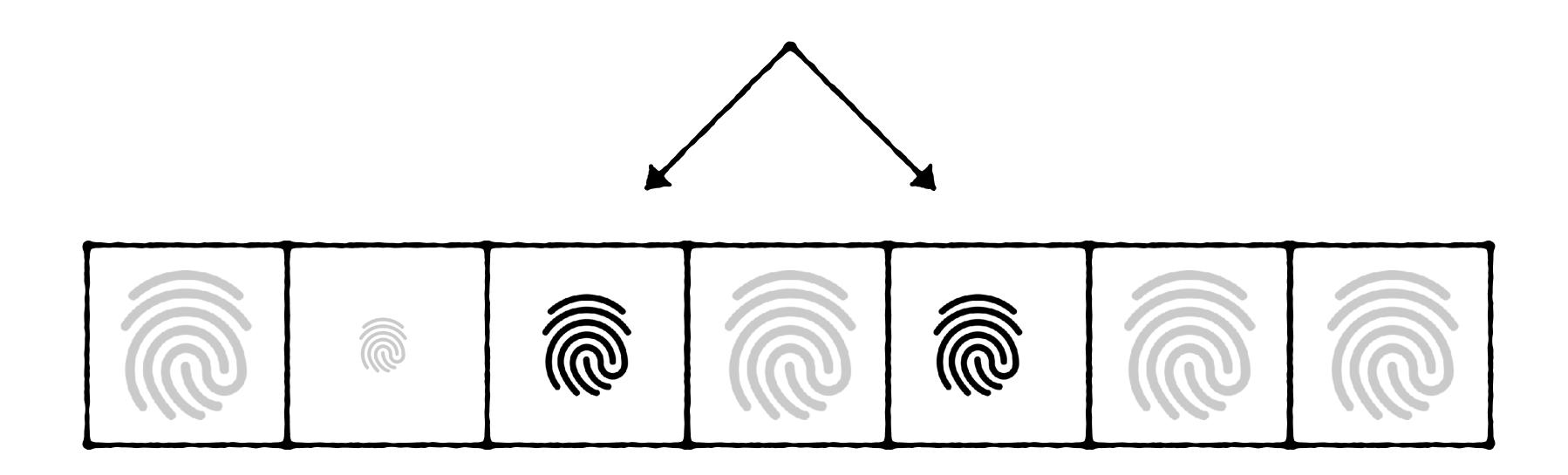
Longer fingerprints can be inserted after expansion



