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ABSTRACT
Range filters are compact probabilistic data structures that answer

approximate range emptiness queries. They are used in many do-

mains, e.g., in key-value stores, to quickly rule out the existence of

keys in a given query range and avoid having to search for them

in storage. However, all existing range filters exhibit at least one

of the following shortcomings: (1) they do not provide robust false

positive rate and performance guarantees, (2) they do not support

variable-length keys and query ranges, and (3) they do not allow

dynamic operations such as insertions, deletions, or expansions.

We introduce Diva, the first range filter to address all the above

challenges simultaneously. Diva learns the dataset’s distribution

by sampling keys and storing them in a cache-efficient trie. It com-

presses the keys in-between samples by removing their longest

common prefix and truncating their suffixes while leaving enough

bits in the middle (i.e., an infix) to allow differentiating between the

keys in the sorted order. It stores infixes in constant time dynamic

data blocks, which it splits to handle insertions and expansions. It

processes a range query by traversing the trie and checking for the

inclusion of infixes in the target query range.

We show, theoretically and empirically, that Diva achieves a false

positive rate on par with the state of the art on real-world datasets

while supporting dynamicity and variable-length queries and keys.
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1 INTRODUCTION
What is a Filter? A filter is a memory-efficient probabilistic data

structure that answers whether a query key exists in a given set.

Its compactness allows it to fit in a higher level of the memory

hierarchy than the set it represents, making it fast to query. A filter

never returns a false negative but may return a false positive with

a probability called the False Positive Rate (FPR) that depends on

its memory footprint. Due to these qualities, filters are used in

many applications to avoid redundant disk reads [21] and network

hops [10] when a query happens to target a nonexistent key.
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Range Filters and Applications. Traditional filters answer
membership queries for a single key. In contrast, a range filter ac-

cepts two keys as the end-points of a range and determines if at

least one key in the set is in-between them. As with a traditional

filter, a range filter does not return false negatives but may return

false positives. Range filters are used in many domains, especially

in the context of LSM-Trees [38], to avoid accessing files that do not

contain any keys within a range predicate, significantly boosting

performance [2, 12, 23, 29, 33, 37, 46, 51]. They also aid in prevent-

ing redundant I/Os to SQL tables [2] and B-Tree indices [23], and

they have potential applications in social web analytics [16] and

replication in distributed key-value stores [44].

Range Filtering Goals. The ideal general-purpose range fil-

ter must simultaneously support (G1) the lowest possible FPR un-

der a stringent memory budget, (G2) range queries of any length,

(G3) variable-length keys, (G4) dynamic modification operations

such as insertions, deletions, expansions, and contractions, and the

best possible (G5) query and (G6) construction performance.

Design Contentions. Every existing range filter only fulfills

a subset of these goals [2, 12, 17, 23, 24, 29, 33, 37, 46, 47, 51]. In

fact, almost none of the existing ones attain (G3) or (G4) [12, 17,

24, 29, 33, 37, 46, 47]. Moreover, Goswami et. al. have proven an

information-theoretic lower bound on the memory footprint of

range filters [27], stating that it is impossible for any range filter to

achieve (G1) and (G2) at the same time. However, this lower bound

only holds for worst-case datasets, meaning that it may still be

possible to achieve (G1) and (G2) for “common” datasets. As such,

we pose the following research question: Is it possible to design

a range filter that simultaneously fulfills all six goals for common

datasets? This paper presents an affirmative answer.

Core Contribution: Diva.We introduce Diva, the first range

filter to support dynamic operations, variable-length queries and

keys, and high performance, all at the same time. Diva learns the

dataset’s distribution by sampling keys and storing them in a cache-

efficient trie. For all keys in-between two samples of the trie, Diva

removes the longest common prefix. It also truncates their suffixes

while keeping enough bits in the middle of each key (i.e., an infix)

to differentiate them in most cases, thus achieving (G1). At the

same time, the trie separates dense and sparse regions of the key

space. This allows for handling short range queries over densely

populated regions and long range queries over sparse regions, thus

meeting (G2). By discretizing all keys into fixed-length infixes with-

out the use of hashing, Diva achieves (G3). This discretization also

allows for storing the infixes of adjacent groups of keys within a

constant time data structure called an Infix Store, fulfilling (G5). As

Diva derives infixes without hashing and stores them in the original

sorted order of the keys, it does a single efficient sequential pass

over the dataset during construction, making it the fastest range
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Table 1: Definitions of terms and symbols.

Symbol Definition

𝑞 = [𝑞𝑙 , 𝑞𝑟 ] An inclusive query range.

𝜖 Target FPR, i.e., probability of a false positive.

𝐿 Average key length.

(𝑎)2 Binary value represented by 𝑎.

𝑇 Number of keys between two samples.

𝑚𝑖
shared

Length of the longest common prefix of

the 𝑖-th and (𝑖 + 1)-th samples, in bits.

𝑚
infix

Length of the infixes.

𝑚𝑖
redundant

Number of redundant bits corresponding

to the 𝑖-th and (𝑖 + 1)-th samples.

𝛼 Load factor of the Infix Stores.

𝑥𝑞 Quotient of the infix 𝑥 .

𝑥𝑟 Remainder of the infix 𝑥 .

filter to construct. It therefore attains (G6). Diva handles dynamic

updates by splitting Infix Stores, thereby meeting (G4).

Additional Contributions.
• We quantify the necessary conditions on the data distribu-

tion for Diva to achieve a low FPR and memory footprint

while supporting variable-length range queries.

• We mathematically prove Diva’s low FPR and high perfor-

mance properties.

• We empirically evaluate Diva against other range filters in

static and dynamic settings. We also conduct end-to-end

experiments on top of WiredTiger [36], a popular B-Tree-

based key-value store.

2 PROBLEM ANALYSIS
This section shows that no current range filter satisfies all of the

six goals outlined in Section 1. In-depth summaries of these filters

are presented in [23, 42].

Range Filtering Definitions. A range filter represents a set 𝑆

of keys coming from a universe of size𝑢. Given a range query of the

form𝑞 = [𝑞𝑙 , 𝑞𝑟 ], the filter checks if the range is empty by answering

whether 𝑞 ∩ 𝑆 = ∅ with an FPR of at most 𝜖 , where 0 < 𝜖 < 1. The

top three rows of Table 1 summarize terms describing the range

filtering problem throughout the paper.

Memory Lower Bound. A range filter is Robust if it guaran-

tees an FPR of at most 𝜖 for any dataset. A non-robust range filter

often drops all information about the keys’ lower-order bits. This

can lead to a high FPR when range queries predicate over these

lower-order bits. It is known that any robust range filter support-

ing queries of length up to 𝑅 must use at least log
2

𝑅
𝜖 −𝑂(1) Bits

per Key (BPK) [27], meaning that answering longer range queries

requires more memory. Intuitively, this is because a robust range

filter supporting longer queries must carry more information about

which areas of the key space are empty.

Robustly Achieving (G1), (G2), and (G3) is Impossible. In
most applications, filters are allotted a stringent memory budget

of 8-16 BPK to fit in memory (with a higher budget, one may as

well store the full keys). If we rearrange the above lower bound in

terms of range query length 𝑅 and plug in 16 BPK as the memory

budget and 𝜖 = 0.01 as the target FPR, we find that a robust range

filter can only answer range queries of length at most 512. Such

short query lengths limit the applicability of the filter.

Table 2: Diva is the first rangefilter to simultaneously support
variable-length queries and keys, as well as dynamicity.

Filter Robust
FPR (G1)

Semi-Robust
FPR (G1)

Var.-Len.
Queries (G2)

Var.-Len.
Keys (G3)

Dynamic
(G4)

SuRF ✓ ✓

Rosetta ✓ ✓

REncoder

bloomRF

Proteus

SNARF ✓ ✓

Oasis+ ✓ ✓

Grafite ✓ ✓

Memento ✓ ✓ ✓

Diva ✓ ✓ ✓ ✓

The lower bound also implies that a robust range filter cannot

support variable-length keys. With variable-length keys, there can

be infinitely many possible keys within a range, meaning 𝑅 = ∞.

Plugging 𝑅 = ∞ into the lower bound, we find that infinite memory

is needed to support variable-length keys. In sum, it is impossible

to attain all of (G1), (G2), and (G3) with a robust range filter.

Indeed, none of the existing robust range filters [17, 23, 33] sup-

port variable-length queries (G2) or keys (G3), as they assume range

query lengths bounded by 𝑅. Rosetta [33] stores prefixes of keys

based on length in a hierarchy of Bloom filters of depth

⌈
log

2
𝑅
⌉
,

with lower levels storing longer prefixes. Grafite [17] encodes 𝑁

integer keys in a bitmap of size
𝑁𝑅
𝜖 by mapping each to a bit using

a locality-preserving hash function and setting it to 1. Memento

filter [23] splits each key into a prefix and a

⌈
log

2
𝑅
⌉
-bit suffix, and

it hashes each prefix to compute a fingerprint key to a compact hash

table and stores its corresponding suffix in it. In general, issuing

longer range queries forces each of these filters to issue more Bloom

filter probes (in Rosetta), check more bits (in Grafite), or check more

fingerprints (in Memento filter). If the range query length exceeds

the intended value of 𝑅 used to construct these filters, the FPR

grows beyond 𝜖 and approaches 1.

