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Circular Log

Invented in 1992 as a “log structured file system”



Circular Log

File Systems Flash Translation 
Layers KV-stores

Invented in 1992 as a “log structured file system”



Index+LogVarious names, same data structure:

Circular Log

Log-structured Hash Table

log structured file system
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Log

Insert <X, V>

Index Buffer



Log

Index <X, V>

Append to log

(Unsorted)



Log <X, V>

Add mapping 
entries

<X, Q>

Block Q



<X1, V1>

X2

<X2, V2><X3, V3>

X3 X1



Write cost

Buffer

Log

Get cost
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(Assuming only insertions)



Write cost

Buffer

Log

Get cost

O(1/B)

O(1)

(Assuming only insertions)

Index



How to delete?

Buffer

Log

Index



delete X2

<X1, V1>

X2

<X2, V2><X3, V3>

X3 X1
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How to fix this?



<X1, V1><X2, V2><X3, V3>

X3 X1

After many deletes, many orphaned entries accumulate

They take up space which we would prefer to use to store valid data

Orphaned 
entry

How to fix this? Garbage Collection (as we saw in SSDs)



BufferIndex

…

Conceptually divide log into equally-sized areas (can be in order of GBs)



BufferIndex

…

Live bytes

For each area, maintain a counter of the number of bytes representing live data
Conceptually divide log into equally-sized areas (can be in order of GBs)
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…

Live bytes

To delete:

Delete X

<X, V>
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BufferX

…

Live bytes

To delete: (1) get entry from storage to check its size

Delete X

<X, V>

(2) subtract its size from area’s counter

Get Subtract



Buffer

…

Live bytes

To delete: (1) get entry from storage to check its size

<X, V>

(2) subtract its size from area’s counter
(3) remove entry from index



Buffer

…

Live bytes

Can also store each entry’s size in the index, 
so we not have to get the entry from storage

<key, size, block ID>

To delete: (1) get entry from storage to check its size
(2) subtract its size from area’s counter
(3) remove entry from index



…

An update is a delete followed by an insertion of an entry with the same key

Updates

<Y, Vold>

Y BufferLive bytes

Update: <Y, Vnew>



…

An update is a delete followed by an insertion of an entry with the same key

Updates

<Y, Vold>

Y BufferLive bytes

Update: <Y, Vnew>

Subtract



…

Updates

<Y, Vold>

Y BufferLive bytes

<Y, Vnew>

adjust index pointer 

Orphaned

An update is a delete followed by an insertion of an entry with the same key



Garbage Collection

Buffer

…

Live bytes

target

Index

(1) pick area with least live data left



Garbage Collection

Buffer

…

Live bytes

target

Scan

Index

(1) pick area with least live data left
(2) Scan area and for each entry



Garbage Collection

Buffer

…

Live bytes

X

Scan

X is absent

(1) pick area with least live data left
(2) Scan area and for each entry

(A) If the key is not indexed, the entry had been deleted, so move on



Garbage Collection

Buffer

…

Live bytes

(1) pick area with least live data left

<Y, Vold>

(2) Scan area and for each entry

Y

Scan

<Y, Vnew>

(A) If the key is not indexed, the entry had been deleted, so move on
(B) If the key is indexed but pointing elsewhere, the entry is outdated, so move on



Garbage Collection

Buffer

…

Live bytes

<Y, V>

Y

Scan

(C) If the key is indexed and pointing to this entry, it is valid, so migrate it 

(1) pick area with least live data left
(2) Scan area and for each entry

(A) If the key is not indexed, the entry had been deleted, so move on
(B) If the key is indexed but pointing elsewhere, the entry is outdated, so move on

Migrate 



Garbage Collection

Buffer

…

Live bytes

<Y, V>

Y

(C) If the key is indexed and pointing to this entry, it is valid, so migrate it 

(1) pick area with least live data left
(2) Scan area and for each entry

(A) If the key is not indexed, the entry had been deleted, so move on
(B) If the key is indexed but pointing elsewhere, the entry is outdated, so move on

adjust index pointer 



When to trigger garbage-collection?

