
Niv Dayan - March 16, 2023

Tutorial on Query Evaluation
CSC443H1 Database System Technology

Question 1 - Index vs. Scan

A …

A

Table T contains 220 rows, and each page fits 27 rows. There is an unclustered index
on column A with a unique value counter set to 210. Should we scan the relation or
employ the index to answer the following query: select * from T where A=“i”? What if
the unique element count were 25 instead? We are using an SSD.

Table T contains 220 rows, and each page fits 27 rows. There is an unclustered index
on column A with a unique value counter set to 210. Should we scan the relation or
employ the index to answer the following query: select * from T where A=“i”? What if
the unique element count were 25 instead? We are using an SSD.

A scan would cost 220/27=213 I/Os. A …

A

Question 1 - Index vs. Scan

With 210 unique values in col A, we can expect 220/210=210 rows to
match leading to 210 random I/Os. This is better than scanning.

With 25 unique values in col A, we can expect 220/25=215 rows to
match leading to 215 random I/Os. This is worse than scanning.

Table T contains 220 rows, and each page fits 27 rows. There is an unclustered index
on column A with a unique value counter set to 210. Should we scan the relation or
employ the index to answer the following query: select * from T where A=“i”? What if
the unique element count were 25 instead? We are using an SSD.

A scan would cost 220/27=213 I/Os.

With 210 unique values in col A, we can expect 220/210=210 rows to
match leading to 210 random I/Os. This is better than scanning.

With 25 unique values in col A, we can expect 220/25=215 rows to
match leading to 215 random I/Os. This is worse than scanning.

A …

A

Question 1 - Index vs. Scan

What if we used disk?

Table T contains 220 rows, and each page fits 27 rows. There is an unclustered index
on column A with a unique value counter set to 210. Should we scan the relation or
employ the index to answer the following query: select * from T where A=“i”? What if
the unique element count were 25 instead? We are using an SSD.

A scan would cost 220/27=213 I/Os.

A …

A

Question 1 - Index vs. Scan

What if we used disk? A scan may still be best.

With 210 unique values in col A, we can expect 220/210=210 rows to
match leading to 210 random I/Os. This is better than scanning.

With 25 unique values in col A, we can expect 220/25=215 rows to
match leading to 215 random I/Os. This is worse than scanning.

Question 2 - Index Design

X Y

Consider the following tables and query.

Table T1

Z Z Q

Table T2

P

(1) Assume T2 fits in memory. How
would we run the query with no
indexes present? What’s the I/O cost?

(2) Assuming tiny memory, which indexes
would you construct in order to speed this
query up maximally? What’s the I/O cost?

Select X, Y, Q from T1, T2 where X=“i”
and Y=“j” and T1.Z = T2.Z

Assume: |T1| > |T2| > |Xi| > |Yj| > |Xi ∩ Yj|

Question 2 - Index Design

Consider the following tables and query.

Table T1
Scan T2 and build an in-memory hash
table mapping Z to Q (omitting P).
Scan T1 using one input buffer. For
each row matching X and Y, join to Q
using hash table based on Z.

Cost: O(|T1|/B + |T2|/B)An instance of block-nested loop:

Table T2

X Y Z
(1) Assume T2 fits in memory. How
would we run the query with no
indexes present? What’s the I/O cost?

Select X, Y, Q from T1, T2 where X=“i”
and Y=“j” and T1.Z = T2.Z

Z Q P

Question 2 - Index Design

Consider the following tables and query.

Table T1

(2) Assuming tiny memory, which indexes
would you construct in order to speed this
query up? What’s the I/O cost?

Composite index on X and Y in T1. Table T2

Index on Z in T2.

Cost: O(logB(|T1|) + |Xi ∩ Yj| · logB(|T2|))

(assuming B-trees internal nodes in storage)

X Y Z Z Q P

Select X, Y, Q from T1, T2 where X=“i”
and Y=“j” and T1.Z = T2.Z

X,Y

Question 2 - Index Design

Consider the following tables and query.

Table T1

(2) Assuming tiny memory, which indexes
would you construct in order to speed this
query up? What’s the I/O cost?

Composite index on X and Y in T1. Table T2

Index on Z in T2.

What if we also the following queries?

X Y Z Z Q P

Select X, Y, Q from T1, T2 where X=“i”
and Y=“j” and T1.Z = T2.Z

Select * from T1 where X=“i”
Select * from T1 where Y=“j”

X,Y

Question 2 - Index Design

Consider the following tables and query.

Table T1

(2) Assuming tiny memory, which indexes
would you construct in order to speed this
query up? What’s the I/O cost?

Table T2
What if we also the following queries?

X Y Z Z Q P

Select X, Y, Q from T1, T2 where X=“i”
and Y=“j” and T1.Z = T2.Z

X

Select * from T1 where X=“i”
Select * from T1 where Y=“j”

Use separate indexes on X and Y.
Composite index won’t help one of
these queries.

Y

Question 3 - Joins
We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

O(max(|T1 | , |T2 |) ⋅ B)

X Y X Y

⋈

(1) Which join algorithm is best for this case?

(2) What’s the minimum amount of memory needed to join

the relations in 2 passes?

(3) How can we use additional memory beyond the

minimum to further speed up the join?

Question 3 - Joins

O(max(|T1 | , |T2 |) ⋅ B)

(1) Which join algorithm is best for this case? Grace Hash Join

⋈

⋈

⋈

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

Question 3 - Joins

M = min(|T1 | , |T2 |) ⋅ B = min(232,230) ⋅ 64 = 218

(2) What’s the minimum amount of memory needed to join the relations in 2 passes?

entries fitting in memory

⋈

⋈

⋈

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

Question 3 - Joins

(3) How can we use additional memory beyond the minimum to further speed up the join?

During partitioning phase, keep as many partitions in memory as we have space for.

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

Question 3 - Joins

(3) How can we use additional memory beyond the minimum to further speed up the join?

During joining phase, join to in-memory partitions immediately. This saves one pass
over all partitions fitting in memory.

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

Question 3 - Joins

(3) How can we use additional memory beyond the minimum to further speed up the join?

As memory increases, this becomes identical to block nested join. This algorithm is
called Hybrid Hash Join because it combines Grace Hash Join with block nested join.

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

Question 4 - Query Plan

Join
⋈

Join
⋈

A=“…” D=“…”

A B CB DC

Select A, D from T1, T2, T3 where T1.B = T2.B and T2.C = T3.C
and A=“i” and D=“j”

Construct a minimal cost logical query plan for the following query on three
tables, all with equal sizes. Assume A is more selective than D. Use the

query optimization principles we have seen in class.

T1 T2 T3

Point 1: pushing selections and projections as
much as possible

σ selection

π projection

A

π projection

BJoin T1 and T2

B

C

D

Join with T3

C

σ selection

Point 1: pushing selections and projections as
much as possible

σ selection

π projection

A

π projection

BJoin T1 and T2

B

C

D

Join with T3

C

σ selection

Point 2: A is more selective than D, so we expect
smaller output size from T1⋈T2 than from T2⋈T3.
We therefore join T1⋈T2 first in hope the output will
fit in memory

Point 1: pushing selections and projections as
much as possible

σ selection

π projection

A

π projection

BJoin T1 and T2

B

C

D

Join with T3

C

σ selection
Point 3: We employ left-deep
join structure

Point 2: A is more selective than D, so we expect
smaller output size from T1⋈T2 than from T2⋈T3.
We therefore join T1⋈T2 first in hope the output will
fit in memory

