

Dynamic Filters (Quotient & InfiniFilter)

Research Topics in Database Management

Niv Dayan

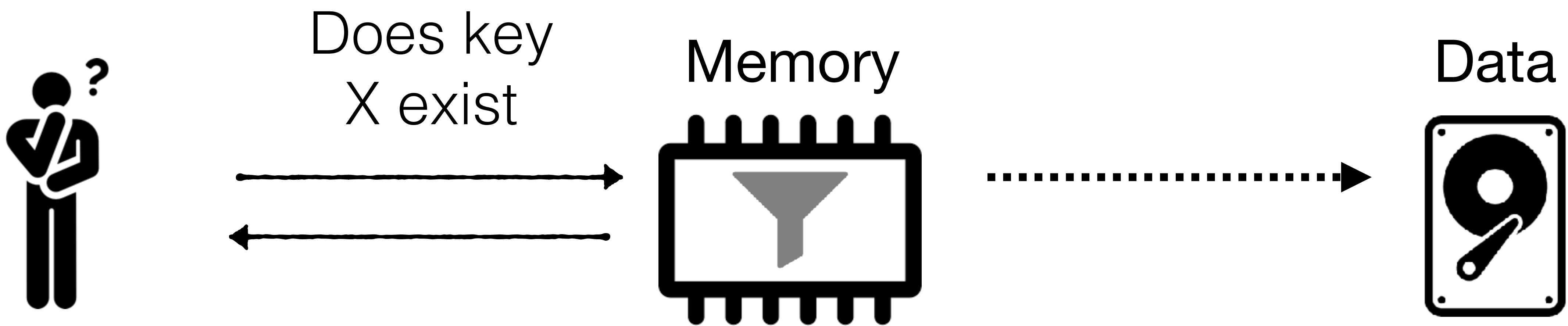
What is a Filter?

Does X exist?

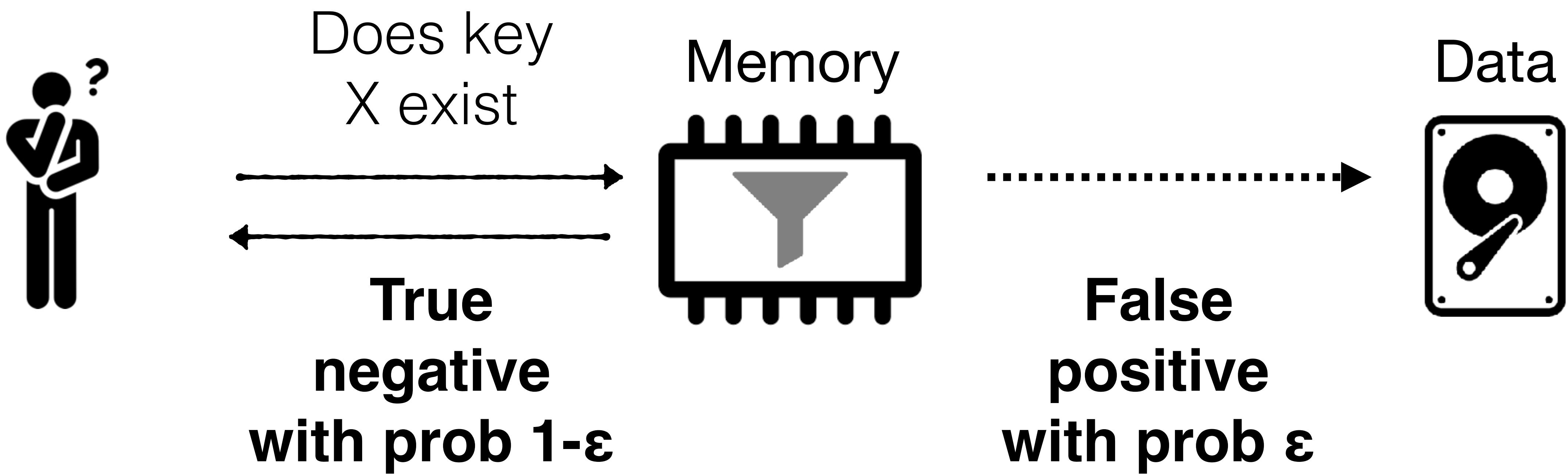
Set

X Y Z

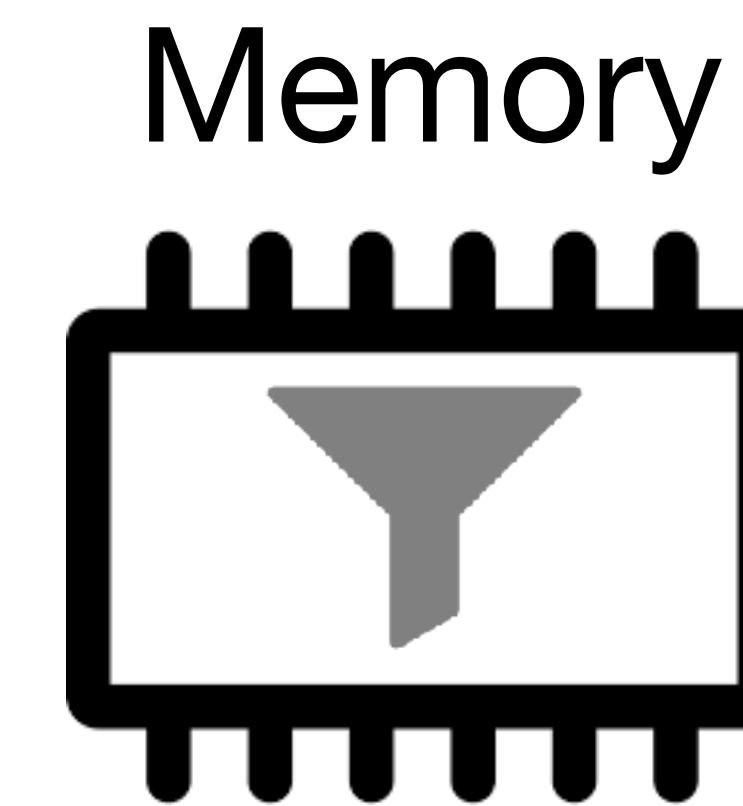
If key X does not exist



If key X does not exist



Does key
X exist

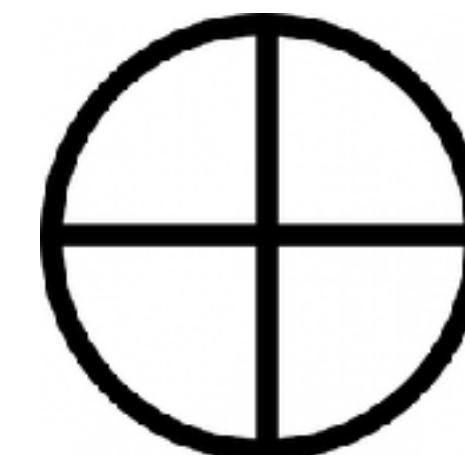


.....

Saves storage accesses & network hops

Blocked
Bloom

XOR



Faster

Lower FPR

Blocked
Bloom

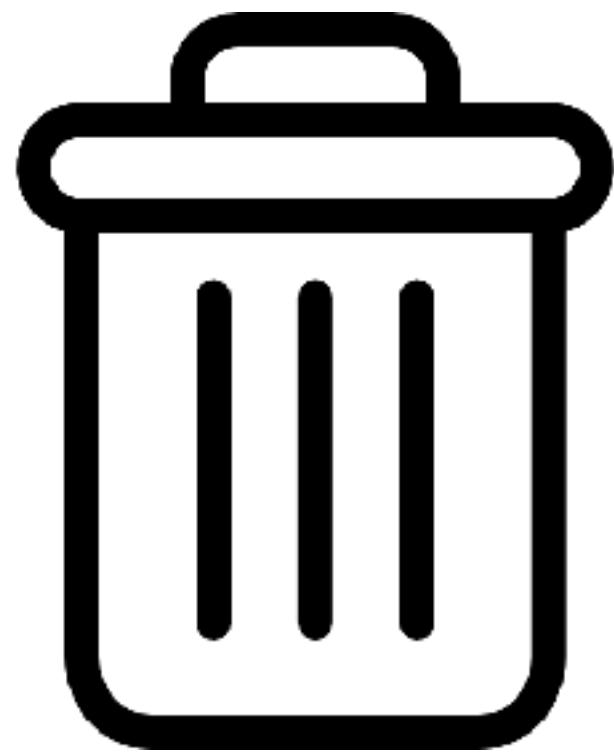
XOR



Static - no deletes or resizing

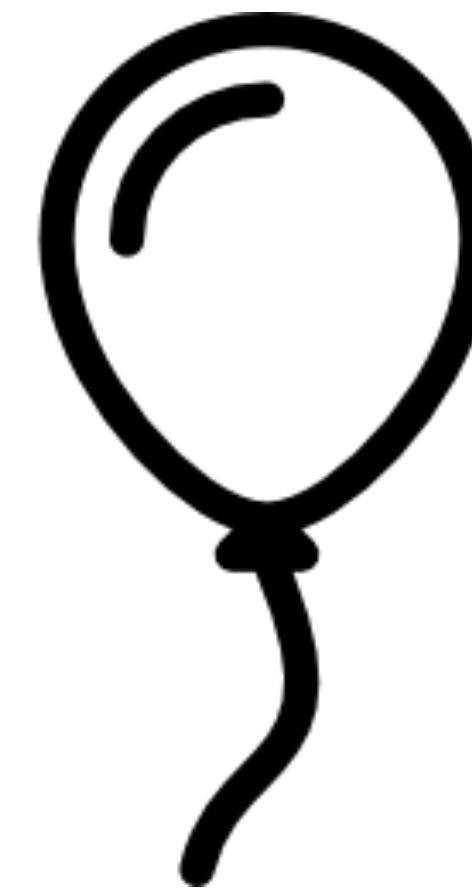
Supporting Dynamic Data

Supporting Dynamic Data



Deletes

(First hour)

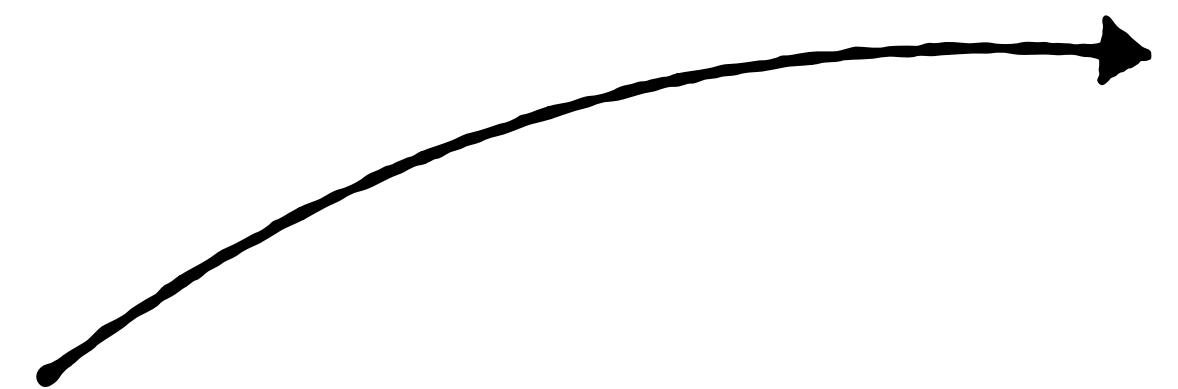


Resizing

(Second hour)

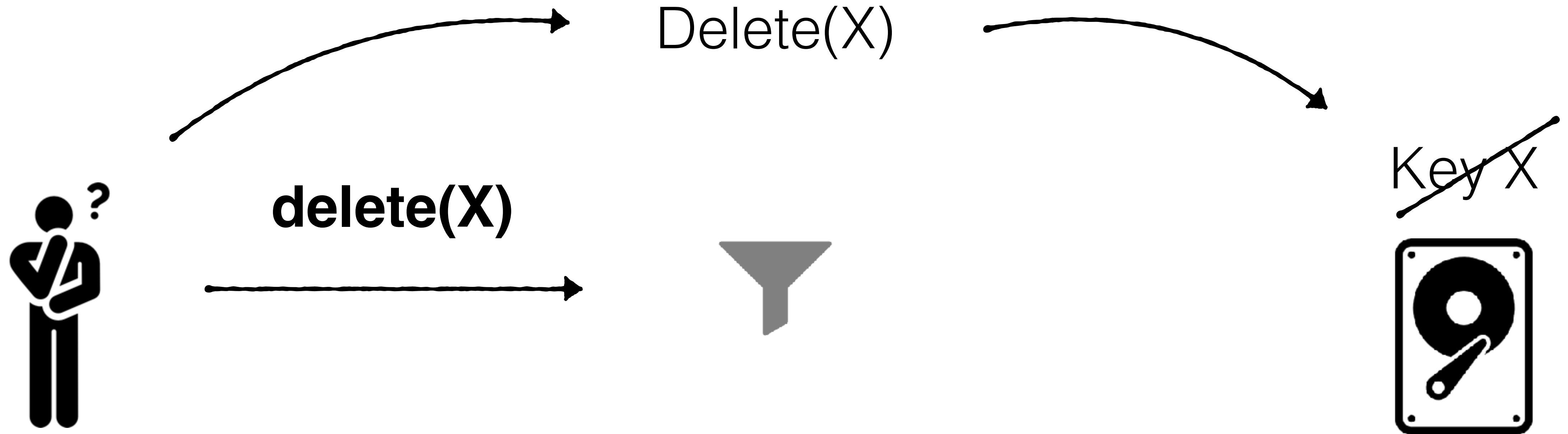
Why Support Deletes?

Why Support Deletes?



Delete(X)

~~Key X~~



Why should we also delete from filter?

Desired Outcome

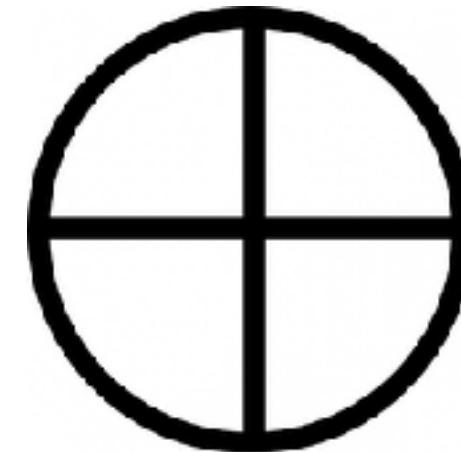
Desired Outcome

Only possible if filter supports deletes

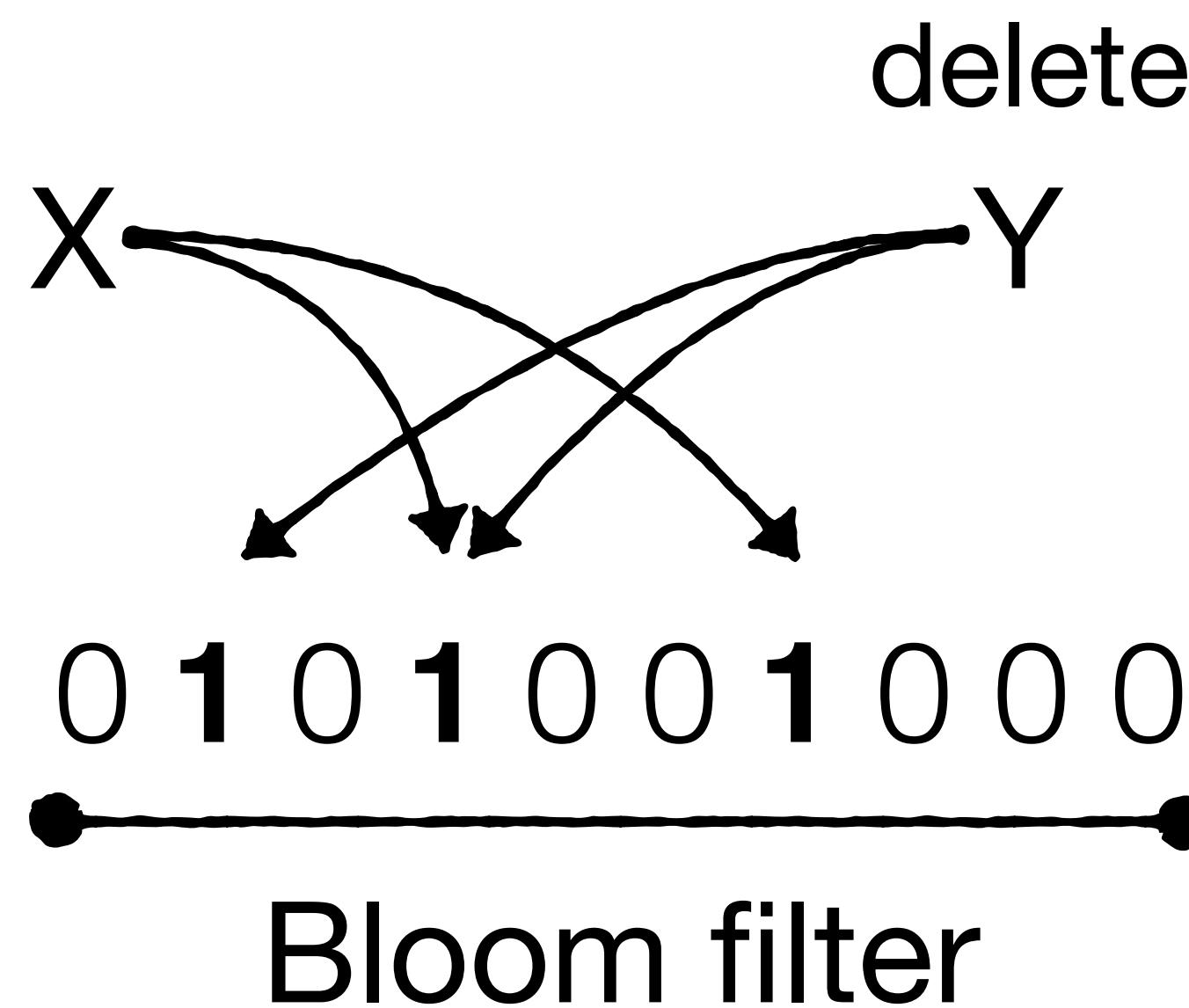
Why do last week's filters not support deletes?

