Column-Stores

CSC443/CSC2234 Database System Technology
Niv Dayan

Efficient Scans

Customers Address Space

ID Name email Addr Separ

Orders

ID Customer ID Product ID Date ?
/ Scan cost: O(N/B) I/0s

Internal Page Organization for Fixed-Sized Rows

Entries compactly packed Can also use a bitmap to
at front of page mark occupied slots
Metadata N, etc. Metadata
Slot 1 delete Free Bitmap 101...1
4—
Slot 2 > Slot 1
S Move Slot 2
Slot N Slot 3
Free
Slot N

Internal Page Organization for Variable-Sized Rows

Metadata

Free

—

Variable-Sized Row Organization

Delimiters Pointers
2NN
F1|$| F2 |$§| F2 |$ F1| F2 F2
Smaller More space

No random access Random access (faster)

Variable-Sized Row Organization

222NN

Fetching a particular row entails significant traversal & pointer
chasing overheads

So far we have assumed rows are stored contiguously

ID Name email Addr Salary

So far we have assumed rows are stored contiguously

ID Name email Addr Salary

— = e —— E— - — ——— — ——— - ——— — __ — ———————————
— —_— —— R — = _ _ _ = —

Address Space

So far we have assumed rows are stored contiguously

ID Name email Addr Salary

Great for queries that examine most columns

So far we have assumed rows are stored contiguously

ID Name email Addr Salary

— e —— T = — - g S — - = —— e e ——— e
— _ _ . — — - _ e — ——————————— ——

Great for queries that examine most columns

e.g., Select * from Customers
e.g., Select Id, Name, Email, Addr from Customers where salary > 10000

So far we have assumed rows are stored contiguously

ID Name email Addr Salary

e ————— —————————— —_—— — = ——— = — = f— e —— — - = e e —— =
— _ _ — P— = _ _ _ — e a——— = —

But how about queries that examine few columns?

e.g., Select avg(salary) from Customers
e.g., Select sum(email) from Customers where email like '%@gmail.com’;

Problem?

So far we have assumed rows are stored contiguously

ID Name email Addr Salary

Select avg(salary) from Customers

Problem? We only need a little of each row

So far we have assumed rows are stored contiguously

—————— — ——— - —— — S — = — e —— E— = = —— = = — e —
e —————————— _ . — = — = e = - — e = = ——

4 KB access

Select avg(salary) from Customers

Problem? We only need a little of each row
But storage access granularity is coarse

salaryl * salary2 salary3e

So far we have assumed rows are stored contiguously

Select avg(salary) from Customers

Problem? We only need a little of each row
But storage access granularity is coarse
Memory can also only be accessed in cache lines

So far we have assumed rows are stored contiguously

Select avg(salary) from Customers

Problem? We only need a little of each row
But storage access granularity is coarse
Memory can also only be accessed in cache lines
Reading more than we are interested in wastes bandwidth

So far we have assumed rows are stored contiguously

Select avg(salary) from Customers

Problem? We only need a little of each row
But storage access granularity is coarse
Memory can also only be accessed in cache lines
Reading more than we are interested in wastes bandwidth

Solution?

What if we instead store the data one column at a time?

ID Name email Addr Salary

What if we instead store the data one column at a time?

ID Name email Addr Salary

- - e e e e = —— = — . B — = e e ——— e
e _ e P I A ———— _ — — — —— = — - e

Address Space

What if we instead store the data one column at a time?

ID Name email Addr Salary

What if we instead store the data one column at a time?

ID Name email Addr Salary

-

Select avg(salary) from Customers

What if we instead store the data one column at a time?

ID Name email Addr Salary

Salary

~ salaryl salary? ...salary3

S

Select avg(salary) from Customers

We can now skip irrelevant datal!

What if we instead store the data one column at a time?

ID Name email Addr Salary

-

Select avg(salary) from Customers

Any concerns?

What if we instead store the data one column at a time?

