
Column-Stores

CSC443/CSC2234 Database System Technology
Niv Dayan

ID Customer ID Product ID Date

ID Name email Addr

Customers

Orders

Scan cost: O(N/B) I/Os

Address Space

Efficient Scans

Separate tables rows into

different sets of blocks

Internal Page Organization for Fixed-Sized Rows

Slot 1
Slot 2

Slot N

Free

Metadata

…

N, etc.
Free Bitmap

Slot 1

Metadata

Slot 2
Slot 3

101…1

Slot N
…

Entries compactly packed
at front of page

delete

Move

Can also use a bitmap to
mark occupied slots

Free

Metadata

Internal Page Organization for Variable-Sized Rows

Variable-Sized Row Organization

Delimiters Pointers

F1 F2 F2$ $ $ F1 F2 F2

Smaller

No random access

More space

Random access (faster)

Variable-Sized Row Organization

Fetching a particular row entails significant traversal & pointer
chasing overheads

ID Name email Addr Salary
ID1

So far we have assumed rows are stored contiguously

ID2

ID3

name1

name2

name3

email1

email2

email3

addr1

addr2

addr3

salary1

salary2

salary3

ID Name email Addr Salary

ID1

So far we have assumed rows are stored contiguously

name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

Address Space

ID Name email Addr Salary

So far we have assumed rows are stored contiguously

Great for queries that examine most columns

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

ID Name email Addr Salary

So far we have assumed rows are stored contiguously

e.g., Select * from Customers

Great for queries that examine most columns

e.g., Select Id, Name, Email, Addr from Customers where salary > 10000

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

ID Name email Addr Salary

So far we have assumed rows are stored contiguously

But how about queries that examine few columns?

e.g., Select avg(salary) from Customers

e.g., Select sum(email) from Customers where email like '%@gmail.com';

Problem?

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

ID Name email Addr Salary

So far we have assumed rows are stored contiguously

Select avg(salary) from Customers

Problem? We only need a little of each row

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

ID1

So far we have assumed rows are stored contiguously

name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

Problem? We only need a little of each row
But storage access granularity is coarse

4 KB access

Select avg(salary) from Customers

ID1

So far we have assumed rows are stored contiguously

name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

Problem? We only need a little of each row
But storage access granularity is coarse

128B access

Memory can also only be accessed in cache lines

128B access 128B access

Select avg(salary) from Customers

So far we have assumed rows are stored contiguously

Problem? We only need a little of each row
But storage access granularity is coarse
Memory can also only be accessed in cache lines

Select avg(salary) from Customers

Reading more than we are interested in wastes bandwidth

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

128B access 128B access 128B access

So far we have assumed rows are stored contiguously

Problem? We only need a little of each row
But storage access granularity is coarse
Memory can also only be accessed in cache lines

Select avg(salary) from Customers

Reading more than we are interested in wastes bandwidth

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

128B access 128B access 128B access

Solution?

ID Name email Addr Salary
ID1

ID2

ID3

name1

name2

name3

email1

email2

email3

addr1

addr2

addr3

salary1

salary2

salary3

What if we instead store the data one column at a time?

What if we instead store the data one column at a time?

email1 email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

Address Space

What if we instead store the data one column at a time?

email1 email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

ID Name Email Addr Salary

What if we instead store the data one column at a time?

email1 email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

ID Name Email Addr Salary

Select avg(salary) from Customers

What if we instead store the data one column at a time?

email1 email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

ID Name Email Addr Salary

Select avg(salary) from Customers

We can now skip irrelevant data!

What if we instead store the data one column at a time?

email1 email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

ID Name Email Addr Salary

Select avg(salary) from Customers

Any concerns?

What if we instead store the data one column at a time?

email1email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

ID Name Email Addr Salary

Select * from Customers where ID = 1

Trade-off: random I/Os for selective queries across many columns

The two relational database families

Row-Stores Column-Stores

Row-Stores

Selective queries/updates Large statistical calculations

& batch updates

Column-Stores

Selective queries/updates Large statistical calculations

& batch updates

Online Transaction Processing

(OLTP)

Online Analytical Processing

(OLAP)

Row-Stores Column-Stores

Row-Stores Column-Stores

Banking, retail, social media Analytics, machine learning

OLTP examples OLAP examples

Row-Stores Column-Stores

MonetDB, Vectorwise, C-Store, Vertica

(Today all major DBs offer this, e.g.,)

Postgres, MariaDB, etc.