Bloom

XOR

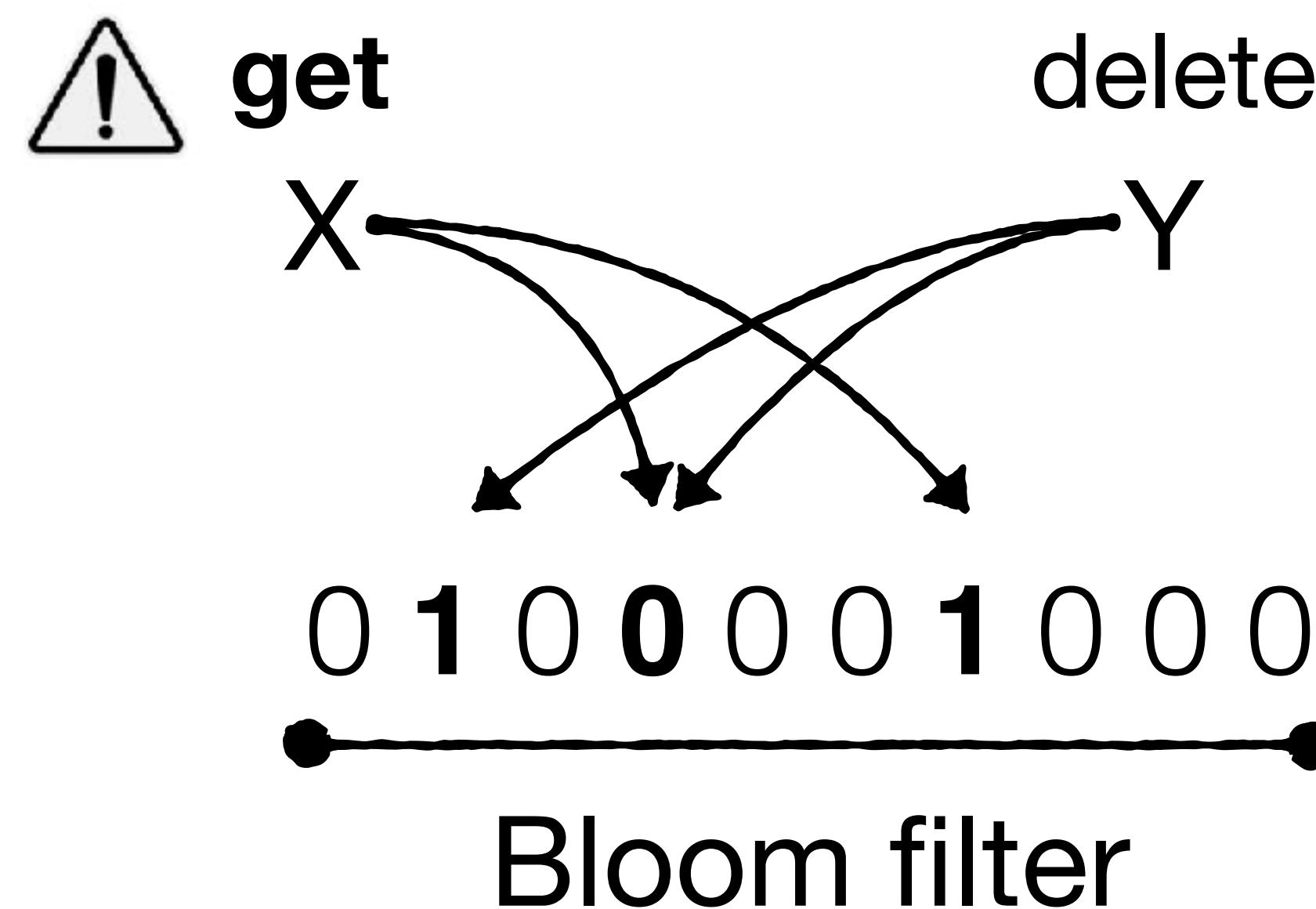


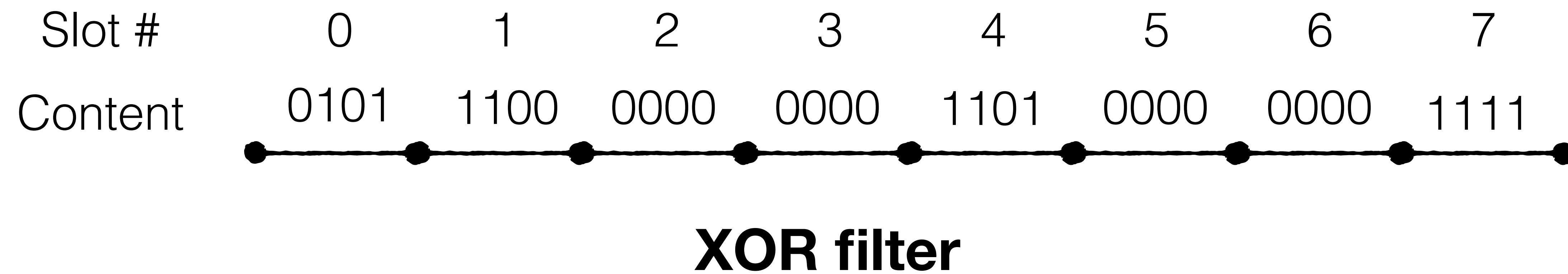
Multiple keys may map to each bit



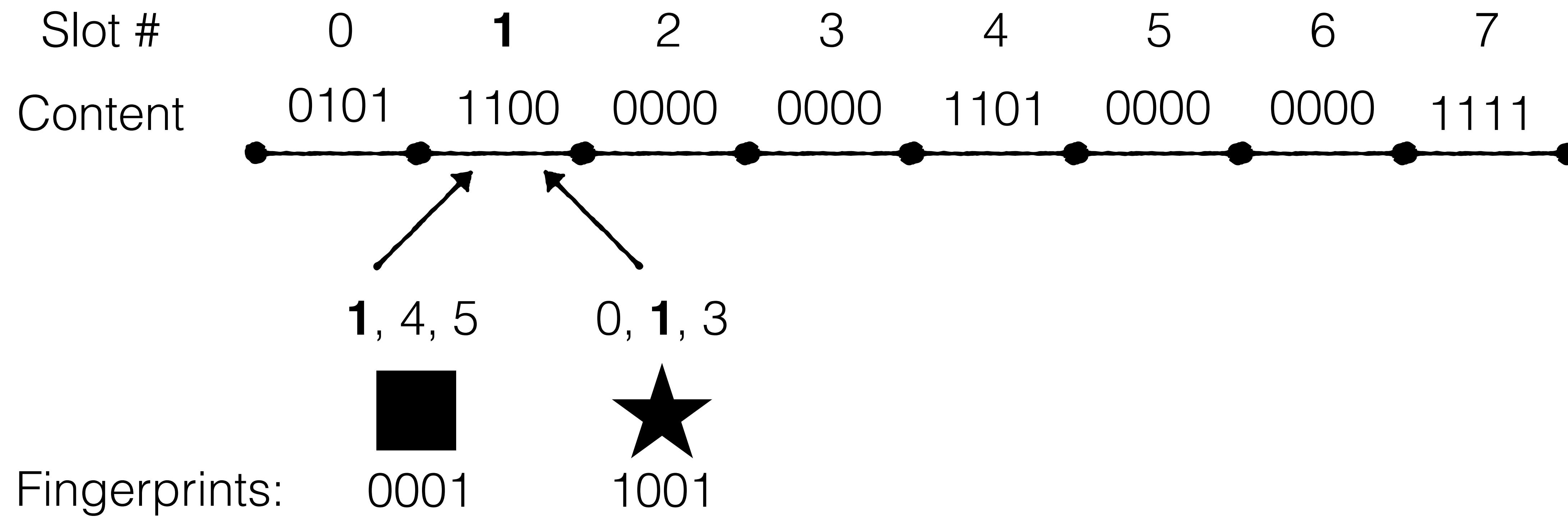
Multiple keys may map to each bit

Setting bits back to 0s can lead to false negatives

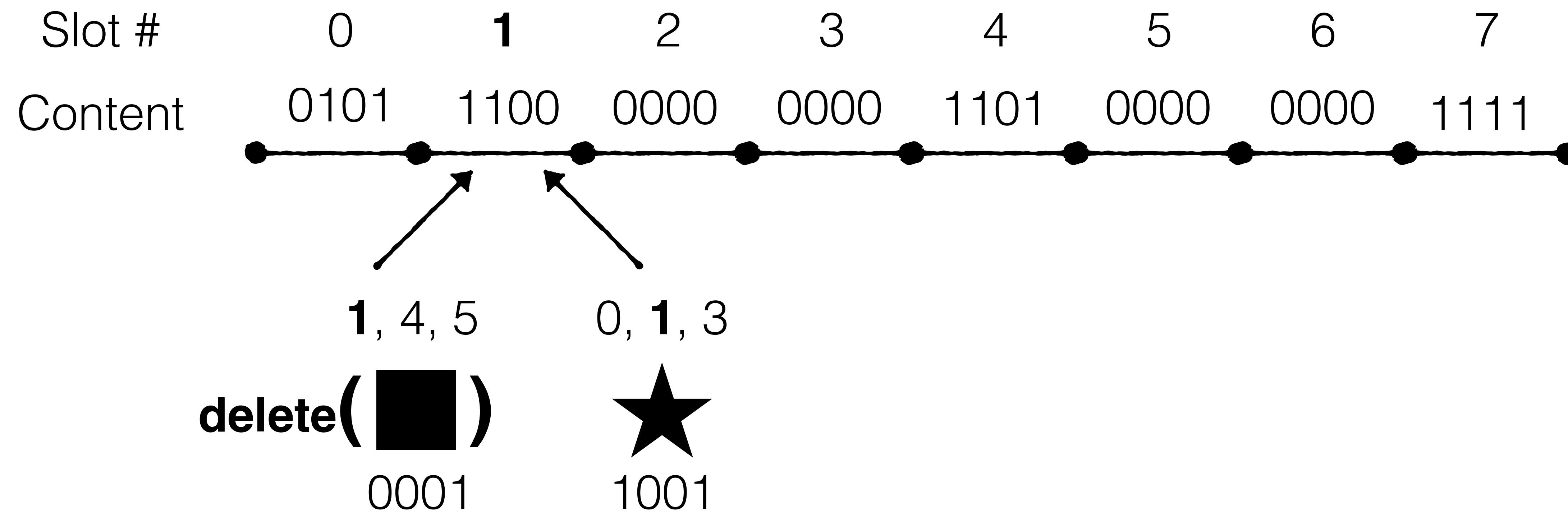


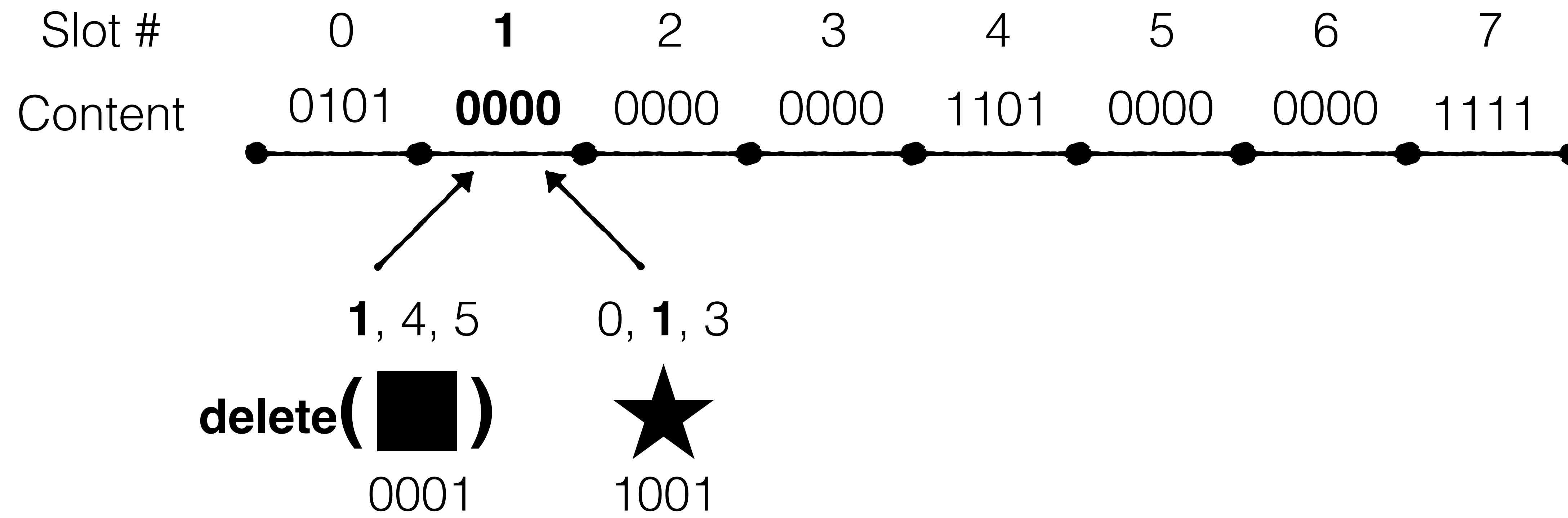


Multiple keys share slots

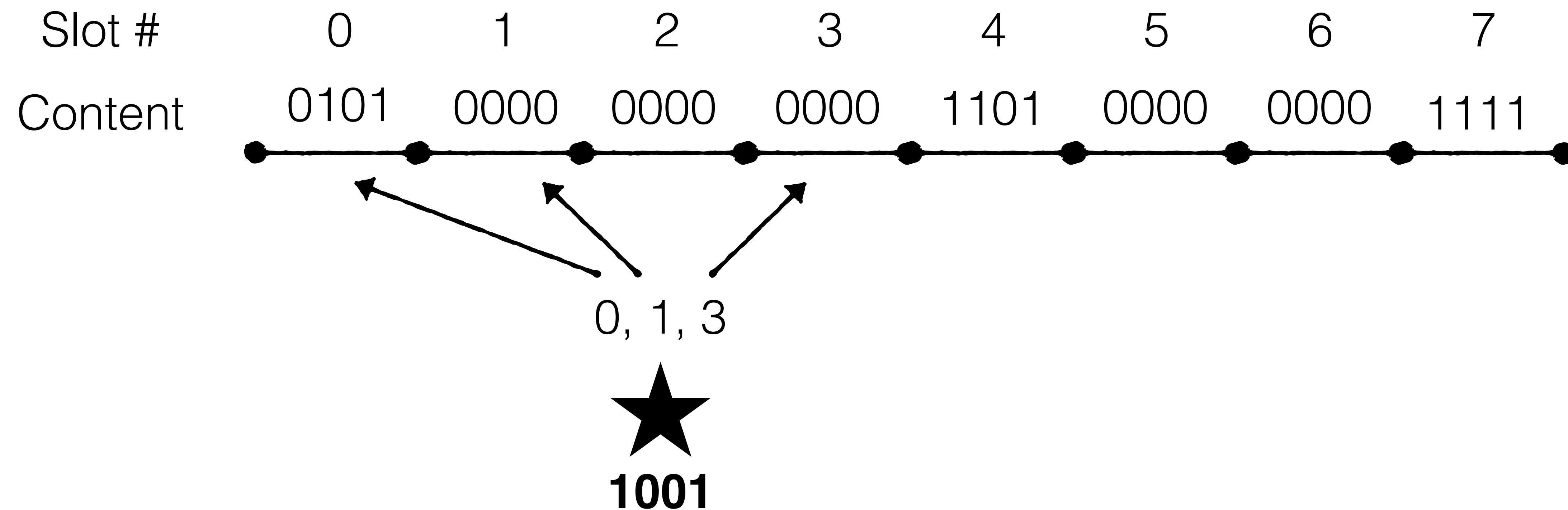


Multiple keys share slots



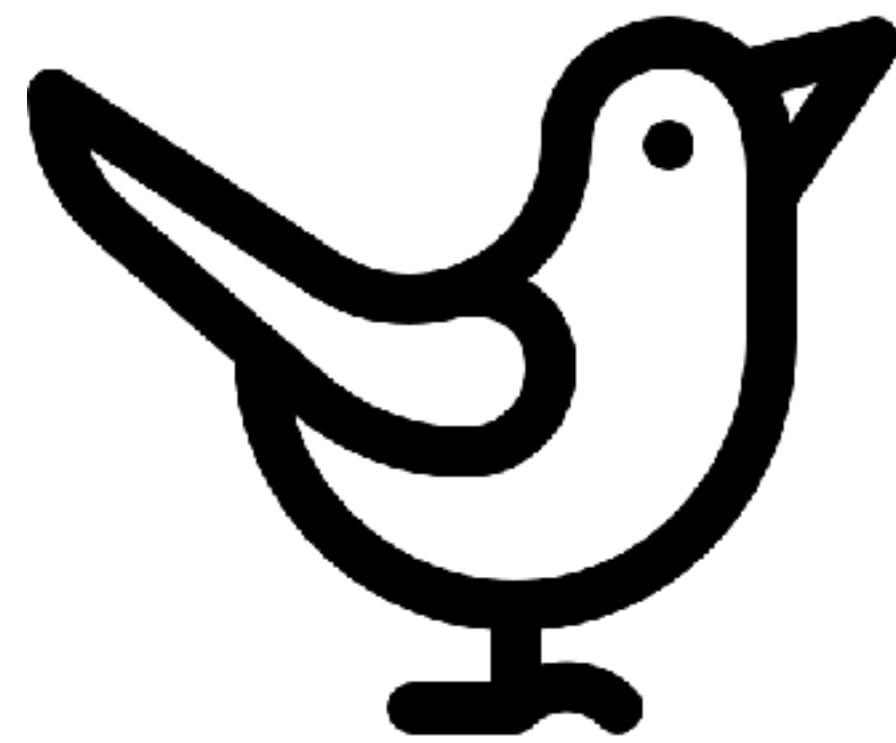


Resetting a slot for one entry will cause false negatives over other entries



How to support deletes without false negatives?

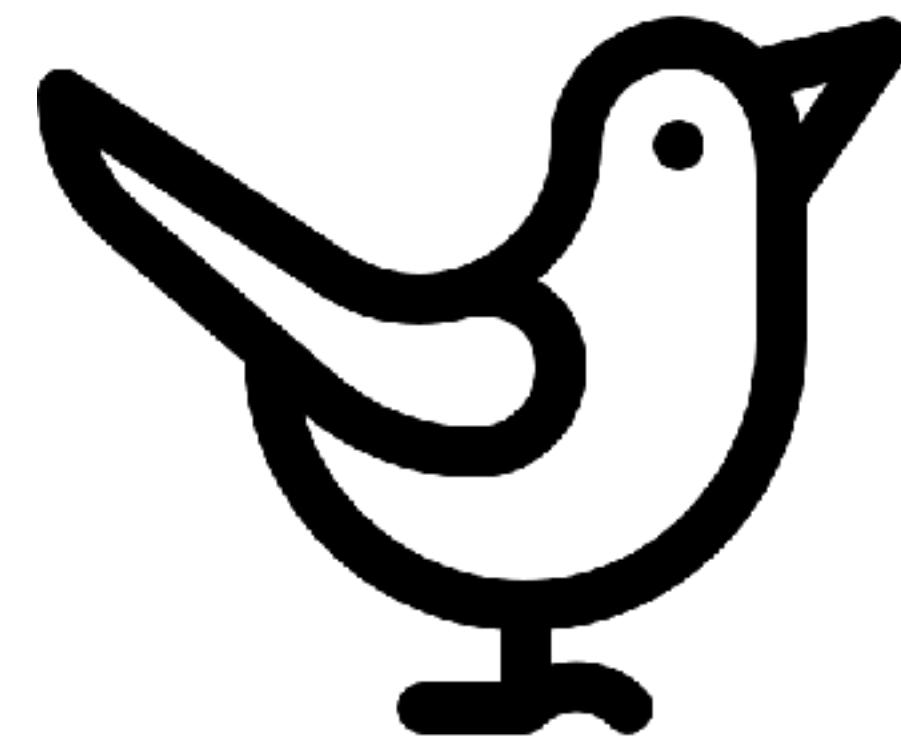
How to support deletes without false negatives?



