
Niv Dayan

Circular Logs & Cuckoo Filters
CSC443H1 Database System Technology

B-Trees LSM-treeExtendible
Hashing

These are not a good fit for disks or SSDsCheaper writes
More memory

Cheapest gets
No scans

Cheap gets
& scans

B

B B

B-Trees LSM-treeExtendible
Hashing

These are not a good fit for disks or SSDsCheaper writes
More memory

Cheapest gets
No scans

Cheap gets
& scans

Circular Log

Cheapest writes
Most memory

No scans

Index

Log

B

B B

Circular Log

Invented in 1992 as a “log structured file system”

Circular Log

File Systems Flash Translation
Layers KV-stores

Invented in 1992 as a “log structured file system”

Index+LogVarious names, same data structure:

Circular Log

Log-structured Hash Table

log structured file system

Agenda

Mechanics Hot/Cold

separation

Checkpointing/
recovery

Cuckoo

filtering

Index

Log

To reduce

write-amp If power fails To reduce

memory

Mechanics

BufferIndex

Log

Buffer

Log

Insertions

Index

Buffer

Log

Insertions

Append to log
(Unsorted)

Index

Buffer

Log

InsertionsAdd mapping
entries

<key block ID>

Append to log

(Unsorted)

Log

Insert <X, V>

Index Buffer

Log

Index <X, V>

Append to log

(Unsorted)

Log <X, V>

Add mapping
entries

<X, Q>

Block Q

<X1, V1>

X2

<X2, V2><X3, V3>

X3 X1

Write cost

Buffer

Log

Get cost

Index

(Assuming only insertions)

Write cost

Buffer

Log

Get cost

O(1/B)

O(1)

(Assuming only insertions)

Index

How to delete?

Buffer

Log

Index

delete X2

<X1, V1>

X2

<X2, V2><X3, V3>

X3 X1

<X1, V1><X2, V2><X3, V3>

X3 X1

Orphaned
entry

<X1, V1><X2, V2><X3, V3>

X3 X1

After many deletes, many orphaned entries accumulate

Orphaned
entry

<X1, V1><X2, V2><X3, V3>

X3 X1

After many deletes, many orphaned entries accumulate

They take up space which we would prefer to use to store valid data

Orphaned
entry

<X1, V1><X2, V2><X3, V3>

X3 X1

After many deletes, many orphaned entries accumulate

They take up space which we would prefer to use to store valid data

Orphaned
entry

How to fix this?

<X1, V1><X2, V2><X3, V3>

X3 X1

After many deletes, many orphaned entries accumulate

They take up space which we would prefer to use to store valid data

Orphaned
entry

How to fix this? Garbage Collection (as we saw in SSDs)

BufferIndex

…

Conceptually divide log into equally-sized areas (can be in order of GBs)

BufferIndex

…

Live bytes

For each area, maintain a counter of the number of bytes representing live data
Conceptually divide log into equally-sized areas (can be in order of GBs)

BufferX

…

Live bytes

To delete:

Delete X

<X, V>

BufferX

…

Live bytes

To delete: (1) get entry from storage to check its size

Delete X

<X, V>

Get

BufferX

…

Live bytes

To delete: (1) get entry from storage to check its size

Delete X

<X, V>

(2) subtract its size from area’s counter

Get Subtract

Buffer

…

Live bytes

To delete: (1) get entry from storage to check its size

<X, V>

(2) subtract its size from area’s counter
(3) remove entry from index

Buffer

…

Live bytes

Can also store each entry’s size in the index,
so we not have to get the entry from storage

<key, size, block ID>

To delete: (1) get entry from storage to check its size
(2) subtract its size from area’s counter
(3) remove entry from index

…

An update is a delete followed by an insertion of an entry with the same key

Updates

<Y, Vold>

Y BufferLive bytes

Update: <Y, Vnew>

…

An update is a delete followed by an insertion of an entry with the same key

Updates

<Y, Vold>

Y BufferLive bytes

Update: <Y, Vnew>

Subtract

…

Updates

<Y, Vold>

Y BufferLive bytes

<Y, Vnew>

adjust index pointer

Orphaned

An update is a delete followed by an insertion of an entry with the same key

Garbage Collection

Buffer

…

Live bytes

target

Index

(1) pick area with least live data left

Garbage Collection

Buffer

…

Live bytes

target

Scan

Index

(1) pick area with least live data left
(2) Scan area and for each entry

Garbage Collection

Buffer

…

Live bytes

X

Scan

X is absent

(1) pick area with least live data left
(2) Scan area and for each entry

(A) If the key is not indexed, the entry had been deleted, so move on

Garbage Collection

Buffer

…

Live bytes

(1) pick area with least live data left

<Y, Vold>

(2) Scan area and for each entry

Y

Scan

<Y, Vnew>

(A) If the key is not indexed, the entry had been deleted, so move on
(B) If the key is indexed but pointing elsewhere, the entry is outdated, so move on

