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Question 1 - Index vs. Scan

Table T contains 220 rows, and each page fits 27 rows. There is an unclustered index
on column A with a unique value counter set to 210, Should we scan the relation or

employ the index to answer the following query: select * from T where A="1""? What if
the unique element count were 2° instead”? We are using an SSD.
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Question 1 - Index vs. Scan

Table T contains 220 rows, and each page fits 27 rows. There is an unclustered index
on column A with a unique value counter set to 210, Should we scan the relation or

employ the index to answer the following query: select * from T where A="1""? What if
the unique element count were 2° instead”? We are using an SSD.

A scan would cost 220/27=213 |/Os.

A ... With 210 unique values in col A, we can expect 220/210=210 rows to
match leading to 210 random |/Os. This is better than scanning.

A With 25 unique values in col A, we can expect 220/25=215 rows to
match leading to 21° random |/Os. This is worse than scanning.

What if we used disk? A scan may still be best.



Consider the following tables and query.

X Y [Z

Table T

Question 2 - Index Design
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Table T2

Select X, Y, Q from T1, T2 where X=i"
and Y=“"and T1.Z2=T2.Z

Assume: [T1]| > [T2| > [Xi| > [Yi| > [Xin Vil

(1) Assume T2 fits in memory. How
would we run the query with no
indexes present? What’s the I/O cost?

(2) Assuming tiny memory, which indexes
would you construct in order to speed this
query up maximally? What’s the |I/O cost?



Question 2 - Index Design

Consider the following tables and query.  Select X, Y, Q from T1, T2 where X="i"
and Y="]"and T1.Z=T2.2
X Y Z /™ /" z2+Q F

C___j (1) Assume T2 fits in memory. How
:[E]: would we run the query with no
Table T2 indexes present? What’s the /O cost?

Scan T2 and build an in-memory hash
Table T1 table mapping Z to Q (omitting P).

Scan T1 using one input buffer. For
each row matching X and Y, join to Q
using hash table based on Z.

An instance of block-nested loop: Cost: O(|T1|/B + |T2|/B)



Consider the following tables and query.

X Y [Z

Table T

Question 2 - Index Design
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Table T2

Select X, Y, Q from T1, T2 where X=i"
and Y=“"and T1.Z2=T2.Z

(2) Assuming tiny memory, which indexes
would you construct in order to speed this
query up? What'’s the |/O cost?

Composite index on Xand Y in T1.

Indexon Zin T2.

Cost: O(logs(|T1|) + |Xi n Yi| - logs(|T2)))

(assuming B-trees internal nodes in storage)
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Table T2

Select X, Y, Q from T1, T2 where X=i"
and Y=“"and T1.Z2=T2.Z

(2) Assuming tiny memory, which indexes
would you construct in order to speed this
query up? What'’s the |/O cost?

Composite index on Xand Y in T1.

IndexonZin T2.

What if we also the following queries?

Select * from T1 where X="“{”
Select * from T1 where Y=j”



Consider the following tables and query.

Table T

Question 2 -

Q

Table T2

F)

Index Design

Select X, Y, Q from T1, T2 where X=i"
and Y="]" and T1.Z = T2.Z

(2) Assuming tiny memory, which indexes
would you construct in order to speed this
query up? What'’s the |/O cost?

What if we also the following queries?

Select * from T1 where X="“”
Select * from T1 where Y=j”

Use separate indexes on X and Y.
Composite index won’t help one of
these queries.



Question 3 - Joins

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

(1) Which join algorithm is best for this case”?

(2) What’s the minimum amount of memory needed to join

X the relations in 2 passes?

(3) How can we use additional memory beyond the
minimum to further speed up the join?




Question 3 - Joins

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

(1) Which join algorithm is best for this case? Grace Hash Join
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Question 3 - Joins

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

(2) What’s the minimum amount of memory needed to join the relations in 2 passes?

M =+/min(|T1],|T2])-B = \/ min(232,2°%) - 64 = 2!® entries fitting in memory



Question 3 - Joins

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

(3) How can we use additional memory beyond the minimum to further speed up the join?

During partitioning phase, keep as many partitions in memory as we have space for.
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Question 3 - Joins

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

(3) How can we use additional memory beyond the minimum to further speed up the join?

During joining phase, join to iIn-memory partitions immediately. This saves one pass
over all partitions fitting in memory.

“ooi ajsiefh

OO0 E
Q-: /
B [
\~m [:J‘/




Question 3 - Joins

We would like to join two relations with 230 and 232 rows respectively. Each row has
the same size of 64B. Both relations are much larger than the available memory, and
the output does not need to be sorted.

(3) How can we use additional memory beyond the minimum to further speed up the join?

As memory increases, this becomes identical to block nested join. This algorithm is
called Hybrid Hash Join because it combines Grace Hash Join with block nested join.
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Question 4 - Query Plan

Construct a minimal cost logical query plan for the following query on three
tables, all with equal sizes. Assume A is more selective than D. Use the
query optimization principles we have seen in class.

A B B C C D

T1 Join ™ Join T3
A:H...!! D:H...!!

Select A, Dfrom T1, T2, T3 where T1.B=T2.Band T2.C = T3.C
and A=“i"” and D="}"



Point 1: pushing selections and projections as
much as possible

@ Tt projection

1
Join with T3

AN
Tt projection @ o selection

| Val
Join T1 and T2
@f

O selection
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Point 1: pushing selections and projections as
much as possible

Point 2: A Is more selective than D, so we expect @ 1 projection
smaller output size from T1XT2 than from T2XTS3.

We therefore join T1XT2 first in hope the output will 1

fit in memory Join with T3
Point 3: We employ left-deep | AN

join structure Tt projection @ o selection

| Val
Join T1 and T2
@j

O selection