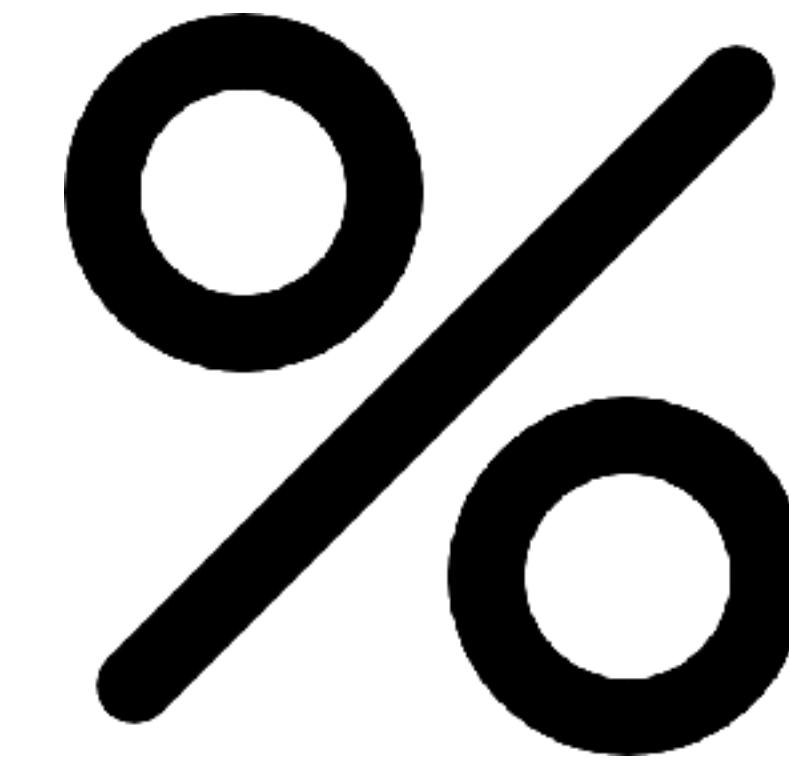
Cuckoo Filters

(Last semester)

How to support deletes without false negatives?

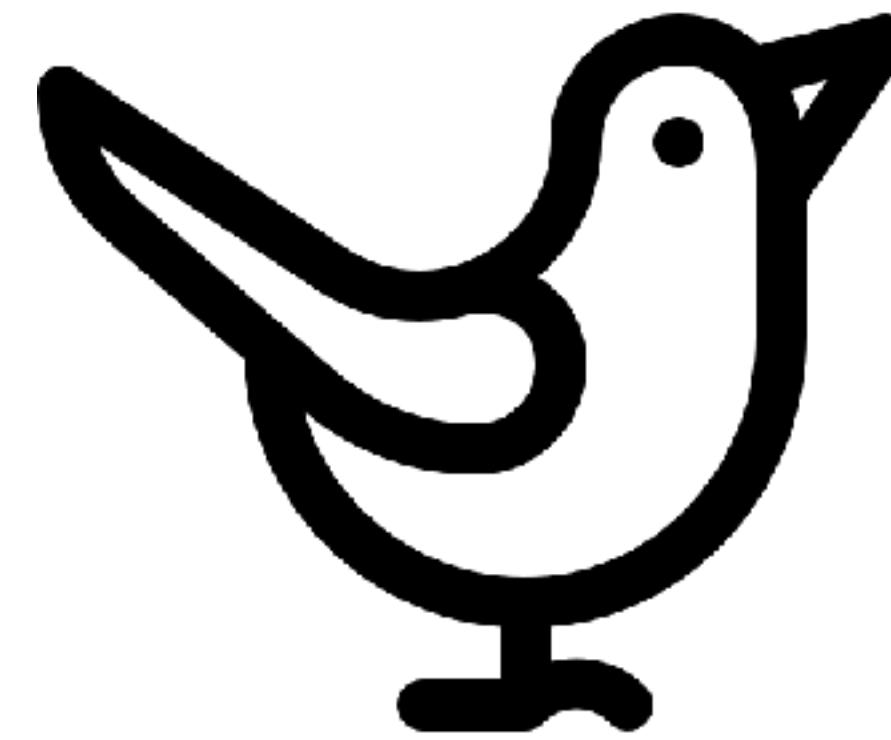


Cuckoo Filters
(Last semester)

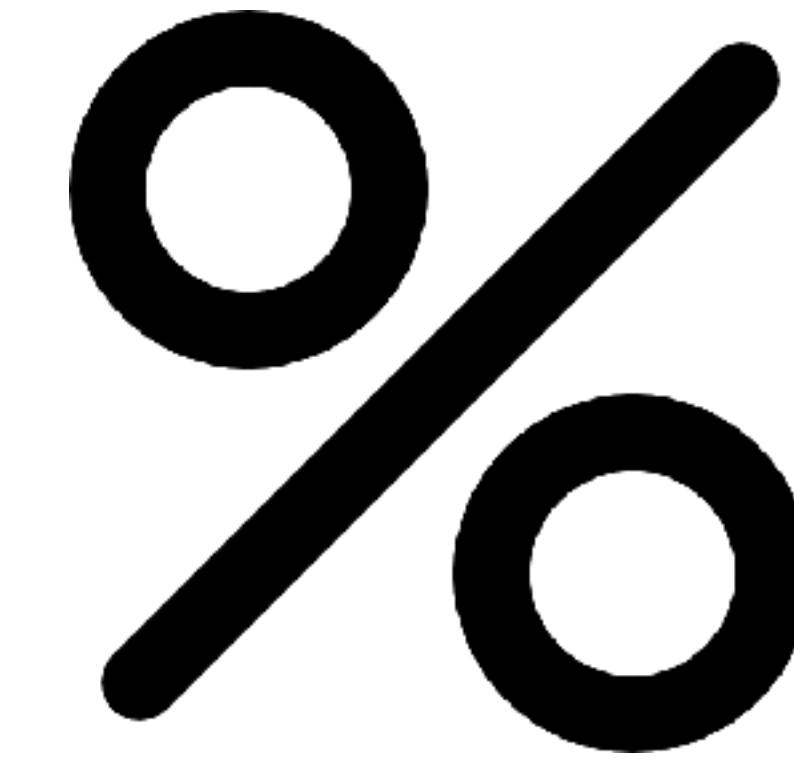


Quotient Filters
(Today)

Why cover another filter that supports deletes?

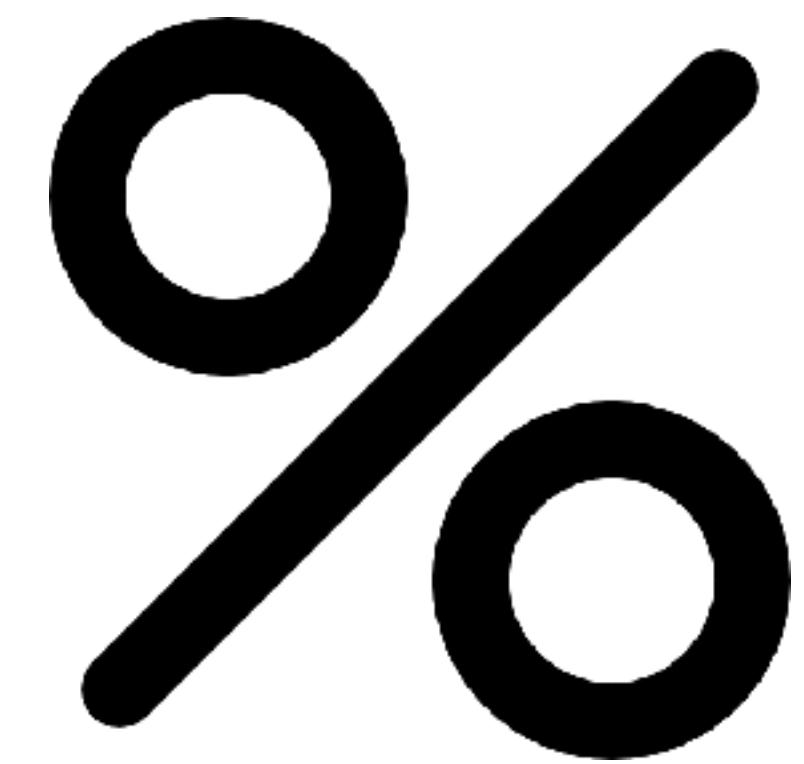


Cuckoo Filters
(Last semester)



Quotient Filters
(Today)

Showcase cool encoding/decoding techniques



Quotient Filters

Quotient Filters

Don't Thrash: How to Cache Your Hash on Flash. VLDB 2012.

Michael A Bender, Martin Farach-Colton, Rob Johnson, Bradley C Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane, Erez Zadok.

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Prashant Pandey, Michael A Bender, Rob Johnson, Rob Patro.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. SIGMOD 2021.

Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-Colton, Rob Johnson.

Which to focus on?

Don't Thrash: How to Cache Your Hash on Flash. VLDB 2012.

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. SIGMOD 2021.

Don't Thrash: How to Cache Your Hash on Flash. VLDB 2012.
Worse memory & query efficiency

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design.
SIGMOD 2021.

Don't Thrash: How to Cache Your Hash on Flash. VLDB 2012.
Worse memory & query efficiency

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

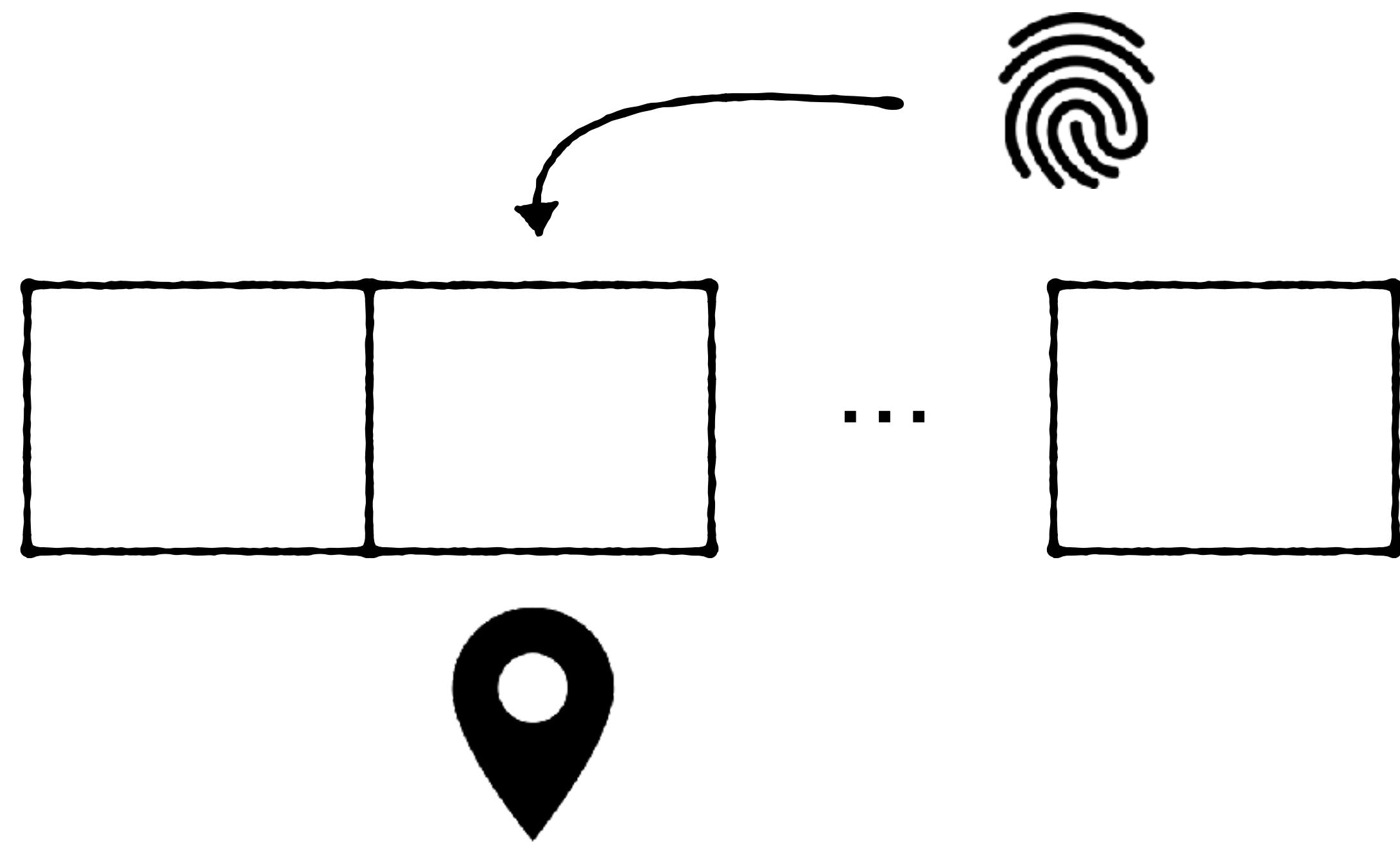
Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design.
SIGMOD 2021.

Uses SIMD & less tunable

Our focus

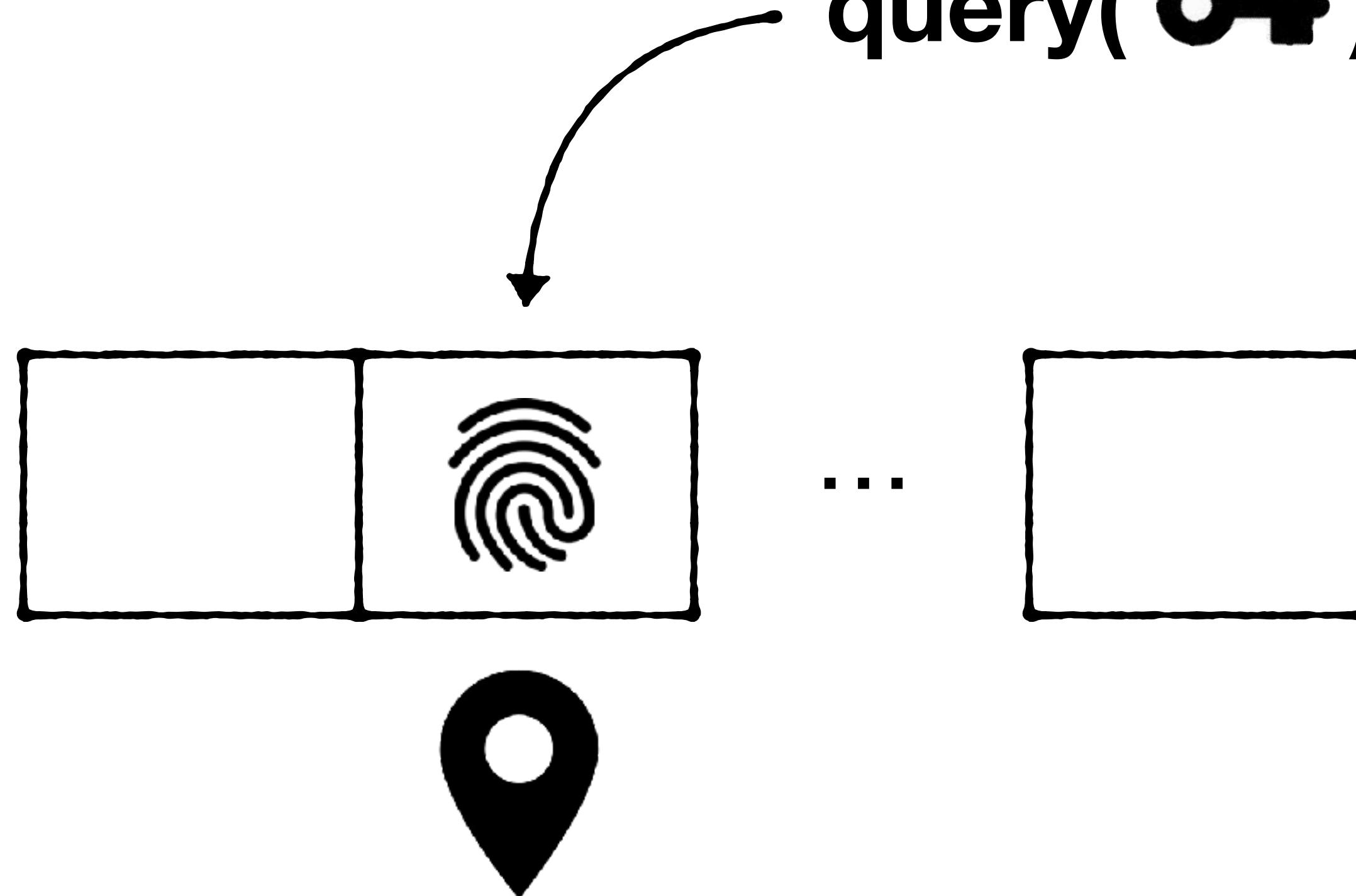
A General-Purpose Counting Filter: Making Every Bit Count. 2017.