Buffer

…

Live bytesIndex

Define a global threshold of (live data L / physical space P)

(live data / physical space) = white / (white + gray)



When to trigger garbage-collection?

Buffer

…

Live bytes

When this threshold is reached, trigger garbage-collection to free space

Index

Define a global threshold of (live data L / physical space P)



Garbage-Collection Write-Amplification

BufferLive bytes

How to reason about this? 

…

Index

Let x = avg. % of valid pages in areas we pick to garbage-collect

WA = 1 +
x

1 − x



Garbage-Collection Write-Amplification

BufferLive bytes

How to reason about this? 

Index

Let x = avg. % of valid pages in areas we pick to garbage-collect

WA = 1 +
x

1 − x
Same analysis as for garbage-collection in SSDs, so refer to that :)

…



Garbage-Collection Write-Amplification

1 +
1
2

⋅
L/P

1 − L/P

1 +
L/P

1 − L/P

L = logical data size

P = physical data size

Worst case

Uniformly random
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Hot/Cold Separation

Normal workloads are neither worst-case nor randomly distributed



Normal workloads are neither worst-case nor randomly distributed

Typically, few entries are frequently updated while most are seldom updated

…

cold hot



Normal workloads are neither worst-case nor randomly distributed

Hot entries are invalidated quickly, so by the time we garbage-collect, there 
is usually only cold data left

cold Invalid

Garbage-collect cold data 

free

Typically, few entries are frequently updated while most are seldom updated



Normal workloads are neither worst-case nor randomly distributed

Hot entries are invalidated quickly, so by the time we garbage-collect, there 
is usually only cold data left

Buffer
Hot updates

This migrated cold data gets mixed with more hot data, and the cycle repeats. 

Typically, few entries are frequently updated while most are seldom updated
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How can we avoid garbage-
collecting cold data all the time? 

…

Mixing hot/cold data brings 
us towards worst-case



Hot vs. Cold Data Separation

…



Hot vs. Cold Data Separation

…

We can separate hot vs. cold data into different areas



Hot vs. Cold Data Separation

…

We can separate hot vs. cold data into different areas

Insight 1: user updates are generally hot
(i.e., data recently written is likely to be written again)

buffer

flush

user updates



Hot vs. Cold Data Separation

…

We can separate hot vs. cold data into different areas

Insight 1: user updates are generally hot
(i.e., data recently written is likely to be written again)

Insight 2: garbage-collected data is generally cold
(i.e., it had already existed for a long while without getting updated)

buffer

flush

Garbage-collection



Hot vs. Cold Data Separation

…

Simplest solution: separate user updates and cold data using different 
buffers into different areas

buffer buffer

user updates

Garbage-collection
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buffers into different areas

More advanced: separate data with different temperatures into different areas

…
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Simplest solution: separate user updates and cold data using different 
buffers into different areas

More advanced: separate data with different temperatures into different areas

…

user updates

Garbage-collection Requires multiple buffers 



Hot vs. Cold Data Separation

Simplest solution: separate user updates and cold data using different 
buffers into different areas

More advanced: separate data with different temperatures into different areas

…

user updates

Requires multiple buffers 

Temperature 
Detector 

Garbage-collection



Estimates how likely a page is to be updated again

user updates Temperature 
Detector 



Estimates how likely a page is to be updated again

Should be a light-weight data structure that can fit in memory

user updates Temperature 
Detector 



Estimates how likely a page is to be updated again

user updates Temperature 
Detector 

Should be a light-weight data structure that can fit in memory

There is a lot of research on this, but we’ll explore just one solution relying 
on a cool data structure called count-min



Count-Min

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

A data structure that reports that frequency of elements in a data stream 



Consists of d arrays of w counters each

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

A data structure that reports that frequency of elements in a data stream 

Count-Min

d arrays

w counters



Insert x
h1(x)
h2(x)
h3(x)

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

A data structure that reports that frequency of elements in a data stream 

Insert an entry by hashing it to one counter in each array using different hash function

Count-Min

Consists of d arrays of w counters each



Insert x
h1(x)
h2(x)
h3(x)