ID Name email Addr Salary

Select * from Customers where ID = 1

Trade-off: random I/0s for selective queries across many columns

The two relational database families

Row-Stores Column-Stores

)
)
)

Row-Stores Column-Stores

)
)
)

Selective queries/updates Large statistical calculations
& batch updates

Row-Stores Column-Stores

)
)
)
Selective queries/updates Large statistical calculations
& batch updates
Online Transaction Processing Online Analytical Processing

(OLTP) (OLAP)

Row-Stores Column-Stores

)
)
)
OLTP examples OLAP examples
Banking, retail, social media Analytics, machine learning

5

Row-Stores Column-Stores

)
)
)

Postgres, MariaDB, etc. MonetDB, Vectorwise, C-Store, Vertica
(Today all major DBs offer this, e.q.,)

Row-Stores Column-Stores

)
)
)

Postgres, MariaDB, etc. MonetDB, Vectorwise, C-Store, Vertica
(Today all major DBs offer this, e.q.,)

Oracle, IBM, Microsoft were here

Row-Stores Column-Stores

)
)
)

Postgres, MariaDB, etc. MonetDB, Vectorwise, C-Store, Vertica
(Today all major DBs offer this, e.q.,)

Oracle, IBM, Microsoft were here
But now they offer both

First row-store First open-source Initial industry Column-stores and

Developed and Column-store adaptation of row-stores are
productized developed column-stores Both a horm
1975 2000 2005 now

Timeline

First row-store First open-source Initial industry Column-stores and

Developed and Column-store adaptation of row-stores are
productized developed column-stores Both a horm
1975 2000 2005 now

—— m m-a—- - m—m—

Why the 30 year gap?

First row-store First open-source Initial industry Column-stores and

Developed and Column-store adaptation of row-stores are
productized developed column-stores Both a horm
1975 2000 2005 now

—— m m-a—- - m—m—

Why the 30 year gap? Storage density grew, so we store far more
data now. Processing it efficiently is more critical. This drives a
need for specialization.

Should we store each column with a materialized ID?

ID Coll ID Col2

Should we store each column with a materialized ID?

ID Coll ID Col2

No, this would slow down queries by reading more data.

Instead use positional alignment

Coll Col2

Col1(i) =i * width(Col1l)

Instead use positional alignment

Coll Col2

Col1(i) =i * width(Col1l)

What is a column is var-length?

In case of variable-length data, we can employ indirection
(unrecommended)

Array of
pointers C1

Col1(i) = i * width(ptr) —»

o »
4 ¥ ¥
)))
' 4] ' 4] x V] ' 4]
E, v v o v v
SRS TS SR R R
< o " - o, . Sl T PN ot i ST
. gl _ e ST k. Bz e 2 o J . Moz o
) 4 ') 4 1P) 4 3z
)))) fr
v
o 0 G) i |
o [« v .‘
R = oy e TP NS ey, Ty b i e s 0
N N 8 - . N 8 i

In case of variable-length data, we can employ indirection
(unrecommended)

Array of
pointers C1

Col1(i) = i * width(ptr) —»

Best to define a schema with fixed-length fields if possible
prevent indirection overheads

How should we handle the buffer pool (BP)?

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

Hash —
C__

table O
C__) C_
-’

C__ C_

C_

C_

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

Hash —
C__

table O
S — =
-8B —E=
C__ C_

C_
C_

This makes sense each query Is
“selective” (accesses few rows)

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

Hash —
C__

table O
C__) C_

| 8 —E
C__ C_

C_
C_

This makes sense each query is
“selective” (accesses few rows)

In column-stores, each column spans
multiple pages & queries are unselective

)
W =
()

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

Hash —
C__

table O
C__) C_

| 8 —E
C__ C_

C_
C_

This makes sense each query is
“selective” (accesses few rows)

In column-stores, each column spans
multiple pages & queries are unselective

Scanning a column in memory would
require hashing overheads for each page.