hash(**) = 010100110101101100**



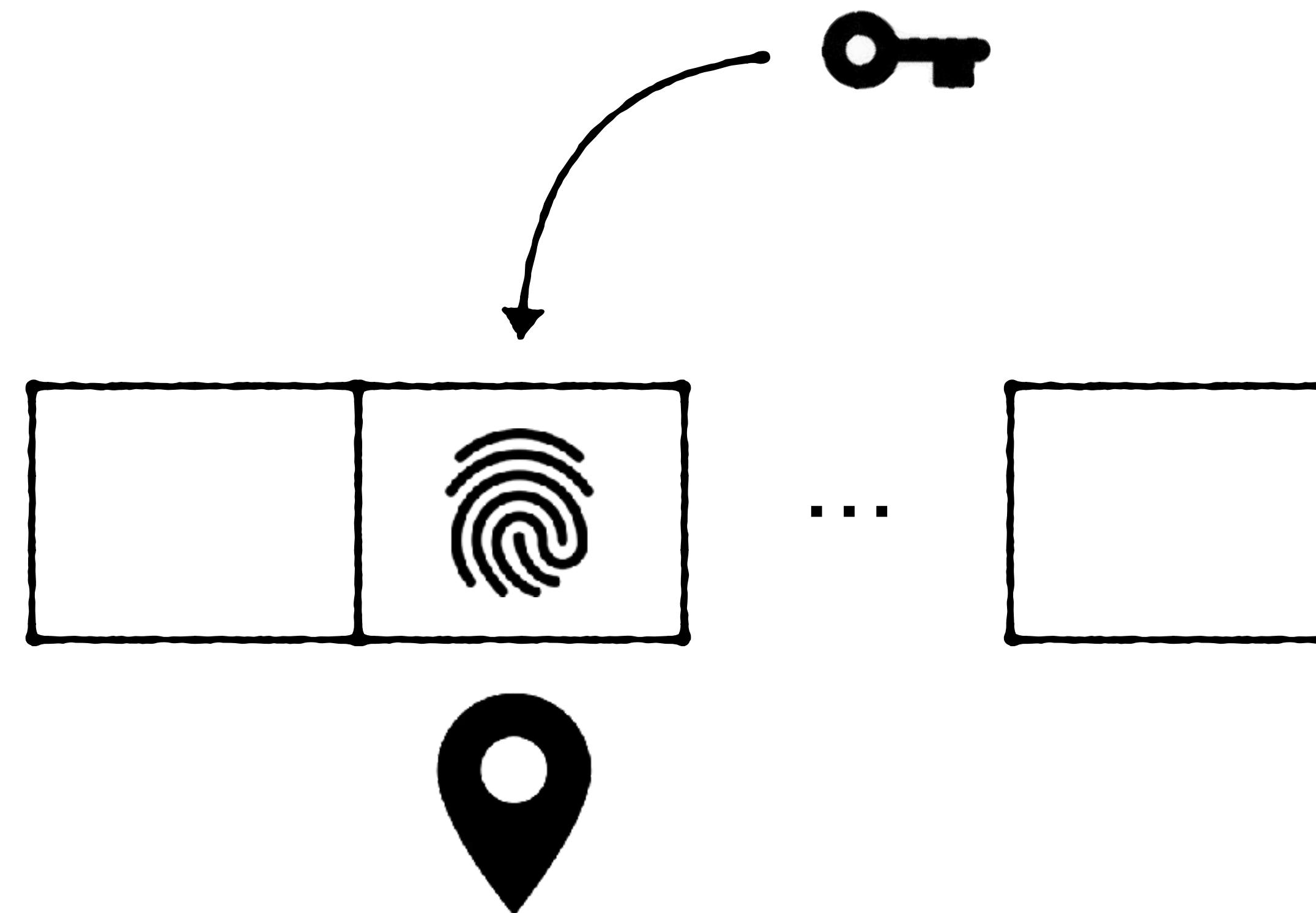
Canonical slot

query()