Half of entries have F bit fingerprints



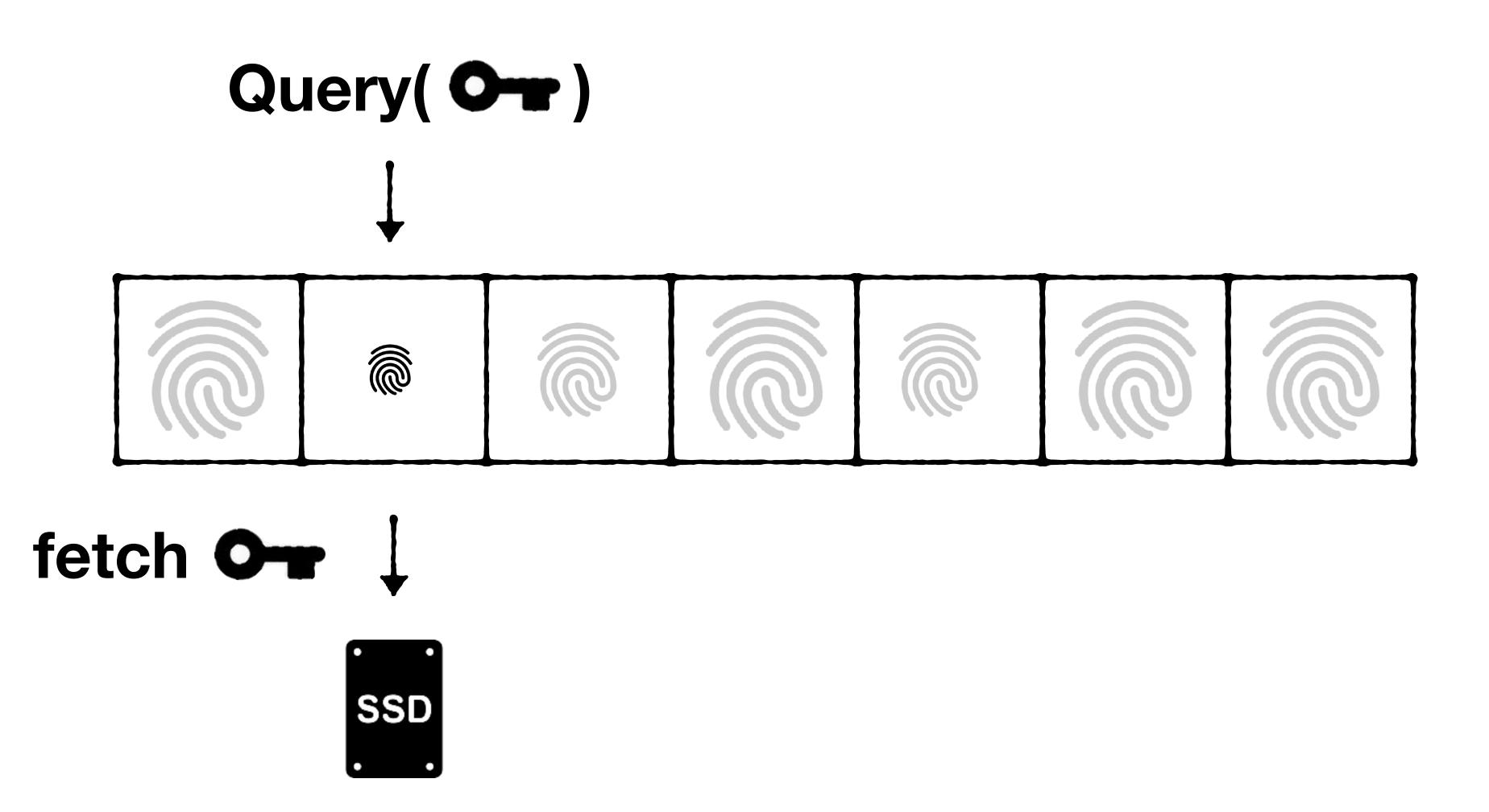
Quarter have F-1 bit fingerprints



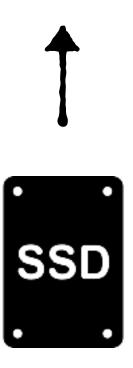
Eighth have F-2 bit fingerprints

weighted false positive rate $\approx \log_2(N) \cdot 2^{-F}$

false positive rate = $log_2(N) \cdot 2^{-M/N}$ < $N \cdot 2^{-M/N}$ with quotient filter



