Transactions & Concurrency Control
CSC443H1 Database System Technology

Niv Dayan

Logistics

TA doing both Lecture + tutorial are On Thursday next
tutorial sections both on Tuesday next week, we’ll have
this Thursday week. project office hours

L

E

Please do the course evaluation!

CSC2525

Some were blocked from Policy now updated: if you’re
applying due to 20% cap on interested, please enrolli
undergrads In grad courses through the grad office

Grad School

And now to our main topic...

A DB has a notion of consistency, defined by the user

A DB has a notion of consistency, defined by the user

Sum of money in a
system should stay
constant

®
D

A DB has a notion of consistency, defined by the user

Sum of money in a An account
system should stay balance cannot
constant drop below zero

®
=+

A DB has a notion of consistency, defined by the user

Sum of money in a An account
A user must
system should stay balance cannot :
have a valid SIN
constant drop below zero

®
=+

v

A DB has a notion of consistency, defined by the user

Sum of money in a An account
A user must
system should stay balance cannot .
have a valid SIN
constant drop below zero
sum(balance) = X balance = 0 SIN # null

These can be set as integrity constraints

To maintain consistency, database APIls expose the concept of a transaction

Consistent state —> —> Consistent state

Series of
operations on DB

Consistent state —> —> Consistent state

Example: Bank transfer

A=A-100
B=B+ 100

Consistent state —> —> Consistent state

Example: Bank transfer

A=A-100 <«— Both operations must succeed
B=B+100 <— or fail for the system to remain
In a consistent state

A N

Consistent state | ; Consistent state

™ el

Transactions do not interact with each other (i.e., by exchanging
messages). A transaction is oblivious to all other ongoing transactions.

Transaction API

. Commit or Abort
Transaction (e.g., in SQL)

Example: Money withdrawal

Begin Transaction
b = Select balance from accounts where id = x
If b <100
Abort
Else
Update accounts set balance = b - 100 where id = X

Commit

Semantics for Transactions

ACID

ACID

Atomicity Consistency Isolation Durability

B O F L

ACID

Atomicity Consistency |solation Durability
@ @ E Og
All or

nothing

ACID

Atomicity Consistency Isolation Durability
@ E Ogﬂ
All or Transition across

nothing consistent states

ACID

Atomicity Consistency Isolation Durability
@ E Og
All or Transition across Not corrupted by

nothing consistent states concurrency

ACID

Atomicity Consistency |solation Durability
@ E Ogﬂ
All or Transition across Not corrupted by Recover from

nothing consistent states concurrency failure

Who is responsible for what?

Atomicity Consistency Isolation Durability

B O F L

DB User DB DB

What Endangers Consistency?

System Failure Concurrency

@ 1]

System Failure

Power failure Hardware failure Data center failure

@

System Failure

Power failure Example: Bank transfer

A=A-100
Power fails
B=B+ 100

System Failure

Power failure Example: Bank transfer
A=A-100 Power fails before
Power fails transaction finishes,
B=B+ 100 leaving the system in an

Inconsistent state

System Failure Concurrency

@ 1]

Concurrency

Concurrent transactions can result in an inconsistent state

Concurrency

Concurrent transactions can result in an inconsistent state

Can you think of examples?

Concurrency

Concurrent transactions can result in an inconsistent state

Example 1 Example 2

Interest & Payments Updates & statistics

Example 1

T1: Interest payment T2: Payments

A=A-1.05 A=A-100
B=B--1.05 B=B+ 100

Example 1

Time

Example 1

Initialization: A=1000, B=1000

Time

Valid Outcome 1: A=950, B = 1150

Example 1

Initialization: A=1000, B=1000

Time

Valid Outcome 2: A=945, B =1155
Valid Outcome 1: A =950, B =1150

Example 1

Initialization: A=1000, B=1000

Time

Invalid Outcome: A =950, B =1155

Valid Outcome 2: A =945, B =1155
Valid Outcome 1: A =950, B =1150

Example 1

Initialization: A=1000, B=1000

Dirty read: 12 reads a modified but

Time uncommitted data item from T1

Invalid Outcome: A =950,B =1155

Valid Outcome 2: A =945, B =1155
Valid Outcome 1: A =950, B = 1150

Concurrency

Concurrent transactions can result in an inconsistent state

Example 1 Example 2

Payments & Interest Updates & Statistics

Example 2

T1: Account Updates T2: Statistics Reporting

Balance += X count(# accounts)
sum(account balances)
avg(account balances)

Example 2

T1: Account Updates T2: Statistics Reporting

bob_checking += X count(# accounts) where user = “bob”
sum(account balances) where user = “bob”
avg(account balances) where user = “bob”

Example 2

T1: Account Updates T2: Statistics Reporting

bob_checking += X count(# accounts) where user = “bob”
sum(account balances) where user = “bob”
avg(account balances) where user = “bob”

What can go wrong?

