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ID Customer ID Product ID Date

ID Name email Addr

Customers

Orders

Scan cost: O(N/B) I/Os

Address Space

Efficient Scans

Separate tables rows into 


different sets of blocks



Internal Page Organization for Fixed-Sized Rows

Slot 1
Slot 2

Slot N

Free

Metadata

…

N, etc.
Free Bitmap

Slot 1

Metadata

Slot 2
Slot 3

101…1

Slot N
…

Entries compactly packed 
at front of page

delete

Move

Can also use a bitmap to 
mark occupied slots 



Free

Metadata

Internal Page Organization for Variable-Sized Rows



Variable-Sized Row Organization

Delimiters Pointers 

F1 F2 F2$ $ $ F1 F2 F2

Smaller

No random access

More space

Random access (faster)



Variable-Sized Row Organization

Fetching a particular row entails significant traversal & pointer 
chasing overheads



ID Name email Addr Salary
ID1

So far we have assumed rows are stored contiguously

ID2

ID3

name1

name2

name3

email1

email2

email3

addr1

addr2

addr3

salary1

salary2

salary3



ID Name email Addr Salary

ID1

So far we have assumed rows are stored contiguously

name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

Address Space



ID Name email Addr Salary

So far we have assumed rows are stored contiguously

Great for queries that examine most columns 

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3



ID Name email Addr Salary

So far we have assumed rows are stored contiguously

e.g., Select * from Customers

Great for queries that examine most columns 

e.g., Select Id, Name, Email, Addr from Customers where salary >  10000

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3



ID Name email Addr Salary

So far we have assumed rows are stored contiguously

But how about queries that examine few columns? 

e.g., Select avg(salary) from Customers

e.g., Select sum(email) from Customers where email like '%@gmail.com';

Problem?

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3



ID Name email Addr Salary

So far we have assumed rows are stored contiguously

Select avg(salary) from Customers

Problem? We only need a little of each row

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3



ID1

So far we have assumed rows are stored contiguously

name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

Problem? We only need a little of each row
But storage access granularity is coarse 

4 KB access 

Select avg(salary) from Customers



ID1

So far we have assumed rows are stored contiguously

name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

Problem? We only need a little of each row
But storage access granularity is coarse 

128B access 

Memory can also only be accessed in cache lines

128B access 128B access 

Select avg(salary) from Customers



So far we have assumed rows are stored contiguously

Problem? We only need a little of each row
But storage access granularity is coarse 
Memory can also only be accessed in cache lines

Select avg(salary) from Customers

Reading more than we are interested in wastes bandwidth

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

128B access 128B access 128B access 



So far we have assumed rows are stored contiguously

Problem? We only need a little of each row
But storage access granularity is coarse 
Memory can also only be accessed in cache lines

Select avg(salary) from Customers

Reading more than we are interested in wastes bandwidth

ID1 name1 email1 addr1 salary1 ID2 name2 email2 addr2 salary2 ID3 name3 email3 addr3 salary3

128B access 128B access 128B access 

Solution?



ID Name email Addr Salary
ID1

ID2

ID3

name1

name2

name3

email1

email2

email3

addr1

addr2

addr3

salary1

salary2

salary3

What if we instead store the data one column at a time?



What if we instead store the data one column at a time?

email1 email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

Address Space



What if we instead store the data one column at a time?

email1 email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

ID Name Email Addr Salary 



What if we instead store the data one column at a time?

email1 email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

ID Name Email Addr Salary 

Select avg(salary) from Customers



What if we instead store the data one column at a time?

email1 email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

ID Name Email Addr Salary 

Select avg(salary) from Customers

We can now skip irrelevant data!



What if we instead store the data one column at a time?

email1 email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

ID Name Email Addr Salary 

Select avg(salary) from Customers

Any concerns?



What if we instead store the data one column at a time?

email1email2 email3 addr1 addr2 addr3 salary1 salary2ID1 ID1 … ID1 name1 name2 name3… … …

ID Name email Addr Salary

salary3…

ID Name Email Addr Salary 

Select * from Customers where ID = 1

Trade-off: random I/Os for selective queries across many columns



The two relational database families

Row-Stores Column-Stores



Row-Stores

Selective queries/updates Large statistical calculations 

& batch updates

Column-Stores



Selective queries/updates Large statistical calculations 

& batch updates

Online Transaction Processing 

(OLTP)

Online Analytical Processing 

(OLAP)

Row-Stores Column-Stores



Row-Stores Column-Stores

Banking, retail, social media Analytics, machine learning  

OLTP examples OLAP examples



Row-Stores Column-Stores

MonetDB, Vectorwise, C-Store, Vertica

(Today all major DBs offer this, e.g., )

Postgres, MariaDB, etc.
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Row-Stores Column-Stores

MonetDB, Vectorwise, C-Store, Vertica

(Today all major DBs offer this, e.g., )

Postgres, MariaDB, etc.

