Circular Logs & Cuckoo Filters
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Circular Log

Invented In 1992 as a “log structured file system”



Circular Log

Invented in 1992 as a “log structured file system”
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\Various names, same data structure: Index+Log

Circular Log
Log-structured Hash Table

log structured file system
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Write cost (Assuming only insertions)

Get cost
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Write cost O(1/B) (Assuming only insertions)

Get cost O(1)
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How to delete?

Log
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After many deletes, many orphaned entries accumulate
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After many deletes, many orphaned entries accumulate

They take up space which we would prefer to use to store valid data

m: ([ x  x J__]
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After many deletes, many orphaned entries accumulate
They take up space which we would prefer to use to store valid data

How to fix this?

m: ([ x  x J__]
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After many deletes, many orphaned entries accumulate
They take up space which we would prefer to use to store valid data

How to fix this? Garbage Collection (as we saw in SSDs)
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Conceptually divide log into equally-sized areas (can be in order of GBSs)
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Conceptually divide log into equally-sized areas (can be in order of GBSs)

For each area, maintain a counter of the number of bytes representing live data
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To delete:

Delete X
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To delete: (1) get entry from storage to check its size

Delete X

!
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To delete: (1) get entry from storage to check its size
(2) subtract its size from area’s counter

Delete X
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To delete: (1) get entry from storage to check its size
(2) subtract its size from area’s counter

(3) remove entry from index
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To delete: aetarbne fram ataraaa ta abhaoale o oizo
(2) subtract its size from area’s counter

(3) remove entry from index

Can also store each entry’s size in the index,
so we not have to get the entry from storage
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Updates

An update is a delete followed by an insertion of an entry with the same key
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Updates

An update is a delete followed by an insertion of an entry with the same key
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Updates

An update is a delete followed by an insertion of an entry with the same key
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Garbage Collection

(1) pick area with least live data left
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Garbage Collection

(1) pick area with least live data left
(2) Scan area and for each entry

m:

- E‘::J[::j -

Scan




Garbage Collection

(1) pick area with least live data left
(2) Scan area and for each entry
(A) If the key is not indexed, the entry had been deleted, so move on
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Garbage Collection

(1) pick area with least live data left
(2) Scan area and for each entry
(A) If the key is not indexed, the entry had been deleted, so move on
(B) If the key is indexed but pointing elsewhere, the entry is outdated, so move on
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Garbage Collection

(1) pick area with least live data left

(2) Scan area and for each entry
(A) If the key is not indexed, the entry had been deleted, so move on
(B) If the key is indexed but pointing elsewhere, the entry is outdated, so move on
(C) If the key is indexed and pointing to this entry, it is valid, so migrate it
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Garbage Collection

(1) pick area with least live data left

(2) Scan area and for each entry
(A) If the key is not indexed, the entry had been deleted, so move on
(B) If the key is indexed but pointing elsewhere, the entry is outdated, so move on
(C) If the key is indexed and pointing to this entry, it is valid, so migrate it
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When to trigger garbage-collection?

Define a global threshold of (live data L / physical space P)
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(live data / physical space) = white / (white + gray)



When to trigger garbage-collection?

Define a global threshold of (live data L / physical space P)

When this threshold is reached, trigger garbage-collection to free space
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Garbage-Collection Write-Amplification

How to reason about this?

Let X = avg. % of valid pages in areas we pick to garbage-collect

X
WA= |+

1 —x
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Garbage-Collection Write-Amplification

How to reason about this?

Let X = avg. % of valid pages in areas we pick to garbage-collect

X
WA= 1|+

1 —x

Same analysis as for garbage-collection in SSDs, so refer to that :)
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Garbage-Collection Write-Amplification
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—o—Real WA for Uniformly Random Writes
—o—Worst-Case Model

Uniformly Random Writes Model

|4 LP Worst case
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{4 1 L/P _
> ' 1_7/p Uniformly random

L = logical data size

P = physical data size
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Hot/Cold Separation

Normal workloads are neither worst-case nor randomly distributed



Normal workloads are neither worst-case nor randomly distributed

Typically, few entries are frequently updated while most are seldom updated
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Normal workloads are neither worst-case nor randomly distributed
Typically, few entries are frequently updated while most are seldom updated

Hot entries are invalidated quickly, so by the time we garbage-collect, there
IS usually only cold data left

cold Invalid
P X
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Garbage-collect cold data




Normal workloads are neither worst-case nor randomly distributed
Typically, few entries are frequently updated while most are seldom updated

Hot entries are invalidated quickly, so by the time we garbage-collect, there
Is usually only cold data left

This migrated cold data gets mixed with more hot data, and the cycle repeats.