Garbage Collection

Buffer

…

Live bytes

<Y, V>

Y

Scan

(C) If the key is indexed and pointing to this entry, it is valid, so migrate it

(1) pick area with least live data left
(2) Scan area and for each entry

(A) If the key is not indexed, the entry had been deleted, so move on
(B) If the key is indexed but pointing elsewhere, the entry is outdated, so move on

Migrate

Garbage Collection

Buffer

…

Live bytes

<Y, V>

Y

(C) If the key is indexed and pointing to this entry, it is valid, so migrate it

(1) pick area with least live data left
(2) Scan area and for each entry

(A) If the key is not indexed, the entry had been deleted, so move on
(B) If the key is indexed but pointing elsewhere, the entry is outdated, so move on

adjust index pointer

When to trigger garbage-collection?

Buffer

…

Live bytesIndex

Define a global threshold of (live data L / physical space P)

(live data / physical space) = white / (white + gray)

When to trigger garbage-collection?

Buffer

…

Live bytes

When this threshold is reached, trigger garbage-collection to free space

Index

Define a global threshold of (live data L / physical space P)

Garbage-Collection Write-Amplification

BufferLive bytes

How to reason about this?

…

Index

Let x = avg. % of valid pages in areas we pick to garbage-collect

WA = 1 +
x

1 − x

Garbage-Collection Write-Amplification

BufferLive bytes

How to reason about this?

Index

Let x = avg. % of valid pages in areas we pick to garbage-collect

WA = 1 +
x

1 − x
Same analysis as for garbage-collection in SSDs, so refer to that :)

…

Garbage-Collection Write-Amplification

1 +
1
2

⋅
L/P

1 − L/P

1 +
L/P

1 − L/P

L = logical data size

P = physical data size

Worst case

Uniformly random

Mechanics Hot/Cold
Separation

Checkpointing/
recovery

Cuckoo

filtering

Index

Log

To reduce
write-amp If power fails To reduce

memory

Hot/Cold Separation

Normal workloads are neither worst-case nor randomly distributed

Normal workloads are neither worst-case nor randomly distributed

Typically, few entries are frequently updated while most are seldom updated

…

cold hot

Normal workloads are neither worst-case nor randomly distributed

Hot entries are invalidated quickly, so by the time we garbage-collect, there
is usually only cold data left

cold Invalid

Garbage-collect cold data

free

Typically, few entries are frequently updated while most are seldom updated

Normal workloads are neither worst-case nor randomly distributed

Hot entries are invalidated quickly, so by the time we garbage-collect, there
is usually only cold data left

Buffer
Hot updates

This migrated cold data gets mixed with more hot data, and the cycle repeats.

Typically, few entries are frequently updated while most are seldom updated

1 +
L/P

1 − L/P
Mixing hot/cold data brings

us towards worst-case

Valid data / physical space

W
rit

e-
am

pl
ifi

ca
tio

n

1 +
L/P

2 ⋅ (1 − L/P)
Uniformly random

workloads

1 +
L/P

1 − L/P

Hot vs. Cold Data
W

rit
e-

am
pl

ifi
ca

tio
n

How can we avoid garbage-
collecting cold data all the time?

…

Mixing hot/cold data brings
us towards worst-case

Hot vs. Cold Data Separation

…

Hot vs. Cold Data Separation

…

We can separate hot vs. cold data into different areas

Hot vs. Cold Data Separation

…

We can separate hot vs. cold data into different areas

Insight 1: user updates are generally hot
(i.e., data recently written is likely to be written again)

buffer

flush

user updates

Hot vs. Cold Data Separation

…

We can separate hot vs. cold data into different areas

Insight 1: user updates are generally hot
(i.e., data recently written is likely to be written again)

Insight 2: garbage-collected data is generally cold
(i.e., it had already existed for a long while without getting updated)

buffer

flush

Garbage-collection

Hot vs. Cold Data Separation

…

Simplest solution: separate user updates and cold data using different
buffers into different areas

buffer buffer

user updates

Garbage-collection

Hot vs. Cold Data Separation

Simplest solution: separate user updates and cold data using different
buffers into different areas

More advanced: separate data with different temperatures into different areas

…

Hot vs. Cold Data Separation

Simplest solution: separate user updates and cold data using different
buffers into different areas

More advanced: separate data with different temperatures into different areas

…

user updates

Garbage-collection Requires multiple buffers

Hot vs. Cold Data Separation

Simplest solution: separate user updates and cold data using different
buffers into different areas