Rehash(O-) & rejuvenate fingerprint



Rehash(•••) & rejuvenate fingerprint

FPR

log N ⋅ 2-M/N → 2-M/N

Increase slot width at rate of ≈ 2 log₂ log₂ N

FPR $\approx \log N \cdot 2^{-M/N}$

FPR ≈ log N · 2-M/N - 2 log₂ log₂ N

FPR ≈ 2-M/N

After F expansions, oldest fingerprints run out of bits

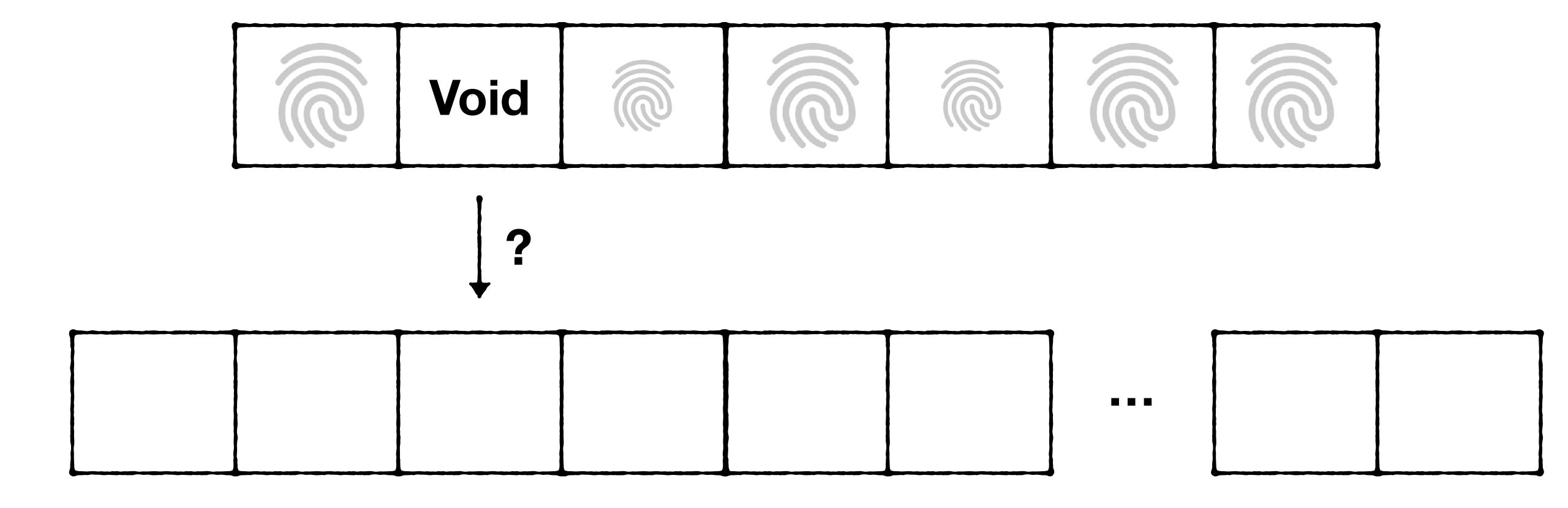
Unary padding occupies whole slot

Unary padding occupies whole slot

Any query Positive

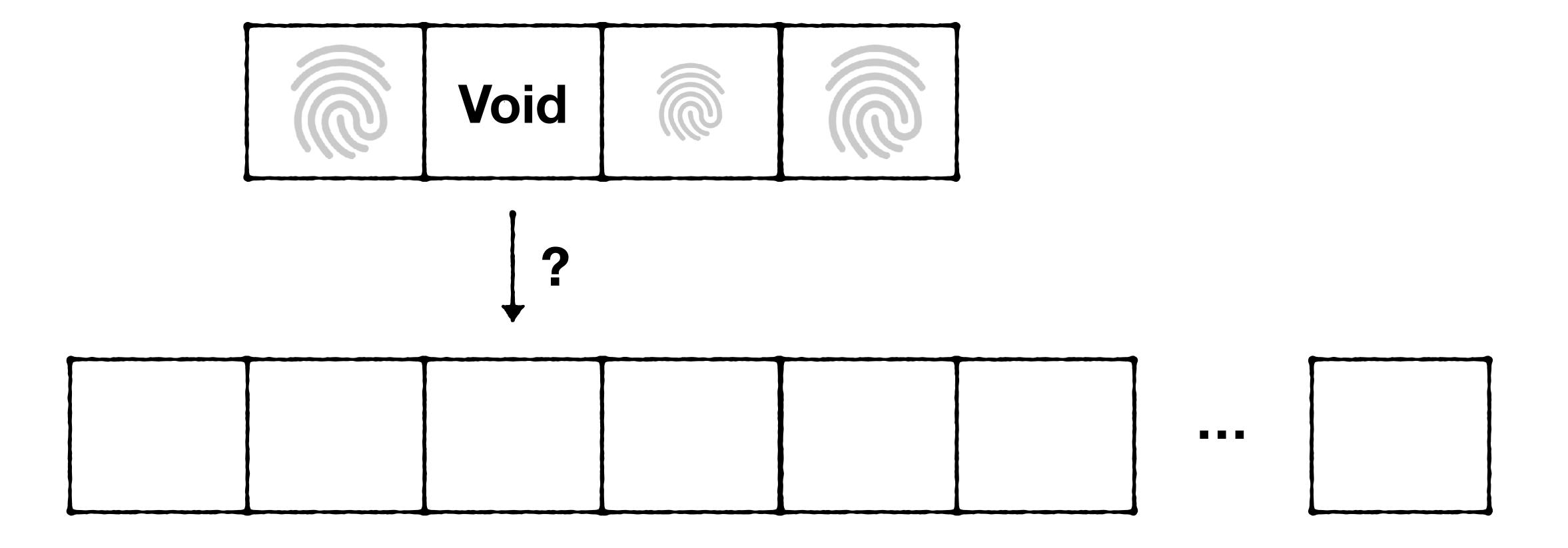
Void © © © ©

How to continue expanding?