Row-Stores Column-Stores

MonetDB, Vectorwise, C-Store, Vertica

(Today all major DBs offer this, e.g.,)

Postgres, MariaDB, etc.

Oracle, IBM, Microsoft were here

Row-Stores Column-Stores

MonetDB, Vectorwise, C-Store, Vertica

(Today all major DBs offer this, e.g.,)

Postgres, MariaDB, etc.

Oracle, IBM, Microsoft were here

But now they offer both

Timeline

1975 2000 2005 now

First row-store

Developed and

productized

First open-source

Column-store

developed

Initial industry

adaptation of

column-stores

Column-stores and
row-stores are

Both a norm

Why the 30 year gap?

1975 2000 2005 now

First row-store

Developed and

productized

First open-source

Column-store

developed

Initial industry

adaptation of

column-stores

Column-stores and
row-stores are

Both a norm

Why the 30 year gap? Storage density grew, so we store far more
data now. Processing it efficiently is more critical. This drives a
need for specialization.

1975 2000 2005 now

First row-store

Developed and

productized

First open-source

Column-store

developed

Initial industry

adaptation of

column-stores

Column-stores and
row-stores are

Both a norm

Should we store each column with a materialized ID?

ID Col1 ID Col2

Should we store each column with a materialized ID?

No, this would slow down queries by reading more data.

ID Col1 ID Col2

Instead use positional alignment

Col1(i) = i · width(Col1)

Col1 Col2

Instead use positional alignment

Col1(i) = i · width(Col1)

Col1 Col2

What is a column is var-length?

In case of variable-length data, we can employ indirection

Col1
Array of

pointers

…

…

Col1(i) = i · width(ptr)

(unrecommended)

In case of variable-length data, we can employ indirection

Col1
Array of

pointers

…

…

Col1(i) = i · width(ptr)

(unrecommended)

Best to define a schema with fixed-length fields if possible
prevent indirection overheads

How should we handle the buffer pool (BP)?

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

Hash

table

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

This makes sense each query is
“selective” (accesses few rows)

Hash

table

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

This makes sense each query is
“selective” (accesses few rows)

In column-stores, each column spans
multiple pages & queries are unselective

Hash

table

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

This makes sense each query is
“selective” (accesses few rows)

Hash

table

Scanning a column in memory would
require hashing overheads for each page.

Hash

table

In column-stores, each column spans
multiple pages & queries are unselective

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

This makes sense each query is
“selective” (accesses few rows)

Hash

table

Better to read and map at column-
granularity (or multiple pages thereof)

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

This makes sense each query is
“selective” (accesses few rows)

Hash

table

Can do this by mapping columns in
virtual memory or in the BP

Better to read and map at column-
granularity (or multiple pages thereof)

A B C

Select min(C) from table where A > 10 and B < 20

How to process queries over a single table?

A B C

Select min(C) from table where A > 10 and B < 20

How shall we process this?

A B C

Select min(C) from table where A > 10 and B < 20

Early Materialization: return each qualifying row immediately

B C

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate
predicate

Early Materialization: return each qualifying row immediately

B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate
predicate

C

For each qualifying tuple on A,
check if B also qualifies

B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate
predicate

C

For each qualifying tuple
on A and B, fetch C

B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate
predicate

C

If smaller than min so
far, update

min

B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate
predicate

C

min

Problem?

B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate
predicate

C

min

Problem? Potentially more random I/Os
More CPU branch mispredictions

B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate
predicate

C

min

Problem? Potentially more random I/Os
More CPU branch mispredictions

Incompatible with SIMD (more later)

B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate
predicate

C

min

Problem? Potentially more random I/Os

Solutions?

More CPU branch mispredictions

Incompatible with SIMD (more later)

A > 10 B < 20 min(C)

Late Materialization: process one column at a time

A > 10 B < 20 min(C)

Scan & evaluate
predicate

fetch

qualifying

IDs

Late Materialization

A > 10 B < 20 min(C)Fetch values &

evaluate predicate

IDs

Late Materialization

A > 10 B < 20 min(C)

IDs

Fetch values &

take their min Result

Late Materialization

A > 10 B < 20 min(C)

IDs

Fetch values &

take their min Result

Late Materialization requires more memory to withhold intermediate results, but
entails better cache behavior & CPU efficiency

Scan

qualifying

IDs

Options for structuring
intermediate results ?