Semi-Robust FPRGuarantee.This paper observes that, despite
the aforementioned impossibility, one can achieve (G1), (G2), and

(G3) by providing a semi-robust FPR guarantee: Any query must be

answered with an FPR of at most 𝜖 when the dataset comes from a

“well-behaved distribution.” Intuitively, a well-behaved distribution

is one for which the cumulative distribution function is smooth.

This property is commonly satisfied in practice since input datasets

typically follow well-known, smooth distributions (e.g., Uniform,

Normal, Zipfian, Power Law, Poisson). We formally define well-

behaved distributions and show that Diva provides the above FPR

guarantee for them in Section 4.

Interestingly, the learning-augmented filters [8, 31] SNARF [46]

and Oasis+ [12] fulfill (G1) and (G2) with the same semi-robust FPR

guarantee. They do so by fitting a linear spline model to the keys’

CDF, using the model to map each key to a bit in a large bitmap,

and setting the bit to 1. These filters handle variable-length queries

by leveraging the monotonicity of this mapping and searching the

bits corresponding to the query for a 1. There is no formalism or

proof of the above FPR guarantee in their respective publications,

though one could adapt Diva’s proof in Section 4 to them.
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Table 3: A comparison of the existing range filters’ time and space complexities assuming an FPR of 𝜖, range query length 𝑅,
and 𝑁 keys of average length 𝐿. For SuRF and Proteus, 𝑧 refers to the number of internal nodes in the trie, while𝑚 denotes the
length of the fingerprints stored at the leaves. For REncoder, 𝑘 is its number of hash functions, which is roughly an 𝑂(log

1

𝜖 )

value. For SNARF, 𝐵 refers to the block size. For Memento and Diva, 𝛼 refers to the load factor. The operation costs are measured
as the expected number of cache misses. The construction analysis assumes that the filters are constructed on sorted keys.
The two range query columns focus on empty and non-empty range queries, respectively. The filters annotated with * do not
provide mathematical bounds on their memory consumption. Therefore, following [23], we give a conservative estimate of
their memory footprint to enable a comparison.

Filter Construction Insert Delete Range Query (-) Range Query (+) BPK

SuRF [51] 𝑂(𝑁𝐿) - - 𝑂(𝐿) 𝑂(𝐿) 10 +
10𝑧
𝑁

+𝑚 + 𝑜(1)

Rosetta [33] 𝑂(𝑁 log
𝑅
𝜖 ) 𝑂(log

𝑅
𝜖 ) - 𝑂(log𝑅) 𝑂(log

𝑅
𝜖 ) 1.44 · log

2

𝑅
𝜖

REncoder [24, 47] * 𝑂(𝑁𝑘) 𝑘 - 𝑘 𝑘 𝑂(𝑘 + log
1

𝜖 )

bloomRF [37] * 𝑂(𝑁 (𝐿 − log𝑁 )) 𝑂(𝐿 − log𝑁 ) - 𝑂(𝐿 − log𝑁 ) 𝑂(𝐿 − log𝑁 ) ≈ 1.2 · log
2

𝑅
𝜖

Proteus [29] 𝑂(𝑁 (𝐿 + log
1

𝜖 )) - - 𝑂(𝐿) 𝑂(𝐿 + log
1

𝜖 )
10𝑧
𝑁

+ 1.44 · log
2

1

𝜖

SNARF [46] 𝑂(𝑁 ) 𝑂(log𝑁 + 𝐵) 𝑂(log𝑁 + 𝐵) 𝑂(log𝑁 ) 𝑂(log𝑁 ) 2.4 + log
2

1

𝜖

Oasis+ [12] 𝑂(𝑁 ) - - 𝑂(log𝑁 ) 𝑂(log𝑁 ) ≈ 2.4 + log
2

1

𝜖

Grafite [17] 𝑂(𝑁 log𝑁 ) - - 3 3 2 + log
2

𝑅
𝜖 + 𝑜(1)

Memento [23] 𝑂(𝑁 ) 𝑂(1) 𝑂(1) 1 − 4 1 − 4
1

𝛼 (3.125 + log
2

𝑅
𝜖 )

Diva [Static] 𝑂(𝑁 ) - - 𝑂(log𝐿) 𝑂(log𝐿) 3.19 + log
2

1

𝜖

Diva [Dynamic] 𝑂(𝑁 ) 𝑂(log𝐿) 𝑂(log𝐿) 𝑂(log𝐿) 𝑂(log𝐿) 1.19 +
1

𝛼2
(2 + log

2

1

𝜖 )

Nevertheless, SNARF and Oasis+ do not meet (G3), (G4), and (G5).

They assume fixed-length keys when learning the distribution, not

attaining (G3). Although SNARF provides insertion and deletion

APIs, they are prohibitively slow. This is because SNARF (and Oa-

sis+) encode their bitmaps using the Elias-Fano scheme [22, 25] and

partition them into blocks of 𝐵 entries to save space and speed up

decoding. SNARF’s insertion and deletion APIs are slow since they

rewrite an entire block and change its size, potentially increasing

it to 𝑂(𝑁 ) over time. Oasis+ disallows dynamic operations since it

prunes away empty regions of the key space to improve its FPR.

Thus, both do not achieve (G4). They are also slow to query due to

using binary search, thereby not meeting (G5).

Challenges of Attaining Dynamicity (G4). Range filters ex-
hibit an intrinsic contention between support for fast dynamic

operations and memory efficiency. Many existing range filters opti-

mize for memory by operating as Bloom filters in their core, hashing

keys into a bitmap and setting bits from 0s to 1s [24, 29, 33, 37, 47].

As with standard Bloom filters, such filters cannot support deletes

(by resetting a bit back to 0) or expansions (by remapping the 1s to

a larger bitmap) without introducing false negatives [23].

Other range filters utilize compact encoding schemes (e.g., suc-

cinct tries [51] or Elias-Fano [12, 17, 46]). Such formats are difficult

to update, as they tightly pack their data to avoid storing pointers

and offsets. This necessitates changing their entire representation

in memory to make room for new insertions.

As of today, Memento filter [23] is the only filter that supports

insertions and deletions in expected constant time. However, since

it doubles its size to expand, it wastes as much as 50% of its capacity.

Diva overcomes this contention between memory efficiency and

dynamicity by establishing a one-to-onemapping between keys and

the metadata it stores to facilitate deletions, similarly to Memento

filter and other expandable filters [5, 18, 19, 23]. Furthermore, It

slightly overprovisions memory to absorb insertions and avoids

wasting memory by expanding in small increments.

Contention between Supporting Variable-Length Queries
(G2) and Query Speed (G5). It is an open question whether achiev-
ing fast operations while supporting variable-length range queries

is possible. Grafite [17] and Memento filter [23] are the only fil-

ters that provide constant time queries. They do so by localizing

partitions of size 𝑅 (i.e., the maximum range query length) of the

key space to the same memory region. It is unclear how to achieve

a similar localization with variable-length range queries. As such,

Grafite and Memento filter do not fulfill (G2). All other filters that

attain (G1) and (G2), i.e., SNARF [46] and Oasis+ [12], use pre-

decessor search to handle queries, which requires super-constant

time [6, 7]. In practice, these filters use binary search to compute

predecessors. Diva alleviates this contention by employing a 𝑦-Fast

trie [48], leading to faster predecessor searches.

Construction Speed (G6). Existing range filters extensively use
hashing [17, 23, 24, 29, 33, 37, 47], floating point operations [12, 46],

or trie traversal [29, 51] during construction. Such operations lead

to high CPU and cache miss costs. In contrast, Diva makes limited

use of hashing, avoids floating point operations, and has good cache

locality, attaining the best construction speed and (G6).

Other Range Filters. Proteus [29] employs a SuRF [51] instance

with a tunable height and a Bloom filter storing key prefixes of a

tunable length. It co-tunes these structures based on a sample of

the query workload. While it performs well when the workload

remains the same, it does not bound the FPR in the face of workload

shifts. As it also inherits the limitations of SuRF and Bloom filters

discussed earlier, it does not address any of the goals.

REncoder [24, 47] and bloomRF [37] are variants of Rosetta [33]

that improve its speed by co-locating bits representing similar pre-

fixes in a single bitmap. However, in doing so, they assign the same

FPR to all levels in the hierarchy, breaking the robust FPR guarantee.