More advanced: separate data with different temperatures into different areas

…

user updates

Requires multiple buffers

Temperature
Detector

Garbage-collection

Estimates how likely a page is to be updated again

user updates Temperature
Detector

Estimates how likely a page is to be updated again

Should be a light-weight data structure that can fit in memory

user updates Temperature
Detector

Estimates how likely a page is to be updated again

user updates Temperature
Detector

Should be a light-weight data structure that can fit in memory

There is a lot of research on this, but we’ll explore just one solution relying
on a cool data structure called count-min

Count-Min

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

A data structure that reports that frequency of elements in a data stream

Consists of d arrays of w counters each

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

A data structure that reports that frequency of elements in a data stream

Count-Min

d arrays

w counters

Insert x
h1(x)
h2(x)
h3(x)

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

A data structure that reports that frequency of elements in a data stream

Insert an entry by hashing it to one counter in each array using different hash function

Count-Min

Consists of d arrays of w counters each

Insert x
h1(x)
h2(x)
h3(x)

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

A data structure that reports that frequency of elements in a data stream

Insert an entry by hashing it to one counter in each array using different hash function

Count-Min

And increment that counter

Consists of d arrays of w counters each

3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

After a while counters have a wide distribution of values

Count-Min

3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

After a while counters have a wide distribution of values

Count-Min

To query for the frequency of a key, hash it to each array and return minimum

Insert y
h1(y)
h2(y)
h3(y)

3

3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

After a while counters have a wide distribution of values

Count-Min

To query for the frequency of a key, hash it to each array and return minimum

Insert y
h1(y)
h2(y)
h3(y)

3

This result is a guaranteed upper bound of the real count

3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

After a while counters have a wide distribution of values

Count-Min

To query for the frequency of a key, hash it to each array and return minimum

Insert y
h1(y)
h2(y)
h3(y)

3

Result might overestimate the true answer due to hash collisions
This result is a guaranteed upper bound of the real count

3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

Estimated frequency ≤ true frequency + ε · num insertions

Count-Min

with prob. 1- δ

3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

Count-Min

with prob. 1- δ

Parameters

Estimated frequency ≤ true frequency + ε · num insertions

3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

Estimated frequency ≤ true frequency + ε · num insertions

Count-Min

d arrays

w counters

with prob. 1- δ

w = ⌈e/ε⌉
d = ⌈ln 1/δ⌉

The parameters determine the values of w and d

We can employ count-min to estimate frequency

…

user updates

Requires multiple buffers

Count-min

Garbage-collection

We can employ count-min to estimate frequency

Pitfall: a value was very hot in the past but became cold.

…

user updates

Requires multiple buffers

Count-min

Garbage-collection

Count-min would still tell us its hot. Solutions?

3 5 1 9 0 4 0 1 0 0 6 0

3 8 1 2 7 4 0 1 0 4 9 8

1 5 5 3 6 1 9 0 7 1 3 0

Decay: every x insertions, we can divide all counters by 2.

1 2 1 4 0 2 0 0 0 0 3 0

1 4 0 1 3 2 0 0 0 2 4 4

0 2 2 1 3 0 4 0 3 0 1 0

Decay: every x insertions, we can divide all counters by 2.

1 2 1 4 0 2 0 0 0 0 3 0

1 4 0 1 3 2 0 0 0 2 4 4

0 2 2 1 3 0 4 0 3 0 1 0

In addition, we can safeguard against counter overflows by not
incrementing counters that have reached their maximum value.

…

user updates

Requires multiple buffers

Count-min

Garbage-collection

Decaying

1 +
L/P

1 − L/P
Mixing hot/cold data brings

us towards worst-case

Valid data / physical space

W
rit

e-
am

pl
ifi

ca
tio

n

1 +
L/P

2 ⋅ (1 − L/P)
Uniformly random

workloads

Hot/cold separation
improves WA beyond

uniform case
…

1 +
L/P

1 − L/P
Mixing hot/cold data brings

us towards worst-case

1 +
L/P

2 ⋅ (1 − L/P)
Uniformly random

workloads

Hot/cold separation
improves WA beyond

uniform case

GC overheads =

…

Overall Cost Analysis

Reads: 1 read I/O

Write cost: O(GC / B) I/O

Buffer

…

Live bytesIndex

Mechanics Hot/Cold

separation

Checkpointing &
Recovery

Cuckoo

filtering

Index

Log

To reduce

write-amp If power fails To reduce

memory

Checkpointing & Recovery

Buffer

…

Live bytesIndex

If power fails, we lose these

Buffer

…

Live bytesIndex

Let’s say it’s ok to
lose the buffer

Buffer

…

Live bytesIndex

We need to recover
these

Let’s say it’s ok to
lose the buffer

…

Live bytesIndex

Simple recovery algorithm?