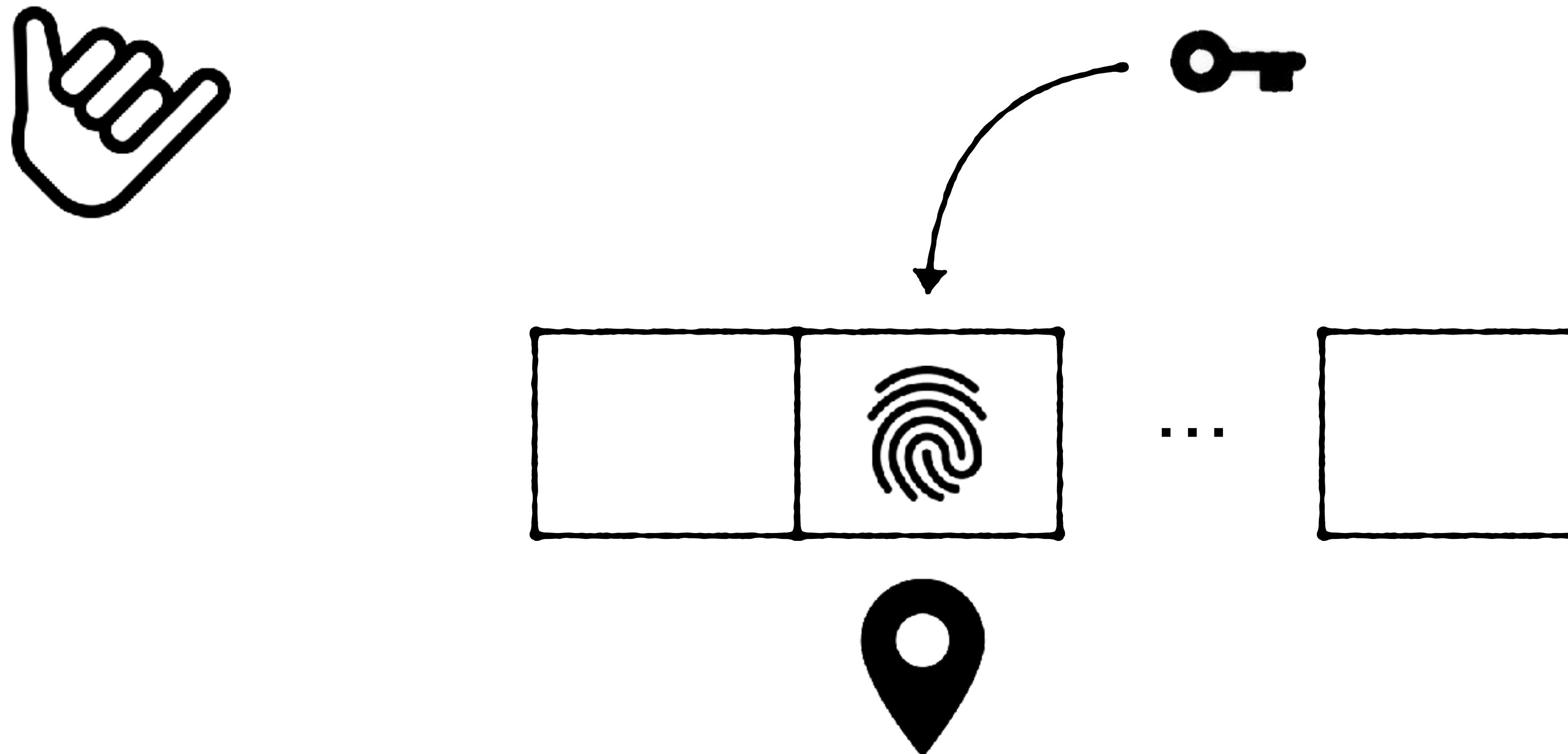
Canonical slot

Each inserted fingerprint corresponds to exactly one entry

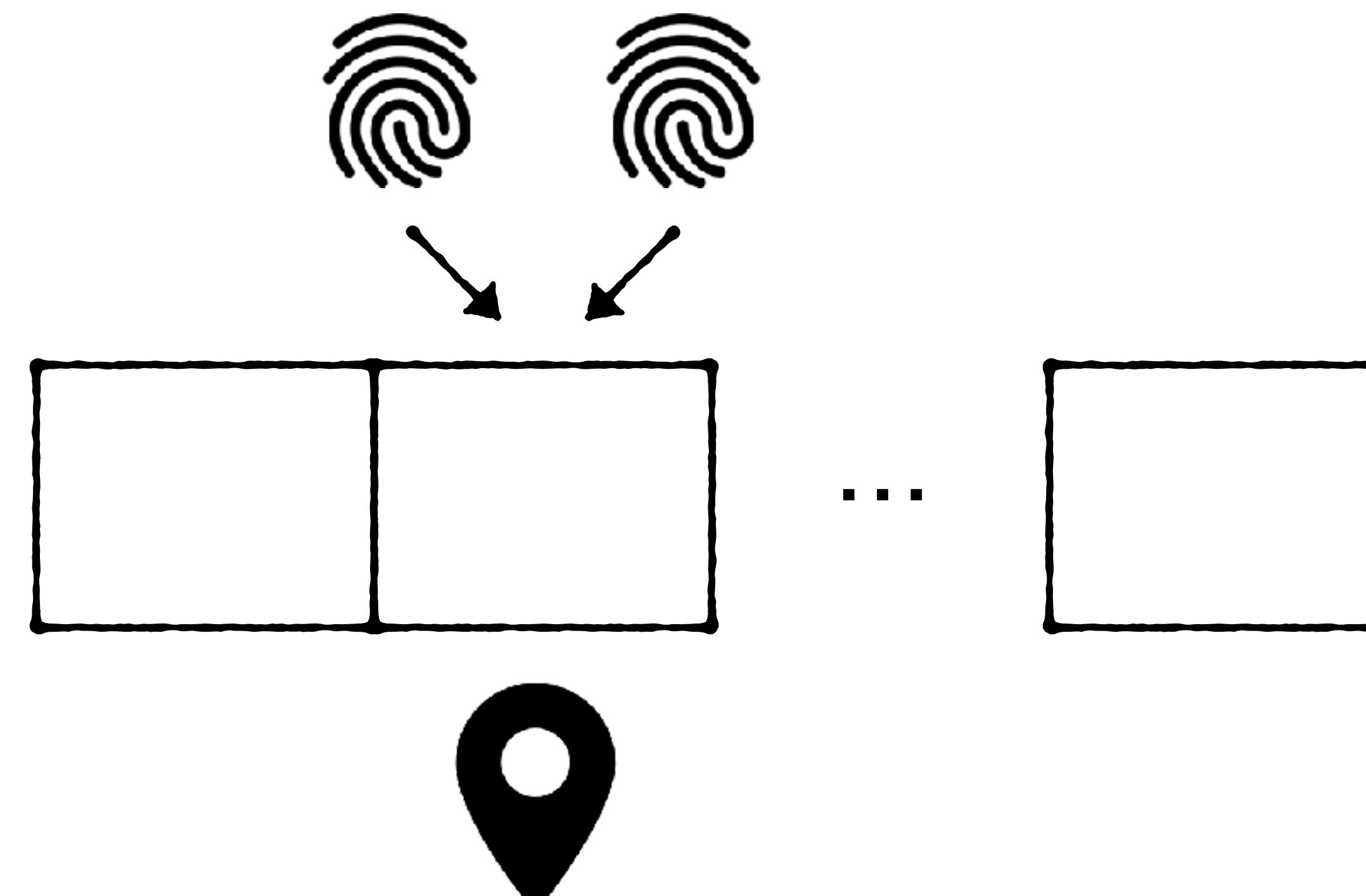


Each inserted fingerprint corresponds to exactly one entry

Removing it won't introduce false negatives for other entries

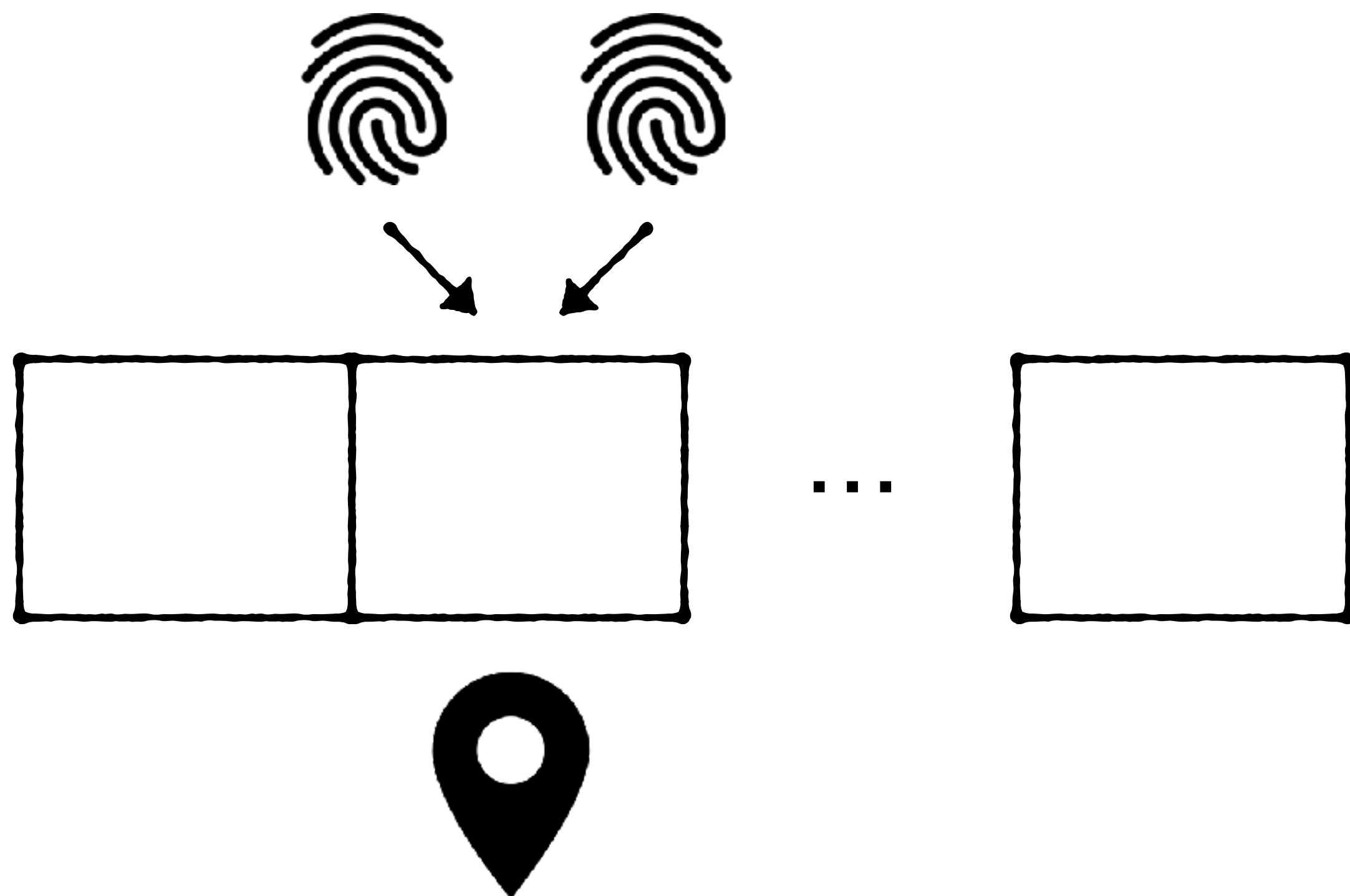


Hash collisions - multiple fingerprints map to same canonical slot



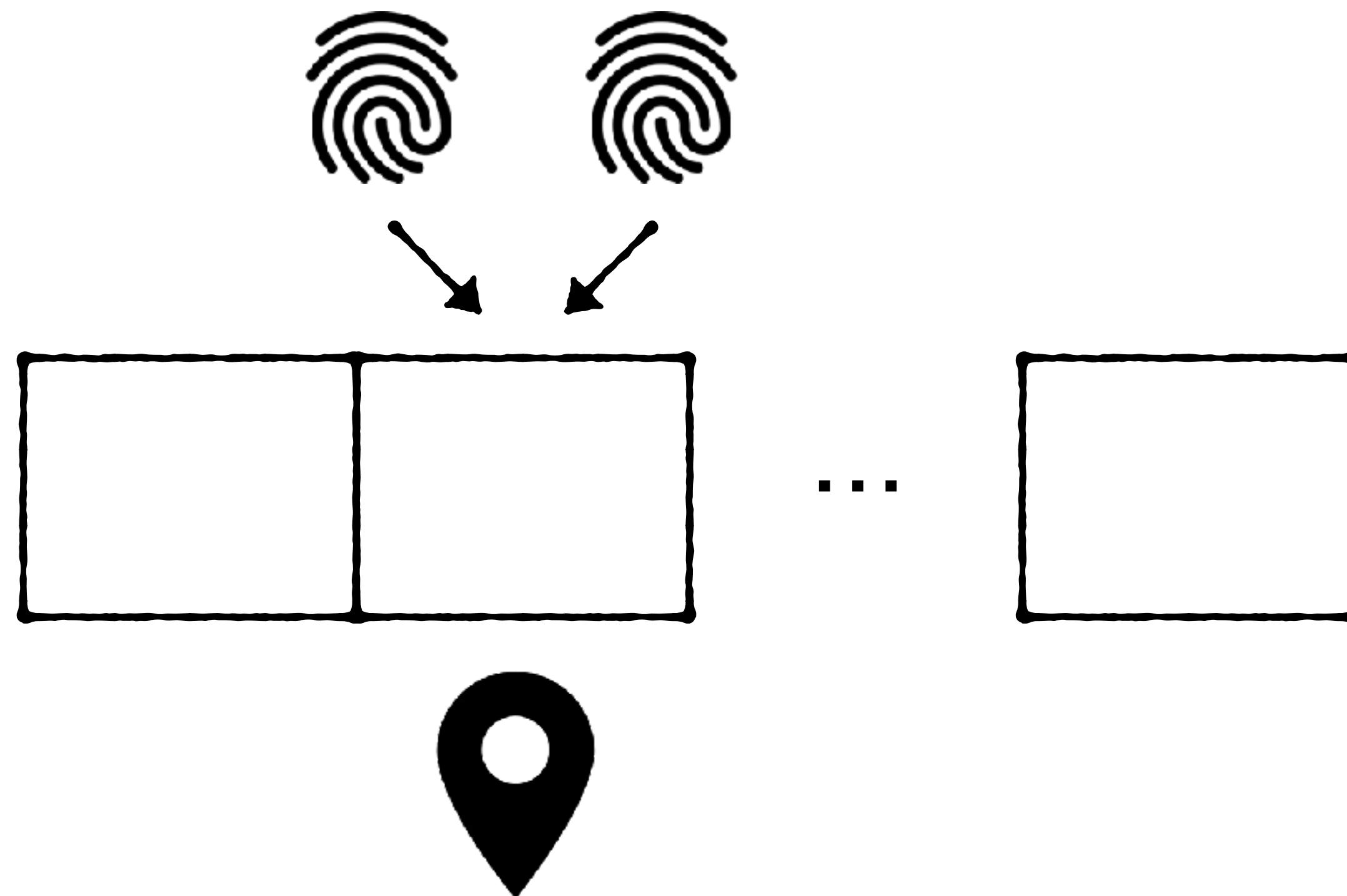
Canonical slot

Address using Robin Hood Hashing

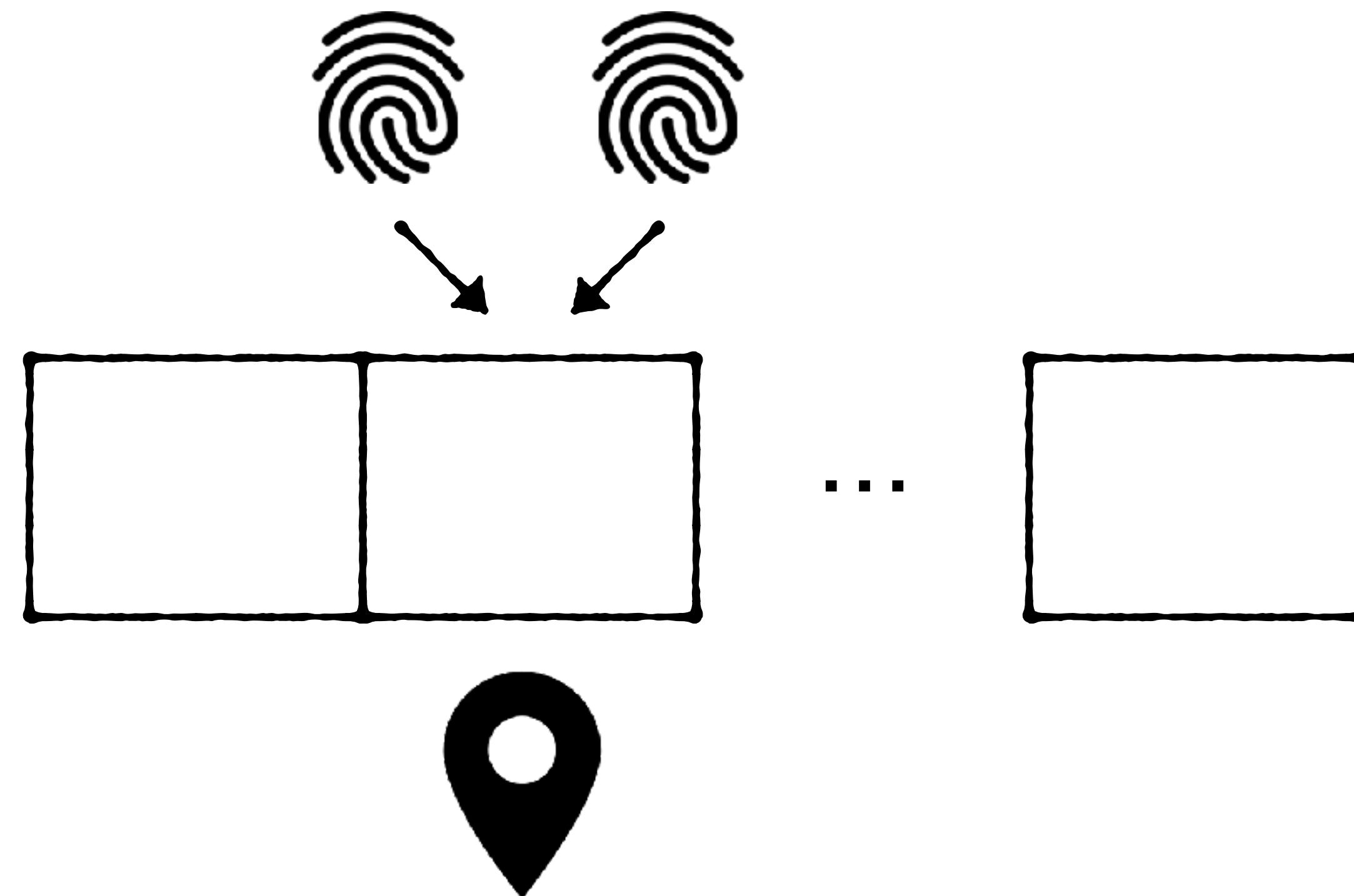


Address using Robin Hood Hashing

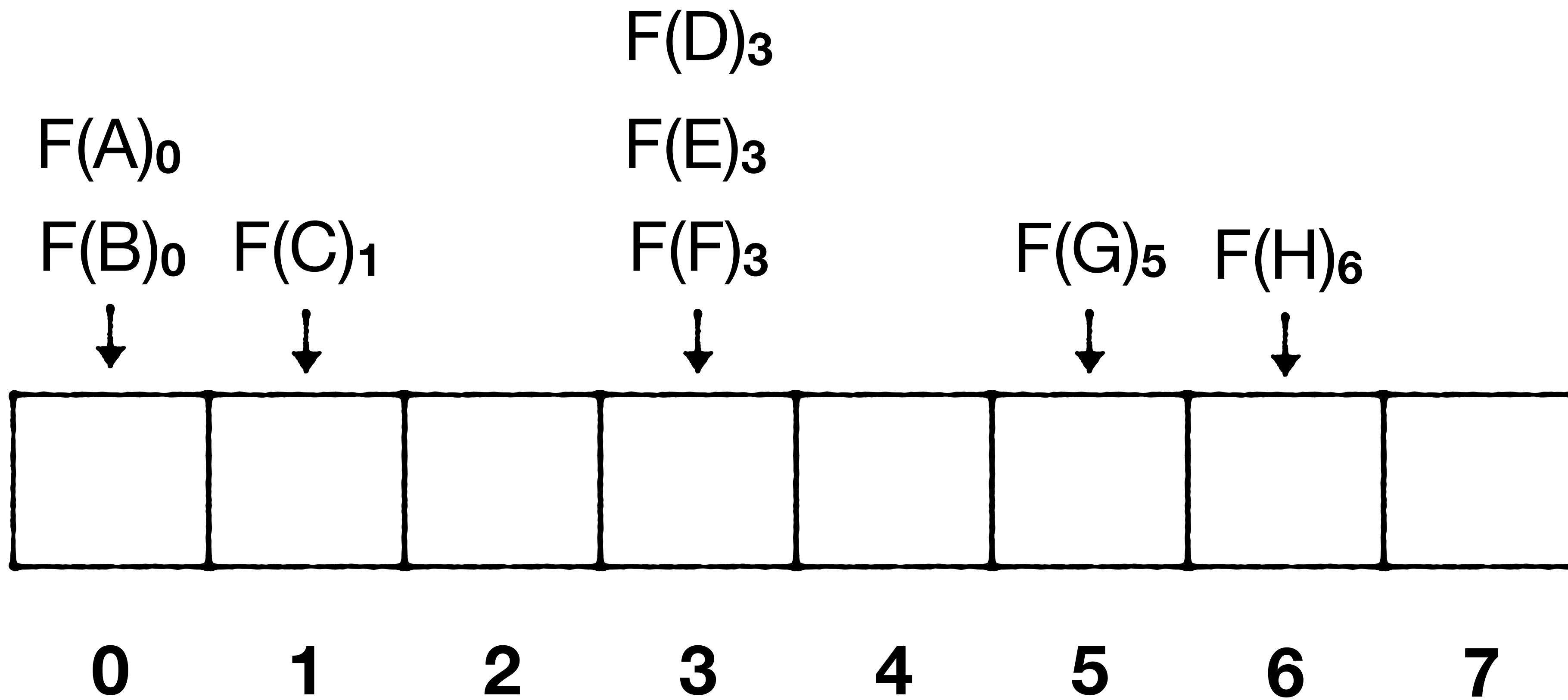
Variant of linear probing

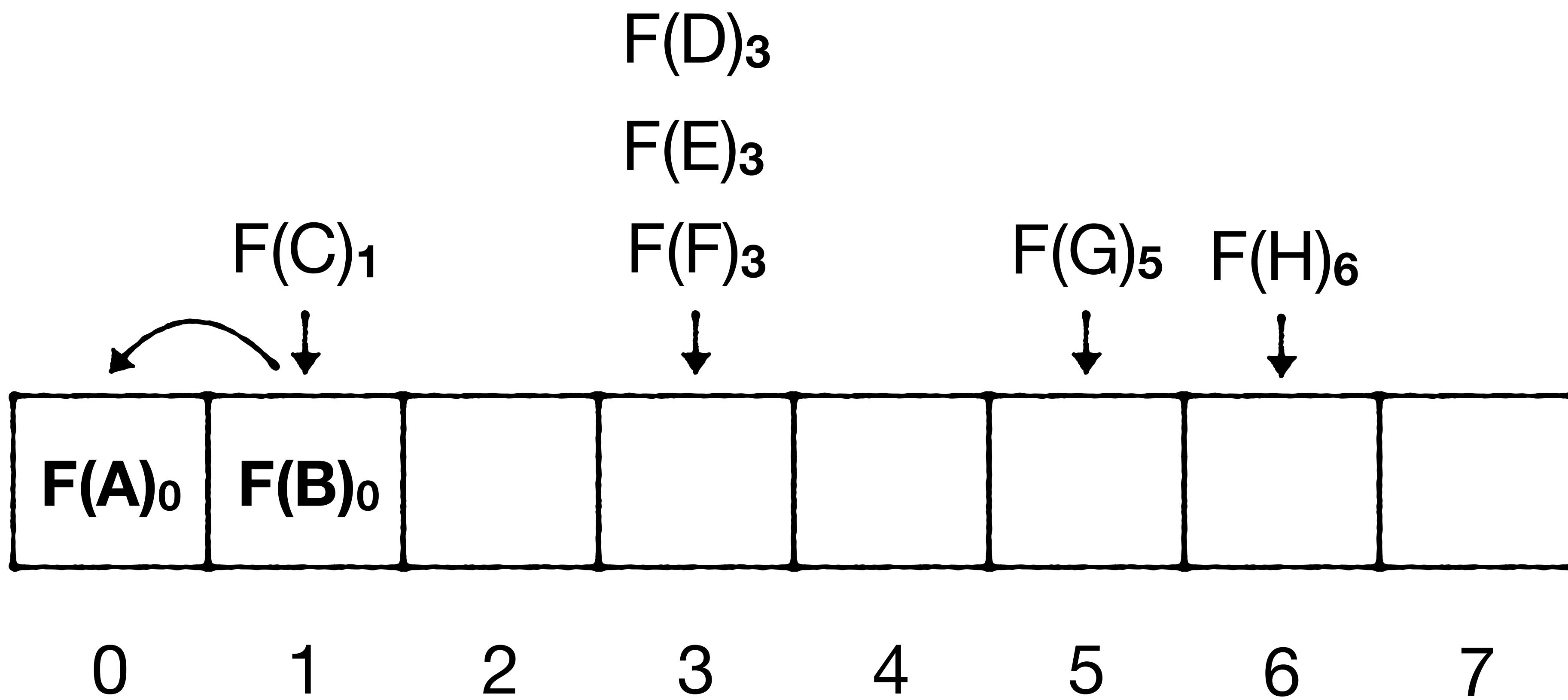


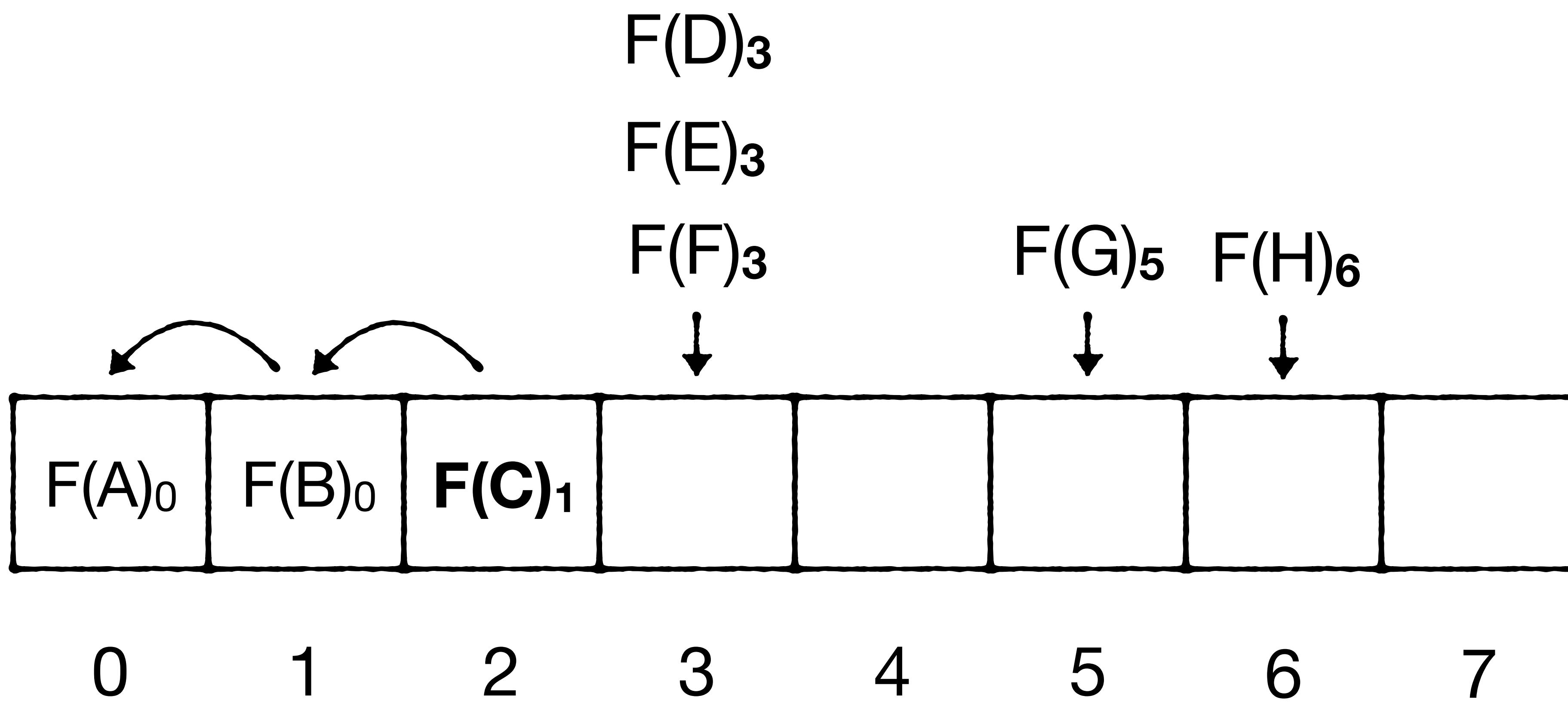
Each fingerprint is pushed rightwards yet stays as close as possible to its “canonical slot”

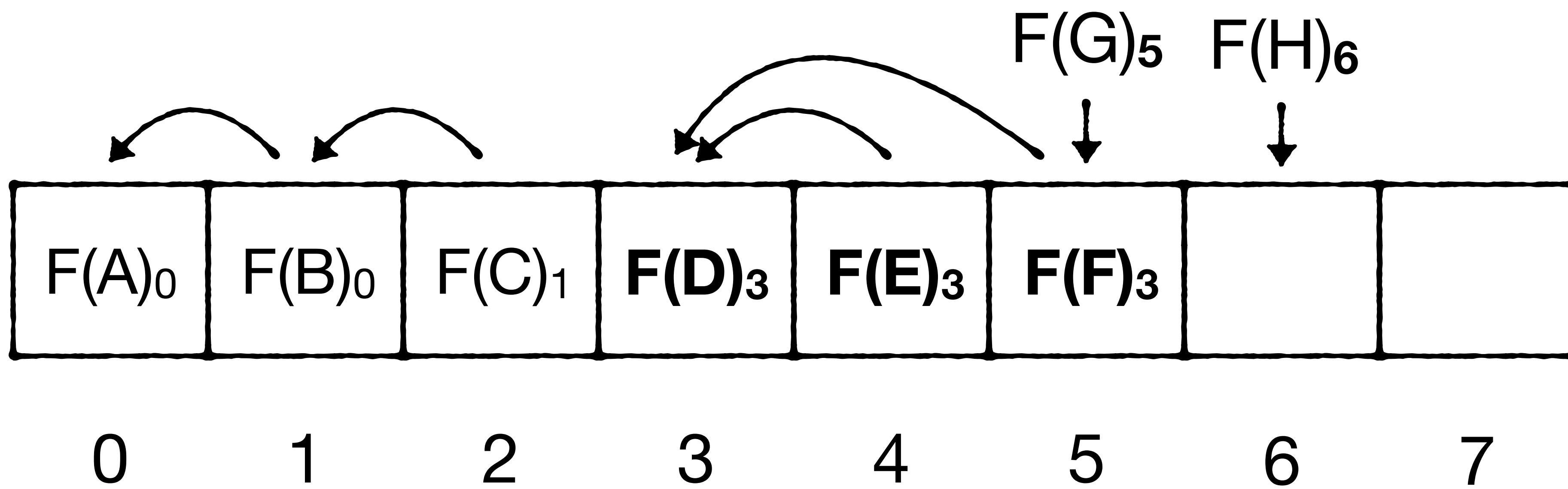


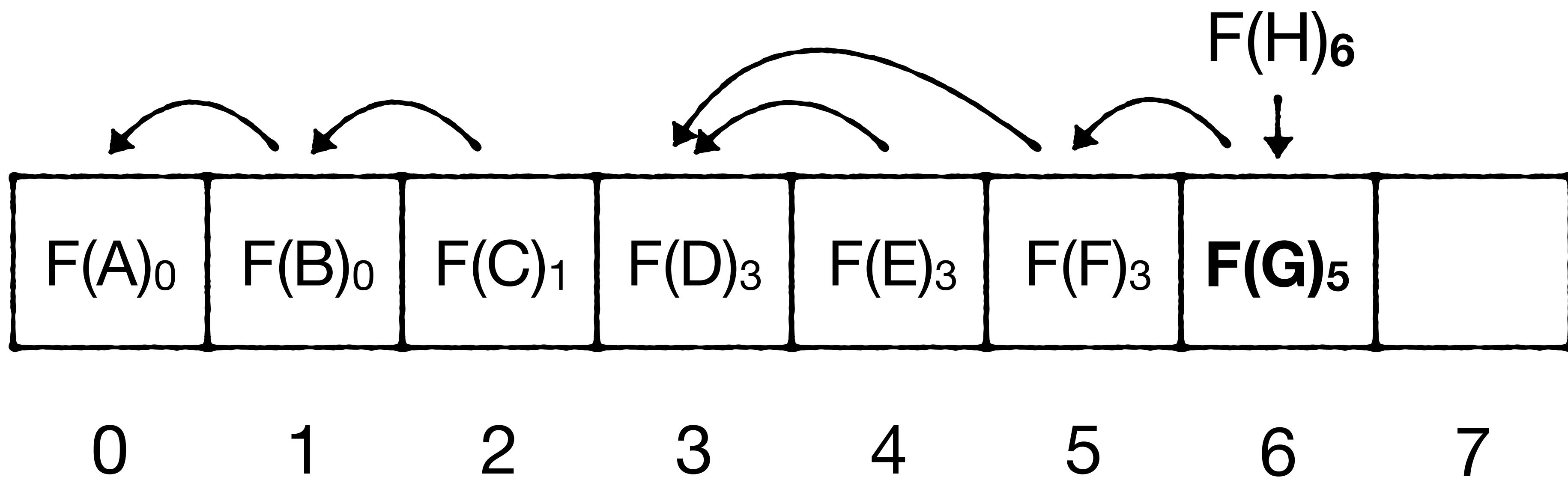
Each fingerprint is pushed rightwards yet stays as close as possible to its “canonical slot”