Hot updates —,
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Uniformly random
workloads
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Hot vs. Cold Data

L/P X '
' Mixing hot/cold data brings
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How can we avoid garbage-
l::l collecting cold data all the time?




Hot vs. Cold Data Separation




Hot vs. Cold Data Separation

We can separate hot vs. cold data into different areas




Hot vs. Cold Data Separation

We can separate hot vs. cold data into different areas

Insight 1: user updates are generally hot
(i.e., data recently written is likely to be written again)

user updates \
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Hot vs. Cold Data Separation

We can separate hot vs. cold data into different areas

Insight 1: user updates are generally hot
(I.e., data recently written is likely to be written again)

Insight 2: garbage-collected data is generally cold
(i.e., it had already existed for a long while without getting updated)

l flush




Hot vs. Cold Data Separation

Simplest solution: separate user updates and cold data using different
buffers into different areas

user updates
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Hot vs. Cold Data Separation

Simplest solution: separate user updates and cold data using different
buffers into different areas

More advanced: separate data with different temperatures into different areas




Hot vs. Cold Data Separation

Simplest solution: separate user updates and cold data using different
buffers into different areas

More advanced: separate data with different temperatures into different areas

user updates
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Hot vs. Cold Data Separation

Simplest solution: separate user updates and cold data using different
buffers into different areas

More advanced: separate data with different temperatures into different areas

user undates —» Temperature
P Detector

. D . . Requires multiple buffers
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Estimates how likely a page is to be updated again

user updates —»
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Estimates how likely a page is to be updated again

Should be a light-weight data structure that can fit in memory

user updates —»
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Estimates how likely a page is to be updated again
Should be a light-weight data structure that can fit in memory

There Is a lot of research on this, but we’ll explore just one solution relying
on a cool data structure called count-min

user updates —»
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Count-Min

A data structure that reports that frequency of elements in a data stream
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Count-Min

A data structure that reports that frequency of elements in a data stream

Consists of d arrays of w counters each

W counters
e
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00000000000CO0 d arrays
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Count-Min

A data structure that reports that frequency of elements in a data stream

Consists of d arrays of w counters each
Insert an entry by hashing it to one counter in each array using different hash function

0O000000000O00O0
Insert x —» h2(x) 0O000000000O00O0

\hs(X)
0000000000O00O0



Count-Min

A data structure that reports that frequency of elements in a data stream

Consists of d arrays of w counters each
Insert an entry by hashing it to one counter in each array using different hash function

And increment that counter

000100000000
Insert x —» h2(x) 000001000000

\hs(X)
0O000000001O00



Count-Min

After a while counters have a wide distribution of values

3519040100060

3812740104938

155361907130



Count-Min

After a while counters have a wide distribution of values
To query for the frequency of a key, hash it to each array and return minimum

3519040100060

/h1(Y)/ \
Inserty — ha(y) 381274010498 — 3

\ h3(y) /



Count-Min

After a while counters have a wide distribution of values
To query for the frequency of a key, hash it to each array and return minimum

This result is a guaranteed upper bound of the real count

3519040100060

/h1(Y)/ \
Inserty — ha(y) 381274010498 — 3

\ h3(y) /



Count-Min

After a while counters have a wide distribution of values
To query for the frequency of a key, hash it to each array and return minimum

This result is a guaranteed upper bound of the real count

Result might overestimate the true answer due to hash collisions

3519040100060

/h1(Y)/ \
Inserty — ha(y) 381274010498 — 3

\ h3(y) /



Count-Min

Estimated frequency < true frequency + € - num insertions with prob. 1- 6

3519040100060

312740104938

155361907130



Count-Min

Estimated frequency < true frequency + € - num insertions with prob. 1- 6

e

Parameters
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155361907130



Count-Min

Estimated frequency < true frequency + € - num insertions with prob. 1- 6

w = [e/e]
d = [In 1/5]

The parameters determine the values of w and d

W counters
A

351904010060
381274010498 d arrays
155361907130



We can employ count-min to estimate frequency
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We can employ count-min to estimate frequency

Pitfall: a value was very hot in the past but became cold.
Count-min would still tell us its hot. Solutions?
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Decay: every x insertions, we can divide all counters by 2.