…

Live bytesIndex

Simple recovery algorithm?

Scan the data from newest to oldest

Oldest Newest

…

Live bytesIndex

Simple recovery algorithm?

Scan

Oldest Newest<X,V1>

Add pointer to index

…

Live bytesX

Scan

Oldest Newest<X,V1>

Simple recovery algorithm?

…

Live bytesX

Scan

Oldest Newest<X,V1><X,V2>

Simple recovery algorithm?

…

Live bytesX

Scan

Oldest Newest<X,V1><X,V2>

Check index

Simple recovery algorithm?

…

Live bytesX

Scan

Oldest Newest<X,V1><X,V2>

Check index

Since a mapping entry with the same key already
exists, the current entry is obsolete.

Simple recovery algorithm?

…

Live bytesX

Scan

Oldest Newest<X,V1><X,V2>

So we instead subtract size of entry from live bytes.

Simple recovery algorithm?

…

Live bytes

We can recover with one pass over the data

Index

Scan: O(N/B)

…

Live bytes

We can recover with one pass over the data

Index

Scan: O(N/B)

But if the data is huge, this can take a while.

…

Live bytes

We can recover with one pass over the data

Index

1 TB of data takes 1 hour to recover

But if the data is huge, this can take a while.

e.g., 200 MB/s sequential
throughput

…

Live bytes

We can recover with one pass over the data

Index

1 TB of data takes 1 hour to recover

But if the data is huge, this can take a while.

e.g., 200 MB/s sequential
throughput

Any good ideas?

…

Live bytes

Checkpointing

Index

…

Live bytes

Checkpointing

Index

Every X updates/insertions, store copy of index & live bytes

Live bytesIndexCopy:

…

Checkpointing

Every X updates/insertions, store copy of index & live bytes

Live bytesIndexCopy:

After recovery, load copy

…

Checkpointing

Every X updates/insertions, store copy of index & live bytes

Live bytesIndex

After recovery, load copy

…

Checkpointing

Every X updates/insertions, store copy of index & live bytes

Live bytesIndex

After recovery, load copy

Then scan X latest
updates/insertions

Oldest Newest…

…

Checkpointing

Every X updates/insertions, store copy of index & live bytes

Live bytes

After recovery, load copy

Then scan X latest
updates/insertions

Oldest Newest… <K, V2>

K

<K, V1>

Identify invalid pointer

…

Checkpointing

Every X updates/insertions, store copy of index & live bytes

Live bytes

After recovery, load copy

Then scan X latest
updates/insertions

Oldest Newest… <K, V2>

K

<K, V1>

Subtract entry size

…

Checkpointing

Every X updates/insertions, store copy of index & live bytes

Live bytes

After recovery, load copy

Then scan X latest
updates/insertions

Oldest Newest… <K, V2>

K

<K, V1>

Update pointer

…

The frequency of checkpointing controls a trade-off between write
cost and recovery time.

Live bytes

Then scan X latest
updates/insertions

Oldest Newest…

Index

…

Live bytes

Then scan X latest
updates/insertions

Oldest Newest…

Index

Recovery time: O(X/B) reads for backwards scan
Additional write cost: O(index size / X)

…

Live bytes

Then scan X latest
updates/insertions

Oldest Newest…

Index

write cost: O(GC/B + index size / X)

Get cost: O(1)

Costs Summary

Recovery time: O(X/B) reads for backwards scan

……

Suppose we delete an entry and then power
fails. Can you spot a problem?

K

<K, V1>

delete(K)

…… <K, V1>

Then scan X latest
updates/insertions

……

May load deleted entry back to index during recovery

<K, V1>

Then scan X latest
updates/insertions

K

……

May load deleted entry back to index during recovery

<K, V1>

Then scan X latest
updates/insertions

K

Solution?

…… <K, V1>

Then scan X latest
updates/insertions

<K, del>

Insert tombstone when deleting

…… <K, V1>

Then scan X latest
updates/insertions

<K, del>

While recovering, if the first instance of a key we see is a tombstone, we
ignore all subsequent entries with this key.