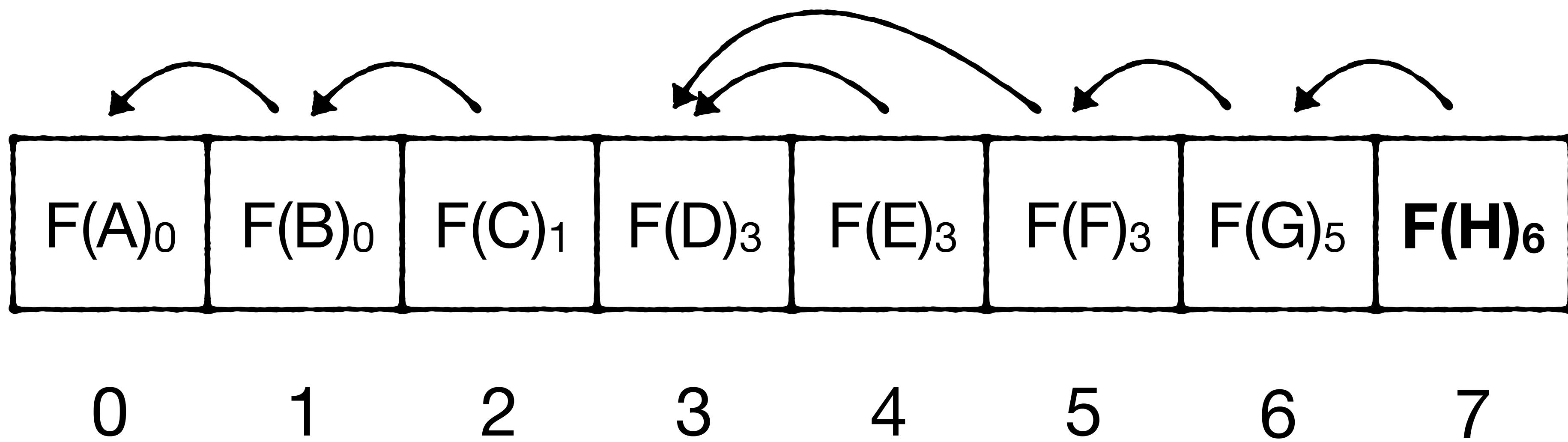




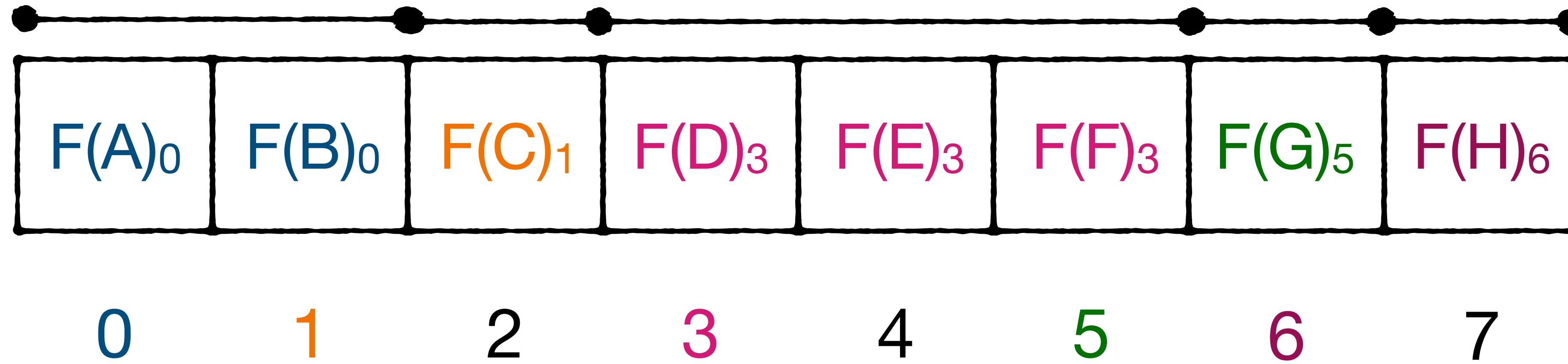




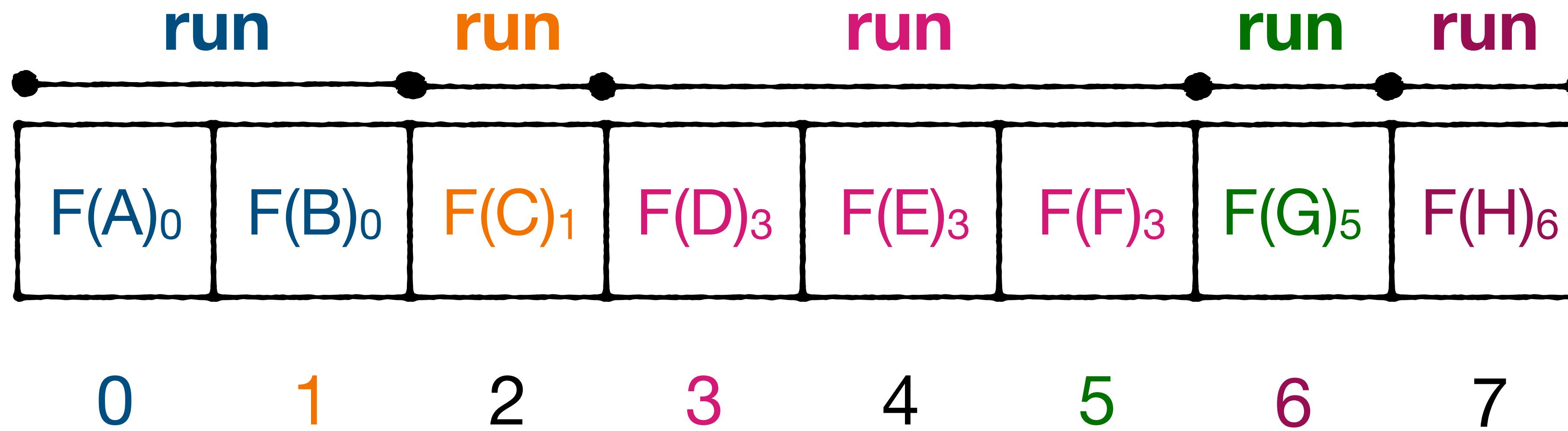




Note: fingerprints belonging to same canonical slot are contiguous



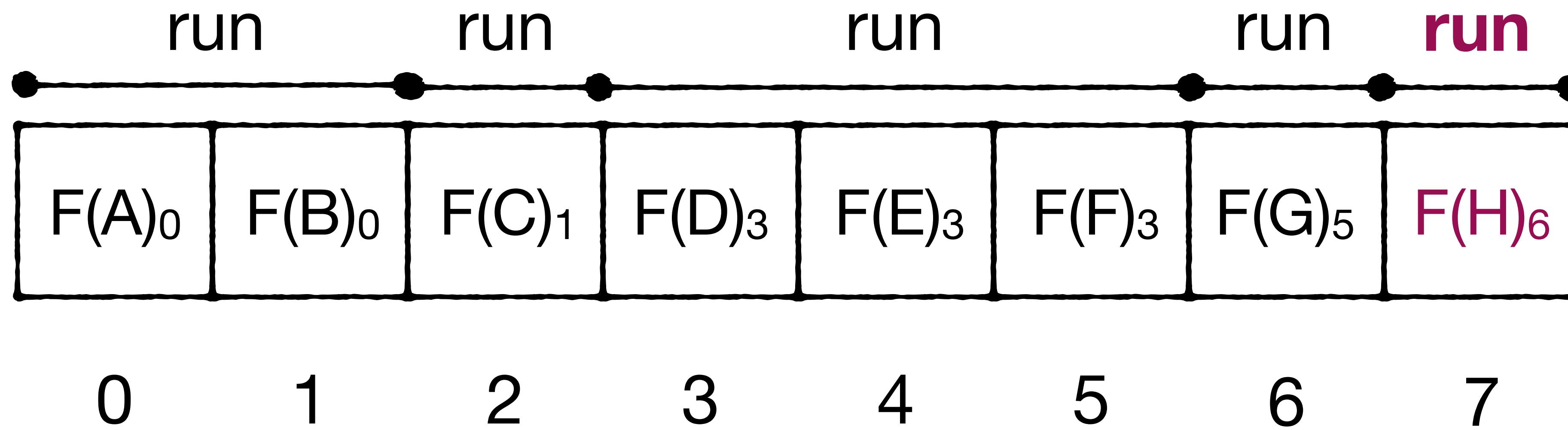
Note: fingerprints belonging to same canonical slot are contiguous



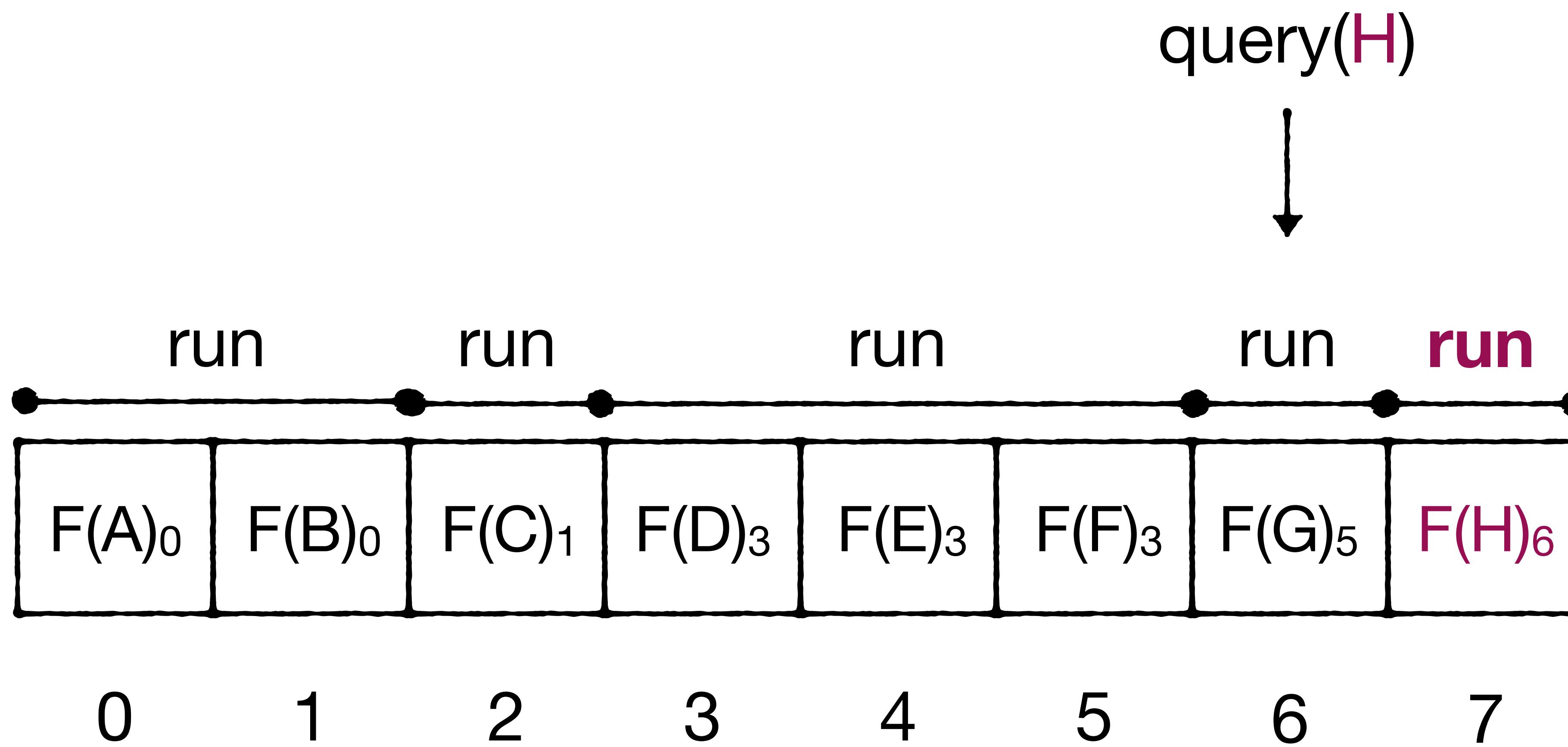
On average, each run consists of ≈ 1 slot



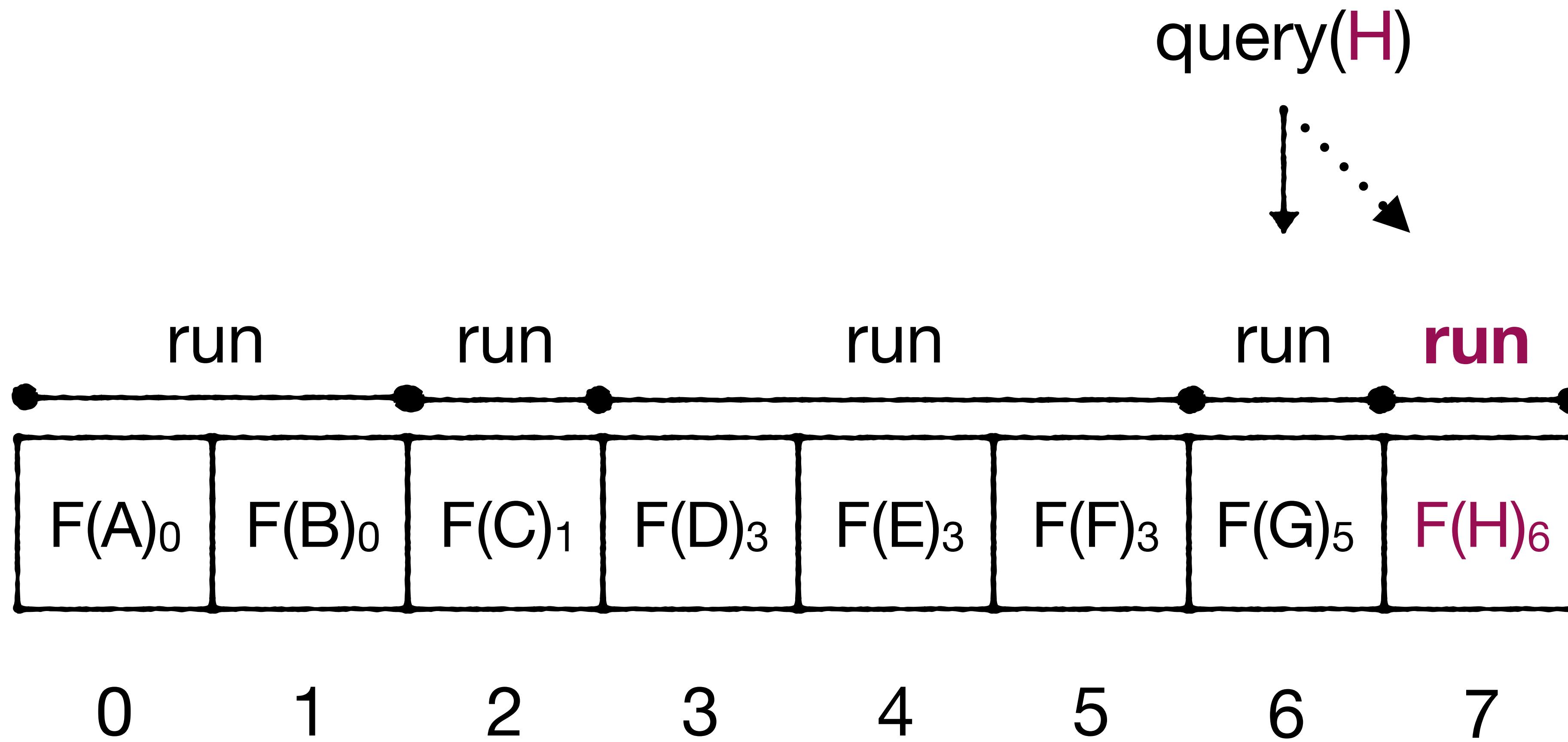
query(**H**)



Problem?



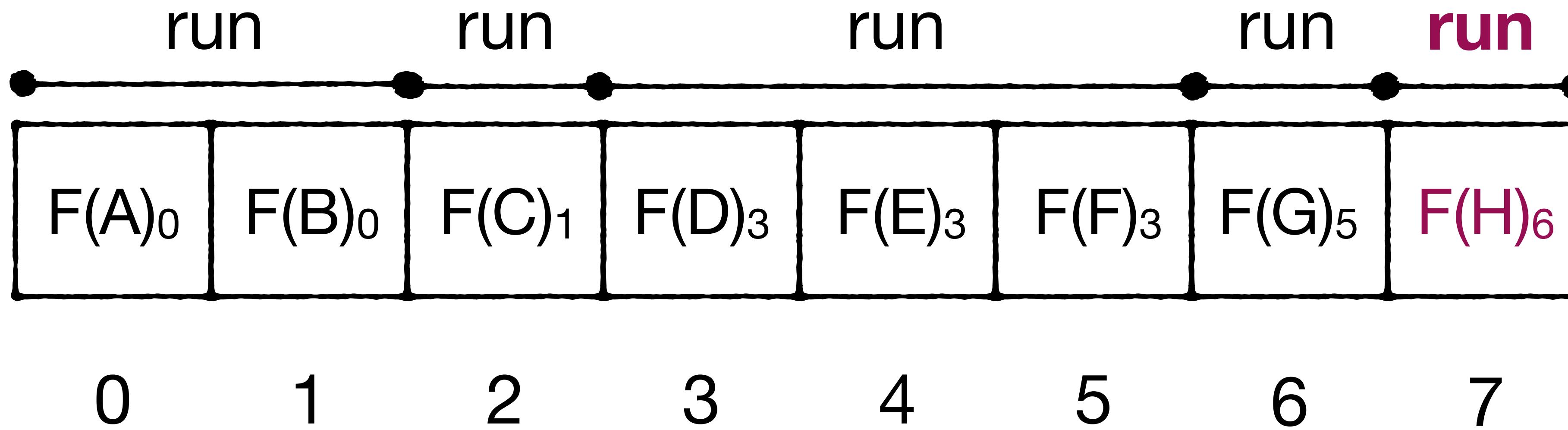
Problem? Fingerprint might have shifted to the right



Problem? Fingerprint might have shifted to the right

Solution?