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

A data structure that reports that frequency of elements in a data stream 

Insert an entry by hashing it to one counter in each array using different hash function

Count-Min

And increment that counter 

Consists of d arrays of w counters each
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1 5 5 3 6 1 9 0 7 1 3 0

After a while counters have a wide distribution of values 

Count-Min
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3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

After a while counters have a wide distribution of values 

Count-Min

To query for the frequency of a key, hash it to each array and return minimum

Insert y
h1(y)
h2(y)
h3(y)

3
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After a while counters have a wide distribution of values 

Count-Min

To query for the frequency of a key, hash it to each array and return minimum

Insert y
h1(y)
h2(y)
h3(y)

3

This result is a guaranteed upper bound of the real count



3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

After a while counters have a wide distribution of values 

Count-Min

To query for the frequency of a key, hash it to each array and return minimum

Insert y
h1(y)
h2(y)
h3(y)

3

Result might overestimate the true answer due to hash collisions 
This result is a guaranteed upper bound of the real count
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3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

Estimated frequency ≤ true frequency + ε · num insertions  

Count-Min

with prob. 1- δ
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3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

Count-Min

with prob. 1- δ

Parameters

Estimated frequency ≤ true frequency + ε · num insertions  



3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

Estimated frequency ≤ true frequency + ε · num insertions  

Count-Min

d arrays

w counters

with prob. 1- δ

w = ⌈e/ε⌉
d = ⌈ln 1/δ⌉

The parameters determine the values of w and d



We can employ count-min to estimate frequency

…

user updates

Requires multiple buffers 

Count-min

Garbage-collection



We can employ count-min to estimate frequency

Pitfall:   a value was very hot in the past but became cold.

…

user updates

Requires multiple buffers 

Count-min

Garbage-collection

Count-min would still tell us its hot. Solutions?  



3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

Decay: every x insertions, we can divide all counters by 2.  



1 2 1 4 0 2 0 0 0 0 3 0

1 4 0 1 3 2 0 0 0 2 4 4

0 2 2 1 3 0 4 0 3 0 1 0

Decay: every x insertions, we can divide all counters by 2.  



1 2 1 4 0 2 0 0 0 0 3 0

1 4 0 1 3 2 0 0 0 2 4 4

0 2 2 1 3 0 4 0 3 0 1 0

In addition, we can safeguard against counter overflows by not 
incrementing counters that have reached their maximum value. 



…

user updates

Requires multiple buffers 

Count-min

Garbage-collection

Decaying
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1 +
L/P

1 − L/P
Mixing hot/cold data brings 

us towards worst-case

1 +
L/P

2 ⋅ (1 − L/P)
Uniformly random 

workloads

Hot/cold separation 
improves WA beyond 

uniform case

GC overheads = 

…



Overall Cost Analysis

Reads:  1 read I/O

Write cost: O( GC / B ) I/O

Buffer

…

Live bytesIndex
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Checkpointing & Recovery

Buffer

…

Live bytesIndex

If power fails, we lose these



Buffer

…

Live bytesIndex

Let’s say it’s ok to 
lose the buffer



Buffer

…

Live bytesIndex

We need to recover 
these

Let’s say it’s ok to 
lose the buffer



…

Live bytesIndex

Simple recovery algorithm?



…

Live bytesIndex

Simple recovery algorithm?

Scan the data from newest to oldest

Oldest Newest



…

Live bytesIndex

Simple recovery algorithm?

Scan

Oldest Newest<X,V1>

Add pointer to index 



…

Live bytesX

Scan

Oldest Newest<X,V1>

Simple recovery algorithm?
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Live bytesX
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Oldest Newest<X,V1><X,V2>

Simple recovery algorithm?
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Live bytesX

Scan

Oldest Newest<X,V1><X,V2>

Check index

Simple recovery algorithm?



…

Live bytesX

Scan

Oldest Newest<X,V1><X,V2>

Check index

Since a mapping entry with the same key already 
exists, the current entry is obsolete.

Simple recovery algorithm?



