Tutorial on Sorting

Database System Technology

Niv Dayan

Midterm covers all Open book
material so far
(Including this week)

Office Hours

TA Office Hours Instructor Office Hours
4-6 pm 4-5 pm and 7-8 pm
(Project + content)

Suppose we need next min entry from buffer 2 but it is empty.

o
g
Q§ mmn

puffersIDs: 1 2 3 /N/B

=)

Suppose we need next min entry from buffer 2 but it is empty.

o
g
Q§ mmn

i must wait for a read 1/0 to complete

=)

Double buffering: load one additional buffer preemptively for each partition
before the first buffer empties

—
g

puffersIDs: 1 1" 2 2" \/N/B+/NIB

=)

Double buffering: load one additional buffer preemptively for each partition
before the first buffer empties

(e

5 S > While I/0 takes place into buffer 2,
& we can still read from buffer 2’

buffers IDs: i

=)

Larger though fewer buffers: more groups, so potentially more iterations,
but each I/0O reads more data

=)

Question 1

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

:[:.IEI:I: 17 butters
E Table with 10,000 pages

Question 1

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

(A) How many partitions are created after the first pass?

(B) How many passes does it take to sort the file completely?

(C) How many 1I/Os are issued in total to sort the file?

(D) How many buffers would you need to sort the file in just 2 passes?

Question 1

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

(A) How many partitions are created after the first pass?
10,000 / 17 = 589
(B) How many passes does it take to sort the file completely?

(C) How many 1I/Os are issued in total to sort the file?

(D) How many buffers would you need to sort the file in just 2 passes?

Question 1

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

(A) How many partitions are created after the first pass?
10,000/ 17 = 589

(B) How many passes does it take to sort the file completely?
logm/s - 1(N/B) = [log16(10,000)] = 4

(C) How many 1I/Os are issued in total to sort the file?

(D) How many buffers would you need to sort the file in just 2 passes?

Question 1

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

(A) How many partitions are created after the first pass?
10,000/ 17 =589
(B) How many passes does it take to sort the file completely?
logms - 1(N/B) = [log16(10,000) | = 4
(C) How many 1I/Os are issued in total to sort the file?
10,000 * 4 = 40,000

(D) How many buffers would you need to sort the file in just 2 passes?

Question 1

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

(D) How many buffers would you need to sort the file in just 2 passes?

The total number of passes generally is logm/s(N/B) where M/B is the

number of buffers. We know that N/B = 10,000. So we can equate
logm/s(N/B) to 2 and solve for M/B

logm/s(10,000) = 2 -> M/B = 100

Question 2

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

Unclustered
B-tree on A Select * from table sort by A

Question 2

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

(1) An unclustered index requires issuing one |/O into the table for each entry.
Retrieving the table in a sorted order therefore takes O(N) I/Os.

Question 2

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

(1) An unclustered index requires issuing one |/O into the table for each entry.
Retrieving the table in a sorted order therefore takes O(N) I/Os.

(2) External sorting takes O(N/B - logwm/s(N/B)) I/0s. It is cheaper as long as
logw/s(N/B) < B. This holds true for realistic values N, B and M.

Question 2

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

(1) An unclustered index requires issuing one |/O into the table for each entry.
Retrieving the table in a sorted order therefore takes O(N) I/Os.

(2) External sorting takes O(N/B - logwm/s(N/B)) I/0s. It is cheaper as long as
logw/s(N/B) < B. This holds true for realistic values N, B and M.

Method (2) is generally better, but if we have large entry sizes (small B), little
memory, and/or astronomical data, approach (1) may be better.

Question 2

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

Follow up: how would your answer change if we have a clustered index
on column A?

Question 2

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

Follow up: how would your answer change if we have a clustered index
on column A”?

Scanning the clustered index to return sorted data now costs N/B 1I/0s,
which is cheaper than even even a two-pass external sort, which costs

2(N/B) 1/0s.

Question 3

You are given M memory and N entries where N >> M >> 3B. Why is It a bad idea
to use the available memory as virtual memory (e.g., to allocate using 'new' space

for M entries, and to use in-memory Quicksort? Use cost models to justify your
answer.

Question 3

You are given M memory and N entries where N >> M >> 3B. Why is It a bad idea
to use the available memory as virtual memory (e.g., to allocate using 'new' space

for M entries, and to use in-memory Quicksort? Use cost models to justify your
answer.

With virtual memory, swapping would kick in. Quicksort scans the data sequentially,
so we would expect O(N/B - log2 N) I/Os as it performs logz N iterations.

In contrast, external sort provides O(N/B - logw/s(N/B)), which dominates.

Question 4

Suppose we have a tiered LSM-tree with a size ratio of T. Analyze the CPU costs
of compaction assuming we check all buffers each time to find the minimum key.
Then propose a technigue to improve CPU costs.

/ 1,
@ S Per

Question 4

Suppose we have a tiered LSM-tree with a size ratio of T. Analyze the CPU costs
of compaction assuming we check all buffers each time to find the minimum key.
Then propose a technigue to improve CPU costs.

Each entry is merged O(logr(N/P)) times across the tree

/ 1,
@ S Per

Question 4

Suppose we have a tiered LSM-tree with a size ratio of T. Analyze the CPU costs
of compaction assuming we check all buffers each time to find the minimum key.
Then propose a technigue to improve CPU costs.

Each entry is merged O(logTt(N/P)) times across the tree

For each entry we merge, we must check the minimum across O(T) buffers.

/ 1,
@ S Per

Question 4

Suppose we have a tiered LSM-tree with a size ratio of T. Analyze the CPU costs
of compaction assuming we check all buffers each time to find the minimum key.
Then propose a technigue to improve CPU costs.

Each entry is merged O(logTt(N/P)) times across the tree
For each entry we merge, we must check the minimum across O(T) buffers.

Total CPU costs: O(N - logt(N/P) - T)

/ 1,
@ S Per

Question 4

Suppose we have a tiered LSM-tree with a size ratio of T. Analyze the CPU costs
of compaction assuming we check all buffers each time to find the minimum key.
Then propose a technigue to improve CPU costs.

Each entry is merged O(logTt(N/P)) times across the tree

For each entry we merge, we must check the minimum across O(T) buffers.

Total CPU costs: O(N - logr(N/P) - T)

(i j A heap brings this down to O(N - logt(N/P) - logz(T))