(1) Array of integer IDs

good when few results qualify

V1
V2
V3
V4
V5
V6

1
6

(2) Bitmap

good when many results qualify

V1
V2
V3
V4
V5
V6

1
0
1
1
0
1

Which column should we filter on first?

A > 10 B < 20 min(C)

This one or this one?

Which column should we filter on first?

A > 10 B < 20 min(C)

Filter on more selective columns first to reduce size of intermediate results
and thus I/O

Which column should we filter on first?

A > 10 B < 20 min(C)

Filter on more selective columns first to reduce size of intermediate results
and thus I/O

Can do this via cardinality estimation

(e.g., histograms, count-min, etc)

How to speed up scans?

Scan

How to speed up scans?

Scan

Zone maps

min, max

Equally sized

partitions

(MBs or GBs)

2, 61
61
7
2
97
90
32
32
74
22

32, 97

22, 74

How to speed up scans?

Zone maps

min, max

2, 61
61
7
2
97
90
32
32
74
22

32, 97

22, 74

Scan
Select * from table where col < 10

Skip

Skip

How to speed up scans?

Store columns sequentially to allow pre-fetching and I/O parallelism

61
7
2
97
90
32
32
74
22

Address space

Insert into table (. , ,)

Handling Insertions

A B C

a1 b1 c1

Handling Insertions

Insert into table (. , ,)

Option 1: In-Place Updates

Directly insert to end of each
column with a storage read/write

a1 b1 c1

A B C

Handling Insertions

Insert into table (. , ,)

Option 1: In-Place Updates

Cost model?

A B C

a1 b1 c1

Directly insert to end of each
column with a storage read/write

Handling Insertions

Insert into table (. , ,)

Option 1: In-Place Updates

Cost model: O(#cols)

A B C

a1 b1 c1

Directly insert to end of each
column with a storage read/write

Handling Insertions

Insert into table (. , ,)

Option 2: In-memory Buffering

Buf1 Buf2 Buf3

a1 b1 c1

A B C

a2 b2 c2

Handling Insertions

Insert into table (. , ,)

a1 b1 c1

A B C

a2 b2 c2

Cheap insertions are possible :)

Option 2: In-memory Buffering

x

B C

How would you do this?

Handling Deletes

delete from table where A = “x” A=ID

Handling Deletes

Hole Hole Hole

B C

Option 1: In-place Deletes

Problems:

delete from table where A = “x” A=ID

Handling Deletes

Hole Hole Hole

B C

Cost: O(#cols) write I/Os

Holes slows down queries

Requires 1 extra bit to note a hole

Problems:

Option 1: In-place Deletes

delete from table where A = “x” A=ID

Handling Deletes

A=ID B C

Option 2: employ delete column

Pos

delete from table where A = “x”

x…

Handling Deletes

B C

Option 2: employ delete column

…

x

delete from table where A = “ ” A=ID

x

Pos

Handling Deletes

B C

Eventually merge with column

delete from table where A = “ ”

Option 2: employ delete column

A=ID

x…

x

Pos

Handling Updates

A=ID B CCan we combine our solutions for
insertions & deletes to efficiently update?

update table set B=“b1”, C=“c1” where A=“x”

Handling Updates

A B C

Buf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x”

First

delete

Then

Insert

x x b1 c1

Handling Updates

A B C

Buf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x”

First

delete

Then

Insert

x x b1 c1

Problem?

Handling Updates

A B C

Buf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x”

First

delete

Then

Insert

x x b1 c1

Problem: Which came first?

Handling Updates

A B C

Buf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x”

First

delete

Then

Insert

x x b1 c1

Fix using timestamps

Time

t2

Time

Problem: Which came first?

t1

Handling Updates

A B C

Buf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x”

First

delete

Then

Insert

x x b1 c1

Time

t2

Time

Eventually merge into columns

t1

Handling Updates

A B CBuf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x”

x x b1 c1

Time

t2

Time

Disadvantage: must join buffers

And columns to answer queries

t1

Handling Updates

A B CBuf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x”

x x b1 c1

Time

t2

Time

Disadvantage: must join buffers

And columns to answer queries

t1

Hence, modifications are best done

in batch and offline (e.g., overnight)