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages. Better to read and map at column-
granularity (or multiple pages thereof)

Hash — — @
table
-8 —E — U B
O O
O

1
— (1]

This makes sense each query is
“selective” (accesses few rows)

How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages. Better to read and map at column-
granularity (or multiple pages thereof)

Hash —D P — [@
table
| B —E hE — U B
D G
= — ([
D

This makes sense each query is Can do this by mapping columns in
"selective” (accesses few rows) virtual memory or in the BP

How to process queries over a single table?

Select min(C) from table where A > 10 and B < 20

A B C

Select min(C) from table where A > 10 and B < 20

A B C

How shall we process this?

Select min(C) from table where A > 10 and B < 20

A B C

Early Materialization: return each qualifying row immediately

Select min(C) from table where A > 10 and B < 20

A> 10 B C

Scan & evaluate
predicate

Early Materialization: return each qualifying row immediately

Select min(C) from table where A > 10 and B < 20

A> 10 B C

Scan & evaluate
predicate

For each qualifying tuple on A,
check if B also qualifies

Select min(C) from table where A > 10 and B < 20

A> 10 B C

Scan & evaluate
predicate

For each qualifying tuple
on A and B, fetch C

Select min(C) from table where A > 10 and B < 20

A> 10 B C

Scan & evaluate
predicate

If smaller than min so
far, update

Select min(C) from table where A > 10 and B < 20

A> 10 B C

Scan & evaluate
predicate

Problem?

Select min(C) from table where A > 10 and B < 20

A> 10 B C

Scan & evaluate
predicate

Problem? Potentially more random I/0s
More CPU branch mispredictions

Select min(C) from table where A > 10 and B < 20

A> 10 B C

Scan & evaluate
predicate

Problem? Potentially more random I/0s
More CPU branch mispredictions

Incompatible with SIMD (more later)

Select min(C) from table where A > 10 and B < 20

A> 10 B C

Scan & evaluate
predicate

Problem? Potentially more random I/0s
More CPU branch mispredictions

Incompatible with SIMD (more later)
Solutions?

Late Materialization: process one column at a time

A>10 B< 20 min(C)

Late Materialization

A > 10 fe_tcl'_n B<20 min(C)

: IDs

Scan & evaluate
predicate

Late Materialization

‘ Fetch values & B

evaluate predicate

,’A
/ !
¥ 1
b P13
i | // T
\
\

IDs

Late Materialization

A > 10 B < 20 min(C)

Fetch values &
take their min

IDs /

Result

Late Materialization requires more memory to withhold intermediate results, but
entails better cache behavior & CPU efficiency

A> 10 B < 20 min(C)

Fetch values &
take their min

IDs /

Result

qualifying
IDs

Scan Options for structuring

intermediate results ?

~
| T
—

(1) Array of integer IDs
good when few results qualify

(2) Bitmap
good when many results qualify

Which column should we filter on first?

A>10 B< 20 min(C)

\Y4

This one or this one?

Which column should we filter on first?

A>10 B< 20 min(C)

Filter on more selective columns first to reduce size of intermediate results
and thus I/0

Which column should we filter on first?

A>10 B< 20 min(C)

Filter on more selective columns first to reduce size of intermediate results
and thus I/0

Can do this via cardinality estimation
(e.g., histograms, count-min, etc)

How to speed up scans?

Scan

How to speed up scans?

Scan

W oes o AN)

% ‘
“‘ 6 |
4 1 {
|

97 |
i 90 |
132
32
: 74 |
| 22

Zone maps

min, max

Equally sized
partitions
(MBs or GBs)

Scan

W oes o AN)

. ‘
“‘ 6 |
4 1 {
|

97 |
i 90 |
32|
32
: 74 |
| 22

How to speed up scans?

Zone maps

min, max

Select * from table where col < 10

How to speed up scans?