Since they inherit Rosetta’s other limitations, they do not attain

the other goals either.
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𝑘
Successor

Predecessor

Sample Trie

Infix Stores

0 𝑇
=

1024

2𝑇
=

2048

. . .

Figure 1: Diva learns the dataset distribution by storing every
𝑇 -th key as a sample in a trie. It manages all keys between
two adjacent samples in an Infix Store.

Summary. Table 2 summarizes the goals each range filter attains,

and Table 3 outlines their operation costs and memory footprint.

They demonstrate that no range filter achieves all of (G1), (G2),

(G3), and (G4). They also highlight the question of how fast a range

filter can be while meeting these goals, i.e., (G5) and (G6).

3 DIVA
We present Diva: the first range filter to simultaneously support

(G1) a low FPR and memory consumption, (G2) arbitrarily sized

range queries, (G3) variable-length keys, (G4) dynamic updates,

deletes, and resizability, and high (G5) query and (G6) construction

performance. Diva picks every 𝑇 -th key in the ordered key set as

samples and stores them in a cache-efficient trie to approximate

the key distribution. It inserts all keys between two samples into a

compact data structure called an Infix Store, as shown in Figure 1.

For all keys in each Infix Store, Diva removes the longest common

prefix. It also removes the variation in the keys’ length by truncating

a suffix from each while leaving enough bits to differentiate the

keys and guarantee a given FPR. This FPR guarantee holds when

the dataset follows a “well-behaved” distribution (as proven in

Section 4). Figure 2 illustrates the truncation and mapping of keys

into an Infix Store.

Diva processes a range query by searching for the query’s end-

points in its trie. A range query intersecting at least one sample in

the trie immediately returns a positive since that sample represents

a key within the range. In contrast, a range query that falls between

two adjacent samples searches the corresponding Infix Store and

returns a positive if at least one overlapping key exists. For ease

of exposition, we first describe a static version of Diva in this sec-

tion. We generalize it to dynamic key sets in Section 3.5. Table 1

summarizes the terms used to describe Diva.

3.1 Sampling Keys and Deriving Infixes
The static variant of Diva requires the input to arrive in sorted order.

This requirement is commonly satisfied in practice. For instance,

many database tables and indices are structured as sorted column

files [3, 4, 13, 26, 45], B-Trees [14, 43], or LSM-Trees [15, 20, 21]. If

the input is unsorted, users must sort it before construction.

Diva samples every𝑇 -th key from the ordered key set and inserts

them into its trie. The trie approximates the distribution of the keys.

The reason is that adjacent samples lexicographically close to each

other correspond to denser regions of the key space, while faraway

samples correspond to sparser regions. Thus, the trie “learns” the

data distribution. The smaller 𝑇 is, the more accurate the approxi-

mate distribution becomes, yet the larger the trie and the memory

footprint grow. We quantify the relationship between 𝑇 and the

approximation accuracy in Section 4. We have empirically found

Predecessor 0

Successor 1

𝑎 𝑎𝑞 𝑎𝑟

𝑏 𝑏𝑞 𝑏𝑟

𝑧 𝑧𝑞 𝑧𝑟

.

.

.

Keys

Longest Common

Prefix

Differentiator

Truncated

Suffix

𝑎𝑟 𝑏𝑟 . . . 𝑧𝑟 Infix Store

Query

Figure 2: For all keys in-between a pair of adjacent samples
in the trie, Diva removes the longest common prefix and
truncates the longest possible suffix while still ensuring that
there are enough bits left to distinguish between the keys.

that 𝑇 = 1024 provides good all-round accuracy and performance

with little memory overhead (≈ 1% of the total memory).

Removing the Longest Common Prefix. Consider a pair of
consecutive trie samples. We refer to them as the Predecessor and

Successor of the keys between them. Figure 1 shows an example of

predecessor and successor for a key 𝑘 . For all keys in-between such

a pair of samples, Diva removes their longest common prefix since

it can be inferred from the trie and is thus redundant.

Keys in the denser regions of the key space have longer common

prefixes. Therefore, removing the longest common prefixes saves

more memory in these regions. As we will see shortly, Diva exploits

this and encodes the keys in such regions at a higher resolution by

also storing their lower-order bits, losing less information. This en-

ables accurately answering fine-grained queries over dense regions

while supporting coarse-grained queries over sparse regions.

Given the 𝑖-th and (𝑖 + 1)-th samples as the predecessor and

successor, we denote the length of their longest common prefix, in

bits, by𝑚𝑖
shared

. Figure 3-A shows an example where the longest

common prefix of the predecessor and successor is𝑚𝑖
shared

= 4 bits

long. If the samples have different lengths, Diva treats the shorter

one as having trailing zeros to match the length of the longer one.

Deriving Infixes. To further curb memory footprint, Diva also

truncates suffixes for all keys between two samples. What remains

of each key is called an Infix since it is a sequence of adjacent bits

in the middle of the original key. All infixes in the filter have the

same length, denoted by𝑚
infix

. Due to the removed common prefix,

infixes represent less significant bits of the keys in dense regions of

the key space and more significant bits in sparser ones. Truncating

keys into fixed-length infixes discretizes the range between two

samples while removing the variation in length of the keys. As we

will see, Diva supports range queries over these infixes by corre-

spondingly discretizing the query boundaries and checking for the

inclusion of infixes between them. The fixed length of the infixes

allows for quickly checking for inclusion using integer arithmetic.

The length of the infixes determines the filter’s FPR. In par-

ticular, Diva guarantees an FPR of 𝜖 by using infixes of length

𝑚
infix

=

⌈
log

2

2𝑇
𝜖

⌉
bits. As we will show in Section 3.2, Diva suc-

cinctly encodes each of these infixes using only 3 +

⌈
log

2

1

𝜖

⌉
bits,

translating to one byte for an FPR of ≈ 3%. This FPR guarantee

holds for any dataset sampled from a “well-behaved” distribution.

This property is suitable for a practical range filter since datasets

in practice often follow common distributions, such as the Normal

distribution. We formally prove this FPR guarantee in Section 4.
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A)
PredecessorSample 𝑖 0101 0011011 101

SuccessorSample 𝑖 + 1 0101 1110111 0011

Shared

Differentiating

Bits

𝑘 0101 0101001 11

𝑘’s infix = (0101001)2 = 41

B)
PredecessorSample 𝑖 0101 0 11. . . 11 011011 101

SuccessorSample 𝑖 + 1 0101 1 00. . . 00 110111 0011

Shared Redundant

𝑘 0101 0 11. . . 11 101001 11

𝑘’s infix = (0101001)2 = 41

Figure 3: Diva derives key 𝑘’s infix by removing the𝑚𝑖
shared

common prefix bits and the𝑚𝑖
redundant bits based on its pre-

decessor and successor, and also truncating its suffix.

Figure 3-A shows an example with keys of varying lengths and

𝑚
infix

= 7. As 𝑚𝑖
shared

= 4, Diva derives 𝑘’s infix as the 7 bits

following its first 4 bits, i.e., the string (0101001)2.

Distinguishing Infixes. There is a common scenario in prac-

tice where infixes derived with the method described above have

bits that do not contribute to filtering. Intuitively, if the consid-

ered predecessor and successor are still close to each other after

removing their longest common prefix, the discretized key space

between them becomes smaller than desired. As a result, infixes of

keys in-between can become less distinguishable, reducing filtering

accuracy. This phenomenon occurs when many consecutive bits

after the first differentiating bit in the predecessor and successor

are all 1s and 0s, respectively. In particular, in well-behaved distri-

butions such as Normal and Zipfian, there is at least one such bit on

average due to the randomness in the samples after their longest

common prefix. If not removed, these bits can increase the FPR

by 2× compared to the case where infixes are differentiated well.

The predecessor and successor in Figure 3-B represent an example.

Diva prevents this by identifying the longest matching sequence

of 1s from the predecessor and 0s from the successor after their

first differentiating bit. We denote the length of this sequence for

the 𝑖-th and (𝑖 + 1)-th samples by𝑚𝑖
redundant

. Diva removes the bits

corresponding to this sequence from each key between the samples.

These bits are redundant, as they do not carry useful information

for comparing the keys between the 𝑖-th and (𝑖 + 1)-th samples

beyond what the first differentiating bit provides. Diva derives the

infix of each key as its first differentiating bit concatenated with

its first𝑚
infix

− 1 bits after its redundant bits. Intuitively, each of

these bits doubles the size of the discretized space between two

samples, allowing to better differentiate the infixes in-between. The

following lemma formalizes this intuition, arguing that the removal

of the redundant bits fully addresses the differentiation issue:

Lemma 3.1. After removing the𝑚𝑖
redundant

bits, there are at least
𝑇
𝜖

and at most
2𝑇
𝜖 different and valid values that infixes of keys between

two samples can take.