Example 2

T1

checking += X
Time

count(# accounts)
sum(account balances)
avg(account balances)

Example 2

12

count(# accounts)

sum(account balances)
avg(account balances)

Time

checking += X

Example 2

12

count(# accounts)
Time sum(account balances)

checking += X

avg(account balances)

Problem?

Example 2

12

count(# accounts)
Time sum(account balances)

checking += X

avg(account balances)

Problem? Inconsistent reporting: avg # sum / count

Example 2

12

count(# accounts)
Time sum(account balances)

checking += X

avg(account balances)

Unrepeatable read anomaly: subsequent reads of the same data are
iInconsistent as the data was changed in-between

Concurrency

Concurrent transactions can result in an inconsistent state

Example 1 Example 2
Payments & Interest Updates & Statistics

PAAN
mw &

Problem: Dirty reads Unrepeatable reads

Simplest solution: lock whole DB for any modification

o

Problems?

Simplest solution: lock whole DB for any modification

Problems: terrible for performance

@‘)

Simplest solution: lock whole DB for any modification

Problems: terrible for performance

While one transaction waits
for a storage 1/0, another
should be able to use the CPU

Ryt

Simplest solution: lock whole DB for any modification

Problems: terrible for performance

While one transaction waits A short transaction should not
for a storage 1/0, another have to wait until a long
should be able to use the CPU transaction completes

X i

A good compromise: Serializability

A good compromise: Serializability

Transactions can be concurrent but must result in a consistent state

Transaction 2

Consistent
state

Consistent
state

Transaction 3

VAR
!

A good compromise: Serializability

Transactions can be concurrent but must result in a consistent state

— (ansacion D — (Gansaction D—» . (Consistert

Any given state once a transaction commits should have been achievable
through a serial execution of all committed transactions thus far

Consistent
state

A good compromise: Serializability

Transactions can be concurrent but must result in a consistent state

Transaction 2) — (Transaction 3) —

/ \‘
—» (Transaction 1) —» (Transaction 2)—» (Transaction 3) —
DN A

Consistent
state

Consistent
state

Transaction 3) —» (Transaction 1) —» (Transaction 2

Equivalence to any serial execution is considered correct

How to achieve concurrency & serializability?

How to achieve concurrency & serializability”? Strict Two-Phase Locking

How to achieve concurrency & serializability”? Strict Two-Phase Locking

A transaction is divided into two phases
e

Phase 1 Phase 2

How to achieve concurrency & serializability”? Strict Two-Phase Locking

A transaction is divided into two phases
s

Phase 1 Phase 2

Lock a data item (e.g., row) when
It IS accessed for the first time

How to achieve concurrency & serializability”? Strict Two-Phase Locking

A transaction is divided into two phases

Phase 1 Phase 2

Lock a data item (e.g., row) when
It Is accessed for the first time

Reads take Writes take
shared locks exclusive locks

R P

How to achieve concurrency & serializability”? Strict Two-Phase Locking

A transaction is divided into two phases

Phase 1 Phase 2
Lock a data item (e.g., row) when Release all locks
It IS accessed for the first time during commit
Reads take Writes take
shared locks exclusive locks

b

R P

How to achieve concurrency & serializability”? Strict Two-Phase Locking

A transaction is divided into two phases
s

Phase 1 Phase 2
Lock a data item (e.g., row) when Release all locks
it is accessed for the first time during commit

Invariant: a data item that has been accessed by this transaction cannot be
modified by another transaction until this transaction commits