Store columns sequentially to allow pre-fetching and I/0 parallelism

Address space

61 |
| 7
2
97
90 |
32]
74
22 |

-

Handling Insertions

Insert into table (a1,bl,cl)

Handling Insertions

Option 1: In-Place Updates

Directly insert to end of each
column with a storage read/write

Insertintotable (, ,)

Handling Insertions

Option 1: In-Place Updates

Directly insert to end of each
column with a storage read/write

Insertintotable (, ,)

Cost model?

Handling Insertions

Option 1: In-Place Updates

Directly insert to end of each
column with a storage read/write

Insertintotable (, ,)

Cost model: O(#cols)

Handling Insertions

Option 2: In-memory Buffering

Insertintotable (, ,)

Bufl

Buf?2
al | J—

Buf3

K

Handling Insertions

Option 2: In-memory Buffering

Insertintotable (, ,)

Cheap insertions are possible :)

Handling Deletes

delete from table where A = “"x”

How would you do this?

Handling Deletes

Option 1: In-place Deletes

delete from table where A = “x”

Problems:

Handling Deletes

Option 1: In-place Deletes

delete from table where A = “x”

Problems:

Cost: O(#cols) write I/0s

Holes slows down queries

Requires 1 extra bit to note a hole

Handling Deletes

Option 2: employ delete column

delete from table where A = “x”

Pos

Handling Deletes

Option 2: employ delete column

\\' 77

delete from table where A =

Pos

Handling Deletes

Option 2: employ delete column

\\' 77

delete from table where A =

Pos

Eventually merge with column

Handling Updates

update table set B="b1", C="c1” where A="x"

Can we combine our solutions for
insertions & deletes to efficiently update?

Handling Updates

update table set B="b1", C="c1” where A="x"

First Then
delete Insert

Deletes Bufl Buf2 Buf3
[x| [x] |b1]|ct

Handling Updates

update table set B="b1", C="c1” where A="x"

First Then
delete Insert

Deletes Bufl Buf2 Buf3
[x| [x] |b1]|ct

Problem?

Handling Updates

update table set B="b1", C="c1” where A="x"

First Then
delete Insert

Deletes Bufl Buf2 Buf3
[x| [x] |b1]|ct

Problem: Which came first?

Handling Updates

update table set B="b1", C="c1” where A="x"

First Then
delete Insert

Time Deletes Bufl Buf2 Buf3 Time
) (x)] (x) (6] [)[@)

Problem: Which came first?
Fix using timestamps

Handling Updates

update table set B="b1", C="c1” where A="x"

First Then
delete Insert

Time Deletes Bufl Buf2 Buf3 Time
) (x)] (x) (6] [)[@)

Eventually merge into columns

Handling Updates

update table set B="b1", C="c1” where A="x"

Time Deletes Bufl Buf2 Buf3 Time
) (x)] [x)[o1) 2)

Disadvantage: must join buffers
And columns to answer queries

Handling Updates

update table set B="b1", C="c1” where A="x"

Time Deletes Bufl Buf2 Buf3 Time
) (x)] (<) [o1) [a)(2)

Disadvantage: must join buffers
And columns to answer queries

Hence, modifications are best done
in batch and offline (e.g., overnight)

Columns are immutable and their values inside are mostly fixed-sized

Columns are immutable and their values inside are mostly fixed-sized

This allows for further optimizations

A B C

Tight processing loops with no
pointer-chasing or function calls

Select from table where A > v

for (i = 0; i < size; i++)
if A[i] > v
qualifying[j++] =i

SIMD - Same Instruction Multiple Data

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

SIMD - Same Instruction Multiple Data

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > v

al a2 a3 a4 a5 a6 a/ a8
CPU > 0> 0> > > > > >

vV vV vV VvV Vv Vv V V

SIMD - Same Instruction Multiple Data

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

CPU

ol 'V W
ol 'V =
Ul V N
ol vV b
Ul V OO
ol 'V O
ol V N
ol V OO

SIMD - Same Instruction Multiple Data

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

CPU

© Il vV W
© Il vV =
= || U1 V
© Il vl v A
= || U1 V 0O
= || U1 V O
©C Il kv o
= || U1 V O