Mechanics Hot/Cold

separation

Checkpointing &
Recovery

Cuckoo
filtering

Index

Log

To reduce

write-amp If power fails To reduce

memory

…

Live bytesIndex Buffer

Can be large

…

Live bytesIndex Buffer

Index size = N · (P + K) / α
N = data size

P = pointer size

K = key size

α = collision resolution overheads

…

Live bytesIndex Buffer

Index size = N · (P + K) / α
N = data size

P = pointer size = O(log2 N/B)
K = key size = Ω(log2 N)
α = collision resolution overheads ≈ 0.8

…

Live bytesIndex Buffer

Index size = N · (P + K) / α
N = data size

P = pointer size = O(log2 N/B)

K = key size = Ω(log2 N)
α = collision resolution overheads ≈ 0.8

Ultimately attack this
with cuckoo filters

…

Live bytesIndex Buffer

Index size = N · (P + K) / α
N = data size

P = pointer size = O(log2 N/B)

K = key size = Ω(log2 N)

α = collision resolution overheads ≈ 0.8But first attack this

with cuckoo hashing

Cuckoo Hashing

Table of buckets, each containing 1 entry

Two hash functions

Cuckoo Hashing

Table of buckets, each containing 1 entry

Two hash functions

Insert x

h1(x)

x

Insert if there is free space

Cuckoo Hashing

Table of buckets, each containing 1 entry

Two hash functions

Insert x

Otherwise, evict existing entry using its alternative hash
function to an alternative slot

z

hother(z)

h1(x)

Cuckoo Hashing

Table of buckets, each containing 1 entry

Two hash functions

Insert x

Continue doing this recursively until all entries are mapped to an empty bucket

zq

hother(q)

h1(x)

hother(z)

z q x

Continue doing this recursively until all entries are mapped to an empty bucket

z

q

x

0 1 2 3 4 5 6 7 8 9

h1(z) = 7

h1(q) = 7

h2(z) = 2

h2(q) = 5

h2(x) = 9h1(x) = 2

z

q

x

0 1 2 3 4 5 6 7 8 9

h1(z) = 7

h1(q) = 7

h2(z) = 2

h2(q) = 5

h2(x) = 9h1(x) = 2

z

q

x

0 1 2 3 4 5 6 7 8 9

h1(z) = 7

h1(q) = 7

h2(z) = 2

h2(q) = 5

h2(x) = 9h1(x) = 2

z q

x

0 1 2 3 4 5 6 7 8 9

h1(z) = 7

h1(q) = 7

h1(x) = 2

h2(z) = 2

h2(q) = 5

h2(x) = 9

z q

x

0 1 2 3 4 5 6 7 8 9

h1(z) = 7

h1(q) = 7

h1(x) = 2

h2(z) = 2

h2(q) = 5

h2(x) = 9

z q

x

0 1 2 3 4 5 6 7 8 9

h1(z) = 7

h1(q) = 7

h1(x) = 2

h2(z) = 2

h2(q) = 5

h2(x) = 9

zqx

0 1 2 3 4 5 6 7 8 9

h1(z) = 7

h1(q) = 7

h1(x) = 2

h2(z) = 2

h2(q) = 5

h2(x) = 9

zqx

0 1 2 3 4 5 6 7 8 9

get(z)

get(x)

get(q)

A query has to check at most two locations to find a key

Insertions may endure multiple evictions and swapping of keys across buckets

zqx

0 1 2 3 4 5 6 7 8 9

Insertions may endure multiple evictions and swapping of keys across buckets

z

q

x

0 1 2 3 4 5 6 7 8 9

Worse: an infinite loop is technically possible

h1(z) = 7

h1(q) = 2
h1(x) = 7

h2(z) = 2

h2(q) = 7
h2(x) = 2

Insertions may endure multiple evictions and swapping of keys across buckets

zqx

0 1 2 3 4 5 6 7 8 9

alleviate by allowing multiple keys per bucket
Worse: an infinite loop is technically possible

Theory: insertions succeed in O(1) expected time with high probability

Assuming…

zqx …

Theory: insertions succeed in O(1) expected time with high probability

Assuming load factor < 50% for bucket size 1

zqx …

Theory: insertions succeed in O(1) expected time with high probability

Assuming load factor < 50% for bucket size 1
Assuming load factor < 84% for bucket size 2

zqx …

Theory: insertions succeed in O(1) expected time with high probability

Assuming load factor < 50% for bucket size 1
Assuming load factor < 84% for bucket size 2
Assuming load factor < 95% for bucket size 4

zqx …

Theory: insertions succeed in O(1) expected time with high probability

Assuming load factor < 95% for bucket size 4We’ll use this

zqx …

Why is it called Cuckoo hashing?

Lay eggs in other birds’ nests, and the hatchlings “evict” the other birds’ eggs.