3561904010060
381274010498

155361907130



Decay: every x insertions, we can divide all counters by 2.

121402000030

140132000244

022130403010



In addition, we can safeguard against counter overflows by not
iIncrementing counters that have reached their maximum value.

121402000030

140132000244

022130403010



Decaying
user updates —»
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GC overheads =

L/P » .
1 4 — Mixing hot/cold data brings

1 —L/P us towards worst-case
14 L/P l Uniformly random
" 2.(1 - L/P) workloads
Hot/cold separation
44—

improves WA beyond
uniform case



Overall Cost Analysis

Write cost: O(GC /B) I/0
Reads: 1 read |l/O
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Checkpointing & Recovery

If power fails, we lose these
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Let’s say It’s ok to
lose the buffer
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We need to recover Let’s say it's ok to
these lose the buffer
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Simple recovery algorithm?
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Simple recovery algorithm?

n.

Scan the data from newest to oldest



Simple recovery algorithm?
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Simple recovery algorithm?

n.
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Simple recovery algorithm?

n.
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Simple recovery algorithm?

n.

Check index -¥ \
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Scan



Simple recovery algorithm?

Since a mapping entry with the same key already
exists, the current entry is obsolete.

n.

Check index -¥ \
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Simple recovery algorithm?

So we instead subtract size of entry from live bytes.

n.
) 4
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Scan



We can recover with one pass over the data

Scan: O(N/B)



We can recover with one pass over the data

But if the data is huge, this can take a while.

Scan: O(N/B)



We can recover with one pass over the data

But if the data is huge, this can take a while.

e.g., 200 MB/s sequential 4 1B of data takes 1 hour to recover

throughput



We can recover with one pass over the data

But if the data is huge, this can take a while.

Any good ideas?

e.g., 200 MB/s sequential 1 TB of data takes 1 hour to recover

throughput



Checkpointing
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Checkpointing

Every X updates/insertions, store copy of index & live bytes

n.
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Checkpointing

Every X updates/insertions, store copy of index & live bytes

After recovery, load copy

1




Checkpointing

Every X updates/insertions, store copy of index & live bytes

After recovery, load copy
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Checkpointing

Every X updates/insertions, store copy of index & live bytes

After recovery, load copy

n
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Then scan X latest
updates/insertions



Checkpointing

Every X updates/insertions, store copy of index & live bytes

After recovery, load copy

£ (K )(Teore

l '\ldentify invalid pointer

sso MW M

Then scan X Iatest
updates/insertions



Checkpointing

Every X updates/insertions, store copy of index & live bytes

After recovery, load copy

£ (K )(Teoye

/Svubtract entry size

Then scan X Iatest
updates/insertions



Checkpointing

Every X updates/insertions, store copy of index & live bytes

After recovery, load copy

fF [ x )
Nl‘pdate pointer

= ... |Newest

Then scan X latest
updates/insertions



The frequency of checkpointing controls a trade-off between write
cost and recovery time.

.-
ss0 () ) .. [Newest

Then scan X latest
updates/insertions



Additional write cost: O(index size / X)

Recovery time: O(X/B) reads for backwards scan

n
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Then scan X latest
updates/insertions



Costs Summary

write cost. O(GC/B + index size / X)
Recovery time: O(X/B) reads for backwards scan
Get cost: O(1)

n.
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Then scan X latest
updates/insertions



Suppose we delete an entry and then power
fails. Can you spot a problem?

delete(K)
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Then scan X latest
updates/insertions



May load deleted entry back to index during recovery

Then scan X latest
updates/insertions



May load deleted entry back to index during recovery

Solution?

Then scan X latest
updates/insertions



Insert tombstone when deleting

Then scan X latest
updates/insertions



While recovering, if the first instance of a key we see iIs a tombstone, we
ignore all subsequent entries with this key.

Then scan X latest
updates/insertions
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Can be large
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Index size=N-: (P +K)/a

N = data size

P = pointer size

K = key size

a = collision resolution overheads

.




Index size=N-: (P +K)/a

N = data size

P = pointer size = O(log2 N/B)

K = key size = Q(log2 N)

a = collision resolution overheads = 0.8

.




Index size=N: (P + K)/ a

N = data size
P = pointer size = O(logz N/B)
—> K = key size = Q(log2 N)
a = collision resolution overheads = 0.8

Ultimately attack this
with cuckoo filters

.