Oracle, IBM, Microsoft were here

But now they offer both



Timeline

1975 2000 2005 now

First row-store 

Developed and 

productized


First open-source

Column-store 

developed


Initial industry 

adaptation of 

column-stores


Column-stores and 
row-stores are

Both a norm




Why the 30 year gap?

1975 2000 2005 now

First row-store 

Developed and 

productized


First open-source

Column-store 

developed


Initial industry 

adaptation of 

column-stores


Column-stores and 
row-stores are

Both a norm




Why the 30 year gap? Storage density grew, so we store far more 
data now. Processing it efficiently is more critical. This drives a 
need for specialization. 

1975 2000 2005 now

First row-store 

Developed and 

productized


First open-source

Column-store 

developed


Initial industry 

adaptation of 

column-stores


Column-stores and 
row-stores are

Both a norm




Should we store each column with a materialized ID?

ID Col1 ID Col2



Should we store each column with a materialized ID?

No, this would slow down queries by reading more data.

ID Col1 ID Col2



Instead use positional alignment

Col1(i) = i · width(Col1)

Col1 Col2



Instead use positional alignment

Col1(i) = i · width(Col1)

Col1 Col2

What is a column is var-length? 



In case of variable-length data, we can employ indirection

Col1
Array of 

pointers

…

…

Col1(i) = i · width(ptr)

(unrecommended)



In case of variable-length data, we can employ indirection

Col1
Array of 

pointers

…

…

Col1(i) = i · width(ptr)

(unrecommended)

Best to define a schema with fixed-length fields if possible 
prevent indirection overheads



How should we handle the buffer pool (BP)?



How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

Hash 

table
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This makes sense each query is 
“selective” (accesses few rows)

Hash 
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How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

This makes sense each query is 
“selective” (accesses few rows)

In column-stores, each column spans 
multiple pages & queries are unselective

Hash 

table



How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

This makes sense each query is 
“selective” (accesses few rows)

Hash 

table

Scanning a column in memory would 
require hashing overheads for each page. 

Hash 

table

In column-stores, each column spans 
multiple pages & queries are unselective



How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

This makes sense each query is 
“selective” (accesses few rows)

Hash 

table

Better to read and map at column-
granularity (or multiple pages thereof)



How should we handle the buffer pool (BP)?

A row-store BP maps 4KB pages.

This makes sense each query is 
“selective” (accesses few rows)

Hash 

table

Can do this by mapping columns in 
virtual memory or in the BP

Better to read and map at column-
granularity (or multiple pages thereof)



A B C

Select min(C) from table where A > 10 and B < 20

How to process queries over a single table? 



A B C

Select min(C) from table where A > 10 and B < 20

How shall we process this?



A B C

Select min(C) from table where A > 10 and B < 20

Early Materialization: return each qualifying row immediately



B C

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate 
predicate

Early Materialization: return each qualifying row immediately



B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate 
predicate

C

For each qualifying tuple on A, 
check if B also qualifies 



B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate 
predicate

C

For each qualifying tuple 
on A and B, fetch C



B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate 
predicate

C

If smaller than min so 
far, update

min



B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate 
predicate

C

min

Problem?
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Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate 
predicate

C

min

Problem?   Potentially more random I/Os
More CPU branch mispredictions 



B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate 
predicate

C

min

Problem?   Potentially more random I/Os
More CPU branch mispredictions 

Incompatible with SIMD (more later)



B

Select min(C) from table where A > 10 and B < 20

A > 10

Scan & evaluate 
predicate

C

min

Problem?   Potentially more random I/Os

Solutions?