Let’s fix our running examples

Example 1 Example 2
Interest & Payments Updates & Statistics

PAAN
mw &

Problems: Dirty reads Unrepeatable reads

Example 1

T1: Interest payment T2: Payments

A=A-1.05 A=A-100
B=B--1.05 B=B+ 100

Example 1

Time

Example 1

T1

ex_lock(A)

A=A-1.05 |

ex_lock(B) Exclusive locks
Time || 8- 1.05 e

Commit modify A unti
commits

ex_lock(A)
A=A-100
ex_lock(B)
B=B+ 100
Commit

Let’s fix our running examples

Example 1 Example 2
Interest & Payments Updates & Statistics

PAAN
mw &

Problems: Dirty reads Unrepeatable reads

Fixing Example 2

12

count(# accounts)
Time sum(account balances)

checking += X

avg(account balances)

Fixing Example 2

12

Take shared locks

count(# accounts) _
on each row it reads

Time sum(account balances)

checking += X

avg(account balances)

Fixing Example 2

12

count(# accounts)
Time sum(account balances)

Request ex_lock(X) T1 has to wait
avg(account balances)
Commit

checking += X

Fixing Example 2

12

count(# accounts)
Time sum(account balances)

Request ex_lock(X)

avg(account balances)
Commit T2 releases locks

checking += X

Time

Fixing Example 2

T1 12

count(# accounts)
sum(account balances)

Request ex_lock(X)
avg(account balances)

Commit
gain ex_lock(X)

checking += X
Commit

T1 gains lock

Fixing Example 2

T1 12

count(# accounts)

Time sum(account balances) —>, These reads are
now repeatable

thanks to shared
read locks

Request ex_lock(X)
avg(account balances)

Commit
gain ex_lock(X)

checking += X
Commit

Problems:

Solution:

Both examples now work correctly

Example 1
Interest & Payments

PN
pitinig

Dirty reads

Exclusive write locks

Example 2
Updates & Statistics

G

Unrepeatable reads

Shared read locks

How are locks implemented?

Lock Manager - a hash table

Obiject ID

Lock Manager - a hash table

Object ID —» (type, lock count, queue of waiting requests)

Lock Manager - a hash table

Object ID — (type, lock count, queue of waiting requests)

Shared/exclusive

R A

Lock Manager - a hash table

Object ID —» (type, lock count, queue of waiting requests)

In case of shared lock

Lock Manager - a hash table

Object ID — (type, lock count, queue of waiting requests)

What to invoke next when this lock is released

Lock Manager - a hash table

Object ID — (type, lock count, queue of waiting requests)

e.d., Row, Page, Table

Lock Manager - a hash table

Object ID — (type, lock count, queue of waiting requests)

We lock an object the
first time 1t is accessed
by a transaction

\.0

Q@

Lock Manager - a hash table

Object ID — (type, lock count, queue of waiting requests)

We lock an object the Locking table implemented
first time it Is accessed via OS locking primitives
by a transaction (e.g., mutexes)

& §

An important distinction

Locks Latches

8 -

An important distinction

Locks Latches

a o

Separate: Transactions Threads

An important distinction

Locks Latches

a o

Separate: Transactions Threads

Protect: DB content In-memory structures (LRU queue)

Separate:
Protect:

Duration:

An important distinction

Locks

o

Transactions

DB content

Transaction

Latches

o1

Threads
In-memory structures (LRU queue)

Critical section

Separate:
Protect:
Duration:

Implementation:

An important distinction

Locks

o

Transactions

DB content

Transaction

Lock manager

Latches

o1

Threads
In-memory structures (LRU queue)
Critical section

e.g., Spin-locks

The DB modifies relevant indexes as a part of a transaction

e.g., update table set C =*...” where A ‘...’

A B C

/
0
O
Q,,

The DB modifies relevant indexes as a part of a transaction

e.g., update table set C =*...” where A ‘...’

A B C Schedule

:
2

(1)
(2)
(3) Access row and update C
(4)
()

Begin transaction
Search index A

4 Update entry in C’s index
5

Anything to make you uneasy about two-phase locking so far?

Anything to make you uneasy about two-phase locking so far?

