
Niv Dayan - CSC2525: Research Topics in Database Management

Advanced Storage
(Flash translation layers, SSD garbage-collection)

SSD &
FTLs Spooky

Zoned
Namespaces /

KV SSDs

Shingled
Magnetic Disks

s

SSD Review

SSD Review

Flash chip 1 Flash chip N…

Erase Unit
(1MB-1GB)

Page
(4-16 KB)

Flash chip

Erase Unit
(1MB-1GB)

Page
(4-16 KB)

A page is the minimum read/write unit

A page is the minimum read/write unit

Erase Unit
(1MB-1GB)

Page
(4-16 KB)

Pages must be written sequentially in an erase unit

Flash chip

Erase Unit
(1MB-1GB)

Page
(4-16 KB)

A page is the minimum read/write unit

Pages must be written sequentially in an erase unit

All data in an erase unit is erased at the same time

Flash chip

Erase Unit
(1MB-1GB)

Page
(4-16 KB)

Each erase unit has a lifetime (1-10K erases)

A page is the minimum read/write unit

Pages must be written sequentially in an erase unit

All data in an erase unit is erased at the same time

Flash chip

Reading a page takes approx 50 us

Writing a page takes approx 100-200 us

Erase Unit
(1MB-1GB)

Page
(4-16 KB)

≠

Each erase unit has a lifetime (1-10K erases)

A page is the minimum read/write unit

Pages must be written sequentially in an erase unit

All data in an erase unit is erased at the same time

Flash chip

Updating a Page Out-of-Place

Copy updated page to erase unit with free space

Erase Unit
(1MB-1GB)

Page
(4-16 KB)

Flash chip

Updating a Page Out-of-Place

Erase Unit
(1MB-1GB)

Mark the original page as invalid (using a bitmap)

Copy updated page to erase unit with free space Flash chip

Invalid

Garbage-Collection

Find the erase unit with the least live data left.

Flash chip

A B

Garbage-Collection

Copy live pages to an erase unit with free space.

Find the erase unit with the least live data left.

Flash chip

A B

A B

Garbage-Collection

Copy live pages to an erase unit with free space.

Find the erase unit with the least live data left.

Erase the block

Flash chip

A B

Over-Provisioning

So invalid pages can accumulate to cheapen garbage-collection

SSD physical capacity must be greater than logical capacity

Flash chip

And now to new things :)

Flash chip

page mapping table

Flash chip

Physical
page

Logical
page

0
1
2
3

X
…

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

Flash chip

page mapping table

Physical
page

6

28

Logical
page

0
1
2
3

X
…

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

page mapping table

Physical
page

6

28

Logical
page

0
1
2
3

X
…

1

3

page mapping table

mapping
table

Garbage-
collection

Wear-
Leveling

Error-
Correction

Over-
Provisioning

Flash translation layer (FTL)

Flash

SSD

Flash
translation
layer (FTL)

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

Flash

SSD

Flash
translation
layer (FTL)

Block device
interface

Lo
gi

ca
l p

ag
e

ad
dr

es
se

s

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

Flash

SSD

Flash
translation
layer (FTL)

Block device
interface

Lo
gi

ca
l p

ag
e

ad
dr

es
se

s
Applications

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

SRAM /
DRAM

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

Problem: the mapping table is large

SRAM /
DRAM

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

Problem: the mapping table is large

e.g., 1TB SSD with 4KB
pages requires 1GB

mapping table

SRAM /
DRAM

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

Problem: the mapping table is large

e.g., 1TB SSD with 4KB
pages requires 1GB

mapping table

Doesn’t sound like a lot but…

Static RAM (SRAM) Dynamic RAM (DRAM)

Static RAM (SRAM)

No refreshing Requires refreshing even when idle

Dynamic RAM (DRAM)

Static RAM (SRAM)

No refreshing Requires refreshing even when idle

More energy efficient More power hungry

Dynamic RAM (DRAM)

Static RAM (SRAM)

No refreshing Requires refreshing even when idle

More energy efficient More power hungry

Less error prone bit flips due to charge leakage
(requires error correction codes)

Dynamic RAM (DRAM)

Static RAM (SRAM)

No refreshing Requires refreshing even when idle

More energy efficient More power hungry

Less error prone bit flips due to charge leakage
(requires error correction codes)

Shorter lifespan Longer lifespan

Dynamic RAM (DRAM)

Static RAM (SRAM) Dynamic RAM (DRAM)

No refreshing Requires refreshing even when idle

More energy efficient More power hungry

Less error prone bit flips due to charge leakage
(requires error correction codes)