Columns are immutable and their values inside are mostly fixed-sized

A B C

D
at

a
D

at
a

D
at

a
D

at
a

D
at

a

D
at

a
D

at
a

D
at

a
D

at
a

D
at

a

D
at

a
D

at
a

D
at

a
D

at
a

D
at

a

Columns are immutable and their values inside are mostly fixed-sized

A B C

D
at

a
D

at
a

D
at

a
D

at
a

D
at

a

D
at

a
D

at
a

D
at

a
D

at
a

D
at

a

D
at

a
D

at
a

D
at

a
D

at
a

D
at

a

This allows for further optimizations

A B C

D
at

a
D

at
a

D
at

a
D

at
a

D
at

a

D
at

a
D

at
a

D
at

a
D

at
a

D
at

a

D
at

a
D

at
a

D
at

a
D

at
a

D
at

a

Tight processing loops with no
pointer-chasing or function calls

for (i = 0; i < size; i++)

if A[i] > v

qualifying[j++] = i

Select from table where A > v

A B C

SIMD - Same Instruction Multiple Data

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

A B C

SIMD - Same Instruction Multiple Data

a1 a2 a3 a4 a5 a6

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

v v v v v v

Select sum(A) from table where A > v

a7 a8

v v
> > > > > > > >

A B C

SIMD - Same Instruction Multiple Data

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

3 1 7 4 8 9
> > > > > >
5 5 5 5 5 5

2 8
> >
5 5

A B C

SIMD - Same Instruction Multiple Data

3 1 7 4 8 9

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

> > > > > >
5 5 5 5 5 5

Select sum(A) from table where A > 5

0 0 1 0 1 1
= = = = = =

2 8
> >
5 5

0
=

1
=

A B C

SIMD - Same Instruction Multiple Data

3 1 7 4 8 9

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

& & & & & &

Select sum(A) from table where A > 5

0 0 1 0 1 1

2 8
& &
0 1

A B C

SIMD - Same Instruction Multiple Data

3 1 7 4 8 9

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

& & & & & &

Select sum(A) from table where A > 5

0 0 1 0 1 1
= = = = = =

2 8
& &
0 1
= =

0 0 7 0 8 9 0 8

A B C

SIMD - Same Instruction Multiple Data

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

= = = = = = = =

+ + + + + + + +
C1 C2 C3 C4 C5 C6 C7 C8

C1 C2 C3 C4 C5 C6 C7 C8

0 0 7 0 8 9 0 8

A B C

SIMD - Same Instruction Multiple Data

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

+ + + + + + + =C1 C2 C3 C4 C5 C6 C7 C8 Res

A B C

SIMD - Same Instruction Multiple Data

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

+ + + + + + + =C1 C2 C3 C4 C5 C6 C7 C8 Res

Works best with late materialization :)

Compression

Compression

crucial for column-stores

Compression

crucial for column-stores

The reason is not only to save space but to improve performance. How?

Compression

crucial for column-stores

CPU cost of compression
and decompression

cost savings of moving data
across the memory hierarchy <

The reason is not only to save space but to improve performance. How?

Compression

crucial for column-stores

The reason is not only to save space but to improve performance. How?

Important for compressed values to be fixed-size to support positional ID
lookups

(1) Bit-Vector Encoding

Employ one bit string for each possible value
indicating if the entry has the given value

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Dog

Dog

Cat

Pet

(1) Bit-Vector Encoding

Employ one bit string for each possible value
indicating if the entry has the given value

Pet

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Dog

Dog

Cat

Cat Dog

1

0

0

1

0

0

0

1

1

0

0

1

1

0

1

0

1

0

0

1

Horse

0

0

0

0

0

1

0

0

0

0

(1) Bit-Vector Encoding

Employ one bit string for each possible value
indicating if the entry has the given value

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Dog

Dog

Cat

Cat Dog

1

0

0

1

0

0

0

1

1

0

0

1

1

0

1

0

1

0

0

1

Horse

0

0

0

0

0

1

0

0

0

0

Pros and cons?

e.g., select * from table where specie = “Cat”

Pet

(1) Bit-Vector Encoding

Employ one bit string for each possible value
indicating if the entry has the given value

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Dog

Dog

Cat

Cat Dog

1

0

0

1

0

0

0

1

1

0

0

1

1

0

1

0

1

0

0

1

Horse

0

0

0

0

0

1

0

0

0

0

e.g., select * from table where specie = “Cat”

Pro: Fast to read & compare 1 bit per entry.

Con: Only applicable if there are very few values.