SIMD - Same Instruction Multiple Data

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

3 17 4 8 9 2 38
CPU & & & & & & & &
O 01 0 1 1 0 1

SIMD - Same Instruction Multiple Data

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

3 17 4 8 9 2 38
CPU & & & & & & & &
O 01 0 1 1 0 1
O 0 7 0 8 9 0 8

SIMD - Same Instruction Multiple Data

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

O 0 7 0 8 9 0 8
CPU + + + + + + + +
C1C2C3C4C5C6 C7 C8

C1C2C3C4C5¢C6 C7C8

SIMD - Same Instruction Multiple Data

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

CPU C1+C2+C3+C4+C5+C6+C7+C8=Res

SIMD - Same Instruction Multiple Data

Apply one instruction in parallel to
multiple values within one cache line
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

CPU C1+C2+C3+C4+C5+CO6+C/7+C8=Res

Works best with late materialization :)

Compression

Ly

Compression

crucial for column-stores

Compression

crucial for column-stores

The reason is not only to save space but to improve performance. How?

»)l(«

Compression

crucial for column-stores

The reason is not only to save space but to improve performance. How?

»)l(«

CPU cost of compression < cost savings of moving data
and decompression across the memory hierarchy

Compression

crucial for column-stores
The reason is not only to save space but to improve performance. How?

Important for compressed values to be fixed-size to support positional ID
lookups

»)l(«

(1) Bit-Vector Encoding

Employ one bit string for each possible value
indicating if the entry has the given value

Pet

Cat |
| Dog
* Cat
Cat
, Dog
Cat |
j Horse |
Cat
 Dog |
Dog |

(1) Bit-Vector Encoding Horse Cat Dog Pet

Cat \'i
| Dog
* Cat
Cat
, Dog
Cat |
j Horse |
Cat i
| Dog

Employ one bit string for each possible value
indicating if the entry has the given value

o O O = O O O o o o
= = O O O = O O = O

o OB, O O B = O K=

' Dog

(1) Bit-Vector Encoding

Employ one bit string for each possible value
indicating if the entry has the given value

e.g., select * from table where specie = "Cat”

Pros and cons?

¢
I1

Cat

© O H O H O B = O K

Pet

Cat f
| Dog |
* Cat
Cat
Dog
Cat |
j Horse |
Cat
 Dog |
Dog |

(1) Bit-Vector Encoding

Employ one bit string for each possible value
indicating if the entry has the given value

e.g., select * from table where specie = “Cat”

Pro: Fast to read & compare 1 bit per entry.

Con: Only applicable if there are very few values.