Index size=N: (P + K)/ a

N = data size
P = pointer size = O(log2 N/B)
K = key size = Q(logz N)

But first attack this —> a = collision resolution overheads = 0.8

with cuckoo hashing

.




Cuckoo Hashing

Table of buckets, each containing 1 entry
Two hash functions
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Cuckoo Hashing

Table of buckets, each containing 1 entry
Two hash functions

Insert X /————\'

h1(X)
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Insert iIf there is free space



Cuckoo Hashing

Table of buckets, each containing 1 entry
Two hash functions

Insert X /————\'

h1(X)

!

Otherwise, evict existing entry using its alternative hash
function to an alternative slot



Cuckoo Hashing

Table of buckets, each containing 1 entry
Two hash functions

Insert X /————\'

h1(X)
T

W

Continue doing this recursively until all entries are mapped to an empty bucket



Continue doing this recursively until all entries are mapped to an empty bucket












0 1 2 3 4 5 6 / 8 9



+
0 1 2 3 4 5 6 7 8 9

\\—//V



v NN
0 1 2 3 4 5 o V4 8 9

\\—//V



0 1 2 3 4 5 6 / 8 9



A guery has to check at most two locations to find a key

get(z)

‘\ - J




Insertions may endure multiple evictions and swapping of keys across buckets
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Insertions may endure multiple evictions and swapping of keys across buckets
Worse: an infinite loop is technically possible

hi(z) =7 ha(z) = 2
n@=2  hefa) =7
hi(X) =7 ha(X) = 2



Insertions may endure multiple evictions and swapping of keys across buckets
Worse: an infinite loop is technically possible
alleviate by allowing multiple keys per bucket

0 1 2 3 4 5 6 / 8 9



Theory: insertions succeed in O(1) expected time with high probability

Assuming...



Theory: insertions succeed in O(1) expected time with high probability

Assuming load factor < 50% for bucket size 1



Theory: insertions succeed in O(1) expected time with high probability

Assuming load factor < 50% for bucket size 1
load factor < 84% for bucket size 2



Theory: insertions succeed in O(1) expected time with high probability

Assuming load factor < 50% for bucket size 1
load factor < 84% for bucket size 2
load factor < 95% for bucket size 4



Theory: insertions succeed in O(1) expected time with high probability

We'll use this —» load factor < 95% for bucket size 4



Why is it called Cuckoo hashing?

Lay eggs in other birds’ nests, and the hatchlings “evict” the other birds’ eggs.



Index size = N * (P + K) / a

N = data size

P = pointer size

K = key size

a = collision resolution overheads
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Index size=N* (P + K)/ a
N = data size

P = pointer size
K = key size

Addressed with ___, , _ collision resolution overheads

cuckoo hashing

1
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Index size=N* (P + K)/ a
N = data size

P = pointer size
K = key size

Addressedwith __ , _ collision resolution overheads ~0.8 — ~0.95

cuckoo hashing

1
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Index size =N * (P + K) / a

N = data size
P = pointer size
—> K = key size = Q(logz2 N)
a = collision resolution overheads =0.8 — =0.95

Now lets attack this
With a Cuckoo Filter

1
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Problems with storing full keys in a hash table

(1) Keys may be arbitrarily large

1
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Problems with storing full keys in a hash table

(1) Keys may be arbitrarily large

(2) Keys can be variable-length (requires additional metadata and CPU
cycles to encode )

1
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Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys




Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys

A fingerprint is a hash digest derived by hashing a key




Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys

A fingerprint is a hash digest derived by hashing a key

M bits
o

Example: FP( X )= 0100
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Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys

A fingerprint is a hash digest derived by hashing a key

M bits
g

Example: FP(X)= 0100 h1(X) = Bucket address



Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys

A fingerprint is a hash digest derived by hashing a key

M bits
g

Example: FP(X)= 0100 hi1(X) =3



Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys

A fingerprint is a hash digest derived by hashing a key

M Dits
g

Example: FP( X)) = h1(X) = 3
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Cuckoo Filter

Same as Cuckoo hash tables, but store fingerprints instead of keys

A fingerprint is a hash digest derived by hashing a key
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Cuckoo Filter

Suppose we then insert another fingerprint to the same bucket

Insert Y

|

FP(Y)

1
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Cuckoo Filter

Suppose we then insert another fingerprint to the same bucket

Insert Y

|

FP(Y)

1
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Where to evict X? We no longer have its key!
How to derive an alternative bucket?