Diva is able to reconstruct the redundant bits removed from an

infix. It does so by recomputing 𝑚𝑖
redundant

from its predecessor

and successor in the trie. It adds𝑚𝑖
redundant

bits between the infix’s

first and second bits, each equal to the negation of its first bit.

This results in the original sequence of bits in the key since the

redundant bits of an infix always equal the negation of its first bit.

Figure 3-B shows an example derivation of a key 𝑘’s infix with

𝑚
infix

= 7. Here, the longest common prefix of the predecessor and

successor is𝑚𝑖
shared

= 4 bits long. After removing the𝑚𝑖
redundant

bits, Diva appends the next 6 bits in 𝑘 (i.e., 101001) to the first

differentiating bit (i.e., 0), yielding the infix (0101001)2 = 41.

Infix Uniformity. The samples in the trie behave similarly to

the boundaries of an equi-depth histogram. When the dataset’s

distribution is well-behaved, the higher-order bits of the samples

capture the overall shape of the distribution and the lower-order

bits of the keys in-between behave like noise. Thus, keys falling into

the same bin and are almost uniformly distributed, implying that

their infixes are also uniformly distributed. We formally prove this

property in Section 4. This uniformity allows infixes to be treated

as hash digests. We will use this property to design an efficient data

structure for storing the infixes in-between a pair of samples.

3.2 Infix Stores
An Infix Store is a random-access array of slots that leverages the

uniformity of the infixes in-between two samples to efficiently and

succinctly store them. We describe a static Infix Store variant and

extend it to support dynamic operations in Section 3.5 by utilizing

techniques inspired by the Rank-and-Select Quotient Filter [41].

Quotienting. An Infix Store applies Knuth’s quotienting tech-

nique [30] to its infixes, splitting them into Quotients and Remain-

ders. Specifically, it takes the

⌈
log

2

2

𝜖

⌉
least-significant bits of an

infix 𝑥 as its remainder 𝑥𝑟 while taking the rest of its bits as its

quotient 𝑥𝑞 . Figure 4-A illustrates this split for an infix 𝑥 = (11011)2.

Splitting the infixes in this way allows an Infix Store to succinctly

encode infixes using little extra metadata.

Storing Quotients. An Infix Store employs a bitmap, called the

occupieds bitmap, to represent every possible quotient. The 𝑖-th

bit in this bitmap is set to 1 if an infix with a quotient equal to 𝑖

exists and is set to 0 otherwise. This bitmap is𝑇 bits long since there

are between
𝑇
2
and 𝑇 many possible quotients.

1
One can show this

by applying Lemma 3.1 and removing the

⌈
log

2

2

𝜖

⌉
least-significant

bits belonging to remainders from the possible infixes to derive

the range of all possible quotients. Figure 4-B shows an example

of this bitmap. Here, since the Infix Store contains the infix 𝑥 in

Figure 4-A, the bit at offset 3 of the occupieds bitmap is set to 1.

Storing Remainders. An Infix Store places infix remainders

in its array of slots. As there are exactly 𝑇 − 1 keys in-between

two samples, an Infix Store allocates 𝑇 − 1 slots in this array, each⌈
log

2

2

𝜖

⌉
bits wide, to accommodate their remainders. It stores re-

mainders of infixes sharing the same quotient in a set of contiguous

slots called a Run. Runs are stored in increasing order of their quo-

tients. Runs are 1-2 slots long in expectation since the infixes are

uniformly distributed, as described at the end of Section 3.1, and

have between
𝑇
2
and 𝑇 distinct quotients.

An Infix Store employs a (𝑇 − 1)-bit bitmap with one bit per slot,

called the runends bitmap, to delimit runs in an Infix Store. The

1
One can optimize the memory consumption of the filter by storing less than𝑇 bits in

this bitmap whenever there are less than𝑇 possible quotients. Since the infixes are

uniformly distributed, this saves, on average, 0.25 BPK of memory. However, we have

opted for a𝑇 -bit bitmap to simplify the design and implementation of Infix Stores.
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Infix 𝑥 𝑥𝑞 = 3 𝑥𝑟 = 011

⌈
log

2

1

𝜖

⌉
bits

Quotient Remainder

A)

occupieds 1 1 0 1 1 0 1 0

runends 1 0 1 0 1 1 1

Slots 010 110 111 001 011 000 100

0 1 2 3 4 5 6

rank(3, occupieds) = 2

select(2, runends) = 4

B)

occupieds 1 1 0 1 1 0 1 0

runends 1 0 1 0 1 1 1

Slots 010 110 111 001 011 000 100

0 1 2 3 4 5 6

Query 𝑞 = [𝑙, 𝑟 ]

𝑙𝑞 = 6, 𝑙𝑟 = (101)2

𝑟𝑞 = 6, 𝑟𝑟 = (110)2

Scanned

for Inclusion

by 𝑞

Query 𝑞′ = [𝑙 ′, 𝑟 ′]

𝑙 ′𝑞 = 1, 𝑙 ′𝑟 = (111)2

𝑟 ′𝑞 = 3, 𝑟 ′𝑟 = (000)2

Scanned

for Max

by 𝑞′

Scanned

for Min

by 𝑞′

C)

Figure 4: Diva splits an infix into a remainder and a quotient
(Part A). It encodes the quotient in the occupieds bitmap
while storing the remainder in contiguous runs in the array
of slots, delineated using thick lines (Part B). Diva handles
a query by locating the corresponding runs using rank and
select operations, followed by scanning them (Part C). The
remainders that satisfy the queries are highlighted.

𝑖-th bit of this bitmap is 1 if the 𝑖-th slot in the Infix Store is the last

slot of a run and is 0 otherwise.

Figure 4-B shows an example of runs, depicted as boxes, and how

the runends bitmap delimits them. Here, the infix 𝑥 from Figure 4-A

has the third smallest quotient among the quotients of infixes in

the Infix Store. As such, its remainder is placed in the third run

from the left.

In total, the occupieds and runends bitmaps consume 2 bits per

slot in the array of slots, or equivalently, 2 bits per infix.

Matching Invariant. Each quotient, i.e., a 1 in the occupieds

bitmap, is associated with exactly one run in an Infix Store. Since

runs are in increasing quotient order, a Matching Invariant holds:

the run associated with the 𝑖-th 1 in the occupieds bitmap ends

at the slot corresponding to the 𝑖-th 1 in the runends bitmap. Fig-

ure 4-B illustrates this invariant with bidirectional arrows.

Locating Runs. Diva locates an infix’s run by first checking the

bit corresponding to its quotient in the occupieds bitmap. If it is

0, then the infix does not have a run. Otherwise, it leverages the

one-to-one correspondences in the matching invariant to locate the

end of its run, allowing for processing queries via a right-to-left

scan of an average of 1-2 slots. Following a similar process, Diva is

able to reconstruct all the infixes by concatenating each quotient

in the occupieds bitmap with the remainders in its run.

Diva speeds up locating an infix’s run by employing rank and

select primitives [41]. Formally, let rank(𝑖, 𝐵) be the number of 1s

before the 𝑖-th bit in a bitmap 𝐵 and select(𝑖, 𝐵) be the position of

the 𝑖-th 1 bit in 𝐵. Diva finds the last slot in an infix 𝑥 ’s run by

evaluating select(rank(𝑥𝑞, occupieds), runends). In other words,

it determines the run number it must jump to by computing rank

over the occupieds bitmap and uses the result to locate the corre-

sponding runends bits by computing select. Figure 4-B shows an

example of this derivation with 𝑥𝑞 = 3. Here, Diva determines that

𝑥 has a run by checking the third bit in the occupieds bitmap. It

then computes rank(𝑥𝑞, occupieds) = 1 and select(1, runends) = 4,

concluding that 𝑥 ’s run ends in Slot 4. Diva employs specialized

hardware instructions to efficiently apply rank and select opera-

tions, as shown in Section 3.6.

Infix Store Range Queries. An Infix Store processes a range

query over infixes 𝑞 = [𝑙, 𝑟 ] by finding the quotients and remainders

of the endpoints and considering the following two cases:

If the range spans a single quotient (𝑙𝑞 = 𝑟𝑞 ), Diva checks if a run

corresponding to that quotient exists. If not, Diva returns a negative,

as no infix could be in the query range. Otherwise, it goes to the end

of the run and scans it from right to left until it reaches either a new

run or the start of the Infix Store. Diva determines if it has reached a

new run using the runends bitmap. During this scan, Diva searches

for a remainder between the remainders of the endpoints 𝑙𝑟 and 𝑟𝑟 .

If found, it returns a positive and a negative otherwise. This scan is

very efficient, as the expected size of a run is 1-2 slots. Query 𝑞 in

Figure 4-C is an example. Here, 𝑙𝑞 = 𝑟𝑞 = 6 and the bit at position 6

of the occupieds bitmap is one. Thus, Diva searches the relevant

run for a remainder between 𝑙𝑟 = (101)2 and 𝑟𝑟 = (110)2. Since

rank(6, occupieds) = 3 and select(3, runends) = 6, Diva checks

the slots from Slot 6 backward until it exhausts the run. It returns a

negative, as it does not find a remainder in the desired range.