…

Live bytesX

Scan

Oldest Newest<X,V1><X,V2>

So we instead subtract size of entry from live bytes.

Simple recovery algorithm?
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Live bytes

We can recover with one pass over the data

Index

Scan: O(N/B)
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Live bytes

We can recover with one pass over the data

Index

Scan: O(N/B)

But if the data is huge, this can take a while. 
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Live bytes

We can recover with one pass over the data

Index

1 TB of data takes 1 hour to recover

But if the data is huge, this can take a while. 

e.g., 200 MB/s sequential 
throughput



…

Live bytes

We can recover with one pass over the data

Index

1 TB of data takes 1 hour to recover

But if the data is huge, this can take a while. 

e.g., 200 MB/s sequential 
throughput

Any good ideas? 



…

Live bytes

Checkpointing

Index



…

Live bytes

Checkpointing

Index

Every X updates/insertions, store copy of index & live bytes

Live bytesIndexCopy:
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Checkpointing
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Live bytesIndexCopy:

After recovery, load copy
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Checkpointing
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Live bytesIndex

After recovery, load copy



…

Checkpointing

Every X updates/insertions, store copy of index & live bytes

Live bytesIndex

After recovery, load copy

Then scan X latest 
updates/insertions

Oldest Newest…



…

Checkpointing

Every X updates/insertions, store copy of index & live bytes

Live bytes

After recovery, load copy

Then scan X latest 
updates/insertions

Oldest Newest… <K, V2>

K

<K, V1>

Identify invalid pointer



…

Checkpointing

Every X updates/insertions, store copy of index & live bytes

Live bytes

After recovery, load copy

Then scan X latest 
updates/insertions

Oldest Newest… <K, V2>

K

<K, V1>

Subtract entry size



…

Checkpointing

Every X updates/insertions, store copy of index & live bytes

Live bytes

After recovery, load copy

Then scan X latest 
updates/insertions

Oldest Newest… <K, V2>

K

<K, V1>

Update pointer



…

The frequency of checkpointing controls a trade-off between write 
cost and recovery time. 

Live bytes

Then scan X latest 
updates/insertions

Oldest Newest…

Index



…

Live bytes

Then scan X latest 
updates/insertions

Oldest Newest…

Index

Recovery time:     O(X/B) reads for backwards scan
Additional write cost:     O(index size / X)



…

Live bytes

Then scan X latest 
updates/insertions

Oldest Newest…

Index

write cost:     O(GC/B + index size / X)

Get cost:     O(1)

Costs Summary 

Recovery time:     O(X/B) reads for backwards scan



……

Suppose we delete an entry and then power 
fails. Can you spot a problem? 

K

<K, V1>

delete(K)



…… <K, V1>

Then scan X latest 
updates/insertions



……

May load deleted entry back to index during recovery

<K, V1>

Then scan X latest 
updates/insertions

K



……

May load deleted entry back to index during recovery

<K, V1>

Then scan X latest 
updates/insertions

K

Solution?



…… <K, V1>

Then scan X latest 
updates/insertions

<K, del>

Insert tombstone when deleting 



…… <K, V1>

Then scan X latest 
updates/insertions

<K, del>

While recovering, if the first instance of a key we see is a tombstone, we 
ignore all subsequent entries with this key. 
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…

Live bytesIndex Buffer

Can be large
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Live bytesIndex Buffer

Index size = N · (P + K) / α
N = data size

P = pointer size

K = key size

α = collision resolution overheads 
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N = data size

P = pointer size = O(log2 N/B) 
K = key size = Ω(log2 N) 
α = collision resolution overheads ≈ 0.8



…

Live bytesIndex Buffer

Index size = N · (P + K) / α
N = data size

P = pointer size = O(log2 N/B)

K = key size = Ω(log2 N) 
α = collision resolution overheads ≈ 0.8

Ultimately attack this 
with cuckoo filters



…

Live bytesIndex Buffer

Index size = N · (P + K) / α
N = data size

P = pointer size = O(log2 N/B)

K = key size = Ω(log2 N)

