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Updating a Page Out-of-Place

Erase Unit
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Mark the original page as invalid (using a bitmap)

Copy updated page to erase unit with free space Flash chip

Invalid
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Garbage-Collection

Copy live pages to an erase unit with free space. 


Find the erase unit with the least live data left.

Erase the block
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Over-Provisioning

So invalid pages can accumulate to cheapen garbage-collection


SSD physical capacity must be greater than logical capacity

Flash chip
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DFTL: a flash translation layer employing 
demand-based selective caching of 

page-level address mappings

ACM SIGPLAN Notices 2009

Alternative 2: Store Page Mapping in Flash & Cache Parts
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Buffer pool 
(LRU/Clock)Downsides?

(2) writes may cost more due 
to buffer pool evictions

Random I/Os

Sequential writes

(1) read costs 2 I/Os if 
mapping page isn’t cached
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FTL implementation is opaque

Block device 
interface

Applications 

FTL

Black box

SSD

Hard to reason about performance outcomes given random SSD
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Zoned Namespaces (ZNS)

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5

Applications write a zone sequentially

SSD performs no garbage-collection, 
mapping is small, and no over-
provisioning

& later deletes it

Restrictive & application has to 
essentially implement FTL
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Key-Value SSDs

SSD

Circular log or 
LSM-tree

No data movement or CPU for 
compaction or circular log garbage-

collection

Reduces SSD over-provisioning



Spooky
Granulating LSM-Tree Compactions Correctly 

VLDB 2022

Tamar Weiss, Shmuel Dashevsky, Michael Pan,  
Edward Bortnikov, Moshe Twitto              Pliops

Niv Dayan*   
University of Toronto      



Spooky
Getting LSM-trees right on SSDs 



Google BigTable

Amazon DynamoDB
Facebook RocksDB

…

Apache Cassandra

LSM-Tree

GraphsOLTP

AnalyticsTime series
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Problem 1: non-intersecting entries increase write-amplification
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Problem 2:   many small simultaneous compactions

files live 

longer

Garbage-collection
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Spooky’s intuition

(space optimized)
Partial Merge

(write optimized)
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2. Partition largest two level 
into matching pairs of files 

1. Full merge at up to second largest level

Sorted order within a level



3. Merge one 
partition at a time

2. Partition largest two level 
into matching pairs of files 

Spooky

1. Full merge at up to second largest level
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Spooky

space-amplification

write-amplification



boo!

And now, a student 
presentation