Shorter lifespan Longer lifespan

$1000 per GB $5 per GB

SRAM /
DRAM

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

Problem: the mapping table is large

e.g., 1TB SSD with 4KB
pages requires 1GB

mapping table

Doesn’t sound like a lot but…

SSD

DRAM

Host

Can store in host to
save space

(High-end SSDs)

mapping table

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

e.g., 1TB SSD with 4KB
pages requires 1GB

mapping table

Flash
chip

Physical
block

SSD

SRAM /
DRAM

Block
ID

0
1
2
3
4
5

Alternative 1: use block mapping

Logical
block

0
1
2
3

X
…

Flash
chip

Physical
block

SSD

SRAM /
DRAM

Block
IDFAST: A log buffer-based

flash translation layer using
fully-associative sector

translation
TECS 2007.

Alternative 1: use block mapping

Logical
block

0
1
2
3

X
…

0
1
2
3
4
5

Flash
chip

Physical
block

SSD

SRAM /
DRAM

Block
ID

4

0 1 2 3 4 5

Logical
block

0
1
2
3

X
…

0
1
2
3
4
5

0 1 2 3 4 5

Flash
chip

Physical
block

SSD

SRAM /
DRAM

Block
ID

4
2

6 7 8 9 10 11

Logical
block

0
1
2
3

X
…

0
1
2
3
4
5

Flash
chip

Physical
block

SSD

SRAM /
DRAM

Block
ID

Log

4Store updates
in log blocks

Logical
block

0
1
2
3

X
… 0 1 2 3 4 5

6 7 8 9 10 11

2 48

0
1
2
3
4
5

2

…

Flash
chip

SSD

Block
ID

log blocks use page mapping. There are few of them

Log
mapping

Log

2
8
4

Physical
block

0 1 2 3 4 5

6 7 8 9 10 11

2 48

0
1
2
3
4
5

Flash
chip

Logical
block

Physical
block

0
1
2
3

X
…

SSD

SRAM /
DRAM

Block
ID

4When log block
fills up, merge

Log
0 1 2 3 4 5

6 7 8 9 10 11

2 48 10 5 0

0
1
2
3
4
5

2

Flash
chip

Logical
block

Physical
block

0
1
2
3

X
…

SSD

SRAM /
DRAM

Block
ID

When log block
fills up, merge

Log

4

0 1 2 3 4 5

6 7 8 9 10 11

2 48 10 5 0

0
1
2
3
4
5

2

Flash
chip

Logical
block

Physical
block

0
1
2
3

X
…

SSD

SRAM /
DRAM

Block
ID

When log block
fills up, merge

Log

3

0 1 2 3 4 5

6 7 8 9 10 11

2 48 10 5 0

0 1 2 3 4 5

0
1
2
3
4
5

2

Flash
chip

Logical
block

Physical
block

0
1
2
3

X
…

SSD

SRAM /
DRAM

Block
ID

When log block
fills up, merge

Log

3

6 7 8 9 10 11

2 48 10 5 0

0
1
2
3
4
5

2

0 1 2 3 4 5

Flash
chip

Logical
block

Physical
block

0
1
2
3

X
…

SSD

SRAM /
DRAM

Block
ID

When log block
fills up, merge

3

6 7 8 9 10 11

2 48 10 5 0

2

0 1 2 3 4 5

Log

0
1
2
3
4
5

Flash
chip

Logical
block

Physical
block

0
1
2
3

X
…

SSD

SRAM /
DRAM

Block
ID

When log block
fills up, merge

Log

3

6 7 8 9 10 11

2 48 10 5 0
6 7 8 9 10 11

0
1
2
3
4
5

2

0 1 2 3 4 5

Flash
chip

Logical
block

Physical
block

0
1
2
3

X
…

SSD

SRAM /
DRAM

Block
ID

Downsides?
3

6 7 8 9 10 11

0
1
2
3
4
5

2

0 1 2 3 4 5

Flash
chip

Logical
block

Physical
block

0
1
2
3

X
…

SSD

SRAM /
DRAM

Block
ID

Downsides?
Coupling between

mapping table and GC.

3

6 7 8 9 10 11

0
1
2
3
4
5

2

0 1 2 3 4 5

Flash
chip

Logical
block

Physical
block

0
1
2
3

X
…

SSD

SRAM /
DRAM

Block
ID

Downsides?
Coupling between

mapping table and GC.