α = collision resolution overheads ≈ 0.8But first attack this 

with cuckoo hashing



Cuckoo Hashing

Table of buckets, each containing 1 entry

Two hash functions 



Cuckoo Hashing

Table of buckets, each containing 1 entry

Two hash functions 

Insert x 

h1(x)

x

Insert if there is free space



Cuckoo Hashing

Table of buckets, each containing 1 entry

Two hash functions 

Insert x 

Otherwise, evict existing entry using its alternative hash 
function to an alternative slot 

z

hother(z)

h1(x)



Cuckoo Hashing

Table of buckets, each containing 1 entry

Two hash functions 

Insert x 

Continue doing this recursively until all entries are mapped to an empty bucket 

zq

hother(q)

h1(x)

hother(z)



z q x

Continue doing this recursively until all entries are mapped to an empty bucket 



z

q

x

0 1 2 3 4 5 6 7 8 9

h1(z) = 7

h1(q) = 7

h2(z) = 2

h2(q) = 5

h2(x) = 9h1(x) = 2
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x

0 1 2 3 4 5 6 7 8 9

h1(z) = 7

h1(q) = 7

h1(x) = 2

h2(z) = 2
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zqx

0 1 2 3 4 5 6 7 8 9

h1(z) = 7

h1(q) = 7

h1(x) = 2

h2(z) = 2

h2(q) = 5

h2(x) = 9



zqx

0 1 2 3 4 5 6 7 8 9

get(z)

get(x)

get(q)

A query has to check at most two locations to find a key



Insertions may endure multiple evictions and swapping of keys across buckets

zqx

0 1 2 3 4 5 6 7 8 9



Insertions may endure multiple evictions and swapping of keys across buckets

z

q

x

0 1 2 3 4 5 6 7 8 9

Worse: an infinite loop is technically possible 

h1(z) = 7

h1(q) = 2
h1(x) = 7

h2(z) = 2

h2(q) = 7
h2(x) = 2



Insertions may endure multiple evictions and swapping of keys across buckets

zqx

0 1 2 3 4 5 6 7 8 9

alleviate by allowing multiple keys per bucket
Worse: an infinite loop is technically possible 



Theory: insertions succeed in O(1) expected time with high probability

Assuming…

zqx …
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Theory: insertions succeed in O(1) expected time with high probability

Assuming load factor < 50% for bucket size 1
Assuming load factor < 84% for bucket size 2
Assuming load factor < 95% for bucket size 4

zqx …



Theory: insertions succeed in O(1) expected time with high probability

Assuming load factor < 95% for bucket size 4We’ll use this 

zqx …



Why is it called Cuckoo hashing?

Lay eggs in other birds’ nests, and the hatchlings “evict” the other birds’ eggs.



…

Live bytes Buffer

Index size = N * (P + K) / α
N = data size

P = pointer size

K = key size

α = collision resolution overheads

index



…

Live bytes Buffer

Index size = N * (P + K) / α
N = data size

P = pointer size

K = key size

α = collision resolution overheads

Cuckoo index

Addressed with 
 cuckoo hashing



…

Live bytes Buffer

Index size = N * (P + K) / α

Cuckoo index

Addressed with 
 cuckoo hashing

N = data size

P = pointer size

K = key size

α = collision resolution overheads  ≈0.8       ≈0.95



…

Live bytes Buffer

Index size = N * (P + K) / α

Cuckoo index

Now lets attack this 
With a Cuckoo Filter

N = data size

P = pointer size

K = key size = Ω(log2 N) 
α = collision resolution overheads  ≈0.8       ≈0.95
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Live bytes Buffer

Problems with storing full keys in a hash table

Cuckoo index

(1) Keys may be arbitrarily large



…

Live bytes Buffer

Problems with storing full keys in a hash table

Cuckoo index

(2) Keys can be variable-length

(1) Keys may be arbitrarily large

(requires additional metadata and CPU 
cycles to encode )



Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys
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FP(        ) = ……     

A fingerprint is a hash digest derived by hashing a key
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Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys
A fingerprint is a hash digest derived by hashing a key

0100
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Example: FP( X ) = h1(X) =



Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys
A fingerprint is a hash digest derived by hashing a key

0100
M bits
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Example: FP( X ) = h1(X) =



Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys
A fingerprint is a hash digest derived by hashing a key

M bits
3

0 1 2 3 4 5 6 7

Example:

0100

FP( X ) = h1(X) =



Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys

0 1 2 3 4 5 6 7

A fingerprint is a hash digest derived by hashing a key

FP(X)



Cuckoo Filter

Suppose we then insert another fingerprint to the same bucket

0 1 2 3 4 5 6 7

FP(Y)

Insert Y

FP(X)



Cuckoo Filter

Suppose we then insert another fingerprint to the same bucket

FP(X)

FP(Y)

Insert Y

Where to evict X? We no longer have its key!  

??

How to derive an alternative bucket?



How to derive an alternative bucket?

FP(X)
h1(X)

We have two pieces of information about X (1) Bucket address: h1(X)
(2) fingerprint FP(X)
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How to derive an alternative bucket?



FP(X)

h1(X)

We want to combine them to give alternative bucket address h2(X)

h2(X)

We have two pieces of information about X (1) Bucket address: h1(X)
(2) fingerprint FP(X)

How to derive an alternative bucket?

This mapping must be reversible, so we can derive h1(X) from h2(X) and FP(X)



FP(X)

h1(X)

We want to combine them to give alternative bucket address h2(X)

h2(X)

We have two pieces of information about X (1) Bucket address: h1(X)
(2) fingerprint FP(X)

How to derive an alternative bucket?

This mapping must be reversible, so we can derive h1(X) from h2(X) and FP(X)

Any ideas? 



XOR Operator

0 0 1 1Input 1

Input 2

Parity

0 1 0 1

0 1 1 0
=



XOR Operator

0 0 1 1Input 1

Input 2 0 1 0 1

0 1 1 0
=

If number of 1s in an input column is even, the result is 0. If odd, it is 1. 

Parity



Parity can help recover any input

0 0 1 1Input 1

Parity 0 1 1 0

Suppose we 
lost input 2



Parity can help recover any input

0 0 1 1Input 1

Parity

Input 2

0 1 1 0

0 1 0 1
=

Recovered

Suppose we 
lost input 2



Parity can help recover any input

0 1 0 1Input 2

Parity 0 1 1 0

Or suppose we 
lost input 1



Parity can help recover any input

0 1 0 1Input 2

Parity 0 1 1 0

Or suppose we 
lost input 1

Input 1 0 0 1 1
=

Recovered



FP(X)
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Let’s XOR the bucket address and a hash of the fingerprint:

Using XOR in Cuckoo filters
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h1(X) h2(X)

Let’s XOR the bucket address and a hash of the fingerprint:

Using XOR in Cuckoo filters

h2(X) = h1(X) xor hash(FP(X))

(We hash the fingerprint to map it to the same address space size as the buckets)



FP(X)

h1(X) h2(X)

Let’s XOR the bucket address and a hash of the fingerprint:

Using XOR in Cuckoo filters

h2(X) = h1(X) xor hash(FP(X))

(We hash the fingerprint to map it to the same address space size as the buckets)

The resulting mapping is reversible

h1(X) = h2(X) xor hash(FP(X))



FP(X)

h1(X) h2(X)

Thus, we must search only two buckets to find an entry’s fingerprint

Using XOR in Cuckoo filters

query(X)
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If we find a matching fingerprint, we report a positive. 



FP(X)

Thus, we must search only two buckets to find an entry’s fingerprint

Using XOR in Cuckoo filters

query(Y)

If we find a matching fingerprint, we report a positive. 
However, we can have false positives.

FP(Y)=FP(X)



Thus, we must search only two buckets to find an entry’s fingerprint

Using XOR in Cuckoo filters

If we find a matching fingerprint, we report a positive. 
However, we can have false positives.

Can we have false negatives? 

FP(X)

query(Y)

FP(Y)=FP(X)



FP(X)

Thus, we must search only two buckets to find an entry’s fingerprint

Using XOR in Cuckoo filters

query(Y)

If we find a matching fingerprint, we report a positive. 
However, we can have false positives.