More CPU branch mispredictions 

Incompatible with SIMD (more later)



A > 10 B < 20 min(C)

Late Materialization: process one column at a time



A > 10 B < 20 min(C)

Scan & evaluate 
predicate

fetch 

qualifying 


IDs

Late Materialization



A > 10 B < 20 min(C)Fetch values & 

evaluate predicate 

IDs

Late Materialization



A > 10 B < 20 min(C)

IDs

Fetch values & 

take their min Result

Late Materialization



A > 10 B < 20 min(C)

IDs

Fetch values & 

take their min Result

Late Materialization requires more memory to withhold intermediate results, but 
entails better cache behavior & CPU efficiency



Scan

qualifying 

IDs

Options for structuring 
intermediate results ?



(1) Array of integer IDs 

good when few results qualify

V1
V2
V3
V4
V5
V6

1
6



(2) Bitmap

good when many results qualify

V1
V2
V3
V4
V5
V6

1
0
1
1
0
1



Which column should we filter on first?

A > 10 B < 20 min(C)

This one or this one? 



Which column should we filter on first?

A > 10 B < 20 min(C)

Filter on more selective columns first to reduce size of intermediate results 
and thus I/O



Which column should we filter on first?

A > 10 B < 20 min(C)

Filter on more selective columns first to reduce size of intermediate results 
and thus I/O

Can do this via cardinality estimation 

(e.g., histograms, count-min, etc)



How to speed up scans? 

Scan



How to speed up scans? 

Scan

Zone maps

min, max

Equally sized 

partitions 


(MBs or  GBs)

2, 61
61
7
2
97
90
32
32
74
22

32, 97

22, 74



How to speed up scans? 

Zone maps

min, max

2, 61
61
7
2
97
90
32
32
74
22

32, 97

22, 74

Scan
Select * from table where col < 10

Skip

Skip



How to speed up scans? 

Store columns sequentially to allow pre-fetching and I/O parallelism

61
7
2
97
90
32
32
74
22

Address space



Insert into table (.   ,    ,    )

Handling Insertions

A B C

a1 b1 c1



Handling Insertions

Insert into table (.   ,    ,    )

Option 1: In-Place Updates

Directly insert to end of each 
column with a storage read/write

a1 b1 c1

A B C



Handling Insertions

Insert into table (.   ,    ,    )

Option 1: In-Place Updates

Cost model?

A B C

a1 b1 c1

Directly insert to end of each 
column with a storage read/write



Handling Insertions

Insert into table (.   ,    ,    )

Option 1: In-Place Updates

Cost model: O( #cols )

A B C

a1 b1 c1

Directly insert to end of each 
column with a storage read/write



Handling Insertions

Insert into table (.   ,    ,    )

Option 2: In-memory Buffering

Buf1 Buf2 Buf3

a1 b1 c1

A B C

a2 b2 c2



Handling Insertions

Insert into table (.   ,    ,    )

a1 b1 c1

A B C

a2 b2 c2

Cheap insertions are possible :) 

Option 2: In-memory Buffering



x

B C

How would you do this?

Handling Deletes

delete from table where A = “x” A=ID



Handling Deletes

Hole Hole Hole

B C

Option 1: In-place Deletes

Problems:

delete from table where A = “x” A=ID



Handling Deletes

Hole Hole Hole

B C

Cost: O(#cols) write I/Os

Holes slows down queries

Requires 1 extra bit to note a hole

Problems:

Option 1: In-place Deletes

delete from table where A = “x” A=ID



Handling Deletes

A=ID B C

Option 2: employ delete column

Pos

delete from table where A = “x”

x…



Handling Deletes

B C

Option 2: employ delete column

…

x

delete from table where A = “ ” A=ID

x

Pos



Handling Deletes

B C

Eventually merge with column 

delete from table where A = “ ”

Option 2: employ delete column

A=ID

x…

x

Pos



Handling Updates

A=ID B CCan we combine our solutions for 
insertions & deletes to efficiently update? 

update table set B=“b1”, C=“c1” where A=“x” 



Handling Updates

A B C

Buf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x” 

First 

delete

Then  

Insert

x x b1 c1



Handling Updates

A B C

Buf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x” 

First 

delete

Then  

Insert

x x b1 c1

Problem?



Handling Updates

A B C

Buf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x” 

First 

delete

Then  

Insert

x x b1 c1

Problem: Which came first?