If the range spans multiple quotients (𝑙𝑞 < 𝑟𝑞 ), Diva checks if any

quotient strictly between the endpoint quotients exists using the

occupieds bitmap. If there is such a quotient, Diva answers with

a positive, as all of the infixes in its run are strictly in the query

range. Otherwise, it checks if any remainder in the left endpoint’s

run is larger than its remainder 𝑙𝑟 , or if any remainder in the right

endpoint’s run is smaller than its remainder 𝑟𝑟 . If either condition

holds, Diva reports a positive and a negative otherwise. Query 𝑞′

in Figure 4-C shows an example. Here, Diva first checks the range

of bits [𝑙 ′𝑞 + 1, 𝑟 ′𝑞 − 1] = [2, 2] in the occupieds bitmap for ones. As

there is no bit set to 1 in that range, Diva scans the remainders in 𝑙 ′𝑞
and 𝑟 ′𝑞 ’s runs and compares them to 𝑙 ′𝑟 and 𝑟

′
𝑟 . As the former run

has a remainder equal to 𝑙 ′𝑟 = (111)2, Diva returns a positive.

False positives occur when query and key infixes collide, which

is most likely when queries follow the dataset’s distribution. Diva’s

trie learns this distribution, enabling a low FPR in this difficult

setting and potentially a better FPR in other workloads.

Infix Store Point Queries. Point queries are equivalent to spe-

cialized range queries having equal endpoints. They are thus han-

dled by following the first case of the range query algorithm.

3.3 Trie Choice
Diva can use any data structure supporting predecessor and suc-

cessor searches as its trie. This data structure must also associate a

pointer pointing to an Infix Store with each sample. The samples

and the extra pointers result in a negligible overhead of 𝑂(𝐿) + 64

bits per sample, where 𝐿 is the average key length. This translates

to a total overhead of
𝑂(𝐿)+64

𝑇
≈ 0.06 +𝑂(𝐿/𝑇 ) BPK. Using a tradi-

tional trie [9, 32, 34] for this purpose yields poor performance for

predecessor and successor queries, as it incurs 𝑂(𝐿) cache misses

for tree traversal due to pointer chasing.
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𝑦-Fast Tries. Instead of a traditional trie, one can employ a 𝑦-

Fast trie [48] to achieve an 𝑂(log
2
𝐿) number of cache misses for

predecessor and successor queries. A 𝑦-Fast trie enables this by

partitioning the ordered set of keys into groups of ≈ 𝐿 consecutive

keys and storing each group in a balanced binary search tree. It

efficiently accesses these groups by storing their boundary keys in

a binary trie and doing predecessor/successor searches over it.

The nodes in this binary trie are represented as a hash table

storing all prefixes of the boundary keys. Each inner node without

a left (resp. right) child stores a pointer to the predecessor (resp.

successor) of the minimum (resp. maximum) key in its subtree,

allowing for fast predecessor and successor searches. This binary

trie finds the predecessor/successor of a key by determining its

longest prefix with a node in the trie via binary search. If the found

node is a leaf node, it is returned as the answer. Otherwise, the

predecessor/successor pointers are followed to answer the query.

A 𝑦-Fast trie processes a predecessor/successor query by do-

ing a predecessor/successor search over its binary trie to find the

corresponding binary search tree and searching in it.

Searching the binary trie and the associated binary search tree

each incurs 𝑂(log
2
𝐿) cache misses, resulting in 𝑂(log

2
𝐿) cache

misses for a predecessor/successor query. This cost applies out-of-

the-box to Diva’s queries since searching an Infix Store incurs only

a constant number of cache misses due to its small size, leaving the

search cost of the trie as the main bottleneck.

A 𝑦-Fast trie supports amortized 𝑂(log
2
𝐿) insertions and dele-

tions by merging and splitting the binary search trees to maintain

a size of ≈ 𝐿 for each and updating its binary trie.

Wormhole. As our 𝑦-Fast trie implementation, we use Worm-

hole [49], a 𝑦-Fast trie with a high fanout. We extended Wormhole

with bidirectional iterators, allowing to quickly traverse the trie

both forwards and backwards. We also disabled prefetching in

Wormhole since the trie tends to be small and cache resident in our

context, resulting in improved search performance.

3.4 Construction
The static variant of Diva is constructed using an efficient bulk-

loading procedure where a sorted set of keys is scanned once. Here,

Diva inserts every 𝑇 -th key into the trie. Since it encounters the

keys in-between in increasing order, it also sees their infixes in in-

creasing order. During this scan, Diva sets the bits in the occupieds
bitmap corresponding to the quotients it sees to 1 while sequentially

creating the runs by placing remainders in the slots. Whenever it

encounters a new quotient or fills the Infix Store, it marks the

end of the current run in the runends bitmap by setting the bit

corresponding to the last filled slot to 1.

This process incurs 𝑂(𝑁 ) cache misses for scanning the sorted

key set and inserting infixes into Infix Stores, aswell as𝑂

(
𝑁 · log

2
𝐿

𝑇

)
cache misses for inserting every 𝑇 -th key as a sample into the trie,

totaling to 𝑂

(
𝑁 ·

(
1 +

log
2
𝐿

𝑇

))
cache misses. Since

log
2
𝐿

𝑇
≪ 1, we

can rewrite the cost as 𝑂(𝑁 ). The left-most column in Table 3 com-

pares the construction times of the filters and the penultimate row

expresses this cost for Diva.

Practically, Diva leverages the hardware prefetcher to the fullest

during bulk-loading, as all its memory accesses are sequential. Its

CPU overhead is also minimal, as it makes no use of hashing, save

for the hashing of the trie, allowing Diva to enjoy a much faster

construction time than its competitors.

3.5 Dynamicity
Diva generalizes to dynamic key sets, providing full support for

insertions, deletions, and growing datasets.

Dynamic Infix Stores. Diva modifies its Infix Stores to sup-

port dynamic insertions and deletions using three techniques: 1) it

overprovisions slots in each Infix Store to absorb new insertions,

2) it evenly spaces out the runs using a linear mapping function

to uniformly place them in the array of slots according to their

quotients, and 3) it handles insertions and deletions by shifting the

runs to the right or left to create space for remainders, similarly to

Robin-Hood Hashing [11].

Inserting and deleting infixes may cause Infix Stores to overflow

or underflow. Diva handles such cases by resizing the array of

slots in the Infix Store and updating its linear mapping function to

maintain the even spacing of the runs.

Sampling New Keys. Diva maintains its distribution model

by sampling new keys and updating its trie, “splitting” large Infix

Stores in the process. Specifically, with probability
1

𝑇
, Diva inserts

a new key as a sample into the trie, and with probability

(
1 − 1

𝑇

)
, it

inserts the key’s infix into its Infix Store. This choice of probabilities

ensures a high-resolution distribution model that keeps Infix Stores

at an average size of 𝑇 , keeping runs short and controlling the FPR.

Randomization is essential here since we would like to store full

keys in the trie to approximate the key distribution closely. Diva can

only access full keys during insertions, so it must sample them on

the fly and cannot split Infix Stores along their median like B-Trees.

Splitting and Merging Infix Stores. When sampling a new

key, Diva splits the Infix Store it would have otherwise fallen into

and sends the infixes of smaller and larger keys to separate Infix

Stores. Splitting Infix Stores in this way keeps them small and fast

to update. Analogously, Diva merges two neighboring Infix Stores

when deleting the sample between them from the trie.

Variable-Length Infixes. Inserting new samples into the trie

brings the predecessors and successors of the keys closer together.

As a result, old infixes may not carry the required fine-grained

information to differentiate their keys due to longer common pre-

fixes and an increased number of redundant bits, making them

shorter. Yet, Diva stores as much information as possible about

new keys by inserting them as full-length infixes to control the

FPR. Diva encodes these variable-length infixes in the same Infix

Store by padding them to the same length with unary padding

consisting of 0s delimited by a 1, similarly to recent expandable

filters [5, 18, 19, 23]. Padded infixes are one bit longer than full-

length infixes because they have the delimiter bit, requiring slots

that are one bit wider in the Infix Stores and incurring a memory

overhead of 1 BPK. However, the shorter infixes (and fingerprints in

expandable filters) cause the FPR to increase logarithmically with

the data size [19, 23]. One can maintain a stable FPR at all times

by widening the slots in the Infix Stores by 𝑂(log
2

log
2
𝑁 ) bits af-

ter 𝑁 insertions to store progressively longer infixes, similarly to

InfiniFilter’s Widening Regime [18, 19, 39].