How to derive an alternative bucket?

We have two pieces of information about X (1) Bucket address: h{(X)
(2) fingerprint FP(X)
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h1(X)



How to derive an alternative bucket?

We have two pieces of information about X (1) Bucket address: h1(X)
(2) fingerprint FP(X)

We want to combine them to give alternative bucket address hz(X)

—
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h1(X) h2(X)



How to derive an alternative bucket?
We have two pieces of information about X (1) Bucket address: h1(X)
(2) fingerprint FP(X)

We want to combine them to give alternative bucket address ha(X)

This mapping must be reversible, so we can derive h1(X) from h2(X) and FP(X)

—
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h1(X) h2(X)
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How to derive an alternative bucket?

We have two pieces of information about X (1) Bucket address: h1(X)
(2) fingerprint FP(X)

We want to combine them to give alternative bucket address ha(X)

This mapping must be reversible, so we can derive h1(X) from h2(X) and FP(X)

—

L L b e

h1(X) h2(X)
\_—/

Any ideas?



XOR Operator

Input 1 0 0 1

1N
L/

Input 2 0 1 0

Parity 0 1 1




XOR Operator

Input 1 0 0 1 1
M
U
Input 2 0 1 0 1
Parity 0 1 1 0

If number of 1s in an input column is even, the result is O. If odd, it is 1.



Parity can help recover any input

Input 1 0 0 1 1

Suppose we
lost input 2

Parity 0 1 1 0




Suppose we
lost input 2

Parity can help recover any input

Input 1

Parity

Input 2

Recovered



Parity can help recover any input

Input 2 0 1 0 1

Or suppose we
lost input 1

Parity 0 1 1 0




Or suppose we
lost input 1

Parity can help recover any input

Input 2

Parity

Input 1

Recovered



Using XOR in Cuckoo filters

Let’s XOR the bucket address and a hash of the fingerprint:

L f el ] ]

h1(X) h2(X)



Using XOR in Cuckoo filters

Let’s XOR the bucket address and a hash of the fingerprint:

h2(X) = h1(X) xor hash(FP(X))

—

------
1 2



Using XOR in Cuckoo filters

Let’s XOR the bucket address and a hash of the fingerprint:

(We hash the fingerprint to map it to the same address space size as the buckets)

h2(X) = h1(X) xor hash(FP(X))

—

------
1 2



Using XOR in Cuckoo filters

Let’s XOR the bucket address and a hash of the fingerprint:

(We hash the fingerprint to map it to the same address space size as the buckets)

The resulting mapping is reversible

h2(X) = h1(X) xor hash(FP(X))

—

------
1 2

\’/

h1(X) = h2(X) xor hash(FP(X))
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Using XOR in Cuckoo filters

Thus, we must search only two buckets to find an entry’s fingerprint
If we find a matching fingerprint, we report a positive.

However, we can have false positives.
query(Y)

\ FP(Y)=FP(X)
O

Can we have false negatives?

No, because a fingerprint for a key that had been inserted is In
one of only two possible buckets, both of which we search.
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Since a query searches
two buckets

!

false positive rate = 2 - 2M- 3 - a
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When at capacity

!

false positive rate = 2 - 2-M - 4 - 0.95

M bits per
fingerprint
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bucket
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a = fraction of occupied slots



false positive rate =~ 2-M+3

M bits per
fingerprint
¢
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bucket
_—
a = fraction of occupied slots



For Bloom filter

false positive rate = 2-M+3 -M - In(2)
P <2 when M = 10
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false positive rate:

Memory accesses for
positive query

Memory accesses for
negative query

Insertion cost

Deletes?

Storing payloads?

Cuckoo Filter

~ P-M+3

1.5

Exp. O(1)

Bloom filter

-M - In(2)

M - In(2)

N/A

N/A
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Deletes In a Cuckoo Filter

A delete searches both buckets for a key and removes a matching fingerprints.

What if we delete a fingerprint for a key that was never inserted? False negatives...
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Deletes In a Cuckoo Filter

A delete searches both buckets for a key and removes a matching fingerprints.

What if we delete a fingerprint for a key that was never inserted? False negatives...

As long as we delete keys we know for sure have been inserted, no false
negatives can occur
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Deletes In a Cuckoo Filter

A delete searches both buckets for a key and removes a matching fingerprints.

What if we delete a fingerprint for a key that was never inserted? False negatives...