Handling Updates

A B C

Buf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x” 

First 

delete

Then  

Insert

x x b1 c1

Fix using timestamps

Time

t2

Time

Problem: Which came first?

t1



Handling Updates

A B C

Buf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x” 

First 

delete

Then  

Insert

x x b1 c1

Time

t2

Time

Eventually merge into columns

t1



Handling Updates

A B CBuf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x” 

x x b1 c1

Time

t2

Time

Disadvantage: must join buffers 

And columns to answer queries

t1



Handling Updates

A B CBuf1 Buf2 Buf3Deletes

update table set B=“b1”, C=“c1” where A=“x” 

x x b1 c1

Time

t2

Time

Disadvantage: must join buffers 

And columns to answer queries

t1

Hence, modifications are best done 

in batch and offline (e.g., overnight)



Columns are immutable and their values inside are mostly fixed-sized

A B C
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Columns are immutable and their values inside are mostly fixed-sized

A B C

D
at

a
D

at
a

D
at

a
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at
a
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at
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at
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at
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at
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at
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at
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D

at
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D
at

a
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at
a

D
at

a

This allows for further optimizations 



A B C

D
at

a
D

at
a

D
at
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at
a
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at
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a
D

at
a

D
at

a
D

at
a

D
at
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at

a
D

at
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D
at

a
D

at
a

D
at

a

Tight processing loops with no 
pointer-chasing or function calls

for (i = 0; i < size; i++) 

if A[i] > v


qualifying[j++] = i

Select from table where A > v



A B C

SIMD - Same Instruction Multiple Data

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to 
multiple values within one cache line 
(e.g., 128-256 bits at a time)



A B C

SIMD - Same Instruction Multiple Data

a1 a2 a3 a4 a5 a6

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to 
multiple values within one cache line 
(e.g., 128-256 bits at a time)

v v v v v v

Select sum(A) from table where A > v

a7 a8

v v
> > > > > > > >



A B C

SIMD - Same Instruction Multiple Data

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to 
multiple values within one cache line 
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

3 1 7 4 8 9
> > > > > >
5 5 5 5 5 5

2 8
> >
5 5



A B C

SIMD - Same Instruction Multiple Data

3 1 7 4 8 9

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to 
multiple values within one cache line 
(e.g., 128-256 bits at a time)

> > > > > >
5 5 5 5 5 5

Select sum(A) from table where A > 5

0 0 1 0 1 1
= = = = = =

2 8
> >
5 5

0
=

1
=



A B C

SIMD - Same Instruction Multiple Data

3 1 7 4 8 9

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to 
multiple values within one cache line 
(e.g., 128-256 bits at a time)

& & & & & &

Select sum(A) from table where A > 5

0 0 1 0 1 1

2 8
& &
0 1



A B C

SIMD - Same Instruction Multiple Data

3 1 7 4 8 9

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to 
multiple values within one cache line 
(e.g., 128-256 bits at a time)

& & & & & &

Select sum(A) from table where A > 5

0 0 1 0 1 1
= = = = = =

2 8
& &
0 1
= =

0 0 7 0 8 9 0 8



A B C

SIMD - Same Instruction Multiple Data

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to 
multiple values within one cache line 
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

= = = = = = = =

+ + + + + + + +
C1 C2 C3 C4 C5 C6 C7 C8

C1 C2 C3 C4 C5 C6 C7 C8

0 0 7 0 8 9 0 8



A B C

SIMD - Same Instruction Multiple Data

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to 
multiple values within one cache line 
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

+ + + + + + + =C1 C2 C3 C4 C5 C6 C7 C8 Res



A B C

SIMD - Same Instruction Multiple Data

b1

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

Apply one instruction in parallel to 
multiple values within one cache line 
(e.g., 128-256 bits at a time)

Select sum(A) from table where A > 5

+ + + + + + + =C1 C2 C3 C4 C5 C6 C7 C8 Res

Works best with late materialization :)



Compression
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Compression

crucial for column-stores 

CPU cost of compression 
and decompression

cost savings of moving data 
across the memory hierarchy <

The reason is not only to save space but to improve performance. How?



Compression

crucial for column-stores 

The reason is not only to save space but to improve performance. How?