FP(Y)=FP(X)

No, because a fingerprint for a key that had been inserted is in 
one of only two possible buckets, both of which we search. 

Can we have false negatives? 



What’s the false positive rate?



M bits per 
fingerprint 

What’s the false positive rate?



β slots per 
bucket

What’s the false positive rate?

M bits per 
fingerprint 



α = fraction of occupied slots 

What’s the false positive rate?

β slots per 
bucket

M bits per 
fingerprint 



false positive rate ≈ 2 · 2-M · β · α 

α = fraction of occupied slots 

β slots per 
bucket

M bits per 
fingerprint 



false positive rate ≈ 2 · 2-M · β · α 

α = fraction of occupied slots 

β slots per 
bucket

M bits per 
fingerprint 

Since a query searches 
two buckets 



false positive rate ≈ 2 · 2-M · 4 · 0.95 

α = fraction of occupied slots 

β slots per 
bucket

M bits per 
fingerprint 

When at capacity



false positive rate ≈ 2-M+3

α = fraction of occupied slots 

β slots per 
bucket

M bits per 
fingerprint 



false positive rate ≈ 2-M+3  < 2-M · ln(2) For Bloom filter 
when M ≥ 10
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Cuckoo Filter

Memory accesses for 
positive query?
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negative query?
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Cuckoo Filter
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Memory accesses for 
negative query 2 ≈2



≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for 
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

Memory accesses for 
negative query 2 ≈2

Insertion cost Exp. O(1) M · ln(2)



≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for 
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

Memory accesses for 
negative query 2 ≈2

Insertion cost Exp. O(1) M · ln(2)

Deletes?

Storing payloads?

N/A

N/A



Deletes in a Cuckoo Filter

FP(X)

h1(X) h2(X)

delete(X)



Deletes in a Cuckoo Filter

FP(X)

h1(X) h2(X)

delete(X)

A delete searches both buckets for a key and removes a matching fingerprints. 



Deletes in a Cuckoo Filter

FP(X)

h1(X) h2(X)

delete(Y)

A delete searches both buckets for a key and removes a matching fingerprints. 

What if we delete a fingerprint for a key that was never inserted? 

FP(Y)=FP(X)



Deletes in a Cuckoo Filter

FP(X)

h1(X) h2(X)

A delete searches both buckets for a key and removes a matching fingerprints. 

False negatives… 

delete(Y)
FP(Y)=FP(X)

What if we delete a fingerprint for a key that was never inserted? 



Deletes in a Cuckoo Filter

A delete searches both buckets for a key and removes a matching fingerprints. 

False negatives… 

As long as we delete keys we know for sure have been inserted, no false 
negatives can occur

FP(X)

h1(X) h2(X)

delete(X)

What if we delete a fingerprint for a key that was never inserted? 



Deletes in a Cuckoo Filter

A delete searches both buckets for a key and removes a matching fingerprints. 

False negatives… 

As long as we delete keys we know for sure have been inserted, no false 
negatives can occur

FP(X)

What if we delete a fingerprint for a key that was never inserted? 

Works even if we have matching fingerprints for different keys in the same bucket

FP(Y) FP(X) = FP(Y) 

h2(X)=h2(Y) h1(X)=h1(Y)



Deletes in a Cuckoo Filter

A delete searches both buckets for a key and removes a matching fingerprints. 

False negatives… 

As long as we delete keys we know for sure have been inserted, no false 
negatives can occur

FP(X)

After delete(X), get(Y) will still succeed, whichever fingerprint we delete. 

What if we delete a fingerprint for a key that was never inserted? 

Works even if we have matching fingerprints for different keys in the same bucket

FP(Y) FP(X) = FP(Y) 

h2(X)=h2(Y) h1(X)=h1(Y)



≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for 
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

Memory accesses for 
negative query 2 2

Insertion cost O(1) M · ln(2)

Deletes?

Storing Payloads? N/A

1.5 N/A



Storing Payloads in a Filter

Can we store a payload associated with each key and retrieve it on positive query?  