Deadlocks: transactions waiting on each other’s locks forever

/'\

o

o

Deadlock example: concurrent payments

T1: Ato B T2: Bto A

A=A-100 B=B-100
B=B+ 100 A=A+100

Deadlock example: concurrent payments

11

ex_lock(A)
A=A-100
ex_lock(B)
| B=B+ 100
Time Commit

This Is ok

ex_lock(B)
B=B-100
ex_lock(A)
A=A+100
Commit

Deadlock example: concurrent payments

11

ex_lock(A)

A=A-100
ex_lock(B)
B=B-100

Time ex_lock(A)
Deadlock

ex_lock(B)
B=B+ 100
Commit

Deadlock example: concurrent payments

11
ex_lock(A)
A=A-100
ex_lock(B)
| B=B-100
Time ex_lock(A)

Deadlock

ex_lock(B)
B=B+ 100
Commit

What should to do when we detect a deadlock?

What should to do when we detect a deadlock?

Abort transaction & undo all its changes

X

Abort transaction & undo all its changes

|

T1
ex_lock(A)
A=A-100
ex_lock(B)
| B=B-100
Time ex_lock(A)

Deadlock

ex_lock(B)
B=B+ 100
Commit

Abort transaction & undo all its changes

|

Abort T1

ex_lock(A)
How to undo? I A=A-100

ex_lock(B)
B=B-100
ex_lock(A)

Deadlock
ex_lock(B)

B=B+ 100
Commit

How to undo?

¢

How to undo?

record before-image for all
changes to the DB in a
sequential log.

X

T1: Payment from A to B
Assume A = 1000, B=2000

ex_lock(A)
A=A-100
ex_lock(B)

record before-image for all
changes to the DB In a
sequential log.

Time

B=B+ 100
Commit

T1: Payment from A to B sequential log
Assume A = 1000, B=2000

ex_lock(A)
A=A-100
ex_lock(B)

B=B + 100
Commit

T1 starting
A: 1000 -> 900
B: 1000 -> 1100

Time

T1 commit

T1: Payment from A to B sequential log
Assume A = 1000, B=2000

ex_lock(A)
A=A-100
ex_lock(B)

B=B+ 100
Abort

11 starting
A: 1000 -> 900
B: 1000 -> 1100

Time

T1 abort

If transaction aborts before completing, we undo its changes via its
before-images in the log

T1: Payment from A to B sequential log
Assume A = 1000, B=2000

11 starting
A: 1000 -> 900
B: 1000 -> 1100

ex_lock(A)
A=A-100
ex_lock(B)
B=B+ 100

Time

T1 abort

Abort

Write (A)
Write (B)
Release locks

If transaction aborts before completing, we undo its changes via its
before-images in the log

How to detect & prevent deadlocks?

How to detect & prevent deadlocks?

Conservative Two Abort on Cycle
Phase Locking wait Detection

® aaa WO

Timeouts

Timeouts

[

Abort a transaction after waiting a certain time for a lock

Pros?

Cons?

Timeouts

[

Abort a transaction after waiting a certain time for a lock

Pros? Simple

Cons? Speculative - wastes work aborting on non-deadlocks

How can we detect & prevent deadlocks?

Conservative Two Abort on Cycle
Phase Locking wait Detection

® aaa WO

Timeouts

Conservative Two Phase Locking

A transaction is divided into two phases
s

Phase 1 Phase 2

Take all locks the transaction Release all locks
could possibly need during commit

Conservative Two Phase Locking

A transaction is divided into two phases
s

Phase 1 Phase 2
Take all locks the transaction Release all locks
could possibly need during commit

Pros: no deadlocks

Con: ?

Conservative Two Phase Locking

A transaction is divided into two phases
s

Phase 1 Phase 2
Take all locks the transaction Release all locks
could possibly need during commit

Pros: no deadlocks

Con: takes more locks and holds them for longer

How can we detect & prevent deadlocks?

Conservative Two Abort on Cycle
Phase Locking Wait Detection

T a@aa O

Timeouts

Abort on Wait

When a transaction is blocked, abort it or the transaction holding the lock.

T2 1s blocked — a +— T1 holds lock

\- Abort one -/

Abort on Wait

When a transaction is blocked, abort it or the transaction holding the lock.

T2 1s blocked — a +— T1 holds lock

\— Abort one —/

Pros: no deadlocks

Con: defeatist (wastes work, or aborts many
transactions)

How can we detect & prevent deadlocks?