Pet

(2) Dictionary Encoding

Employ a dictionary with smaller
strings to represent larger ones

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Dog

Cat

Parrot

Pet

(2) Dictionary Encoding

Employ a dictionary with smaller
strings to represent larger ones

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Parrot

Dog

Cat

Dictionary

00 Cat
01 Dog

Horse10
11 Parrot

Pet

(2) Dictionary Encoding

Employ a dictionary with smaller
strings to represent larger ones

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Parrot

Dog

Cat

Compressed

01

00

00

01

00

10

00

11

10

00

Pet

Dictionary

00 Cat
01 Dog

Horse10
11 Parrot

(2) Dictionary Encoding

Employ a dictionary with smaller
strings to represent larger ones

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Parrot

Dog

Cat

Compressed

01

00

00

01

00

10

00

11

10

00

Compare to bit-vector encoding from before

Pet

Dictionary

00 Cat
01 Dog

Horse10
11 Parrot

(2) Dictionary Encoding

Employ a dictionary with smaller
strings to represent larger ones

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Parrot

Dog

Cat

Compressed

01

00

00

01

00

10

00

11

10

00

Pro: applicable across larger value spaces

Con: slower as we need to read more bits

Pet

Dictionary

00 Cat
01 Dog

Horse10
11 Parrot

(3) Run-length encoding

Represent repeating values using one entry

Dog

Cat

Cat

Cat

Cat

Horse

Cat

Cat

Dog

Cat

Pet

(3) Run-length encoding

Represent repeating values using one entry

Dog

Cat

Cat

Cat

Cat

Horse

Cat

Cat

Dog

Cat

Compressed

Dog

Cat

Cat · 4

Horse

Cat · 2

Dog

Pet

(3) Run-length encoding

Represent repeating values using one entry

Dog

Cat

Cat

Cat

Cat

Horse

Cat

Cat

Dog

Cat

Compatible with dictionary encoding

Pros and Cons?

Pet

Compressed

Dog

Cat

Cat · 4

Horse

Cat · 2

Dog

(3) Run-length encoding

Represent repeating values using one entry

Dog

Cat

Cat

Cat

Cat

Horse

Cat

Cat

Dog

Cat

Compatible with dictionary encoding

Pros: compatible with dictionary encoding &
can further improve compression

Cons: must scan column to get entry at a given
offset

Pet

Compressed

Dog

Cat

Cat · 4

Horse

Cat · 2

Dog

Indexing in Column Stores

A B C D

Suppose we have two selective queries over different columns in the same table

A B C D

Suppose we have two selective queries over different columns in the same table

Select avg(B)

where A > x and A < y

Select avg(C)

where D > x and D < y

A B C D

Suppose we have two selective queries over different columns in the same table

Select avg(B)

where A > x and A < y

Select avg(C)

where D > x and D < y

Scan Scan

A B C D

Suppose we have two selective queries over different columns in the same table

Select avg(B)

where A > x and A < y

Select avg(C)

where D > x and D < y

Scan Scan

Qualifying Qualifying

We can answer both queries with full scan and late materialization

A B C D

Suppose we have two selective queries over different columns in the same table

Select avg(B)

where A > x and A < y

Select avg(C)

where D > x and D < y

Scan Scan

But can we avoid the full scans?

A B C D

Select avg(B)

where A > x and A < y

Select avg(C)

where D > x and D < y

We can employ indexes mapping from key to positional ID

…

…

A B

Select avg(B)

where A > 5 and A < 10

We can employ indexes mapping from key to positional ID

6
8
8
9

10
4
8
2

B

Select avg(B)

where A > 5 and A < 10

10
4
8
2

A

Random I/O

B

Select avg(B)

where A > 5 and A < 10

10

4
8

2

A

Can sort,

but costly

B

Select avg(B)

where A > 5 and A < 10

10

4
8

2

A

Access to B becomes “skip-
sequential” rather than random, but

the sorting can be an issue

Can sort,

but costly

B

Select avg(B)

where A > 5 and A < 10

10

4
8

2

A

Any other solution?

