/4

AQE

Advanced Sto

(Flash translation layers, SSD garbage-collection)

N B N
25: Research Topics in Database :Managem
\ R - '

| ‘ g \
/(¥ \\\/K
nt

Niv Dayan - CS -
\ ‘\ ' ‘.
\ ¢ | ol

SSDs &
FTLs

-0

Zoned
Namespaces /
KV SSDs

Spooky

Shingled
Magnetic Disks

SSD Review

SSD Review

K Flash chip 1 Flash chip N \
Erase Unit
(1IMB-1GB) |
/ AN
Page
(4-16 KB)
_ /

A page is the minimum read/write unit Flash chip

Erase Unit h

(1MB-1GB)

/ N\
Page
(4-16 KB)

A page is the minimum read/write unit Flash chip

Pages must be written sequentially in an erase unit

Erase Unit h
(1I\/IB-1GB)/
/ AN
Page

(4-16 KB)

A page is the minimum read/write unit Flash chip

Pages must be written sequentially in an erase unit

All data in an erase unit is erased at the same time

&

' 4

Erase Unit h

(1MB-1GB) |

/ N\
Page
(4-16 KB)

A page is the minimum read/write unit Flash chip

Pages must be written sequentially in an erase unit

All data in an erase unit is erased at the same time

-

]

Each erase unit has a lifetime (1-10K erases) —
Erase Unit
(1IMB-1GB) |
/ N\
Page

(4-16 KB)

A page is the minimum read/write unit Flash chip

Pages must be written sequentially in an erase unit

All data in an erase unit is erased at the same time

Each erase unit has a lifetime (1-10K erases)

Erase Unit
Reading a page takes approx 50 us (1MB-1GB)
/ N\
Writing a page takes approx 100-200 us Page
(4-16 KB)

N

Updating a Page Out-of-Place

Copy updated page to erase unit with free space Flash chip

mbi

Erase Unit h
(1I\/IB-1GB)/

/ N\
Page
(4-16 KB)

Updating a Page Out-of-Place

Copy updated page to erase unit with free space Flash chip

Mark the original page as invalid (using a bitmap)

Erase Unit h
(1I\/IB-1GB)/

1

Invalid

Garbage-Collection

Flash chip

Find the erase unit with the least live data left.

Garbage-Collection

Flash chip
. L . A B
Find the erase unit with the least live data left. /—\\

Copy live pages to an erase unit with free space.

X

Garbage-Collection

Flash chip

A B
Find the erase unit with the least live data left.

Copy live pages to an erase unit with free space.

Erase the block

Over-Provisioning

Flash chip

SSD physical capacity must be greater than logical capacity

So invalid pages can accumulate to cheapen garbage-collection

And now to new things :)

Flash chip

page mapping table

l Flash chip

page mapping table

Logical
page

0

1
2
3

Physical
page

Flash chip

1

2

3

4

/

3

9

10

11

12

13

14

15

16

17

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

page mapping table

Logical Physical
page page

0

LWL NN =

page mapping table

Logical Physical
page page

3
2
3

mapping
table

A

Garbage-
collection

]

Flash translation layer (FTL)

Wear-
Leveling

n

Error-
Correction

AN

Over-
Provisioning

Flash
translation

layer (FTL) « EE».

k
\4’/

>

AN

SSD

Block device
Interface

Flash
translation

layer (FTL)

Logical page addresses

SSD

Block device
Interface

Flash
translation

Applications /

layer (FTL)

Logical page addresses

SSD

Problem: the mapping table is large

!

SRAM /
DRAM

10

11

12

13

14

15

16

17

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Problem: the mapping table is large

e.g., 1TB SSD with 4KB
pages requires 1GB
mapping table

SRAM /
DRAM

10

11

12

13

14

15

16

17

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Problem: the mapping table is large

e.g., 1TB SSD with 4KB
pages requires 1GB
mapping table

Doesn’t sound like a lot but...