Queries. Point and range queries are processed similarly to the

static case, with the only difference being that the missing bits from

shorter infixes are treated as wildcards.
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3.6 Optimizations
Evaluating rank and select. Diva efficiently evaluates these func-

tions over a bitmap 𝐵 by employing specialized CPU instructions.

In the case of rank(𝑖, 𝐵), Diva reads the first

⌈
𝑖

64

⌉
words in 𝐵 and ap-

plies POPCNT to count the number of 1s before the 𝑖-th bit. Similarly,

it computes select(𝑖, 𝐵) by scanning 𝐵 word-by-word and keeping

a running count of the 1s to locate the word containing the 𝑖-th 1.

Once found, Diva applies the x86 instructions PDEP and LZCNT to
calculate the bit’s position, as described in [41].

Fractional Multiplication. The dynamic variant of Diva de-

scribed in Section 3.5 uses a linear mapping to evenly space out the

infixes of each Infix Store. Such a remapping entails a multiplica-

tion by a fractional factor. Naïvely evaluating this function using

floating-point arithmetic is slow. Instead, Diva simulates fixed-point

arithmetic using integers, yielding a significant speed-up.

4 THEORETICAL ANALYSIS AND RESULTS
We prove Diva’s FPR guarantees and show that it has low operation

costs. The last row in Table 2 summarizes this section’s results.

Setting. Formally, we consider the dataset’s keys to be sampled

independently from a distribution with a cumulative distribution

function (CDF) 𝐹 and probability density function (PDF) 𝑓 . For our

analysis, we treat string keys as real numbers in the range [0, 1)

by interpreting their binary representation as a fractional binary

value. For example, we interpret the strings (1000)2 and (1100)2 as

the real numbers (0.1000)2 = 0.5 and (0.1100)2 = 0.75.

Infix Probability. Diva returns a false positive when a query

and an input key from the distribution map to the same infix in

the same Infix Store. We bound the probability of this event by

calculating the probability that a specific infix exists.

Intuitively, Diva’s Infix Stores partition the key space into shorter

ranges. Diva discretizes each of these ranges by deriving infixes,

further partitioning it into
2𝑇
𝜖 equal-width sub-ranges, one for each

possible infix. Figure 5 illustrates this partitioning for the 𝑘-th Infix

Store. The probability that a particular input key maps to a specific

infix is equal to the probability that it lies in the corresponding

sub-range, which depends on the distribution’s CDF. We denote

this probability for infix 𝑛 in the 𝑘-th Infix Store as 𝑃𝑘,𝑛 . We can

guarantee an FPR of at most 𝜖 by showing that 𝑃𝑘,𝑛 ≤ 𝜖
𝑁

and

applying a union bound to all keys in the dataset.

Example: Uniform Distribution. To give intuition why 𝑃𝑘,𝑛
is small for well-behaved distributions, we first discuss the case

where the input distribution is uniform, i.e., 𝐹 (𝑥) = 𝑥 . Here, 𝑃𝑘,𝑛
is exactly equal to the length of its infix’s sub-range. That is, it is

equal to
𝜖

2𝑇
· 𝑙𝑘 , where 𝑙𝑘 is the length of the range spanned by the

𝑘-th Infix Store, as shown in Figure 5. Since there are
𝑁
𝑇

many Infix

Stores, 𝑙𝑘 is in expectation
𝑇
𝑁
. Thus, the probability of an input key

landing in this sub-range is equal to
𝜖

2𝑁
, which is less than

𝜖
𝑁
.

Well-Behaved Distributions. In general, the CDF of the distri-

bution couldmake 𝑃𝑘,𝑛 arbitrarily large, depending on how abruptly

it changes within that particular sub-range. Nevertheless, we can

make a similar argument as in the uniform case for well-behaved

distributions, defined as:

Definition 4.1 (Well-Behaved Distribution). Let 𝑓 ′ be the deriv-

ative of 𝑓 . A distribution is well-behaved if, for 𝛿 = 𝑇 · log𝑁

𝑁
, a

𝑥

𝐹 (𝑥 )

𝑘-th
Sample

(𝑘 + 1)-th

Sample

𝑙𝑘

I
n
fi
x
𝑛

𝑃𝑘,𝑛

Figure 5: Infix Stores partition the key space into short ranges.
Each of these ranges is partitioned into equal-width sub-
ranges, each of which is condensed into an infix.

constant 𝛼 ∈ [0, 1/4] exists such that for all 𝑥 ,

𝛿𝛼 ≤ 𝑓 (𝑥 ) ≤ 𝛿−1+4𝛼 , 𝑓 ′(𝑥 ) ≤ 1

3

· 𝛿−𝛼 .

The conditions above make well-behaved distributions “smooth.”

That is, the condition on 𝑓 keeps the distribution’s CDF from rad-

ically changing, while the condition on 𝑓 ′ limits the acceleration

of change. Together, they control how much the CDF can climb

in an infix’s sub-range, which is 𝑃𝑘,𝑛 , as shown in Figure 5. We

remark that the bounds on these quantities grow polynomially in 𝑁 ,

thus becoming easier to satisfy as the dataset grows. For example,

𝑓 ′ is allowed to take values as high as
𝛿−𝛼

3
≥ 𝛿−1/4

3
≈ 𝑁 1/4

3
. Intu-

itively, this is because 𝑃𝑘,𝑛 corresponds to a smaller sub-range with

larger 𝑁 , so our analysis can afford less smooth distributions.

Many natural distributions are well-behaved, as one can verify by

plugging their PDFs into Definition 4.1. For example, the uniform

distribution is trivially well-behaved since it has 𝑓 (𝑥) = 1 and

𝑓 ′(𝑥) = 0. Normal distributions with a standard deviation of 𝜎 ⪆
3√

𝜋 ·𝑁 1/5
and power law distributions (which generalize the Zipfian

distribution) with an exponent of 𝜆 ≤ log
2
𝑁

4
are also well-behaved.

Note that 𝜎 and 𝜆 often satisfy these conditions.

One can use the properties of well-behaved distributions in an

argument similar to that of the uniform distribution to show that:

Theorem 4.2. If the input distribution is well-behaved, then, with

high probability over Diva’s samples, in the static (dynamic) case, a

particular infix exists with (expected) probability at most 𝜖 .

FPR.We now use Theorem 4.2 to bound Diva’s FPR when the

dataset comes from a well-behaved distribution.

Theorem 4.3. Suppose that the input distribution is well-behaved.

Then the static variant of Diva returns a false positive for a point

query 𝑞 with probability at most 𝜖 . Moreover, it returns a false positive

for a range query [𝑞𝑙 , 𝑞𝑟 ] with a probability of at most 2𝜖 .

Proof. Consider the point query 𝑞. Since we are analyzing the

probability of a false positive, we can suppose that 𝑞 is not in the

dataset and thus does not equal any sample in Diva’s trie. Therefore,

Diva checks if an infix corresponding to𝑞 exists to answer the query.

By Theorem 4.2, such an infix exists with a probability of at most 𝜖 ,

implying an FPR of at most 𝜖 for 𝑞.

Now, consider the range query [𝑞𝑙 , 𝑞𝑟 ]. As before, we can suppose

that this is an empty range, implying that it includes none of the

samples in the trie and thus falls in a single Infix Store. Denoting the

infixes corresponding to 𝑞𝑙 and 𝑞𝑟 by 𝑙 and 𝑟 , one can see that there

must be no other infix in the Infix Store that is strictly between 𝑙

8



and 𝑟 , as it would cause the filter to return a true positive. Thus,

Diva can only mistakenly return a false positive if some infix equals

either 𝑙 or 𝑟 . By applying Theorem 4.2, one can show that this

happens with a probability of at most 2𝜖 . □

One can analyze the dynamic variant of Diva by following a

proof similar to that of Theorem 4.3. More specifically, since the

filter is initially constructed using the static bulk-loading method,

it starts out with point and range query FPRs of 𝜖 and 2𝜖 . After

inserting 𝑁 new keys into the filter with no distribution shifts, one

can use an analysis similar to that of InfiniFilter [19] to show that:

Theorem 4.4. The dynamic variant of Diva returns a false positive

for point query 𝑞 with expected probability at most 𝜖/2 · (log
2
𝑁 + 2).

Moreover, it returns a false positive for a range query [𝑞𝑙 , 𝑞𝑟 ] with

expected probability at most 𝜖 · (log
2
𝑁 + 2).

Memory Footprint. Both Diva variants keep a
1

𝑇
fraction of

the keys in their trie. For each, they also store a total of 96 bits of

metadata, representing whether the sample is a partial sample, the

size of the Infix Store to its right, the number of infixes it stores,

and a pointer to its array. Assuming that the keys have an average

length of 𝐿 bits, the trie consumes a total of
(96+𝐿)·𝑁

𝑇
bits.