As long as we delete keys we know for sure have been inserted, no false
negatives can occur

Works even if we have matching fingerprints for different keys in the same bucket

After delete(X), get(Y) will still succeed, whichever fingerprint we delete.

FP(X)
FP(Y) FP(X) = FP(Y)
ho(X)=ho(Y) h1(X)=h1(Y)



false positive rate:

Memory accesses for
positive query

Memory accesses for
negative query

Insertion cost

Deletes?

Storing Payloads?

Cuckoo Filter

~ P-M+3

1.5

Bloom filter
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Storing Payloads in a Filter
Can we store a payload associated with each key and retrieve it on positive query?

Insert(x

Bloom filter: / ‘[ \ Map to random bits

0100110100010011 1

There i1s nowhere obvious to associate a payload with each key
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Storing Payloads in a Filter

Can we store a payload associated with each key and retrieve it on positive query?

Cuckoo filter:

Payloads

Just store a payload alongside each fingerprint



Cuckoo Filter

false positive rate: ~ 2-M+3
Memory accesses for |
positive query |
Memory accesses for 5
negative query
Insertion cost O(1)
Deletes? 1.0

Storing Payloads? Yes

Bloom filter

-M - In(2)

M - In(2)

N/A

N/A



Cuckoo Filter

m:
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Cuckoo Filter

1
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Index size =N * (P + K) " a
N = data size
P = pointer size = O(logz N/B)
—> K = key size = Q(logz2 N)
a = collision resolution overheads =0.8 — =0.95

Our goal was
reducing this

1
<o R | IS | N G



Index size =N * (P + M)/ a

N = data size
P = pointer size = O(logz N/B)
— K = key size = Q(log2 N) —» M bits / entry
a = collision resolution overheads =0.8 — =0.95

Our goal was
reducing this

1
<o R | IS | N G



Implication of Using a Filter on Insertions/Deletes/Updates
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Implication of Using a Filter on Insertions/Deletes/Updates

Suppose we insert key Y that has a matching fingerprint to existing key X (FPx=FPy)

insert(Y)

1
=
1
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Implication of Using a Filter on Insertions/Deletes/Updates

Suppose we insert key Y that has a matching fingerprint to existing key X

insert(Y)
Due to fingerprint match,

we orphan entry X l

m:

\> l

Orphaned

Need to set up pointerto Y



Implication of Using a Filter on Insertions/Deletes/Updates

Suppose we insert key Y that has a matching fingerprint to existing key X

To safeguard against orphaning, we must issue read-before-write

insert(Y)

!
m:

l Check key l

" (COew ] -

Need to set up pointerto Y



Implication of Using a Filter on Insertions/Deletes/Updates

Suppose we insert key Y that has a matching fingerprint to existing key X

To safeguard against orphaning, we must issue read-before-write

4

N T—



Updates/
Deletes:

Insert:

Gets:
Scan:

Memory
(bits / entry)

Circular Log w.
Cuckoo Filter

]
W i — W

O(1+2-M+3) reads & O(GC/B) writes

O(2-M+3) read & O(GC/B) writes
O(1+2-M+3)
O(N/B)

O(log2(N/B) + M))

(excluding checkpointing)



Basic LSM-tree w. Circular Log w.

Monkey Cuckoo Filter
0 )
T 000
my COC OC C—_JCO 3

ggg?:_y O(log2(N/P) / B) reads & writes  O(1+2-M+3) reads & O(GC/B) writes

Insert: O(log2(N/P) / B) reads & writes  O(2-M+3) read & O(GC/B) writes
Gets: O(1+2-M" In@2)) O(1+2-M+3)

Scan: O(log2 N/P + S/B) O(N/B)

Memory 5 k/B + M) O(log2(N/B) + M))

(bits / entry)



Basic LSM-tree w. Circular Log w.

Monkey Cuckoo Filter
0 )
T 000
my COC OC C—_JCO 3

ggg?:_y O(log2(N/P) / B) reads & writes  O(1+2-M+3) reads & O(GC/B) writes

Insert: O(log2(N/P) / B) reads & writes  O(2-M+3) read & O(GC/B) writes
Gets: O(1+2-M*In(2)) O(1+2-M+3)

Scan: O(log2 N/P + S/B) O(N/B)

Memory

(bits / entry) O(K/B + M) O(log2(N/B) + M))

Recovery Swift Long



And now: office hours