Horse Cat Dog

o O O ~ O O O O O o

o O B O O B = O =

= = O O O = O O = O

Pet

Cat \'i
| Dog
* Cat
Cat
, Dog
Cat |
j Horse |
Cat i'
 Dog |
Dog |

(2) Dictionary Encoding

Employ a dictionary with smaller
strings to represent larger ones

Pet

Cat |
| Dog
* Cat
Cat
, Dog
Cat |
j Horse |
Cat
' Parrot

| Dog

(2) Dictionary Encoding

Employ a dictionary with smaller
strings to represent larger ones

Dictionary

00 Cat
101 Dog |
110 Horse
11 Parrot

Pet

Cat |
| Dog
* Cat
Cat
, Dog
Cat |
j Horse |
Cat
' Parrot

| Dog

(2) Dictionary Encoding

Employ a dictionary with smaller
strings to represent larger ones

Dictionary = Compressed

00
01
1 10
11

Cat

Dog
Horse

Parrot

00|
01
00 ,
00 ‘
,' 01
00
10
00|
11
f 10

Pet

Cat |
| Dog
* Cat
Cat
, Dog
Cat |
j Horse |
Cat
' Parrot

| Dog

(2) Dictionary Encoding

Employ a dictionary with smaller 00
strings to represent larger ones 01

110

1

Dictionary

Cat

Dog

Horse
Parrot

Compare to bit-vector encoding from before

¢
I1

Compressed
00|
01
00]
00 ‘
01]
00|
10
00|
11
f 10

Pet

Cat |
| Dog |
* Cat
Cat
Dog
Cat |
j Horse |
Cat
' Parrot

' Dog

(2) Dictionary Encoding Dictionary

Employ a dictionary with smaller 00 Cat
strings to represent larger ones 01 Dog

|10 Horse
111 Parrot

Pro: applicable across larger value spaces

Con: slower as we need to read more bits

Compressed
00|
01
00)
00 ‘
,' 01
00
10
00|
11
f 10

Pet

Cat |
| Dog
* Cat
Cat
, Dog
Cat |
j Horse |
Cat
' Parrot

| Dog

(3) Run-length encoding

Represent repeating values using one entry

Pet

Cat |
| Dog
* Cat
Cat
, Cat
Cat |
j Horse |
Cat
| Cat
Dog |

(3) Run-length encoding

Represent repeating values using one entry

Compressed

Dog '

£
¥
{
\
g . .‘
E b
?)

Horse

| Cat* 2
| Dog |

Pet

Cat \'i
| Dog
' Cat
Cat
, Cat
Cat
j Horse |
Cat |
 Cat |
Dog |

(3) Run-length encoding
Represent repeating values using one entry

Compatible with dictionary encoding

Pros and Cons?

¢
I1

Compressed

Dog '

Cat- 4 ',

Horse

| Cat - 2
| Dog |

Pet

Cat f
| Dog |
' Cat

Cat

Cat

Cat
j Horse |
Cat |
' Cat |
Dog ’

(3) Run-length encoding
Represent repeating values using one entry

Compatible with dictionary encoding

Pros: compatible with dictionary encoding &
can further improve compression

Cons: must scan column to get entry at a given
offset

Compressed

Dog '

£
} i»
g
\‘
a . .‘
E b
?)

Horse

| Cat* 2
| Dog |

Pet

Cat \'i
| Dog
' Cat
Cat
, Cat
Cat
j Horse |
Cat |
 Cat |
Dog |

Indexing in Column Stores

Suppose we have two selective queries over different columns in the same table

Suppose we have two selective queries over different columns in the same table

Select avg(B) Select avg(C)
where A > xand A<y whereD > xand D <y

A B C D

Suppose we have two selective queries over different columns in the same table

Select avg(B) Select avg(C)
where A > xand A<y where D > xand D <y

A B C D

Scan Scan

Suppose we have two selective queries over different columns in the same table

Select avg(B) Select avg(C)
where A > xand A<y where D > xand D <y

B C

Scan Scan

fj Qualifying N f

We can answer both queries with full scan and late materialization

Suppose we have two selective queries over different columns in the same table

Select avg(B) Select avg(C)
where A > xand A<y where D > xand D <y

A B C D

Scan Scan

N

But can we avoid the full scans?

Select avg(B) Select avg(C)
where A > xand A<y where D > xand D <y

A B C D

—> , ,

o

We can employ indexes mapping from key to positional ID

Select avg(B)
where A>5and A< 10

We can employ indexes mapping from key to positional ID

Select avg(B)
where A > 5and A < 10

A B

Random I/O

W

Select avg(B)
where A > 5and A < 10

A B

Can sort,
but costly

W

Select avg(B)
where A > 5and A < 10

Can sort,

but costly
CQ Access to B becomes "skip-

sequential” rather than random, but
the sorting can be an issue

Select avg(B)
where A > 5and A < 10

Can sort,
but costly

CQ Any other solution?