In the static variant, each Infix Store has 𝑇 slots. It consumes

𝑇 bits for the occupieds bitmap, one bit per slot for the runends
bitmap, and log

2

2

𝜖 bits for each slot. Since there are a total of 𝑁 /𝑇

Infix Stores, the total memory footprint of the Infix Stores is 𝑁 /𝑇 ·
(𝑇 ·(3+log

2

1

𝜖 )) bits. Summing up the trie and Infix Store costs, noting

that 𝑇 = 1024, and dividing by 𝑁 results in a memory footprint of

≈ 3.09 +
𝐿

1024
+ log

2

1

𝜖 BPK.

In contrast, in the dynamic variant, an Infix Store with 𝑛 infixes

uses at most
𝑛
𝛼2

slots. Since there are a total of
𝑇−1

𝑇
· 𝑁 infixes,

this translates to a total of
𝑇−1

𝑇 ·𝛼2
· 𝑁 ≈ 1

𝛼2
· 𝑁 slots. Moreover, each

slot is one bit wider than the static case to accommodate the unary

counter. As there are an expected of 𝑁 /𝑇 Infix Stores, this results

in a total memory footprint of ≈ 1.09 +
𝐿

1024
+

1

𝛼2
· (2 + log

2

1

𝜖 ) BPK.

Performance. Each of Diva’s operations searches for the pre-

decessor and successor of the query endpoints in the trie. As Diva

uses Wormhole as its underlying trie, and since Wormhole searches

for an 𝐿-bit key using at most𝑂(log
2
𝐿) cache misses, this search in-

curs a total of 𝑂(log
2
𝐿) cache misses. Moreover, as the occupieds

and runends bitmaps are 𝑇 = 1024 and
𝑇
𝛼 ≈ 1078 bits long, and

since a typical cache line is 512 bits long, applying rank and se-

lect operations on them incurs a constant number of cache misses.

Finally, reading/modifying the slots in the Infix Store incurs a sin-

gle cache miss in expectation. Thus, Diva incurs an expected of

𝑂(log
2
𝐿 + 1) = 𝑂(log

2
𝐿) cache misses. Notice that when keys are

fixed-length, the number of cache misses becomes constant.

5 EVALUATION
We evaluate Diva against existing range filters in static and dynamic

settings in Sections 5.1 and 5.2, respectively.We also conduct end-to-

end evaluations on top of WiredTiger [36], a popular B-Tree-based

key-value store, in Section 5.2. We implement and open source a

new and extensible range filter benchmarking framework and use

it to conduct our experiments.

Platform. We run experiments on a Fedora 39 machine with

an Intel Xeon w7-2495X processor (4.8 GHz) with 24 cores and 48

hyper-threads. Our machine has a 1920 KB L1, a 48 MB L2, and a 45

MB L3 cache, along with 64 GBs of main memory. It also has two

SK Hynix 512 GB PC611 M.2 2280 80mm SSDs, which are used in

the end-to-end experiments only.

5.1 Static Evaluation
Baselines. We compare Diva to all existing range filters except

for bloomRF [37], as its implementation is closed-source. As most

other range filters only support integer keys, we specialize a ver-

sion of Diva for integers to enable a fair comparison while still

benchmarking the general-purpose version of Diva that supports

variable-length keys. We implement both these versions in C++. All
other baselines we compare to are implemented in C/C++ as well.
We compile all filters using gcc-13.

Integer Datasets. Following prior work [12, 17, 23, 24, 29, 33, 37,
46, 47, 51], we employ the following synthetic and real-world [28,

35] datasets for our evaluation over integer data:

• Uniform: 200M uniformly sampled 64-bit integers.

• Normal: 200M 64-bit integer samples from N (2
63, 250

).

• Books: 200M popularity scores for books on Amazon. This

dataset is heavily skewed, containing many more lower

ratings than higher ones.

• OSM: 200M geocoordinates from the Open Street Map. It

features several densely populated regions in the key space.

Later in Experiment 3, we adapt some of these workloads to include

variable-length keys.

QueryWorkloads. For integer datasets, we sample a start key 𝑥

and a length 𝑅 to generate the range [𝑥, 𝑥 + 𝑅 − 1]. We vary 𝑅 to

showcase the effect of range lengths on filter performance and FPR.

For synthetic workloads, we choose the starting key 𝑥 by sampling

from the same distribution as the dataset. For real workloads, we

sample 𝑥 from the dataset and subsequently remove it from the set.

We generate point queries by using 𝑅 = 1.

Our workloads issue empty range queries, and we measure the

FPR of each filter by dividing the number of positive results by

the size of the query batch. We also conduct a separate experiment

gauging performance for non-empty queries. Our benchmarks focus

on filter CPU times. All workloads issue a total of 10M queries.

Experiment 1: Integer FPR vs. Query Size Tradeoff. The
first and second rows of Figure 6 depict the FPR of our baselines

with a memory budget of 10 and 16 BPK, respectively. Here, the

𝑥-axes vary the query sizes. The bottom row of Figure 6 compares

the filters’ query latencies for the experiments of the second row.

We omit query latency measurements for the first row since they

are similar. Figure 6 has both solid and dotted plots for Proteus. In

the solid plots, Proteus is tuned using a sample of the queries, while

in the dotted plots, it is tuned with range queries with uniformly

distributed endpoints, simulating a workload shift. Such workload

shifts do not impact the other range filters. We tune Rosetta and

Memento filter to assume amaximum range query length of𝑅 = 128

to keep their FPR for short range queries low and their memory

footprint in line with the other filters. If one keeps the memory

footprint constant and tunes Rosetta for longer ranges, its query

speed deteriorates. Tuning Memento filter for longer ranges yields

faster queries at the expense of the FPR.

The FPRs of robust range filters, i.e., Rosetta, Grafite, and Me-

mento filter, approach one as the range query length increases.
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Figure 6: Diva provides the best balance between FPR and query latency for any workload across range query sizes.
As mentioned in Section 2, this is due to the filters issuing extra

probes in their internal structures. This also increases the num-

ber of cache misses in Rosetta and Memento filter, slowing down

range queries by orders of magnitude. Similarly, REncoder’s FPR

and speed rapidly deteriorate with longer queries since it issues

more Bloom filter probes.

While SuRF approximately matches Diva’s query performance,

its FPR is at least an order of magnitude higher across experiments,

as it maximally truncates the keys in its trie. Furthermore, SuRF

is unable to curb its memory footprint under some datasets. For

instance, in Figure 6, SuRF is missing from the Books column since

it requires at least 21 BPK to create a trie that differentiates all of

the dataset’s keys, exceeding the allotted memory budget.

SNARF and Oasis+ match Diva’s FPR but exhibit ≈ 2× slower

queries due to their slower binary searches. They also do not sup-

port variable-length keys and dynamic operations. Moreover, in

some scenarios, such as in the OSM dataset, Diva achieves better

FPRs than SNARF by a factor of ≈ 2×. This is due to floating point

errors in SNARF’s distribution model. We exclude Oasis+ from the

OSM column since its construction takes more than 12 hours.

Proteus’ FPR is slightly lower than Diva’s under the Books and

OSM datasets (due to some redundancy of the keys carrying over

into Diva’s infixes) but is worse by orders of magnitude under the

Uniform and Normal datasets, as the latter workloads. Moreover,

Proteus’ dotted plots show that in the face of a workload shift, its

FPR shoots up for medium to long queries, resulting in orders of

magnitude higher FPRs than Diva. Although Proteus achieves faster

queries than Diva in the absence of workload shifts, it becomes

slower than Diva by an order of magnitude in the face of a workload

shift as it performs more Bloom filter probes.

As shown in Figure 6, any filter that outperforms Diva in terms

of FPR has significantly slower queries and vice-versa. Hence, Diva

provides the best balance between FPR and query speed across the

board for variable-length range queries. Moreover, as shown by the

range size 2
0
, Diva is also competitive for point queries. As we show

in subsequent experiments, Diva is also more general-purpose than

its competitors since it supports variable-length keys and dynamic

insertions, deletions, and expansions.

Experiment 2: Integer FPR vs. Memory Tradeoff. Figure 7
depicts the FPRs of the baselines as we vary the memory budget

while fixing the query length to 𝑅 = 2
10
. Due to its semi-robust

FPR guarantee, Diva achieves a low FPR across the board, closely

matching the best competitors. Although Proteus, SNARF, and Oa-

sis+ exhibit better filtering under certain datasets, they have higher

FPRs under others. Moreover, unlike Diva, none support variable-

length keys and dynamicity. Because Diva’s memory footprint does

not depend on 𝑅 and its metadata overhead is small, it is still oper-

ational under stringent memory budgets as low as 8 BPK (unlike

SuRF or the robust range filters).