Can sort,

but costly

Select avg(B)

where A > x and A < y

Select avg(C)

where D > x and D < y

Column Projections: sort subset of columns by one column

A B C D

Select avg(C)

where D > x and D < y

A B C D

So
rt

ed

So
rt

ed
 b

y
A

So
rt

ed

So
rt

ed
 b

y
D

Column Projections: sort subset of columns by one column

Select avg(B)

where A > x and A < y

Select avg(C)

where D > x and D < y

A B C D

So
rt

ed

So
rt

ed
 b

y
A

So
rt

ed

So
rt

ed
 b

y
D

Like having multiple clustered indexes on subset of columns

Column Projections: sort subset of columns by one column

Select avg(B)

where A > x and A < y

Select avg(C)

where D > x and D < y

A B C D

So
rt

ed

So
rt

ed
 b

y
A

So
rt

ed

So
rt

ed
 b

y
D

Binary search Binary search

Select avg(B)

where A > x and A < y

Select avg(C)

where D > x and D < y

A B C D
So

rt
ed

So
rt

ed
 b

y
A

So
rt

ed

So
rt

ed
 b

y
D

Sorted positional IDs

Select avg(B)

where A > x and A < y

Select avg(C)

where D > x and D < y

A B C D
So

rt
ed

So
rt

ed
 b

y
A

So
rt

ed

So
rt

ed
 b

y
D

Enables sequential access over B and C

Select avg(B)

where A > x and A < y

Select avg(B)

where A > 5 and A < 10

A B

So
rt

ed
 b

y
A

For example

6
8
8
9

5

10

Select avg(B)

where A > 5 and A < 10

A B

So
rt

ed
 b

y
A

For example

6
8
8
9

5

10B
in

ar
y

se
ar

ch

Select avg(B)

where A > 5 and A < 10

A B

So
rt

ed
 b

y
A

For example

6
8
8
9

5

10

1
2
3
4

Scan

Select avg(B)

where A > 5 and A < 10

A B

So
rt

ed
 b

y
A
Sequential

access

6
8
8
9

5

10

1
2
3
4

Select C, B

where D > x and D < y

C DA B

So
rt

ed

So
rt

ed
 b

y
A

So
rt

ed

So
rt

ed
 b

y
D

What if the queries do not target mutually exclusive columns?

Select C, B

where D > x and D < y

C DA B

So
rt

ed

So
rt

ed
 b

y
A

So
rt

ed

So
rt

ed
 b

y
D

What if the queries do not target mutually exclusive columns?
So

rt
ed

 b
y

D

Pos in other
protection

Select C, B

where D > x and D < y

C D

So
rt

ed

So
rt

ed
 b

y
D

What if the queries do not target mutually exclusive columns?

Pos in other
protection

So
rt

ed
 b

y
D

A B

So
rt

ed

So
rt

ed
 b

y
A

Select C, B

where D > x and D < y

C D

So
rt

ed

So
rt

ed
 b

y
D

Select avg(B)

where A > x and A < y

We can duplicate some columns and sort them in different orders

B

So
rt

ed
 b

y
D

A B
So

rt
ed

So
rt

ed
 b

y
A

Select C, B

where D > x and D < y

C D

So
rt

ed

So
rt

ed
 b

y
D

Select avg(B)

where A > x and A < y

We can duplicate some columns and sort them in different orders

B

So
rt

ed
 b

y
D

A B
So

rt
ed

So
rt

ed
 b

y
A

Downsides?

Select C, B

where D > x and D < y

C D

So
rt

ed

So
rt

ed
 b

y
D

Select avg(B)

where A > x and A < y

B

So
rt

ed
 b

y
D

A B
So

rt
ed

So
rt

ed
 b

y
A

Downsides: (1) More space
(2) Inserts are more expensive
(3) Construction can take a long time with many projections

Select C, B

where D > x and D < y

C D

So
rt

ed

So
rt

ed
 b

y
D

Select avg(B)

where A > x and A < y

B

So
rt

ed
 b

y
D

A B
So

rt
ed

So
rt

ed
 b

y
A

Tackle this:

(1) More space
(2) Inserts are more expensive
(3) Construction can take a long time with many projections

Database Cracking: Adaptively quick-sorting a column projection

Database Cracking: Adaptively quick-sorting a column projection

Database Cracking: Adaptively quick-sorting a column projection

Database Cracking: Adaptively quick-sorting a column projection

Database Cracking: Adaptively quick-sorting a column projection

Database Cracking: Adaptively quick-sorting a column projection

Database Cracking: Adaptively quick-sorting a column projection

Queries adaptively refine the sorting and speed up subsequent queries

Database Cracking: Adaptively quick-sorting a column projection

Queries adaptively refine the sorting and speed up subsequent queries

We can begin querying the data immediately without creating too many
projections from the onset, which would take a while

And now: office hours