SRAM /
DRAM

10

11

12

13

14

15

16

17

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

T

:,:af//////////////;//‘ 1/////////////////////////////III/IIIIIIII/IIII

Stati
atic RAM (SRAM) Dynamic RAM (DRAM)

y v
! __.,..- -

el .f,',_j.;:.:-;.;.-.-.- iy ////////////////////////I/II/I//II/II/II/IIIIIII

Stati
atic RAM (SRAM) Dynamic RAM (DRAM)

No refreshi '
ing Requires refreshing even when idle

/ —
o "‘JI 22T ot A

o 'j_i;-:-:E;r;;-:-:-:':.::5'::::5':.?;47///////////////'}//' ’I///////I////////I//I///IIII/IIIII/II/II/IIIIIII

Stati
ic RAM (SRAM) Dynamic RAM (DRAM)
No ref | |
reshing Requires refreshing even when idle

More energy efficient More power hungry

!\\' iz
--------u-

Static RAM (SRAM)
No refreshing

More energy efficient

Less error prone

Dynamic RAM (DRAM)

Requires refreshing even when idle

More power hungry

bit flips due to charge leakage
(requires error correction codes)

!\\' iz
--------u-

Static RAM (SRAM)
No refreshing

More energy efficient

Less error prone

Longer lifespan

Dynamic RAM (DRAM)

Requires refreshing even when idle

More power hungry

bit flips due to charge leakage
(requires error correction codes)

Shorter lifespan

z/'/"""'”“""' f

(/'5'(!__""J {2
-.------.-

Static RAM (SRAM)
No refreshing

More energy efficient

Less error prone
Longer lifespan

$1000 per GB

Dynamic RAM (DRAM)

Requires refreshing even when idle

More power hungry

bit flips due to charge leakage
(requires error correction codes)

Shorter lifespan

$5 per GB

Problem: the mapping table is large

e.g., 1TB SSD with 4KB
pages requires 1GB
mapping table

Doesn’t sound like a lot but...

SRAM /
DRAM

10

11

12

13

14

15

16

17

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

e.g., 1TB SSD with 4KB
pages requires 1GB
mapping table

Can store in host to

save space
(High-end SSDs)

mapping table

Host

SSD

Alternative 1: use block mapping

Logical
block

0

3
2
3

Physical
block

SRAM /
DRAM

Block
ID

0

oo H~ W DD =

SSD

Flash
chip

Alternative 1: use block mapping

FAST: A log buffer-based
flash translation layer using
fully-associative sector
translation

TECS 2007.

Logical
block

0

3
2
3

Physical
block

SRAM /
DRAM

Block
ID

0

oo H~ W DD =

SSD

Flash
chip

Logical Physical Block Flash

block block 1D, chip
0 0
1 1
2 2
3 3
4 0(1/2|3
X 5

SSD

Logical Physical Block Flash

block block 1D, chip
0 0
1 1
2 2 6/78|9
3 3
4 0(1/2|3
X 5

SSD

Store updates
In log blocks

Logical
block

Physical
block

SRAM /
DRAM

Block

Log

SSD

1D

g ~ W D =

Flash
chip

10

11

log blocks use page mapping. There are few of them

Log
mapping

Block Flash
D chip
0
1
2 |6|7|8]910/11
3
4 |0 1)2(3 5
Log5 |2|8|4

SSD

Logical Physical Block Flash

block block 1D, chip
When log block 0 0
fills up, merge 1 1
2 2 6|7/|B]9 [}
3 3
4 %1 LE
X Log 5 218410
SRAM /
DRAM

SSD

Logical Physical Block Flash

block block 1D, chip
When log block 0 0
fills up, merge 1 1
2 2 6|7/|B]9 [}
3 3
4 %1 LE
X Log 5 2184 (10
SRAM /
DRAM

SSD

When log block
fills up, merge

Logical
block

0

3
2
3

Physical
block

SRAM /
DRAM

Block
1D

oo B~ W DD =

Log

SSD

Flash
chip

Logical Physical Block Flash

block block 1D chip
When log block 0 0
fills up, merge 1 1
2 2 6|7/|B]9 [}
3 3 |0|1]2]3
4
X Log 5 XB 10
SRAM /
DRAM

SSD

When log block
fills up, merge

Logical
block

0

3
2
3

Physical
block

SRAM /
DRAM

Block
1D

OO Ao W DD =

Log

SSD

Flash
chip

\NMK_

When log block
fills up, merge

Logical
block

0

3
2
3

Physical
block

SRAM /
DRAM

Block

Log

SSD

1D

OO Ao W DD =

Flash
chip

10

11

\NMK_

Downsides?

Logical
block

0

LWL NN =

Physical
block

SSD

Block

1D

oo H~ W DD =

Flash
chip

Downsides”?