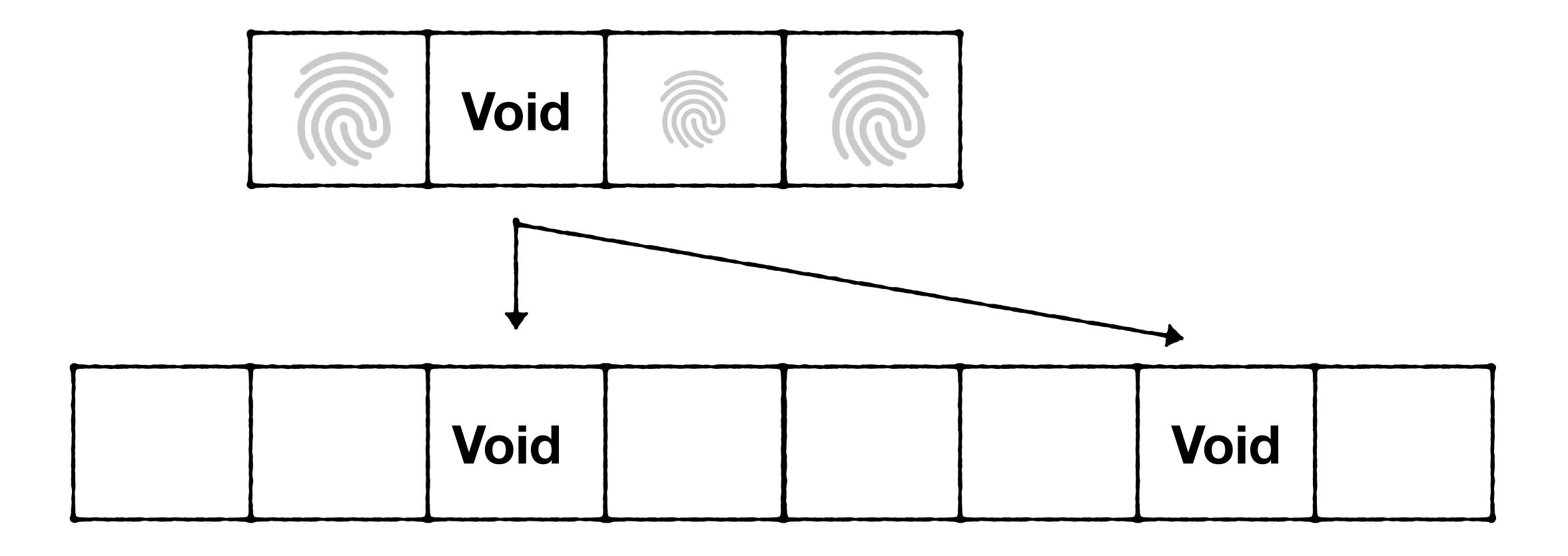


Aleph Filter: To Infinity in Constant Time

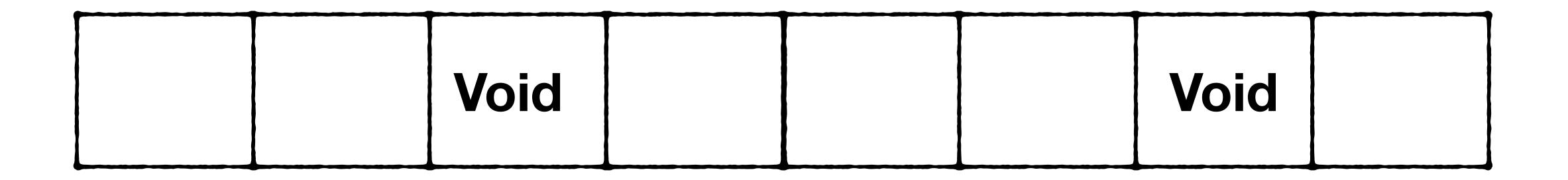
Niv Dayan, Ioana Bercea, Rasmus Pagh. VLDB 2024