One log block can
have updates from

different data blocks,
leading to long GC

process that rewrites
many blocks

3

6 7 8 9 10 11

0
1
2
3
4
5

2

0 1 2 3 4 5

Flash
chip

Physical
block

SSD

SRAM /
DRAM

Block
ID

Downsides?
Coupling between

mapping table and GC.

Random writes

Sequential writes

3

6 7 8 9 10 11

0
1
2
3
4
5

2

0 1 2 3 4 5

Flash
chip

Physical
block

SSD

SRAM /
DRAM

Block
ID

Downsides?
Coupling between

mapping table and GC.

Random writes

Sequential writes

3

6 7 8 9 10 11

0
1
2
3
4
5

2

0 1 2 3 4 5

Better ideas? :)

Alternative 2: Store Page Mapping in Flash & Cache Parts

Flash
chip

SSD

Flash
chip

SSD

DFTL: a flash translation layer employing
demand-based selective caching of

page-level address mappings

ACM SIGPLAN Notices 2009

Alternative 2: Store Page Mapping in Flash & Cache Parts

Flash
chip

SSD
…

…

0-15

240-256

Logical mapping range

…

Flash
chip

SSD

4

9

241…
…

…

0-15

240-256

Logical mapping range

Flash
chip

SSD

Stored in flash

…
…

…

Flash
chip

Flash
chip

Buffer pool
frequently accessed mapping pages

(LRU/Clock)

Flash
chip

Buffer pool
(LRU/Clock)Downsides?

Flash
chip

Buffer pool
(LRU/Clock)Downsides?

(1) read costs 2 I/Os if
mapping page isn’t cached

Flash
chip

Buffer pool
(LRU/Clock)Downsides?

(2) writes may cost more due
to buffer pool evictions

(1) read costs 2 I/Os if
mapping page isn’t cached

Flash
chip

Buffer pool
(LRU/Clock)Downsides?

(2) writes may cost more due
to buffer pool evictions

Random I/Os

Sequential writes

(1) read costs 2 I/Os if
mapping page isn’t cached

FTL implementation is opaque

Block device
interface

Applications

FTL

Black box

SSD

FTL implementation is opaque

Block device
interface

Applications

FTL

Black box

SSD

Hard to reason about performance outcomes given random SSD

FTL Downsides

Memory
overhead for

mapping table

Storage space
for over-

provisioning
I/O & lifetime for

garbage-collection

Zoned Namespaces (ZNS)

Zoned Namespaces (ZNS)

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5

Zoned Namespaces (ZNS)

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5

Applications write a zone sequentially

& later deletes it

Zoned Namespaces (ZNS)

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5

Applications write a zone sequentially

SSD performs no garbage-collection,
mapping is small, and no over-
provisioning

& later deletes it

Zoned Namespaces (ZNS)

Zoned Namespaces (ZNS)

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5

Applications write a zone sequentially

SSD performs no garbage-collection,
mapping is small, and no over-
provisioning

& later deletes it

Restrictive & application has to
essentially implement FTL

Key-Value SSDs

Applications

SSD

KV-value reads/
writes

Circular log or
LSM-tree

Key-Value SSDs

SSD

Circular log or
LSM-tree

No data movement or CPU for
compaction or circular log garbage-

collection

Reduces SSD over-provisioning

Spooky
Granulating LSM-Tree Compactions Correctly

VLDB 2022

Tamar Weiss, Shmuel Dashevsky, Michael Pan,
Edward Bortnikov, Moshe Twitto Pliops

Niv Dayan*
University of Toronto

Spooky
Getting LSM-trees right on SSDs

Google BigTable

Amazon DynamoDB
Facebook RocksDB

…

Apache Cassandra

LSM-Tree

GraphsOLTP

AnalyticsTime series

LSM-Tree
1 3 6

buffer

2 4 5

merge

1 2 3 4 5 6

data

LSM-Tree
1 3 6

2 4 5

1 2 3 4 5 6

only sequential writes

data

LSM-Tree
1 3 6

2 4 5

1 2 3 4 5 6

only sequential writes
write-amplification

data

LSM-Tree
1 3 6

2 4 5

1 2 3 4 5 6

only sequential writes
write-amplification

data

O(Log N)

Storage-utilization (%)

100

50

0
0 50 100

storage utilization (%)

w
rit

e-
am

pl
ifi

ca
tio

n

Expectation

Storage-utilization (%)