Important for compressed values to be fixed-size to support positional ID 
lookups 



(1) Bit-Vector Encoding 

Employ one bit string for each possible value 
indicating if the entry has the given value 

 

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Dog

Dog

Cat

Pet



(1) Bit-Vector Encoding 

Employ one bit string for each possible value 
indicating if the entry has the given value 

 

Pet

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Dog

Dog

Cat

Cat Dog

1

0

0

1

0

0

0

1

1

0

0

1

1

0

1

0

1

0

0

1

Horse

0

0

0

0

0

1

0

0

0

0



(1) Bit-Vector Encoding 

Employ one bit string for each possible value 
indicating if the entry has the given value 

 

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Dog

Dog

Cat

Cat Dog

1

0

0

1

0

0

0

1

1

0

0

1

1

0

1

0

1

0

0

1

Horse

0

0

0

0

0

1

0

0

0

0

Pros and cons? 

e.g., select * from table where specie = “Cat”

Pet



(1) Bit-Vector Encoding 

Employ one bit string for each possible value 
indicating if the entry has the given value 

 

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Dog

Dog

Cat

Cat Dog

1

0

0

1

0

0

0

1

1

0

0

1

1

0

1

0

1

0

0

1

Horse

0

0

0

0

0

1

0

0

0

0

e.g., select * from table where specie = “Cat”

Pro: Fast to read & compare 1 bit per entry. 


Con: Only applicable if there are very few values. 

Pet



(2) Dictionary Encoding 

Employ a dictionary with smaller 
strings to represent larger ones

 

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Dog

Cat

Parrot

Pet



(2) Dictionary Encoding 

Employ a dictionary with smaller 
strings to represent larger ones

 

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Parrot

Dog

Cat 

Dictionary
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(2) Dictionary Encoding 

Employ a dictionary with smaller 
strings to represent larger ones
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(2) Dictionary Encoding 

Employ a dictionary with smaller 
strings to represent larger ones

 

Dog

Cat

Cat

Dog

Cat

Horse

Cat

Parrot

Dog

Cat

Compressed

 

01

00

00

01

00

10

00

11

10

00

Pro: applicable across larger value spaces

Con: slower as we need to read more bits
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(3) Run-length encoding

Represent repeating values using one entry  

Dog
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Cat

Compatible with dictionary encoding

Pros: compatible with dictionary encoding & 
can further improve compression

Cons: must scan column to get entry at a given 
offset
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Indexing in Column Stores 
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Suppose we have two selective queries over different columns in the same table 
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A B C D

Suppose we have two selective queries over different columns in the same table 

Select avg(B) 

where A > x and A < y

Select avg(C) 

where D > x and D < y

Scan Scan

Qualifying Qualifying

We can answer both queries with full scan and late materialization 



A B C D

Suppose we have two selective queries over different columns in the same table 

Select avg(B) 

where A > x and A < y

Select avg(C) 

where D > x and D < y

Scan Scan

But can we avoid the full scans? 



A B C D

Select avg(B) 

where A > x and A < y

Select avg(C) 

where D > x and D < y

We can employ indexes mapping from key to positional ID



…

…

A B

Select avg(B) 

where A > 5 and A < 10

We can employ indexes mapping from key to positional ID
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Select avg(B) 

where A > 5 and A < 10
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Access to B becomes “skip-
sequential” rather than random, but 

the sorting can be an issue

Can sort, 

but costly
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Select avg(B) 

where A > 5 and A < 10
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Any other solution? 

Can sort, 

but costly
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Select avg(C) 

where D > x and D < y

Column Projections: sort subset of columns by one column
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Column Projections: sort subset of columns by one column
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Like having multiple clustered indexes on subset of columns

Column Projections: sort subset of columns by one column

Select avg(B) 

where A > x and A < y
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Binary search Binary search 

Select avg(B) 

where A > x and A < y
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where D > x and D < y
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Sorted positional IDs 

Select avg(B) 

where A > x and A < y
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Enables sequential access over B and C 

Select avg(B) 

where A > x and A < y
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Select C, B 

where D > x and D < y
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What if the queries do not target mutually exclusive columns?  
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What if the queries do not target mutually exclusive columns?  
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Select C, B 
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Select avg(B) 

where A > x and A < y

We can duplicate some columns and sort them in different orders
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Select avg(B) 

where A > x and A < y

We can duplicate some columns and sort them in different orders
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Downsides? 
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Downsides: (1) More space
(2) Inserts are more expensive
(3) Construction can take a long time with many projections
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Tackle this:

(1) More space
(2) Inserts are more expensive
(3) Construction can take a long time with many projections
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Database Cracking: Adaptively quick-sorting a column projection

Queries adaptively refine the sorting and speed up subsequent queries

We can begin querying the data immediately without creating too many 
projections from the onset, which would take a while



And now: office hours 


