
Niv Dayan

Tutorial on Sorting
Database System Technology

Midterm covers all
material so far

(Including this week)

Open book

TA Office Hours
4-6 pm

(Project + content)

Office Hours

Instructor Office Hours
4-5 pm and 7-8 pm

Sorted

…

Min-Heap

Suppose we need next min entry from buffer 2 but it is empty.

buffers IDs: N/B2 31

Em
pt

y

Sorted

…

Min-Heap

must wait for a read I/O to complete

Em
pt

y

Suppose we need next min entry from buffer 2 but it is empty.

Sorted

…

Min-Heap

Double buffering: load one additional buffer preemptively for each partition
before the first buffer empties

buffers IDs: N/B1’ 21 2’ N/B’

Em
pt

y

Sorted

Min-Heap

Double buffering: load one additional buffer preemptively for each partition
before the first buffer empties

buffers IDs:

2 2’
Em

pt
y While I/O takes place into buffer 2,

we can still read from buffer 2’

Sorted

Larger though fewer buffers: more groups, so potentially more iterations,
but each I/O reads more data

…

Question 1

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

Table with 10,000 pages

17 buffers

Question 1

(A) How many partitions are created after the first pass?

(B) How many passes does it take to sort the file completely?

(C) How many I/Os are issued in total to sort the file?

(D) How many buffers would you need to sort the file in just 2 passes?

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

Question 1

(A) How many partitions are created after the first pass?

(B) How many passes does it take to sort the file completely?

(C) How many I/Os are issued in total to sort the file?

(D) How many buffers would you need to sort the file in just 2 passes?

10,000 / 17 = 589

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

Question 1

(A) How many partitions are created after the first pass?

(B) How many passes does it take to sort the file completely?

(C) How many I/Os are issued in total to sort the file?

(D) How many buffers would you need to sort the file in just 2 passes?

10,000 / 17 = 589

logM/B - 1(N/B) = ⌈log16(10,000)⌉ = 4

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

Question 1

(A) How many partitions are created after the first pass?

(B) How many passes does it take to sort the file completely?

(C) How many I/Os are issued in total to sort the file?

(D) How many buffers would you need to sort the file in just 2 passes?

10,000 / 17 = 589

logM/B - 1(N/B) = ⌈log16(10,000)⌉ = 4

10,000 * 4 = 40,000

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

Question 1

(D) How many buffers would you need to sort the file in just 2 passes?

logM/B(10,000) = 2 -> M/B = 100

Suppose you have a file with 10,000 pages and you have 17 buffers in
memory, each of them 4KB. We need to externally sort the file.

The total number of passes generally is logM/B(N/B) where M/B is the
number of buffers. We know that N/B = 10,000. So we can equate
logM/B(N/B) to 2 and solve for M/B

Question 2

A B C Select * from table sort by A
Unclustered
B-tree on A

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

Question 2

(1) An unclustered index requires issuing one I/O into the table for each entry.
Retrieving the table in a sorted order therefore takes O(N) I/Os.

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

Question 2

(1) An unclustered index requires issuing one I/O into the table for each entry.
Retrieving the table in a sorted order therefore takes O(N) I/Os.

(2) External sorting takes O(N/B · logM/B(N/B)) I/Os. It is cheaper as long as
logM/B(N/B) < B. This holds true for realistic values N, B and M.

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

Question 2

(1) An unclustered index requires issuing one I/O into the table for each entry.
Retrieving the table in a sorted order therefore takes O(N) I/Os.

(2) External sorting takes O(N/B · logM/B(N/B)) I/Os. It is cheaper as long as
logM/B(N/B) < B. This holds true for realistic values N, B and M.

Method (2) is generally better, but if we have large entry sizes (small B), little
memory, and/or astronomical data, approach (1) may be better.

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

Question 2

Follow up: how would your answer change if we have a clustered index
on column A?

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

Question 2

Scanning the clustered index to return sorted data now costs N/B I/Os,
which is cheaper than even even a two-pass external sort, which costs
2(N/B) I/Os.

Follow up: how would your answer change if we have a clustered index
on column A?

Consider a table that is too large to fit in memory. We have an unclustered
B-tree index over column A. We get the following query: “Select * from table
order by A”. There are two options to process this query: (1) scan the index,
or (2) externally sort the file based on column A. What are the costs of these
methods, and under which circumstances would you choose each one?

Question 3
You are given M memory and N entries where N >> M >> 3B. Why is it a bad idea
to use the available memory as virtual memory (e.g., to allocate using 'new' space
for M entries, and to use in-memory Quicksort? Use cost models to justify your
answer.

Question 3
You are given M memory and N entries where N >> M >> 3B. Why is it a bad idea
to use the available memory as virtual memory (e.g., to allocate using 'new' space
for M entries, and to use in-memory Quicksort? Use cost models to justify your
answer.

In contrast, external sort provides O(N/B · logM/B(N/B)), which dominates.

With virtual memory, swapping would kick in. Quicksort scans the data sequentially,
so we would expect O(N/B · log2 N) I/Os as it performs log2 N iterations.

Question 4

Suppose we have a tiered LSM-tree with a size ratio of T. Analyze the CPU costs
of compaction assuming we check all buffers each time to find the minimum key.
Then propose a technique to improve CPU costs.

T runs per level

Question 4

Each entry is merged O(logT(N/P)) times across the tree

Suppose we have a tiered LSM-tree with a size ratio of T. Analyze the CPU costs
of compaction assuming we check all buffers each time to find the minimum key.
Then propose a technique to improve CPU costs.

T runs per level

Question 4

Each entry is merged O(logT(N/P)) times across the tree

For each entry we merge, we must check the minimum across O(T) buffers.

Suppose we have a tiered LSM-tree with a size ratio of T. Analyze the CPU costs
of compaction assuming we check all buffers each time to find the minimum key.
Then propose a technique to improve CPU costs.

T runs per level

Question 4

Each entry is merged O(logT(N/P)) times across the tree

For each entry we merge, we must check the minimum across O(T) buffers.

Total CPU costs: O(N · logT(N/P) · T)

Suppose we have a tiered LSM-tree with a size ratio of T. Analyze the CPU costs
of compaction assuming we check all buffers each time to find the minimum key.
Then propose a technique to improve CPU costs.

T runs per level

Question 4

Each entry is merged O(logT(N/P)) times across the tree

For each entry we merge, we must check the minimum across O(T) buffers.

Total CPU costs: O(N · logT(N/P) · T)

heap A heap brings this down to O(N · logT(N/P) · log2(T))

Suppose we have a tiered LSM-tree with a size ratio of T. Analyze the CPU costs
of compaction assuming we check all buffers each time to find the minimum key.
Then propose a technique to improve CPU costs.