100

50

0
0 50 100

storage utilization (%)

w
rit

e-
am

pl
ifi

ca
tio

n

Expectation
What we observe

key-value pairs

LSM-Tree

buffer

key-value pairs

LSM-Tree

level 1

level 2

level 3

buffer

LSM-Tree

level 1

level 2

level 3

buffer

sort & flush run

LSM-Tree

level 1

level 2

level 3

buffer

sort-merge

read(X)

newest to
oldest Xnew

X

pointers

Df

Df

one access per run

read(X)

pointers

Df

Df

Bloom
filters

X

Df

Df

skip runs

read(X)

Df

Df

Compaction policy

Compaction policy

Eagerness Read-

optimized

Write-

optimized

Compaction policy

Read-

optimized

Write-

optimized

2, 5

1, 3, 6, 8

1, 2, 3, 5, 6, 8, 9

3 1

2, 7 1, 5

1, 3, 6, 7 2, 3, 5, 9

Eagerness

Tiering Leveling

Compaction policy

Eagerness

G
ra

nu
la

rit
y

Compaction Granularity

Full Merge Partial Merge

Full Merge Partial Merge

Compaction Granularity

level 1

level 2

level 3

level 4

Merge consecutive full levels into first non-full level

Full Merge

level 1

level 2

level 3

level 4

Merge consecutive full levels into first non-full level

Full Merge

Problem?

level 1

level 2

level 3

level 4 2x space-amp during merge

Merge consecutive full levels into first non-full level

Full Merge

Full Merge Partial Merge

Partial Merge

Sorted order within a level

A B C D E

level 1

level 2

level 3

1. split runs into many files (SSTs) in each level

2. When a level is full, pick SST with smallest intersection into next level

3. choose SST to merge based on least intersection

Partial Merge

level 1

level 2

level 3

1. split runs into many files (SSTs) in each level

2. When a level is full, pick SST with smallest intersection into next level

3. choose SST to merge based on least intersection

Partial Merge

level 1

level 2

level 3

1. split runs into many files (SSTs) in each level

2. When a level is full, pick SST with smallest intersection into next level

3. choose SST to merge based on least intersection

Problem?

Partial Merge

2, 4 5, 7 8, 9

4, 8

Problem 1: non-intersecting entries increase write-amplification

Partial Merge

Problem 2: many small simultaneous compactions

files live
longer

level 1

level 2

level 3

Partial Merge

Problem 2: many small simultaneous compactions

files live
longer

level 1

level 2

level 3

Log-structured writes

Partial Merge

Problem 2: many small simultaneous compactions

files live

longer

Garbage-collection

space amplification write amplification

Partial MergeaFull Mergea

Storage-utilization (%)
1000

write
amplification

100

0
aFull Mergea

Partial Merge

Storage-utilization (%)
1000

aFull Mergea

anyone here?

write
amplification

100

0

Partial Merge

Spooky

 pooky: _artitioned c_mpaction f_r _e_-value storesS p o o k y

Df

Spooky’s intuition

transient
space amplification

Df

Spooky’s intuition

transient

space amplification

write
amplification

=

=

=

=

Df

Spooky’s intuition

write
amplification

=

=

=

= transient

space amplification

xR

Df

Spooky’s intuition

write

amplification

transient

space amplification

xR

+R

+R

+R

+R

O(R · logR(N)

Df

Spooky’s intuition

(write optimized)
Full merge

Df

Spooky’s intuition

(space optimized)
Partial Merge

(write optimized)
Full merge

Spooky

2. Partition largest two level
into matching pairs of files

1. Full merge at up to second largest level

Sorted order within a level

3. Merge one
partition at a time

2. Partition largest two level
into matching pairs of files

Spooky

1. Full merge at up to second largest level

PartialSpookyFull

NegligibleModestHigh

space-amplification

PartialSpookyFull

Partial

Spooky

Full

time (hours)
0 15

800

0

Physical
space (GB)

HighestLowest

compaction
write amplification

PartialSpookyFull

Modest

time (hours)
0 24

20

0

Partial

Spooky
Fullcompaction

write amplification

Unbounded2-31

Simultaneous compactions

PartialSpookyFull

Partial

Spooky

Full

3

0

Garbage Collection
write amplification

0 24

time (hours)

Partial

Spooky

Full

60

0
time (hours)

0
24

Total
write amplificationX =

3

0
0 24

time (hours)

Compaction
write amplification

time (hours)
0 24

20

0

Partial

Spooky

Full

Garbage Collection

write amplification

Partial

Spooky

Full

Storage-utilization (%)
1000

100

0to
ta

l w
rit

e
am

pl
ifi

ca
tio

n

Spooky

space-amplification

write-amplification

boo!

And now, a student
presentation