…

Live bytes Buffer

Index size = N * (P + K) / α
N = data size

P = pointer size

K = key size

α = collision resolution overheads

index

…

Live bytes Buffer

Index size = N * (P + K) / α
N = data size

P = pointer size

K = key size

α = collision resolution overheads

Cuckoo index

Addressed with
 cuckoo hashing

…

Live bytes Buffer

Index size = N * (P + K) / α

Cuckoo index

Addressed with
 cuckoo hashing

N = data size

P = pointer size

K = key size

α = collision resolution overheads ≈0.8 ≈0.95

…

Live bytes Buffer

Index size = N * (P + K) / α

Cuckoo index

Now lets attack this
With a Cuckoo Filter

N = data size

P = pointer size

K = key size = Ω(log2 N)
α = collision resolution overheads ≈0.8 ≈0.95

…

Live bytes Buffer

Problems with storing full keys in a hash table

Cuckoo index

(1) Keys may be arbitrarily large

…

Live bytes Buffer

Problems with storing full keys in a hash table

Cuckoo index

(2) Keys can be variable-length

(1) Keys may be arbitrarily large

(requires additional metadata and CPU
cycles to encode)

Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys

Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys

FP() = ……

A fingerprint is a hash digest derived by hashing a key

Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys
A fingerprint is a hash digest derived by hashing a key

0100
M bits

Example: FP(X) =

Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys
A fingerprint is a hash digest derived by hashing a key

0100
M bits

Bucket address

0 1 2 3 4 5 6 7

Example: FP(X) = h1(X) =

Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys
A fingerprint is a hash digest derived by hashing a key

0100
M bits

3

0 1 2 3 4 5 6 7

Example: FP(X) = h1(X) =

Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys
A fingerprint is a hash digest derived by hashing a key

M bits
3

0 1 2 3 4 5 6 7

Example:

0100

FP(X) = h1(X) =

Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys

0 1 2 3 4 5 6 7

A fingerprint is a hash digest derived by hashing a key

FP(X)

Cuckoo Filter

Suppose we then insert another fingerprint to the same bucket

0 1 2 3 4 5 6 7

FP(Y)

Insert Y

FP(X)

Cuckoo Filter

Suppose we then insert another fingerprint to the same bucket

FP(X)

FP(Y)

Insert Y

Where to evict X? We no longer have its key!

??

How to derive an alternative bucket?

How to derive an alternative bucket?

FP(X)
h1(X)

We have two pieces of information about X (1) Bucket address: h1(X)
(2) fingerprint FP(X)

FP(X)

h1(X)

We want to combine them to give alternative bucket address h2(X)

h2(X)

We have two pieces of information about X (1) Bucket address: h1(X)
(2) fingerprint FP(X)

How to derive an alternative bucket?

FP(X)

h1(X)

We want to combine them to give alternative bucket address h2(X)

h2(X)

We have two pieces of information about X (1) Bucket address: h1(X)
(2) fingerprint FP(X)

How to derive an alternative bucket?

This mapping must be reversible, so we can derive h1(X) from h2(X) and FP(X)

FP(X)

h1(X)

We want to combine them to give alternative bucket address h2(X)

h2(X)

We have two pieces of information about X (1) Bucket address: h1(X)
(2) fingerprint FP(X)

How to derive an alternative bucket?

This mapping must be reversible, so we can derive h1(X) from h2(X) and FP(X)

Any ideas?

XOR Operator

0 0 1 1Input 1

Input 2

Parity

0 1 0 1

0 1 1 0
=

XOR Operator

0 0 1 1Input 1

Input 2 0 1 0 1

0 1 1 0
=

If number of 1s in an input column is even, the result is 0. If odd, it is 1.

Parity

Parity can help recover any input

0 0 1 1Input 1

Parity 0 1 1 0

Suppose we
lost input 2

Parity can help recover any input

0 0 1 1Input 1

Parity

Input 2

0 1 1 0

0 1 0 1
=

Recovered

Suppose we
lost input 2

Parity can help recover any input

0 1 0 1Input 2

Parity 0 1 1 0

Or suppose we
lost input 1

Parity can help recover any input

0 1 0 1Input 2

Parity 0 1 1 0

Or suppose we
lost input 1

Input 1 0 0 1 1
=

Recovered

FP(X)

h1(X) h2(X)

Let’s XOR the bucket address and a hash of the fingerprint:

Using XOR in Cuckoo filters

FP(X)

h1(X) h2(X)

Let’s XOR the bucket address and a hash of the fingerprint:

Using XOR in Cuckoo filters

h2(X) = h1(X) xor hash(FP(X))

FP(X)

h1(X) h2(X)

Let’s XOR the bucket address and a hash of the fingerprint:

Using XOR in Cuckoo filters

h2(X) = h1(X) xor hash(FP(X))

(We hash the fingerprint to map it to the same address space size as the buckets)

FP(X)

h1(X) h2(X)

Let’s XOR the bucket address and a hash of the fingerprint:

Using XOR in Cuckoo filters

h2(X) = h1(X) xor hash(FP(X))

(We hash the fingerprint to map it to the same address space size as the buckets)

The resulting mapping is reversible

h1(X) = h2(X) xor hash(FP(X))

FP(X)

h1(X) h2(X)

Thus, we must search only two buckets to find an entry’s fingerprint

Using XOR in Cuckoo filters

query(X)

FP(X)

h1(X) h2(X)

Thus, we must search only two buckets to find an entry’s fingerprint

Using XOR in Cuckoo filters

query(X)

If we find a matching fingerprint, we report a positive.