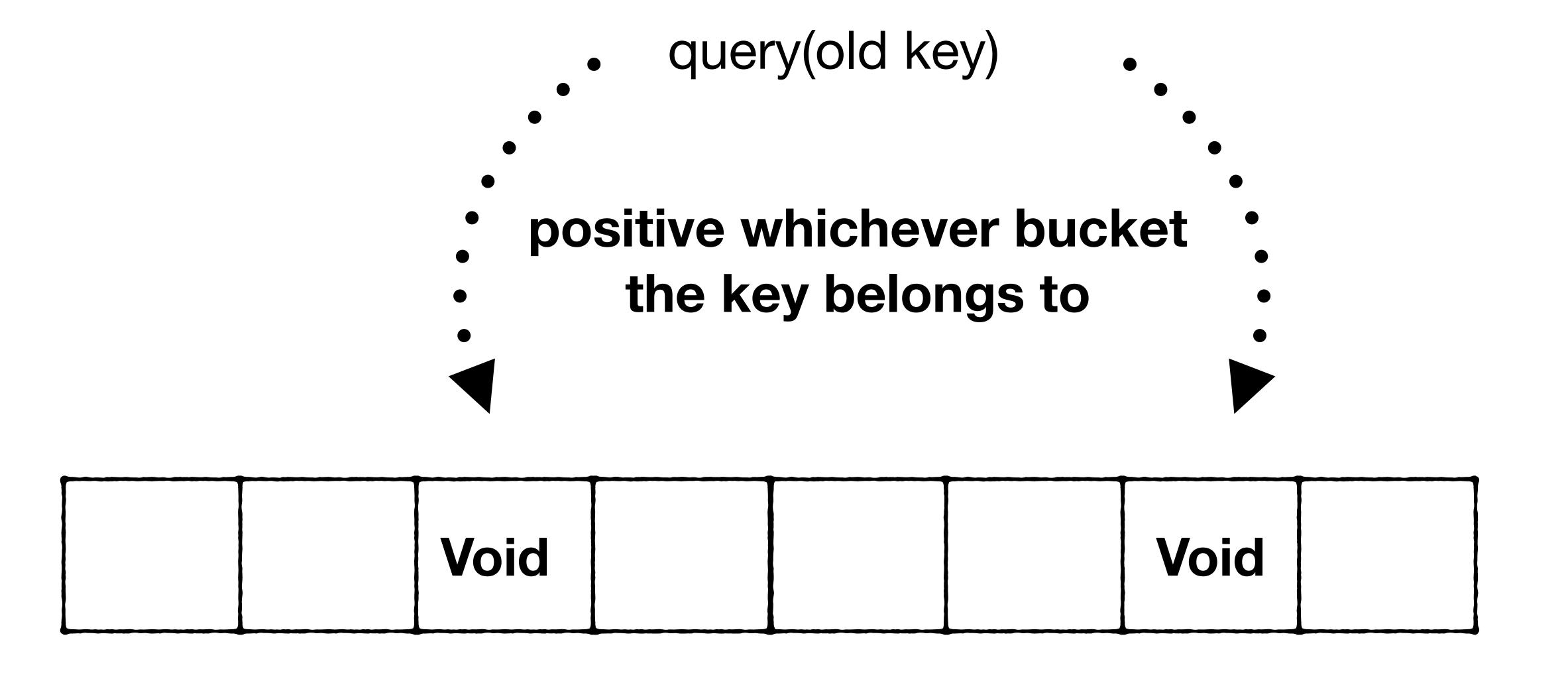


Duplicate