Conservative Two Abort on Cycle
Phase Locking walt Detection

® a@ea WM

Timeouts

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

Schedule

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

T1 2 T3 T4

@ @
O

Graph

Schedule

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

Schedule

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

Schedule

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

Schedule

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

/"\
Other approaches are speculative @ @

Here we detect a deadlock for sure '\ >

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

@ @
Should we abort T1, T2 or T3? '\ >

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

Abort the transaction that:

7
(1) has done the least work @ @

)
(13)

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

Abort the transaction that:

7
(1) has done the least work @ @
(2) Farthest from completion \ >

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

Abort the transaction that:

7
(1) has done the least work @ @
(2) Farthest from completion \ >

(3) Been aborted the least times

Conservative Two Abort on Cycle
Phase Locking walt Detection

® a@ea WM

Timeouts

There is still a problem

Problems:

Solution:

Let’s return to our running examples

Example 1 Example 2
Interest & Payments Updates & Statistics
Dirty reads Unrepeatable reads
Exclusive write locks Shared read locks

Let’s return to our running examples

Example 1
Interest & Payments

PN
pitinig

Dirty reads

Exclusive write locks

Example 2
Updates & Statistics

D

Unrepeatable reads

Shared read locks

Example 3
Inserts & Statistics

G

Example 3

T1: insert account T2: statistics reporting

Insert A=0 count(# accounts)
sum(account balances)
avg(account balances)

Example 3

T1

Insert A=0

| Commit
Time

count(# accounts)
sum(account balances)
avg(account balances)

12

count(# accounts)

sum(account balances)
avg(account balances)

Time

Insert A=0
Commit

12

count(# accounts)

Time sum(account balances)
Insert A=0

Commit

avg(account balances)

Problem?

12

Only locks

count(# accounts) existing rows

Time sum(account balances)
Insert A=0

Commit

avg(account balances)

Problem?

12

count(# accounts)

Time sum(account balances) New row is
InsertA=0 unaffected by

Commit T2’s locks
avg(account balances)

Problem?

12

count(# accounts)

Time sum(account balances)
Insert A=0

. lock on nhew row
Commit

IS released

avg(account balances)

Problem?

12

count(# accounts)

Time sum(account balances)
Insert A=0

Commit

avg(account balances)

Wrong result

Problem? Inconsistent reporting: avg # sum / count

12

count(# accounts)

Time sum(account balances)
Insert A=0

Commit

avg(account balances)

More broadly, this is a phantom read: a transaction accesses a set
of rows twice, and qualifying rows are added in-between

How can we prevent phantom reads?

12

count(# accounts)

Time sum(account balances)
Insert A=0

Commit

avg(account balances)

More broadly, this is a phantom read: a transaction accesses a set
of rows twice, and qualifying rows are added in-between

How can we prevent phantom reads?

lock table

Aggressive

How can we prevent phantom reads?

Predicate

lock table .
locking

Complex &

Aggressive :
expensive

How can we prevent phantom reads?

lock table

Aggressive

Predicate Select * from table
locking where ID=Xx
Lock “id=x"
Complex &

expensive

How can we prevent phantom reads?

lock table

Aggressive

Predicate
locking

Complex &
expensive

Index
locking

Good but
requires an index

Index Locking

Lock B-tree leaf storing relevant range

Example: Select * from accounts
where ID=“Cindy”

Index Locking

Lock B-tree leaf storing relevant range

Example: Select * from accounts
where ID=“Cindy”

So we do not have to lock the whole
table as long as we have an index :)

Example 1
Interest & Payments

PN
AIL

Dirty reads

Exclusive write locks

Example 2
Updates & Statistics

D

Unrepeatable reads

Shared read locks

Example 3
Inserts & Statistics

D

Phantom Read

Range locks

Example 1
Interest & Payments

PN
AIL

Dirty reads

Exclusive write locks

Example 2
Updates & Statistics

D

Unrepeatable reads

Shared read locks

Example 3
Inserts & Statistics

D

Phantom Read

Range locks

More correct but slower

Example 1 Example 2
Interest & Payments Updates & Statistics

PAAN
i 5

Dirty reads Unrepeatable reads

Exclusive write locks Shared read locks

Example 3
Inserts & Statistics

D

Phantom Read

Range locks

Compromising correctness is fine for some applications

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Dirty read Unrepeatable read Phantom reads