FP(X)

Thus, we must search only two buckets to find an entry’s fingerprint

Using XOR in Cuckoo filters

query(Y)

If we find a matching fingerprint, we report a positive.
However, we can have false positives.

FP(Y)=FP(X)

Thus, we must search only two buckets to find an entry’s fingerprint

Using XOR in Cuckoo filters

If we find a matching fingerprint, we report a positive.
However, we can have false positives.

Can we have false negatives?

FP(X)

query(Y)

FP(Y)=FP(X)

FP(X)

Thus, we must search only two buckets to find an entry’s fingerprint

Using XOR in Cuckoo filters

query(Y)

If we find a matching fingerprint, we report a positive.
However, we can have false positives.

FP(Y)=FP(X)

No, because a fingerprint for a key that had been inserted is in
one of only two possible buckets, both of which we search.

Can we have false negatives?

What’s the false positive rate?

M bits per
fingerprint

What’s the false positive rate?

β slots per
bucket

What’s the false positive rate?

M bits per
fingerprint

α = fraction of occupied slots

What’s the false positive rate?

β slots per
bucket

M bits per
fingerprint

false positive rate ≈ 2 · 2-M · β · α

α = fraction of occupied slots

β slots per
bucket

M bits per
fingerprint

false positive rate ≈ 2 · 2-M · β · α

α = fraction of occupied slots

β slots per
bucket

M bits per
fingerprint

Since a query searches
two buckets

false positive rate ≈ 2 · 2-M · 4 · 0.95

α = fraction of occupied slots

β slots per
bucket

M bits per
fingerprint

When at capacity

false positive rate ≈ 2-M+3

α = fraction of occupied slots

β slots per
bucket

M bits per
fingerprint

false positive rate ≈ 2-M+3 < 2-M · ln(2) For Bloom filter
when M ≥ 10

≈ 2-M+3 2-M · ln(2)

Bloom filter

false positive rate:

Cuckoo Filter

Memory accesses for
positive query?

≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

Memory accesses for
negative query?

≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

Memory accesses for
negative query 2 ≈2

≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

Memory accesses for
negative query 2 ≈2

Insertion cost Exp. O(1) M · ln(2)

≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

Memory accesses for
negative query 2 ≈2

Insertion cost Exp. O(1) M · ln(2)

Deletes?

Storing payloads?

N/A

N/A

Deletes in a Cuckoo Filter

FP(X)

h1(X) h2(X)

delete(X)

Deletes in a Cuckoo Filter

FP(X)

h1(X) h2(X)

delete(X)

A delete searches both buckets for a key and removes a matching fingerprints.

Deletes in a Cuckoo Filter

FP(X)

h1(X) h2(X)

delete(Y)

A delete searches both buckets for a key and removes a matching fingerprints.

What if we delete a fingerprint for a key that was never inserted?

FP(Y)=FP(X)

Deletes in a Cuckoo Filter

FP(X)

h1(X) h2(X)

A delete searches both buckets for a key and removes a matching fingerprints.

False negatives…

delete(Y)
FP(Y)=FP(X)

What if we delete a fingerprint for a key that was never inserted?

Deletes in a Cuckoo Filter

A delete searches both buckets for a key and removes a matching fingerprints.

False negatives…

As long as we delete keys we know for sure have been inserted, no false
negatives can occur

FP(X)

h1(X) h2(X)

delete(X)

What if we delete a fingerprint for a key that was never inserted?

Deletes in a Cuckoo Filter

A delete searches both buckets for a key and removes a matching fingerprints.

False negatives…

As long as we delete keys we know for sure have been inserted, no false
negatives can occur

FP(X)

What if we delete a fingerprint for a key that was never inserted?

Works even if we have matching fingerprints for different keys in the same bucket

FP(Y) FP(X) = FP(Y)

h2(X)=h2(Y) h1(X)=h1(Y)

Deletes in a Cuckoo Filter

A delete searches both buckets for a key and removes a matching fingerprints.

False negatives…

As long as we delete keys we know for sure have been inserted, no false
negatives can occur

FP(X)

After delete(X), get(Y) will still succeed, whichever fingerprint we delete.