Coupling between
mapping table and GC.

Logical
block

0

LWL NN =

Physical
block

SSD

Block

1D

oo H~ W DD =

Flash
chip

Downsides”?

Coupling between
mapping table and GC.

One log block can
have updates from
different data blocks,
leading to long GC
process that rewrites
many blocks

Logical
block

0

LWL NN =

Physical
block

SSD

Block

1D

oo H~ W DD =

Flash
chip

Downsides”?

Coupling between

mapping table and GC.

Sequential writes

Random writes

)
0

Physical
block

SSD

Block
1D

Downsides”?

Coupling between

mapping table and GC.

Sequential writes

Random writes

)
0

Better ideas? :)

Physical
block

SSD

Block
1D

Alternative 2: Store Page Mapping in Flash & Cache Parts

Flash
chip

SSD

Alternative 2: Store Page Mapping in Flash & Cache Parts

Flash
chip

DFTL: a flash translation layer employing

demand-based selective caching of

page-level address mappings

ACM SIGPLAN Notices 2009

SSD

Flash
Logical mapping range chip

0-15

240-256

SSD

Flash

Logical mapping range chip
/—__\
0-15 4
241
240-256
9

SSD

Flash

Stored in flash .
chip

SSD

Flash
chip

Flash
chip

Buffer pool
frequently accessed mapping pages

(LRU/Clock)

Buffer pool Flash

ides?
Downsides (LRU/Clock) chip

Buffer pool Flash

ides?
Downsides™ (LRU/Clock) oo

(1) read costs 2 I/Os if

mapping page isn’t cached

Buffer pool Flash

ides?
Downsides (LRU/Clock) chip

(1) read costs 2 I/Os if

mapping page isn’t cached

(2) writes may cost more due

to buffer pool evictions

Buffer pool Flash

ides?
Downsides: (LRU/Clock) chip

(1) read costs 2 |/Os if

mapping page isn’t cached

(2) writes may cost more due

to buffer pool evictions

Random I/O0s

Sequential writes lﬁ

FTL implementation is opaque

Applications Black box

Block device -
—_)
— — Gl — (ss0]

FTL implementation is opaque

Applications Black box

Block device -
—>
— — G — (=]

Hard to reason about performance outcomes given random SSD

Memory
overhead for
mapping table

=

FTL Downsides

Storage space
for over-
provisioning

—~ '

— '

I/0 & lifetime for
garbage-collection

S0

I0.0_O-

Zoned Namespaces (ZNS)

Zoned Namespaces (ZNS)

bd‘ =] ‘-- — ‘e .

EiE BN u W
' Dgta Streom

smEEnn
EREEn
-EEER
gounan
SopER

Zoned Namespaces (ZNS)

Zone 1
Zone 2
Zone 3
Zone 4

Zone 5

Zoned Namespaces (ZNS)

Applications write a zone sequentially

& later deletes it Zone 1
Zone 2

Zone 3
Zone 4

one 5

Zoned Namespaces (ZNS)

Applications write a zone sequentially

& later deletes it Zone 1
Zone 2
SSD performs no garbage-collection, Zone 3

mapping is small, and no over- Zone 4

provisioning 7one 5

Zoned Namespaces (ZNS)

Applications write a zone sequentially

& later deletes it Zone 1
Zone 2
SSD performs no garbage-collection, Zone 3

mapping is small, and no over- Zone 4

provisioning 7one 5

Restrictive & application has to
essentially implement FTL

Key-Value SSDs

T KV-value reads/ Circular log or
lications —_—— T
Applicatl writes LSM-tree

SSD

Key-Value SSDs

No data movement or CPU for
compaction or circular log garbage-
collection

Circular log or

Reduces SSD over-provisioning LSM-tree

SSD

Spooky

Granulating LSM-Tree Compactions Correctly

Niv Dayan* Tamar Weiss, Shmuel Dashevsky, Michael Pan,
University of Toronto Edward Bortnikov, Moshe Twitto Pliops

VLDB 2022

Spooky
Getting LSM-trees right on SSDs

OLTP Graphs

o I

Time series Analytics

il @

LSM-Tree

Google BigTable
Amazon DynamoDB
Facebook RocksDB

Apache Cassandra

only sequential writes H

only sequential writes

write-amplification

only sequential writes

write-amplification
O(Log N)

write-amplification

100

50

Expectation

50
storage utilization (%)