Experiment 3: String FPR vs. Memory Tradeoff. We now

experiment with datasets and workloads containing variable-length

keys. We use the following datasets, each consisting of 200M keys:

• Normal: the length of the key, in bytes, is chosen at random

from the set {8, 16, 32, 64, 128, 256}, and the first 64 bits of

the keys follow the normal distribution N (2
63, 250

) while

the other bits are chosen uniformly at random,

• EnWiki: English words extracted from Wikipedia titles [1].

Using the EnWiki dataset without modification results in a high

FPR for all filters. This is an artifact of the erratic distribution

of the English language, which features many “short and step-

wise skews.” To address this problem, we compress the keys using

Hu-Tucker coding [50], an order-preserving variant of Huffman

coding, to “flatten” the distribution and make it more well-behaved
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Figure 8: Diva guarantees competitive FPRs and comparable
query times to SuRF when operating on strings.

before constructing the filters. We generate queries by sampling

and removing pairs of adjacent keys from the dataset.

Figure 8 evaluates the FPR of Diva and SuRF, the only filters that

support string keys, under various memory budgets. SuRF creates a

shallow truncated trie to differentiate the keys in these workloads.

This, in conjunction with early termination of empty queries in the

upper levels of the trie, allows SuRF to achieve marginally faster

queries than Diva by 35%. However, its maximal truncation of suf-

fixes causes SuRF’s FPR to be worse than Diva by as much as two

orders of magnitude under the Normal dataset. While SuRF has

a lower FPR for large memory budgets under the EnWiki dataset

due to it ensuring that keys are differentiated, it is worse by 1.5×
for stringent budgets, which is the setting in which filters are typi-

cally most useful. In contrast, Diva truncates suffixes to different

degrees for different regions of the key space, storing finer-grained

information for denser regions that improve the FPR.

Experiment 4: Non-Empty Query Performance. Until now,
we only issued empty queries in our evaluations. We now bench-

mark non-empty query latency in Figure 9. The left subfigure

varies the memory budget while fixing the range query length

to 𝑅 = 2
10
, and the right subfigure varies the query size while fixing

the memory budget to 16 BPK. We only consider the Uniform

integer dataset, as other datasets yield similar results. Henceforth,

Rosetta’s hierarchy depth and Memento filter’s suffix size are tuned

to the longest range query length to enable their best performance.

Diva is faster than all range filters, except for Grafite and Me-

mento filter, across all memory budgets and range query lengths.

This is because the other filters incur many cache misses due to us-

ing binary search or checking for existing keys in Bloom filters and

tries. The closest other range filter to Diva’s speed, SuRF, is slower
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Figure 9: Diva brings competitive performance to the table
when processing non-empty range queries.
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Figure 10: Diva has the fastest construction time among range
filters with a large margin.

by as much as 35%, as it has to traverse all the levels in its trie down

to a leaf node for a non-empty query. Grafite and Memento filter

achieve their speed by localizing similar keys to the same memory

region, forgoing support of variable-length keys and queries, both

of which are supported by Diva. Rosetta, REncoder, and Proteus

incur more cache misses as the memory budget or query length

grows since they check more bits in their Bloom filters. In contrast,

Diva’s query complexity is independent of the memory budget and

query size, yielding consistently fast queries.

We have also experimented with mixed workloads, but exclude

the plots, as all filters behave similarly to Figure 9, except for Pro-

teus, which behaves similarly to the last row of Figure 6.

Experiment 5: Construction Times. Figure 10 presents the
construction times of the range filters on integer datasets of vary-

ing sizes under a memory budget of 16 BPK. We use the Uniform

dataset, though the dataset choice has little influence on filter con-

struction times (except for Oasis+). Diva is significantly faster to

construct than all other range filters, with the closest range filter

being 2.7× slower. This gap is due to Diva’s sequential memory ac-

cess pattern in the input array and its Infix Stores (which leverages

the hardware prefetcher) and due to it only hashing the sample

keys in its 𝑦-Fast trie, which comprise ≈ 0.1% of all the keys.

5.2 Dynamic Evaluation
We now turn to evaluate Diva under dynamic workloads.

Baselines. We compare Diva to Rosetta [33], REncoder [24, 47],

SNARF [46], andMemento filter [23], as they are the only filters that

provide insertion APIs. Here, we implement an improved version

of Memento filter that employs Aleph filter’s techniques [18, 40]

to support infinite expansions. In the presence of deletions, we

compare Diva to SNARF and Memento filter since they are the

only other filters that have deletion APIs. Finally, we integrate Diva

and Memento filter into WiredTiger [36] to conduct an end-to-end
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Figure 11: Diva exhibits the best FPR scaling with insertions.
It is also the only filter to simultaneously provide fast inser-
tions and a stable space consumption across expansions.

evaluation on a popular B-Tree-based key-value store. By default,

the memory budget of each filter is set to 16 BPK.

Datasets and Workloads. We consider the Books dataset con-

taining 200M keys.We construct the filters on a randomly chosen
1

64

fraction of this dataset and insert the remaining keys in a random

order. We issue queries of length 𝑅 = 2
10

(and 𝑅 = 2
20

in Experi-

ment 6) with endpoints sampled from the same distribution and

collect measurements as the dataset grows. Other datasets result in

similar measurements.

Experiment 6: FPR, Space, and Insert Latency. Figure 11

evaluates the baselines’ FPR, space, and insert latency as new keys

are inserted. The 𝑥-axis shows the fraction of the dataset ingested.

The top row plots the filters’ FPR, with its left and right subfigures

issuing shorter and longer range queries. The left and right subfig-

ures of the bottom row present the baselines’ memory footprint

and insertion latency. We measure the memory footprint of the

baselines, as some deviate from the user-defined memory budget.

Since Rosetta and REncoder are based on Bloom filters, they are

not expandable. As such, new insertions increase the proportion

of bits set to 1s in their Bloom filters, causing their FPR to quickly

converge to one, making them useless as filters.

SNARF’s initial FPR is better than Diva by ≈ 2.1×, as it does
not have to pay the extra cost of storing unary counters. However,

its FPR deteriorates with insertions, becoming worse than Diva

by more than 2×. This is because SNARF does not update its dis-
tribution model. This is also what leads to the slight drop in its

memory footprint. In contrast, Diva maintains an accurate distribu-

tion model by inserting new samples into its trie. Moreover, SNARF

has a linearly deteriorating insertion speed with dataset size due to

its linearly increasing block sizes, causing slower insertions than

Diva by as much as three orders of magnitude.

Since Memento filter does not support variable-length queries,

its FPR is higher than Diva by ≈ 25.3× in the top-left subfigure of

Figure 11. Memento filter is missing from the top-right subfigure

since it requires more than 16 BPK of memory to support these
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Figure 12: Diva achieves the best deletion and end-to-end
query performance under dynamic workloads.

longer queries. Although Memento filter initially has faster inser-

tions than Diva, it becomes similar to Diva as the the dataset grows

due to shifting more slots in its hash table. Moreover, its memory

consumption exceeds the user-defined budget at times. This is be-

cause it expands to twice its original size to accommodate new

insertions, wasting as much as 50% of its capacity until it fills up

again. In contrast, Diva expands its Infix Stores in small increments,

maintaining a constant memory footprint and avoiding wastage.

In sum, Diva maintains the lowest FPR for range queries of any

length across expansions while supporting fast insertions. It is also

the only dynamic filter that respects its memory budget.

Experiment 7: Deletions. Figure 12-A measures the deletion

performance of the filters that provide a deletion API as the dataset

grows. It shows the latency of issuing 500K deletions each time the

dataset size doubles. Figure 12-A demonstrates that Diva exhibits

the fastest deletions, beating Memento filter and SNARF by as

much as 2.54× and 300×. SNARF’s deletion speed deteriorates with

insertions since its blocks grow, forcing it to rewrite larger blocks.

Memento filter also slows down since the number of slots it has to

shift increases. In contrast, Diva controls the amount of shifting

and rewriting it does by splitting Infix Stores.

Experiment 8: End-to-End Query Latency.We integrate Diva

and Memento filter with WiredTiger and measure the end-to-end

empty range query latency. We exclude SNARF from this experi-

ment since it is unsuitable for dynamic workloads due to its ineffi-

cient update APIs. Figure 12-B measures end-to-end query latency

each time the dataset size doubles. Each key in this workload is

associated with a 504-byte value, resulting in 512-byte key-value

pairs being stored on disk. We configure WiredTiger with a buffer

pool that is 1% of the data size on disk. We trade some of this mem-

ory for the range filter to draw a fair comparison. The curve labeled

“Baseline” in Figure 12-B represents WiredTiger without a filter.

Diva speeds up WiredTiger’s query processing by as much as

three orders of magnitude. Moreover, since it supports variable-

length queries, it beats Memento filter’s query latency by ≈ 85×.

6 CONCLUSION
We introduced Diva, the first range filter to simultaneously attain

the six range filtering goals. We showed, both theoretically and

empirically, that Diva provides support for variable-length queries

and keys with excellent FPR, dynamicity, and performance.
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