What if we delete a fingerprint for a key that was never inserted?

Works even if we have matching fingerprints for different keys in the same bucket

FP(Y) FP(X) = FP(Y)

h2(X)=h2(Y) h1(X)=h1(Y)

≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

Memory accesses for
negative query 2 2

Insertion cost O(1) M · ln(2)

Deletes?

Storing Payloads? N/A

1.5 N/A

Storing Payloads in a Filter

Can we store a payload associated with each key and retrieve it on positive query?

Storing Payloads in a Filter

0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1

Insert(x)

Map to random bits

Can we store a payload associated with each key and retrieve it on positive query?

Bloom filter:

Storing Payloads in a Filter

0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1

Insert(x)

Map to random bits

Can we store a payload associated with each key and retrieve it on positive query?

Bloom filter:

There is nowhere obvious to associate a payload with each key

Storing Payloads in a Filter

Can we store a payload associated with each key and retrieve it on positive query?

Cuckoo filter:

FP(X)
FP(Q)
FP(Z)
FP(Y)

…… …

Storing Payloads in a Filter

Can we store a payload associated with each key and retrieve it on positive query?

Cuckoo filter:

Px
Pq

FP(X)
FP(Q)
FP(Z)
FP(Y)

Pz
Py

Payloads

Just store a payload alongside each fingerprint

≈ 2-M+3 2-M · ln(2)

Bloom filter

Memory accesses for
positive query

false positive rate:

Cuckoo Filter

1.5 M · ln(2)

Memory accesses for
negative query 2 2

Insertion cost O(1) M · ln(2)

Deletes?

Storing Payloads? N/A

1.5 N/A

Yes

…

Live bytes Buffer
Cuckoo Filter

<fingerprint, pointer>

…

Live bytes Buffer
Cuckoo Filter

<FP(X), pointer>

<X, V>

…

Live bytes Buffer

Index size = N * (P + K) * α

Cuckoo Filter

Our goal was
reducing this

N = data size

P = pointer size = O(log2 N/B)

K = key size = Ω(log2 N)
α = collision resolution overheads ≈0.8 ≈0.95

…

Live bytes Buffer

Index size = N * (P + M) / α

Cuckoo Filter

Our goal was
reducing this

N = data size

P = pointer size = O(log2 N/B)

K = key size = Ω(log2 N) M bits / entry
α = collision resolution overheads ≈0.8 ≈0.95

…

Live bytes Buffer

Implication of Using a Filter on Insertions/Deletes/Updates

Cuckoo Filter

…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X (FPX=FPy)

Live bytes

…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X

Live bytes

<Y, VY>

Need to set up pointer to Y

…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X

Live bytes

<Y, VY>

Due to fingerprint match,
we orphan entry X

Need to set up pointer to Y

…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X

Live bytes

<Y, VY>

Due to fingerprint match,
we orphan entry X

Orphaned

Need to set up pointer to Y

…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X

Live bytes

<Y, VY>

Check key

Need to set up pointer to Y

To safeguard against orphaning, we must issue read-before-write

…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X

Live bytes

<Y, VY>

To safeguard against orphaning, we must issue read-before-write

<FPy, Py>

O(1+2-M+3) reads & O(GC/B) writes

O(1+2-M+3)

O(log2(N/B) + M))

O(N/B)

O(2-M+3) read & O(GC/B) writes

Updates/

Deletes:

Gets:

Memory

(bits / entry)

Circular Log w.
Cuckoo Filter

Scan:

Insert:
 (excluding checkpointing)

Circular Log w.
Cuckoo Filter

O(1+2-M+3) reads & O(GC/B) writes

O(1+2-M+3)

O(log2(N/B) + M))

O(N/B)

O(2-M+3) read & O(GC/B) writes

Updates/

Deletes:

Gets:

Memory

(bits / entry)

Scan:

Insert:

Basic LSM-tree w.
Monkey

O(log2(N/P) / B) reads & writes

O(1+2-M * ln(2))

O(K/B + M)

O(log2 N/P + S/B)

O(log2(N/P) / B) reads & writes

Circular Log w.
Cuckoo Filter

O(1+2-M+3) reads & O(GC/B) writes

O(1+2-M+3)

O(log2(N/B) + M))

O(N/B)

O(2-M+3) read & O(GC/B) writes

Updates/

Deletes:

Gets:

Memory

(bits / entry)

Scan:

Insert:

Basic LSM-tree w.
Monkey

O(log2(N/P) / B) reads & writes

O(1+2-M * ln(2))

O(K/B + M)

O(log2 N/P + S/B)

O(log2(N/P) / B) reads & writes

Recovery Swift Long

And now: office hours

