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A page is the minimum read/write unit Flash chip

Pages must be written sequentially in an erase unit

All data in an erase unit is erased at the same time

Each erase unit has a lifetime (1-10K erases)

Erase Unit
Reading a page takes approx 50 us (1MB-1GB)
/ N\
Writing a page takes approx 100-200 us Page
(4-16 KB)
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Updating a Page Out-of-Place

Copy updated page to erase unit with free space Flash chip
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Updating a Page Out-of-Place

Copy updated page to erase unit with free space Flash chip

Mark the original page as invalid (using a bitmap)
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Garbage-Collection

Flash chip

Find the erase unit with the least live data left.




Garbage-Collection

Flash chip
. L . A B
Find the erase unit with the least live data left. /—\\

Copy live pages to an erase unit with free space.
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Garbage-Collection

Flash chip

A B
Find the erase unit with the least live data left.

Copy live pages to an erase unit with free space.

Erase the block




Over-Provisioning

Flash chip

SSD physical capacity must be greater than logical capacity

So invalid pages can accumulate to cheapen garbage-collection




And now to new things :)
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Problem: the mapping table is large

!

SRAM /
DRAM

10

11

12

13

14

15

16

17

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30




Problem: the mapping table is large

e.g., 1TB SSD with 4KB
pages requires 1GB
mapping table
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Problem: the mapping table is large

e.g., 1TB SSD with 4KB
pages requires 1GB
mapping table

Doesn’t sound like a lot but...
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bit flips due to charge leakage
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Static RAM (SRAM)
No refreshing

More energy efficient

Less error prone
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Dynamic RAM (DRAM)

Requires refreshing even when idle

More power hungry

bit flips due to charge leakage
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Shorter lifespan
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Static RAM (SRAM)
No refreshing

More energy efficient

Less error prone
Longer lifespan

$1000 per GB

Dynamic RAM (DRAM)

Requires refreshing even when idle

More power hungry

bit flips due to charge leakage
(requires error correction codes)

Shorter lifespan

$5 per GB



Problem: the mapping table is large

e.g., 1TB SSD with 4KB
pages requires 1GB
mapping table

Doesn’t sound like a lot but...
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e.g., 1TB SSD with 4KB
pages requires 1GB
mapping table

Can store in host to

save space
(High-end SSDs)

mapping table

Host
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Alternative 1: use block mapping
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Alternative 1: use block mapping

FAST: A log buffer-based
flash translation layer using
fully-associative sector
translation

TECS 2007.
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Store updates
In log blocks
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log blocks use page mapping. There are few of them

Log
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Downsides?
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Downsides”?

Coupling between
mapping table and GC.
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Downsides”?

Coupling between
mapping table and GC.

One log block can
have updates from
different data blocks,
leading to long GC
process that rewrites
many blocks
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Downsides”?

Coupling between

mapping table and GC.

Sequential writes

Random writes

)
0

Better ideas? :)
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Alternative 2: Store Page Mapping in Flash & Cache Parts
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Alternative 2: Store Page Mapping in Flash & Cache Parts

Flash
chip

DFTL: a flash translation layer employing

demand-based selective caching of

page-level address mappings

ACM SIGPLAN Notices 2009

SSD
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Flash
chip

Buffer pool
frequently accessed mapping pages

(LRU/Clock)
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Buffer pool Flash

ides?
Downsides: (LRU/Clock) chip

(1) read costs 2 |/Os if

mapping page isn’t cached

(2) writes may cost more due

to buffer pool evictions

Random I/O0s

Sequential writes lﬁ




FTL implementation is opaque

Applications Black box
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FTL implementation is opaque

Applications Black box

Block device -
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Hard to reason about performance outcomes given random SSD
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Zoned Namespaces (ZNS)

Zone 1
Zone 2
Zone 3
Zone 4

Zone 5
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Zoned Namespaces (ZNS)

Applications write a zone sequentially

& later deletes it Zone 1
Zone 2
SSD performs no garbage-collection, Zone 3

mapping is small, and no over- Zone 4

provisioning 7one 5

Restrictive & application has to
essentially implement FTL
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Key-Value SSDs

No data movement or CPU for
compaction or circular log garbage-
collection

Circular log or

Reduces SSD over-provisioning LSM-tree

SSD



Spooky

Granulating LSM-Tree Compactions Correctly

Niv Dayan* Tamar Weiss, Shmuel Dashevsky, Michael Pan,
University of Toronto Edward Bortnikov, Moshe Twitto Pliops

VLDB 2022



Spooky
Getting LSM-trees right on SSDs
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only sequential writes

write-amplification
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Compaction policy
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Compaction Granularity
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Compaction Granularity

Full Merge Partial Merge

=

o0

/(s" M ¥ RocksDB
(W . o
cassandra ww levelDB



Full Merge

Merge consecutive full levels into first non-full level




Full Merge

Merge consecutive full levels into first non-full level

Problem?
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1. split runs into many files (SSTs) in each level
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Sorted order within a level
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Partial Merge

Problem 1: non-intersecting entries increase write-amplification
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Problem 2: many small simultaneous compactions
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Partial Merge
Problem 2: many small simultaneous compactions
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Log-structured writes




Partial Merge

Problem 2: many small simultaneous compactions

]

Garbage-collection

files live
longer
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Spooky: partitioned compaction for key-value stores
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Spooky’s intuition
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Spooky’s intuition

Full merge
(write optimized)

I Partial Merge
(space optimized)



Spooky

1. Full merge at up to second largest level

2. Partition largest two level
Into matching pairs of files

Sorted order within a level



Spooky

1. Full merge at up to second largest level

2. Partition largest two level
iInto matching pairs of files

3. Merge one
partition at a time
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And now, a student
presentation