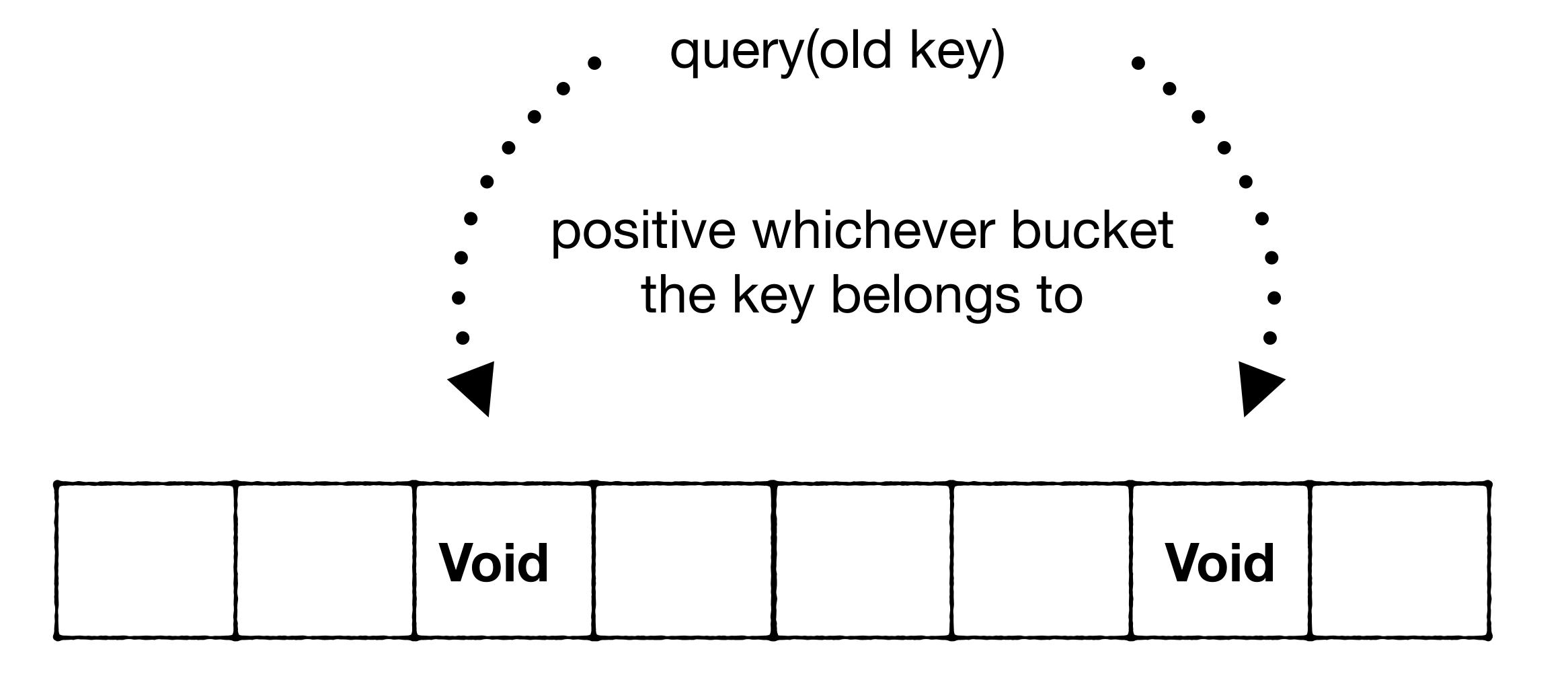


query(old key)