100

write-amplification

100

50

Expectation

50
storage utilization (%)

100

| SM-Tree

'

key-value pairs # =
butfer

| SM-Tree

key-value pairs

v
buffer
o) level 1
o level 2
----------------------------------- level 3

~ 4

buffer

| SM-Tree

sort & flush .. run

~ 4

level T

| SM-Tree

sort-merge

read(X) #
}

® newest to <
oldest

read(X) # =

pointers one access per run

Compaction policy

Write- Read-

_optimized i |

L5ilR%)

Compaction policy

Write- Eagerness Read-
Ao, i

B (1) Tiering
27 15
1,867 2359 1,235689

Compaction policy

Eagerness

|
|
|
L

Granularity

Compaction Granularity

Full Merge Partial Merge

" R

Compaction Granularity

Full Merge Partial Merge

=

o0

/(s" M ¥ RocksDB
(W . o
cassandra ww levelDB

Full Merge

Merge consecutive full levels into first non-full level

Full Merge

Merge consecutive full levels into first non-full level

Problem?

~Full Merge

Merge consecutive full levels into first non-full level

Full Merge Partial Merge

Partial Merge

1. split runs into many files (SSTs) in each level

level T
level 2

A B C D E level 3

Sorted order within a level

Partial Merge

1. split runs into many files (SSTs) in each level

2. When a level is full, pick SST with smallest intersection into next level

level T

level 2

-’ ' -
.‘ ..
- N
- Ny

level 3

Partial Merge

1. split runs into many files (SSTs) in each level

2. When a level is full, pick SST with smallest intersection into next level

level T
level 2

-’ ' -
.‘ ..
- N
- Ny

level 3

Problem?

Partial Merge

Problem 1: non-intersecting entries increase write-amplification

4, 8
o’ S
o’ Vs
S 4 ~§
X 4 N
2, 4 5, 7 8, 9

|
------- I
' ~ ' ----- ~ ' ------ ~
I LI LI .
'\ I I !

Partial Merge
Problem 2: many small simultaneous compactions

level T

files live

longer level 2

level 3

Partial Merge
Problem 2: many small simultaneous compactions

level T

A"
LN~

files live

longer level 2

level 3

Log-structured writes

Partial Merge

Problem 2: many small simultaneous compactions

]

Garbage-collection

files live
longer

Full Merge Partial Merge

" R

space amplification write amplification

0 o

100

write
amplification
e
0 Full Merge
0 100

Storage-utilization (%)

100

write
amplification

Full Merge

0 100
Storage-utilization (%)

Spooky

Spooky: partitioned compaction for key-value stores

Spooky’s intuition

G e ifie
+ e ..
space amplification

Spooky’s intuition

write

emplification ~ (D
— transient
space amplification

Spooky’s intuition

write
amplification

transient
space amplification

T

Spooky’s intuition

write +R
amplification

+R
O(R - logr N) e D XA
+R :

transient

+R +— TIPY
space amplification

Spooky’s intuition

Full merge
(write optimized)

Spooky’s intuition

Full merge
(write optimized)

I Partial Merge
(space optimized)

Spooky

1. Full merge at up to second largest level

2. Partition largest two level
Into matching pairs of files

Sorted order within a level

Spooky

1. Full merge at up to second largest level

2. Partition largest two level
iInto matching pairs of files

3. Merge one
partition at a time

Full Spooky Partial
®

-]
0000 (ig

Full SPOOKY Partial

o}

TITe (I TI

Modest

Negligible

space-amplification

Physical

300

space (GB)

il

v
f

A

/}

Ll

/

Spooky

Wl

time (hours)

15

W Partial

" ',J,,, P RAmewY
DTN VMY

Full SPOOKY

- - @

G 0000
G - X X X
Lowest Modest

compaction

write amplification

]
o

Partial

Highest

20
Partial
Spooky
compaction Full
write amplification

time (hours)

Full SPOOKY Partial

e S
= M e

1 2-3 Unbounded

Simultaneous compactions

Garbage Collection
write amplification

Full

time (hours)

20

Compaction X Garbage Collection —
write amplification o

write amplification

24 0 24
time (hours) time (hours)

Total
write amplification

Partial

Spooky

Full

24
time (hours)

100

total write amplification

0 100
Storage-utilization (%)

Spooky write-amplification

O
O

space-amplification

And now, a student
presentation