Column Projections: sort subset of columns by one column

Select avg(B) Select avg(C)
where A > xand A<y where D > xand D <y

A B C D

Column Projections: sort subset of columns by one column

Select avg(B) Select avg(C)
where A > xand A<y where D > xand D <y

B C D

| < | o
> | >
=l <
i QO | L
: ° c
< ;: m m

Column Projections: sort subset of columns by one column

Select avg(B) Select avg(C)
where A > xand A<y where D > xand D <y

B C D

| < | o
> | >
i QO | L
: ° c
< ;: m m

Like having multiple clustered indexes on subset of columns

Select avg(B) Select avg(C)
where A > xand A<y where D > xand D <y

B C D

Binary search Binary search

<C | a
> >
O I
a q') "' q')
))
C -
- O ®
| p) ! V)

Select avg(B) Select avg(C)
where A > xand A<y where D > xand D <y

B C 5

e

< | a
> >~
Q } _Q
- QO | Q)

) L
j O O
j V) ! V)

Sorted positional IDs

Select avg(B) Select avg(C)
where A > xand A<y where D > xand D <y

A B C D

i

tt

Sorted by D

< |
P O~
' Q "
t O §
i O
'; (n -;'«

Enables sequential access over B and C

Select avg(B)
where A > 5and A < 10

A B

' Sorted by A

For example

Binary search

Select avg(B)
where A > 5and A < 10

A B

< ‘,
P >~
' Q "
t O §
i O
': U) ;'f

For example

Select avg(B)
where A > 5and A < 10

A B

Scan

TS

| Sorted by A

For example

Select avg(B)
where A > 5and A < 10

A B

v i3
| Sorted by A

Sequential
access

Select(C, B
where D > xand D <y

C

L A ’
, ¥
j {
:]
‘. 'v
z !
: ¥
b 4
8 {
O i
3 ;
i. m ’
B "|'
.)
L U
)
\
72

Sorted by A

What if the queries do not target mutually exclusive columns?

SelectC, B
where D > xand D <y

Pos in other
protection C

‘ A ,
b q
{
1
& [
. ' K
5 }
Y |
O
F 3
‘ U ‘ K
\ m .
p »'
g L 3
p\
¥ 3
\;
74

| SortedbyD

5 2 o %
v /
‘ ‘
{
" ‘.
2 &L
< |
‘ ;
4 |
3 1
.' U ;‘
Q!
4‘, b(
y {
i O |
O]
\
7

What if the queries do not target mutually exclusive columns?

SelectC, B
where D > xand D <y

Pos in other
protection

+44
| Sorted by D
$44

| SortedbyD

5 2 o %
v /
‘ ‘
{
" ‘.
2 &L
< |
‘ ;
4 |
3 1
.' U ;‘
Q!
4‘, b(
y {
i O |
O]
\
7

What if the queries do not target mutually exclusive columns?

Select avg(B) SelectC, B
where A > xand A<y where D > xand D <y

A B B C D

i 0
=
- Q)
4 H 3
,‘;‘ L 3
1 O -
L U

Sorted by A '

| Sorted by D

b) i
Y p 5 ‘
- e " /| " . 5 . ,

We can duplicate some columns and sort them in different orders

Select avg(B) Select C, B
where A > xand A<y where D > xand D <y

A B B C D

i 0
=
- Q)
4 H 3
,‘;‘ L 3
1 O -
L U

Sorted by A '

| Sorted by D

) [
¥] ‘
- o . /| “ . . . ,

We can duplicate some columns and sort them in different orders

Downsides?