Read uncommitted
Read committed
Repeatable reads

Serializable

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Dirty read Unrepeatable read Phantom reads

Read uncommitted Possible Possible Possible

Read committed
Repeatable reads

Serializable

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Dirty read Unrepeatable read Phantom reads
Read uncommitted Possible Possible Possible

Read committed Not Possible Possible Possible

Repeatable reads

Serializable

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Dirty read Unrepeatable read Phantom reads

Read uncommitted Possible Possible Possible
Read committed Not Possible Possible Possible
Repeatable reads Not Possible Not Possible Possible

Serializable

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Read uncommitted
Read committed
Repeatable reads

Serializable

Dirty read

Possible
Not Possible
Not Possible
Not Possible

Unrepeatable read

Possible
Possible
Not Possible
Not Possible

Phantom reads

Possible
Possible
Possible

Not Possible

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Read uncommitted Exclusive write locks not held until a transaction ends

Read committed
Repeatable reads

Serializable

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Read uncommitted Exclusive write locks not held until a transaction ends

Read committed Shared read locks not held until a transaction ends

Repeatable reads

Serializable

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Read uncommitted Exclusive write locks not held until a transaction ends
Read committed Shared read locks not held until a transaction ends
Repeatable reads Range locks not employed (e.g., no tree/table locking)

Serializable

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Read uncommitted Exclusive write locks not held until a transaction ends
Read committed Shared read locks not held until a transaction ends
Repeatable reads Range locks not employed (e.g., no tree/table locking)

Serializable Everything is fully correct

The default in many relational DB systems

N

Repeatable reads Range locks not employed (e.g., no tree/table locking)

What do you think this curve should look like?

Throughput
(Transactions / sec) ?

concurrent transactions

What do you think this curve should look like?

Throughput

| Thrashing due to
(Transactions / sec)

locks

concurrent transactions

What do you think this curve should look like?

Throughput
(Transactions / sec)

concurrent transactions

How can we address this?
(1)
(2)

What do you think this curve should look like?

Throughput
(Transactions / sec)

concurrent transactions

How can we address this?

(1) Design the application such that transactions are short

(2)

What do you think this curve should look like?

Throughput
(Transactions / sec)

concurrent transactions

How can we address this?
(1) Design the application such that transactions are short

(2) Restrict the maximum number of concurrent transactions

With Strict Two-Phase Locking, a transaction
locks all objects on its path until it commits

Why is this a problem for B-tree update?

With Strict Two-Phase Locking, a transaction
locks all objects on its path until it commits

Why is this a problem for B-tree update”?

Lots of locking contention at root and
upper levels

With Strict Two-Phase Locking, a transaction
locks all objects on its path until it commits

Why is this a problem for B-tree update”?

Lots of locking contention at root and
upper levels

Any solutions?

What must we lock at minimum to ensure correctness?

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

get(x)

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

O get(x) doesn’t find x
OO :

/NP

D0 O

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

Double shared locks
solve the problem

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

Once we hold lock on child,
71\ release lock on parent

ODO@

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

put(x)

Notfull _ » ¥\

)

%

S
O

Not full

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

put(x)

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

put(x) O Full

Notfull ¥ & ¥ %

(©)
Y
Target O

Not full

Y ¥\

O

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

put(x) O Full

Notfull ¥ & ¥ %

(€)

Y ¥\ v ¥

wo@ O OO

Not full

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

pa
<4+

@ O C

Not full

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

put(x)
'

ONot Full

LN

oL

Y ¥\

¥
O O Target

Full

v

o

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

put(x)
'

Not Full

LN

Full

Y ¥\

¥
O O Target

Full

v

o

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Not Fugut(x)
¥\ \ Full

Y ¥\

¥
O O Target

Full

v

o

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Not Fugut(x)
¥\ \ Full

Y ¥\

.

Full

v

o

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Not Full

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Not Full

LN

Full

73\ Split

OO0® T

v

o

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Not Full

Full
@ +— Upgrade lock

Y ¥\

b () Target

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Upgrade lock

/

Not Full

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Protocol known as Lock-Coupling, or Crabbing

Protocol known as Lock-Coupling, or Crabbing

Shows that while strict two-phase locking is correct, it
can sometimes be relaxed while maintaining correctness

Thanks!