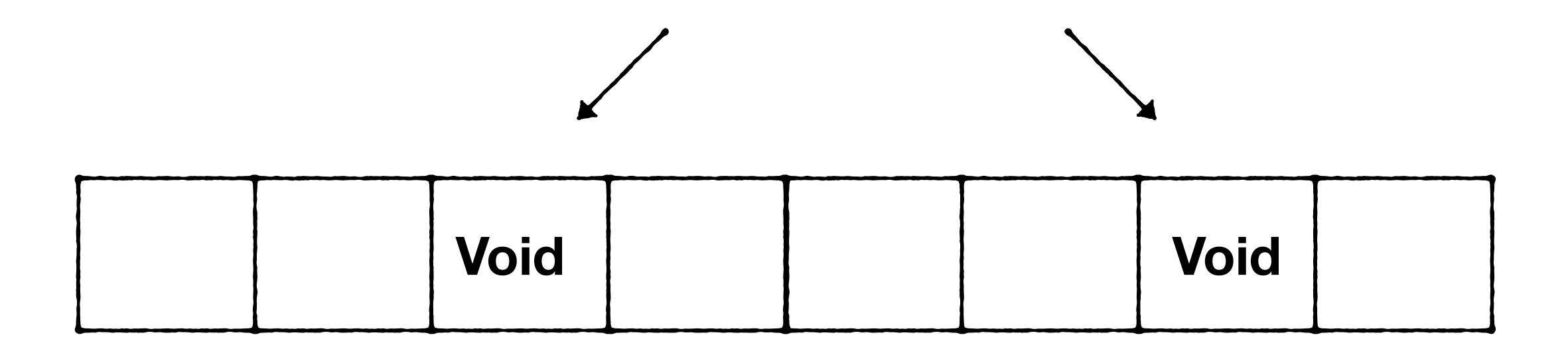


Expand Indefinitely with O(1) performance



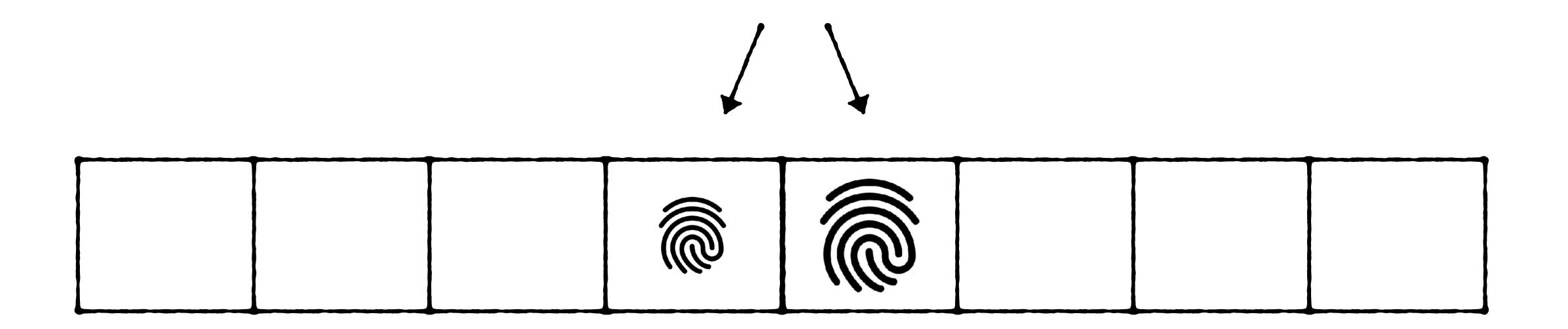
Expandable Filters Complicate Deletes

Identify how many void entries to remove



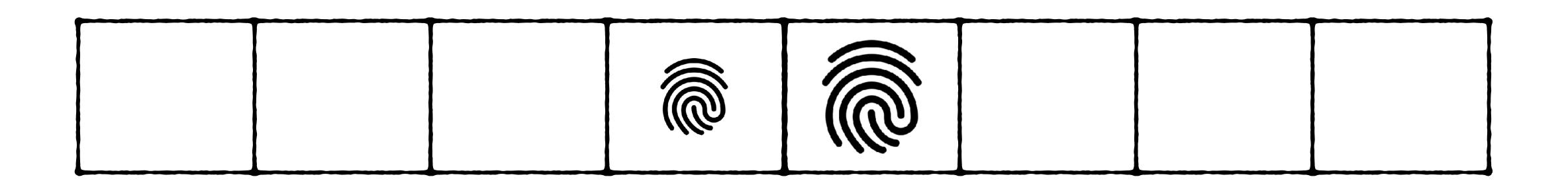
Expandable Filters Complicate Deletes

Multiple fingerprints of diff lengths may match key to delete



Expandable Filters Complicate Deletes

Solutions exist in the papers:)



Two volunteers needed for next week's presentations

Thank you!