Select avg(B) Select C, B
where A > xand A<y where D > xand D <y

A B B C D

D j
N ,
': _Q ;'
L O |
T QD |
P =
: O :

| Sorted by A '
Sorted by D

Downsides: (1) More space
(2) Inserts are more expensive
(3) Construction can take a long time with many projections

Select avg(B) Select C, B
where A > xand A<y where D > xand D <y

A B B C D

D j
N ,
': _Q ;'
L O |
T QD |
P =
: O :

| Sorted by A '
Sorted by D

(1) More space
(2) Inserts are more expensive
Tackle this: — (3) Construction can take a long time with many projections

Database Cracking: Adaptively quick-sorting a column projection

Database Cracking: Adaptively quick-sorting a column projection

Column A

13
16

Database Cracking: Adaptively quick-sorting a column projection

Column A

13
Q1: 16
select * 4
from R 9
where R.A> 10 2

and R.A< 14 12

Database Cracking: Adaptively quick-sorting a column projection

Column A Cracker column of A
13 4
select * 4 o '
from R 9 7 Plece 1:
where R.A> 10 2 1 A<=10
and R A< 14 12 3
/ Q1 8
— &
1 (copy) 6
19 13 Piece 2:
3 12 10<A<14
14 11
11 16 Piece 3:
8 19 14 <= A
6 14

Database Cracking: Adaptively quick-sorting a column projection

Column A Cracker column of A
13 4
Q1: 16 9
select * 4 2
from R 9 7 Plece 1:
where R.A > 10 2 . A <= 10
and R.A < 14 12 3
7 Q1 8
e i
1 (copy) 6
Q2: 19 13 Piece 2:
select * 3 12 10<A< 14
from R 14 11
where RA>7 11 16 Piece 3:
and R.A <= 16 8 19 14 <=A
6 14

Database Cracking: Adaptively quick-sorting a column projection

Q1:

select *

from R

where R.A> 10
and R.A< 14

Q2:

select *

from R

where RA>7
and R.A <= 16

Column A

13
16

Cracker column of A

Q1

(copy)

4

OO 0W-—-—NNO

13
12
11
16
19
14

Cracker column of A

4
2

1

Piece 1: 3
A<=10 6
/

Q2 9

) e

(in-place) 8
Piece 2: 13
10<A< 14 12
11
Piece 3: 14
14<=A 16
19

Piece 1: A<=7

Piece2: 7<A<=10

Piece 3: 10< A< 14

Piece 4: 14 <= A <= 16
Pliece 5: 16 < A

Database Cracking: Adaptively quick-sorting a column projection

Queries adaptively refine the sorting and speed up subsequent queries

Column A Cracker column of A Cracker column of A
13 4 4
Q1: 16 9 2
select * 4 2 1 :
. _ Piece 1: A<=7
from R 9 7 Piece 1. 3 .
where RA> 10 2 I " <=10 6
and R.A< 14 12 3 7
7 Q1 8 Q2 9
> > ' . —
1 (copy) 6 (in-place) 8 Piece 2: 7<A<=10
Q2: 19 13 Piece 2: 13
select * 3 12 10<A< 14 12 Piece 3: 10< A< 14
from R 14 11 11
where R A>7 11 16 Piece 3: 14 _ :
and RA <= 16 8 19 | 14<=A gy "lece 4:14<=A<=16

6 14 19 Piece 5: 16 < A

Database Cracking: Adaptively quick-sorting a column projection

Queries adaptively refine the sorting and speed up subsequent queries

We can begin querying the data immediately without creating too many
projections from the onset, which would take a while

Column A Cracker column of A Cracker column of A
13 4 4
Q1: 16 9 2
select * 4 2 1 :
. , Piece 1: A<=7
from R 9 7 Piece 1. 3 .
where RA> 10 2 I " <=10 6
and R.A< 14 12 3 7
7 Q1 8 Q2 9
> > ' . —
1 (copy) 6 (in-place) 8 Piece 2: 7<A<=10
Q2: 19 13 Piece 2: 13
select * 3 12 10<A< 14 12 Piece 3: 10< A< 14
from R 14 11 11
where R A>7 11 16 Piece 3: 14 , '
and R.A <= 16 8 19 | 14<=A -
6 14 19 Piece 5: 16 < A

And now: office hours