Storing Payloads in a Filter

0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 

Insert(x)

Map to random bits 

Can we store a payload associated with each key and retrieve it on positive query?  

Bloom filter:



Storing Payloads in a Filter

0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 

Insert(x)

Map to random bits 

Can we store a payload associated with each key and retrieve it on positive query?  

Bloom filter:

There is nowhere obvious to associate a payload with each key



Storing Payloads in a Filter

Can we store a payload associated with each key and retrieve it on positive query?  

Cuckoo filter:

FP(X)
FP(Q)
FP(Z)
FP(Y)

…… …



Storing Payloads in a Filter

Can we store a payload associated with each key and retrieve it on positive query?  

Cuckoo filter:

Px
Pq

FP(X)
FP(Q)
FP(Z)
FP(Y)

Pz
Py

Payloads

Just store a payload alongside each fingerprint



≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for 
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

Memory accesses for 
negative query 2 2

Insertion cost O(1) M · ln(2)

Deletes?

Storing Payloads? N/A

1.5 N/A

Yes



…

Live bytes Buffer
Cuckoo Filter

<fingerprint, pointer>
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Live bytes Buffer
Cuckoo Filter

<FP(X), pointer>

<X, V>



…

Live bytes Buffer

Index size = N * (P + K) * α

Cuckoo Filter

Our goal was 
reducing this

N = data size

P = pointer size = O(log2 N/B)

K = key size = Ω(log2 N) 
α = collision resolution overheads  ≈0.8       ≈0.95



…

Live bytes Buffer

Index size = N * (P + M) / α

Cuckoo Filter

Our goal was 
reducing this

N = data size

P = pointer size = O(log2 N/B)

K = key size = Ω(log2 N)          M bits / entry 
α = collision resolution overheads  ≈0.8       ≈0.95
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Live bytes Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

Cuckoo Filter



…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X (FPX=FPy) 

Live bytes
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Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X 

Live bytes

<Y, VY>

Need to set up pointer to Y
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Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X 

Live bytes

<Y, VY>

Due to fingerprint match, 
we orphan entry X

Need to set up pointer to Y



…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X 

Live bytes

<Y, VY>

Due to fingerprint match, 
we orphan entry X

Orphaned

Need to set up pointer to Y



…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X 

Live bytes

<Y, VY>

Check key

Need to set up pointer to Y

To safeguard against orphaning, we must issue read-before-write



…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X 

Live bytes

<Y, VY>

To safeguard against orphaning, we must issue read-before-write

<FPy, Py>



O(1+2-M+3) reads & O(GC/B) writes

O(1+2-M+3)

O(log2(N/B) + M))

O(N/B)

O(2-M+3) read & O(GC/B) writes

Updates/

Deletes:

Gets:

Memory

(bits / entry)

Circular Log w. 
Cuckoo Filter

Scan:

Insert:
 (excluding checkpointing)



Circular Log w. 
Cuckoo Filter

O(1+2-M+3) reads & O(GC/B) writes

O(1+2-M+3)

O(log2(N/B) + M))

O(N/B)

O(2-M+3) read & O(GC/B) writes

Updates/

Deletes:

Gets:

Memory

(bits / entry)

Scan:

Insert:

Basic LSM-tree w. 
Monkey

O(log2(N/P) / B) reads & writes 

O(1+2-M * ln(2))

O(K/B + M)

O(log2 N/P + S/B)

O(log2(N/P) / B) reads & writes 



Circular Log w. 
Cuckoo Filter

O(1+2-M+3) reads & O(GC/B) writes

O(1+2-M+3)

O(log2(N/B) + M))

O(N/B)

O(2-M+3) read & O(GC/B) writes

Updates/

Deletes:

Gets:

Memory

(bits / entry)

Scan:

Insert:

Basic LSM-tree w. 
Monkey

O(log2(N/P) / B) reads & writes 

O(1+2-M * ln(2))

O(K/B + M)

O(log2 N/P + S/B)

O(log2(N/P) / B) reads & writes 

Recovery Swift Long



And now: office hours