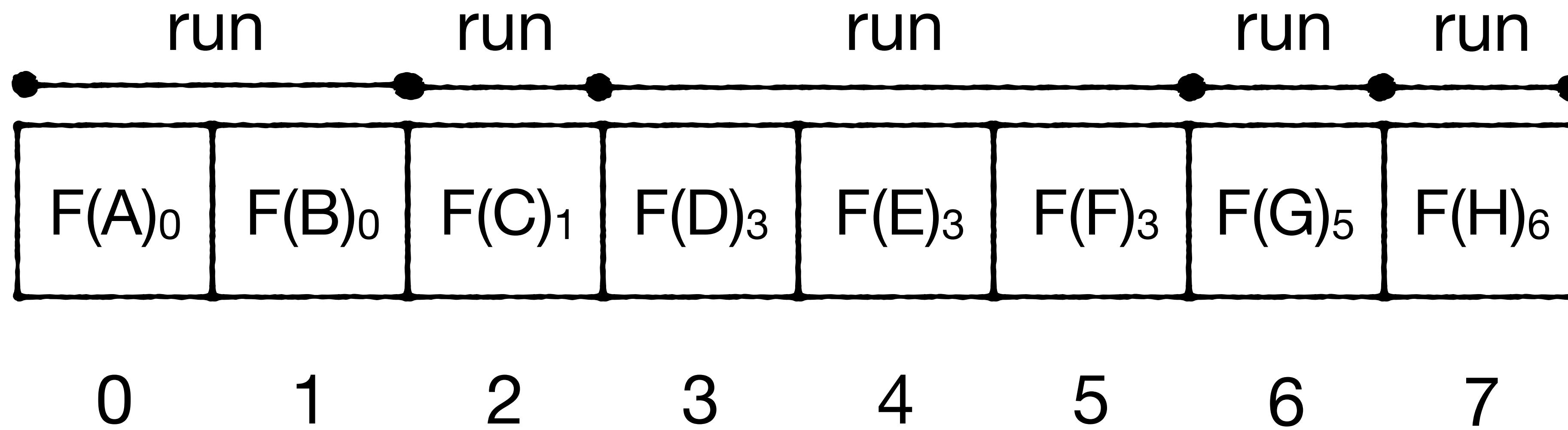
query(H)



Solution: delineate runs using 2 bitmaps

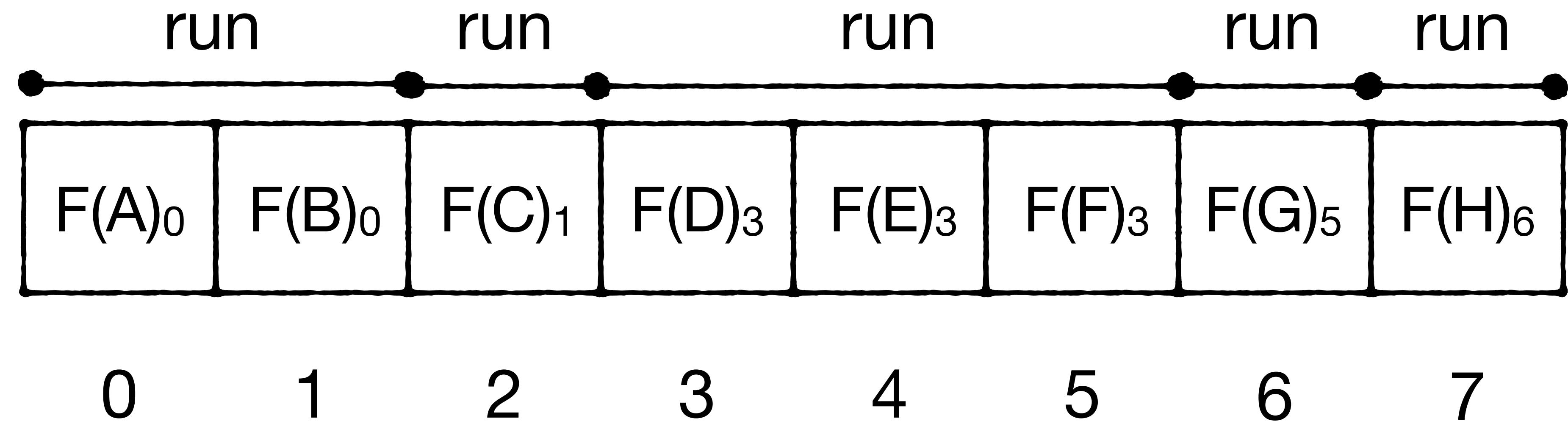
Occupied:

End:



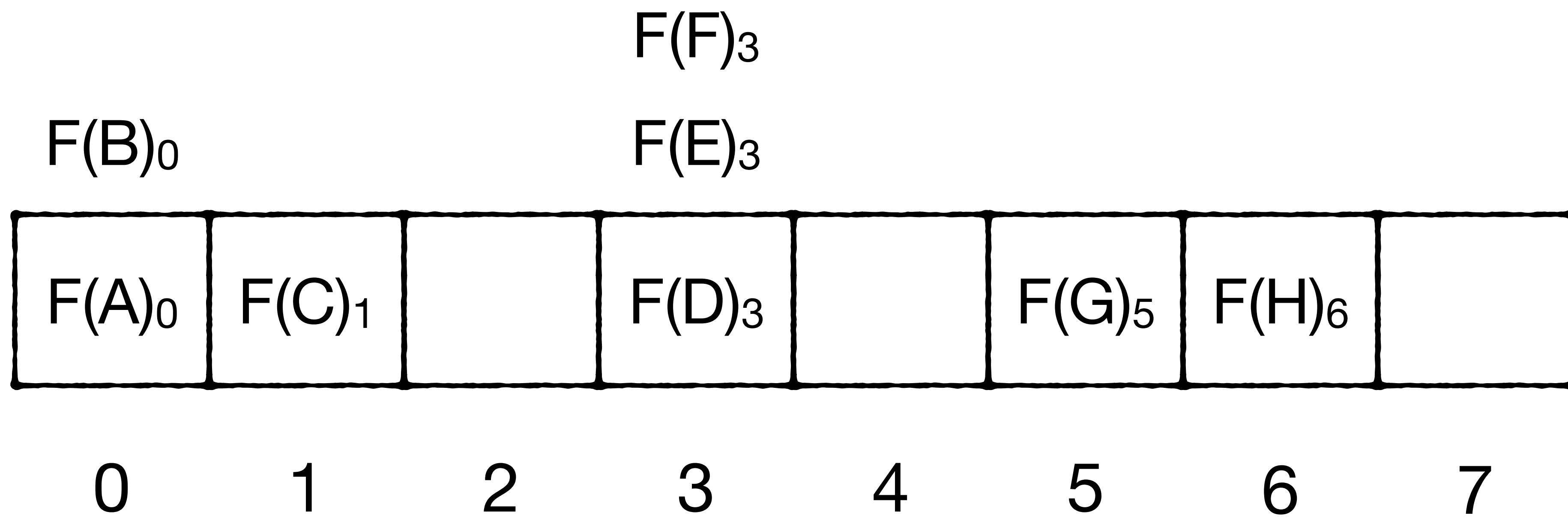
Occupied: 1 if there is a run belonging to this slot

End:

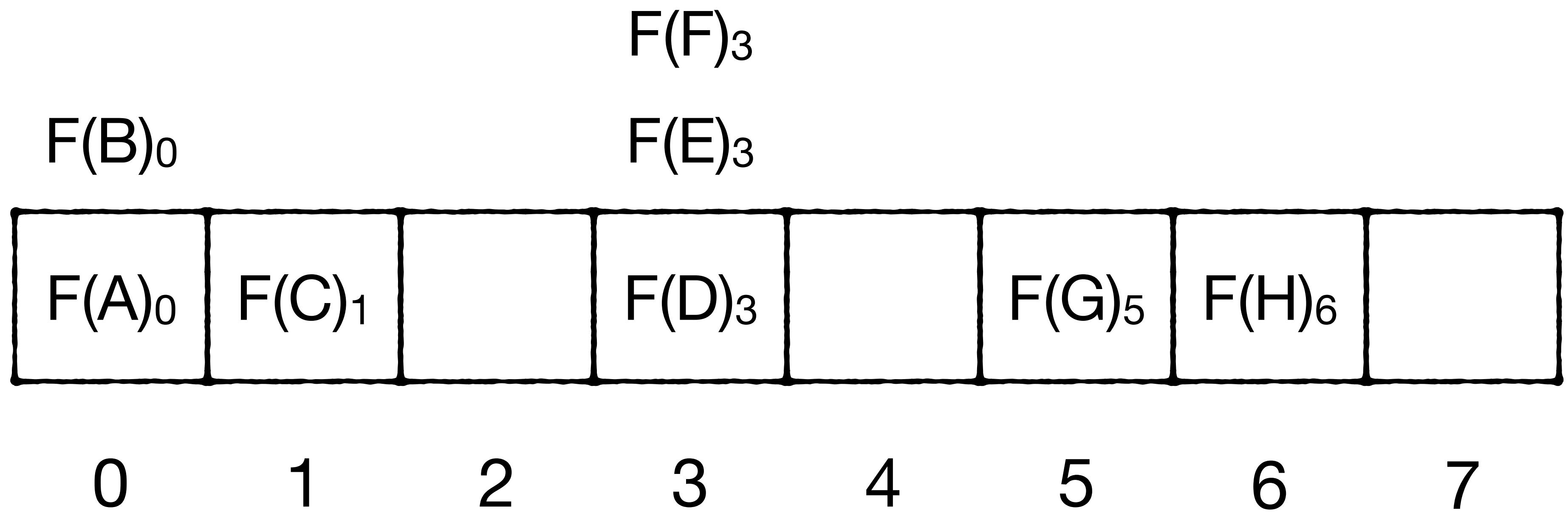


Occupied: 1 if there is a run belonging to this slot

End:



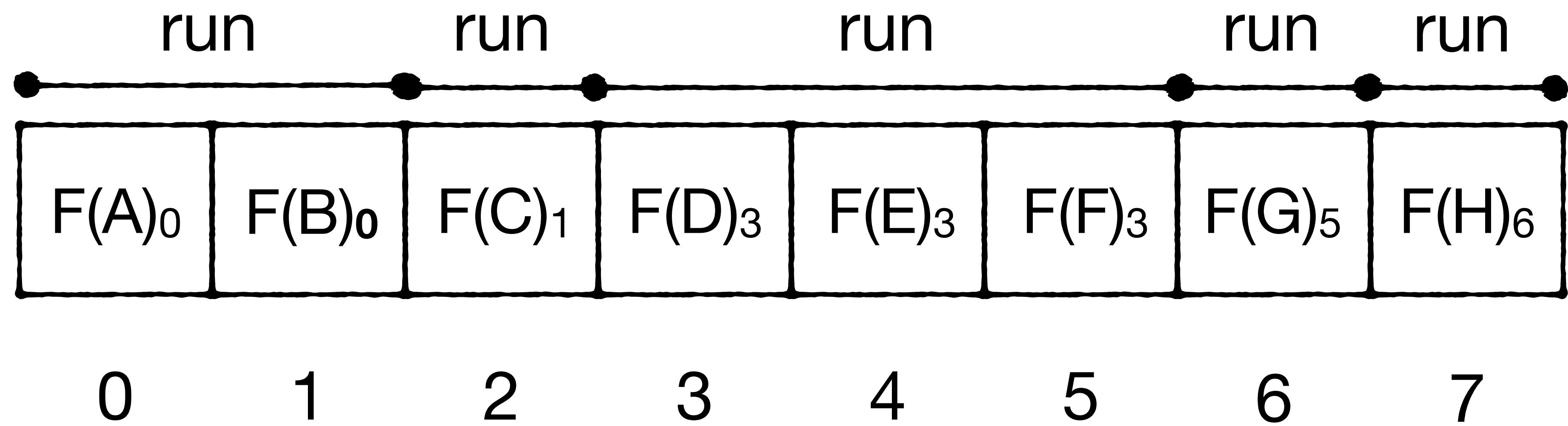
Occupied: 1 1 0 1 0 1 1 0
End:



Occupied:

1 1 0 1 0 1 1 0

End:

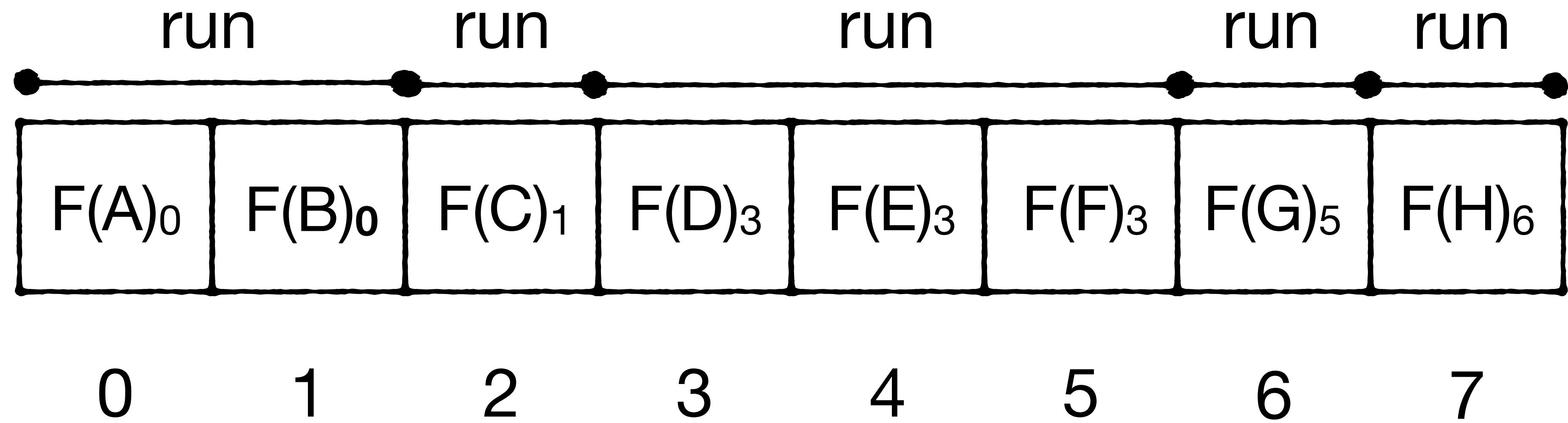


Occupied:

1 1 0 1 0 1 1 0

End:

1 for each slot where a run ends



Occupied:

1 1 0 1 0 1 1 0

End:

0 1

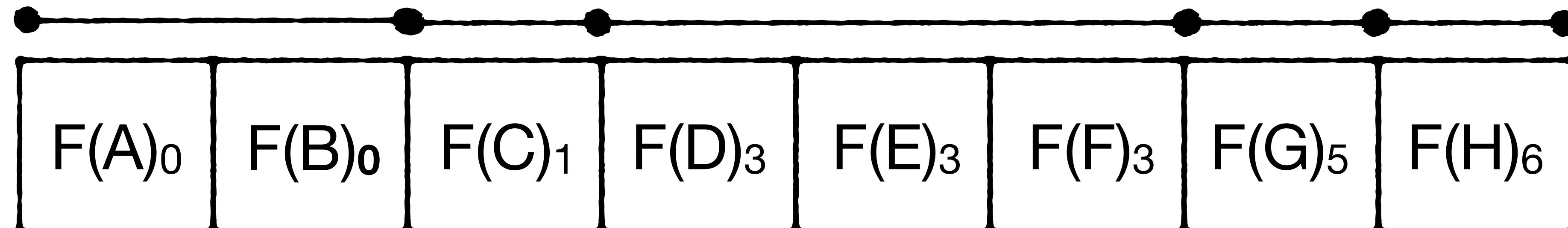
run

run

run

run

run



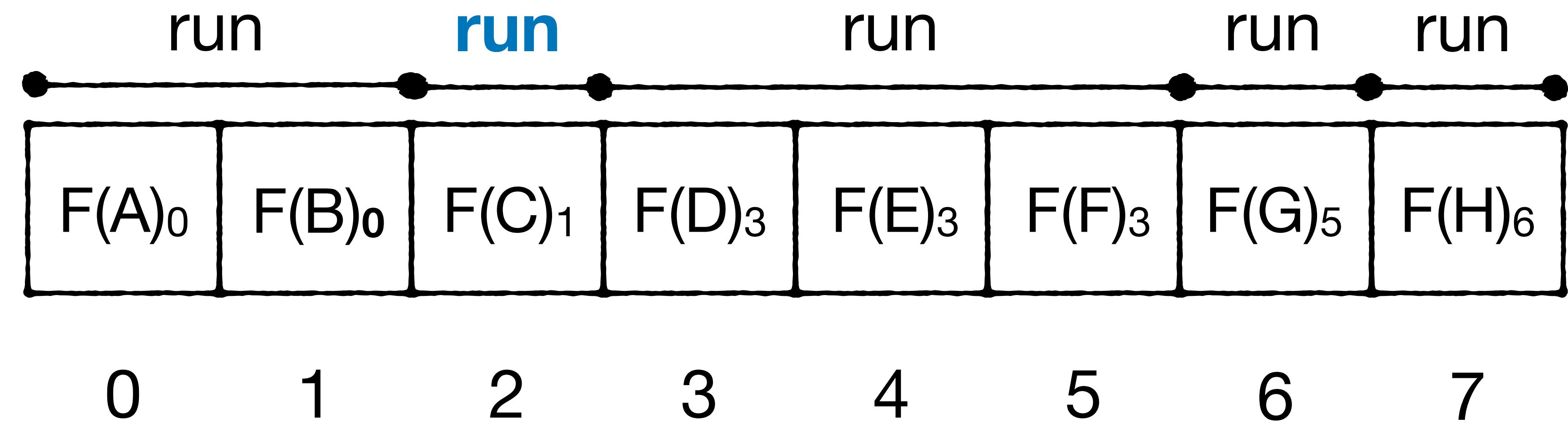
0 1 2 3 4 5 6 7

Occupied:

1 1 0 1 0 1 1 0

End:

0 1 1



Occupied:

1 1 0 1 0 1 1 0

End:

0 1 1 0 0 1

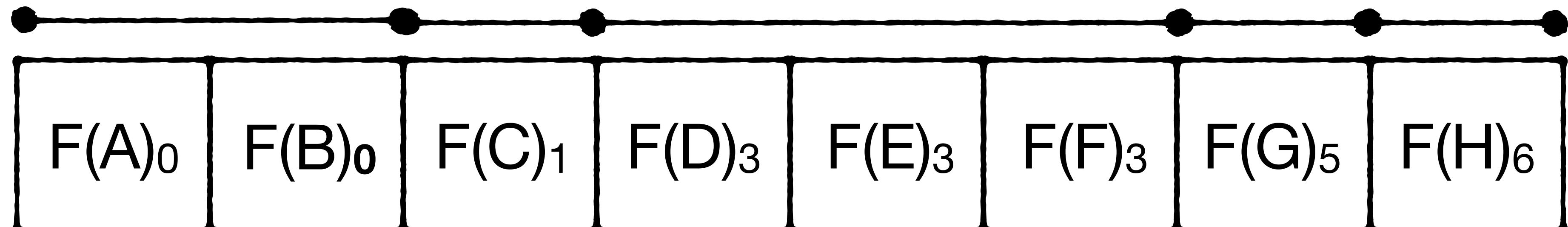
run

run

run

run

run



0

1

2

3

4

5

6

7

Occupied:

1 1 0 1 0 1 1 0

End:

0 1 1 0 0 1 1 1

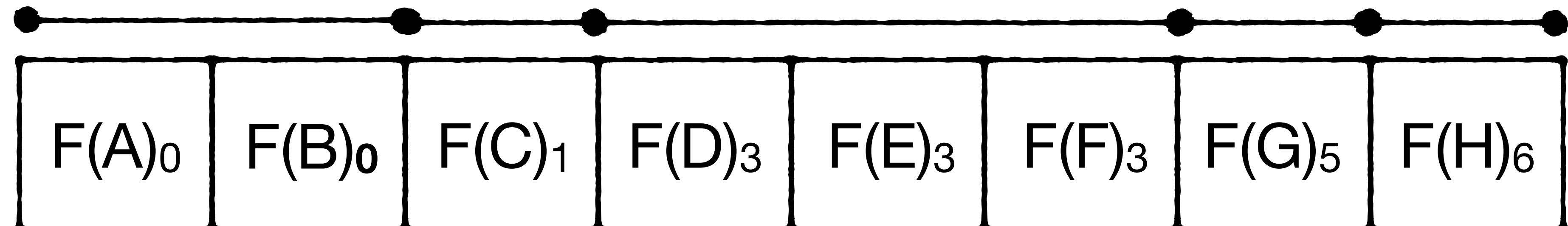
run

run

run

run

run



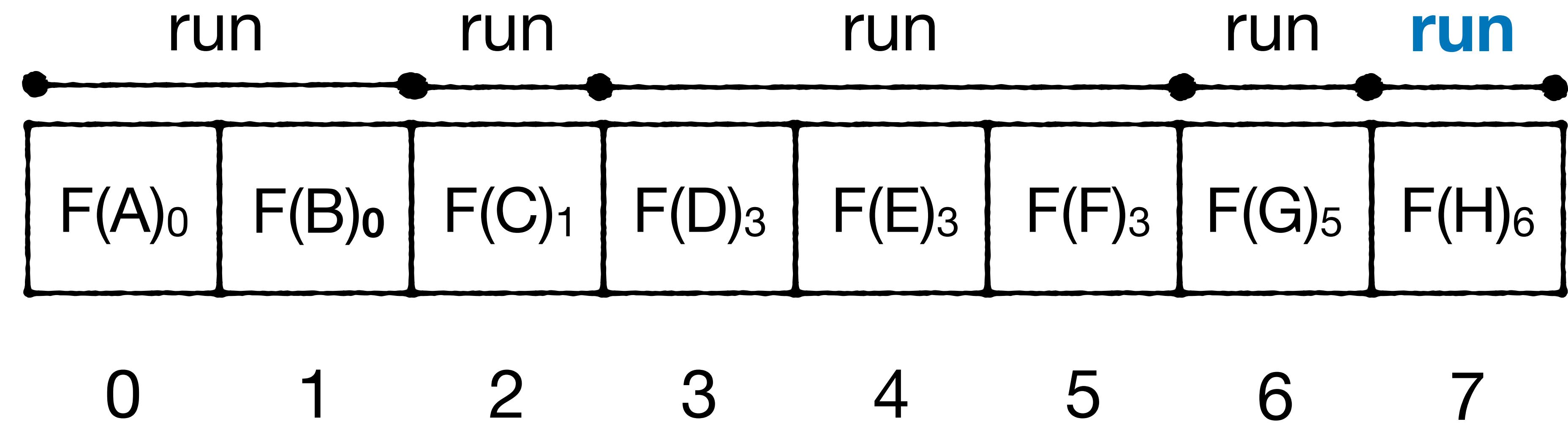
0 1 2 3 4 5 6 7

Occupied:

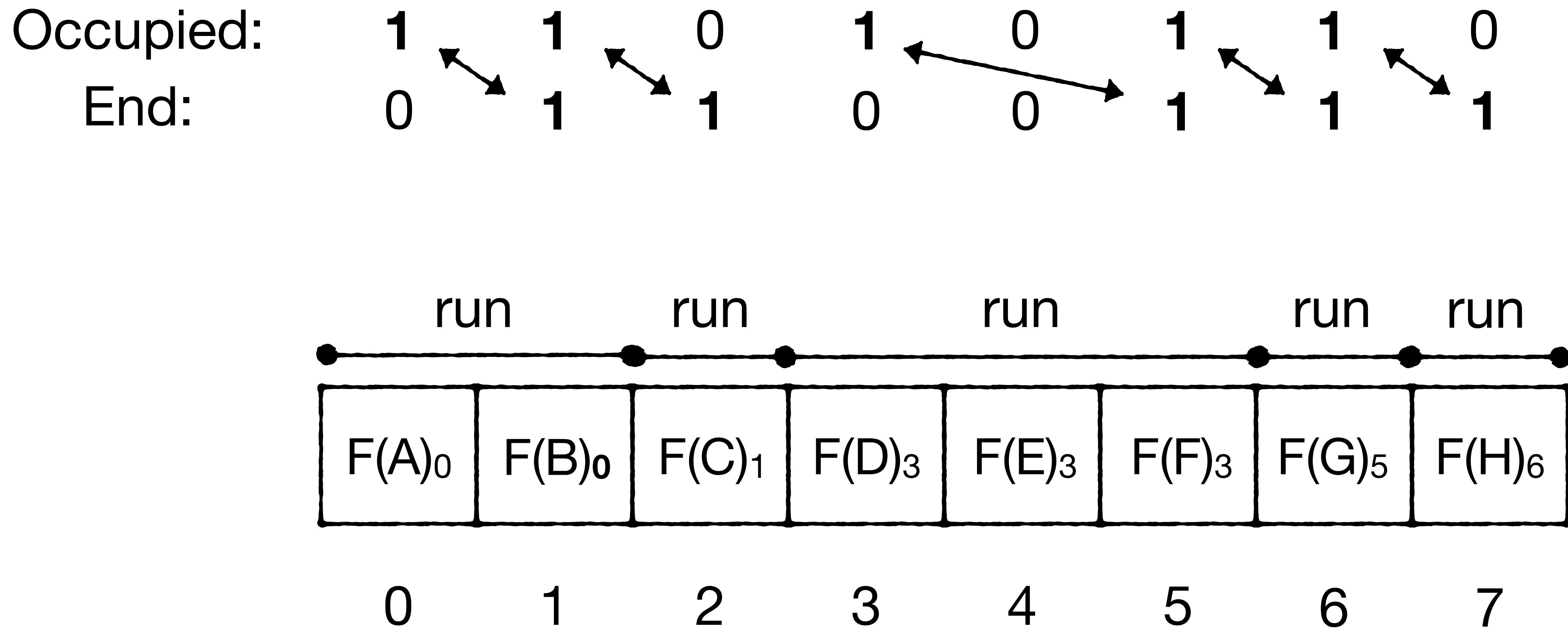
1 1 0 1 0 1 1 0

End:

0 1 1 0 0 1 1 1



i^{th} set occupied bit corresponds to i^{th} set end bit



How to query?

Occupied:	1	1	0	1	0	1	1	0
End:	0	1	1	0	0	1	1	1
	$F(A)_0$	$F(B)_0$	$F(C)_1$	$F(D)_3$	$F(E)_3$	$F(F)_3$	$F(G)_5$	$F(H)_6$

0 1 2 3 4 5 6 7

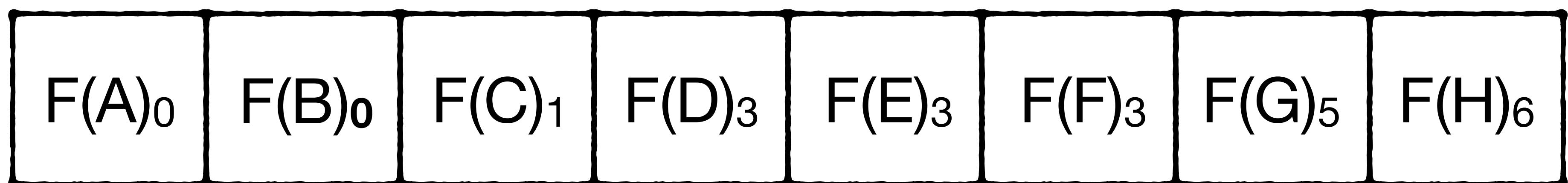
get(Z)

Occupied:

1 1 0 1 0 1 1 0

End:

0 1 1 0 0 1 1 1



0 1 2 3 4 5 6 7

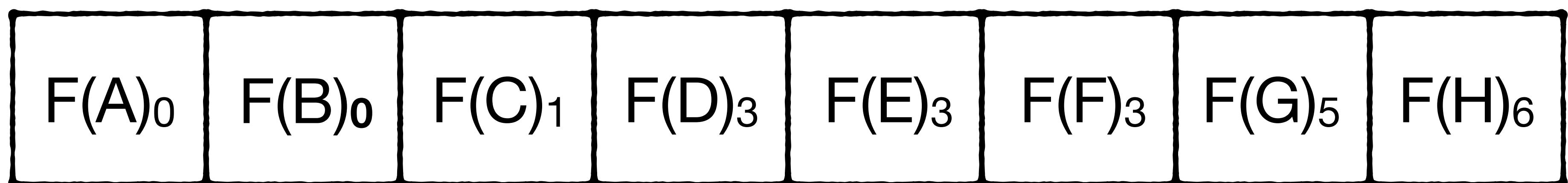
get(Z) return negative

Occupied:

1	1	0	1	0	1	1	0
---	---	---	---	---	---	---	---

End:

0	1	1	0	0	1	1	1
---	---	---	---	---	---	---	---



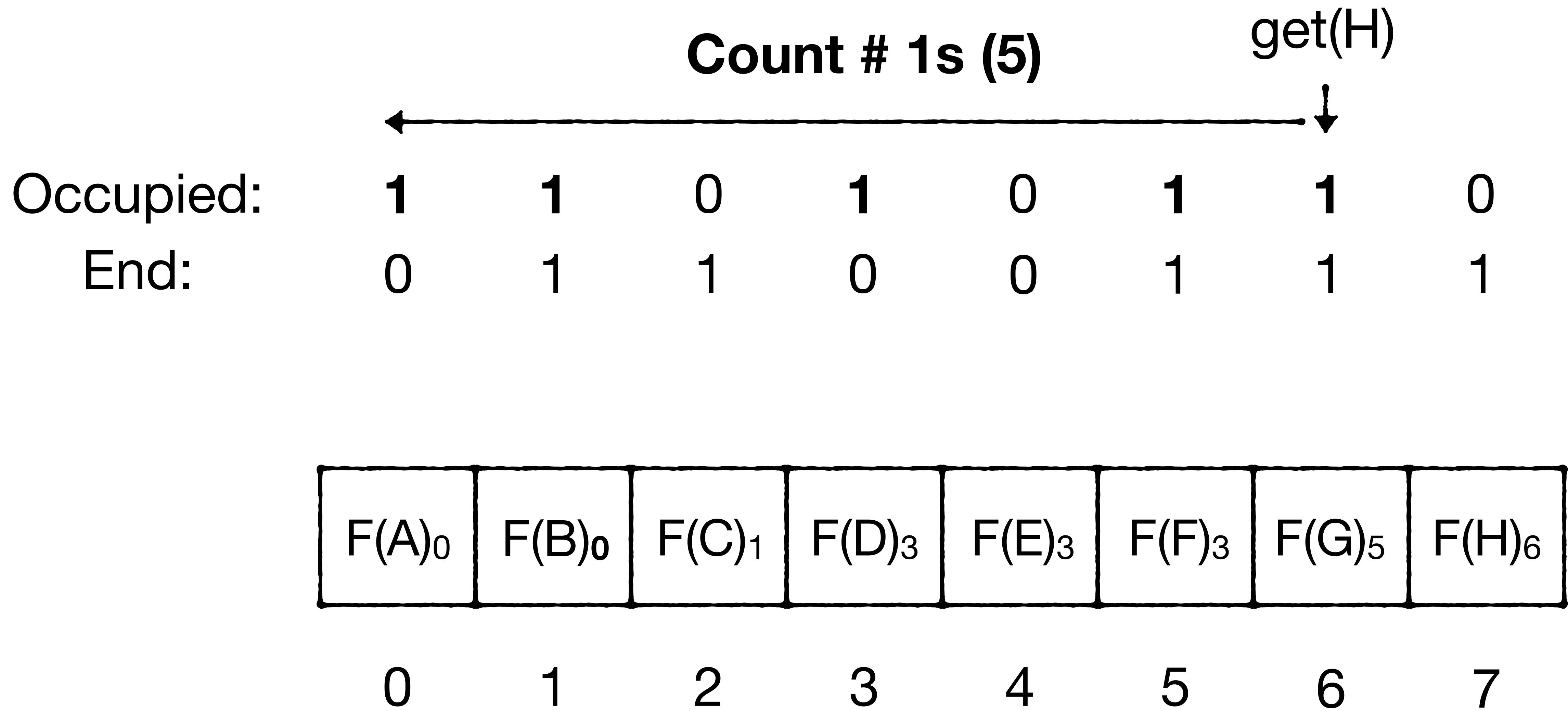
0 1 2 3 4 5 6 7

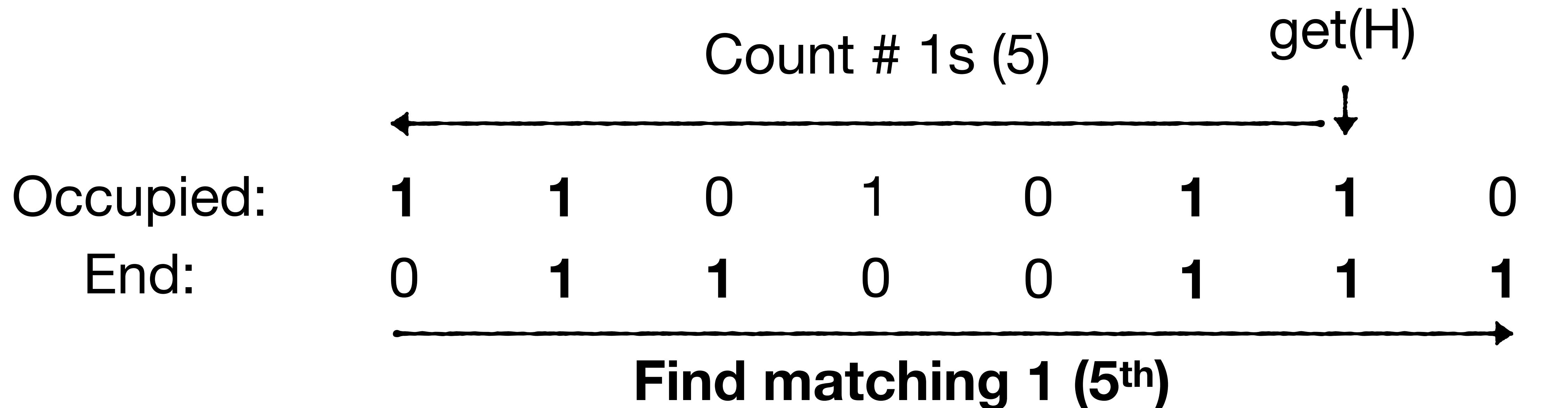
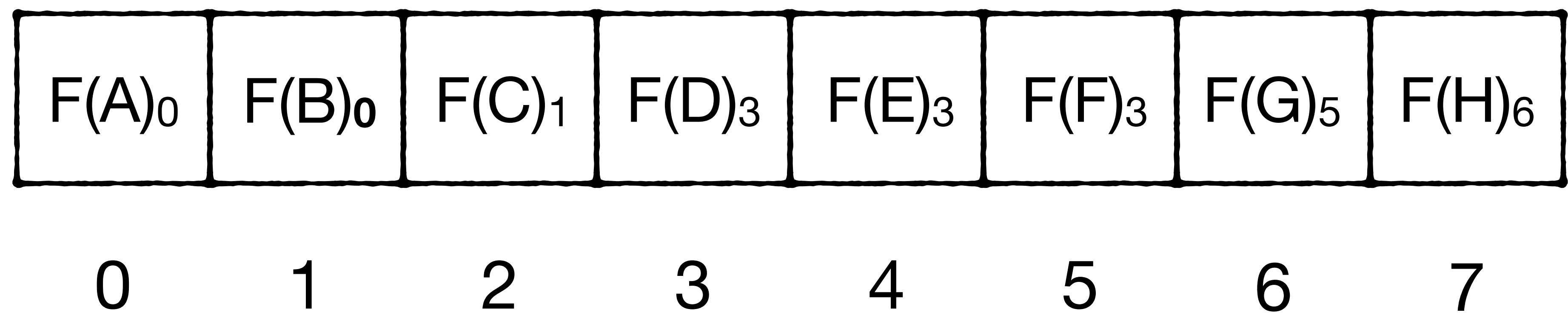
get(H)
↓

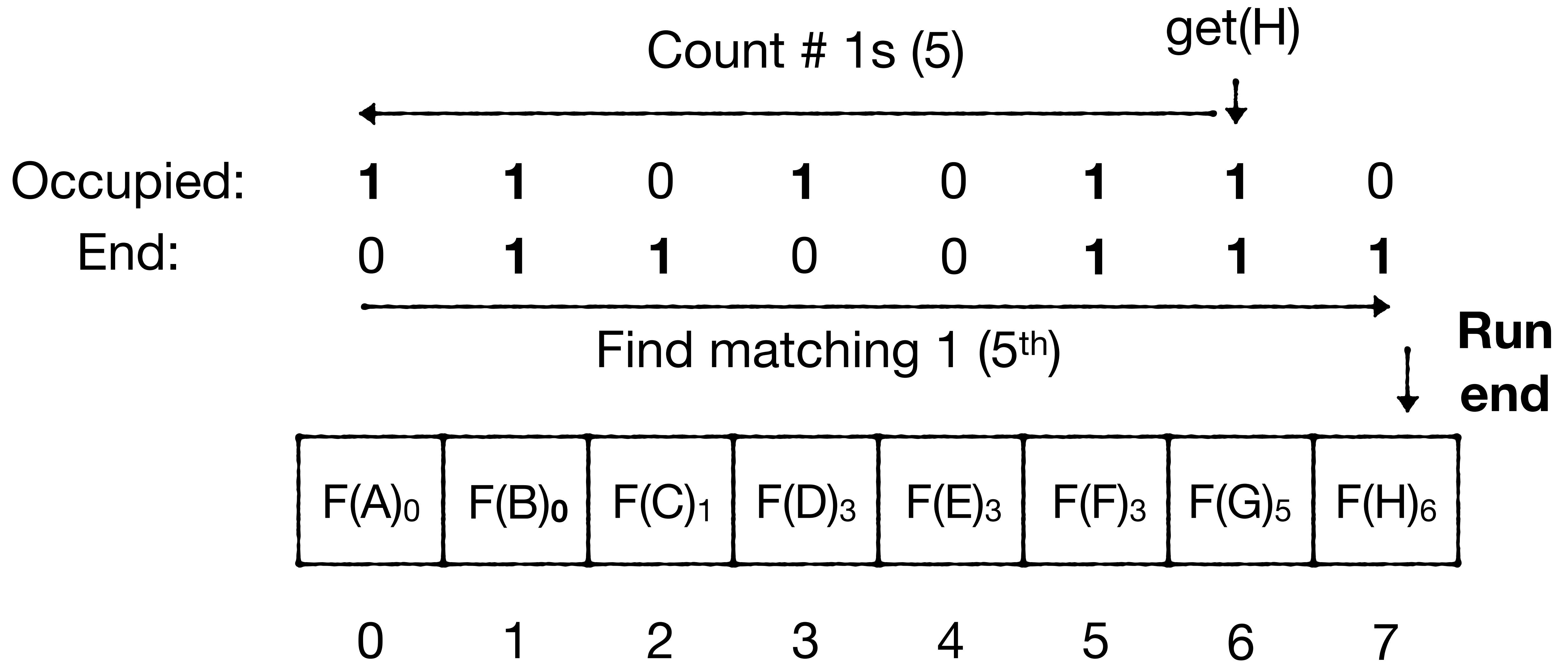
Occupied:	1	1	0	1	0	1	1	0
End:	0	1	1	0	0	1	1	1

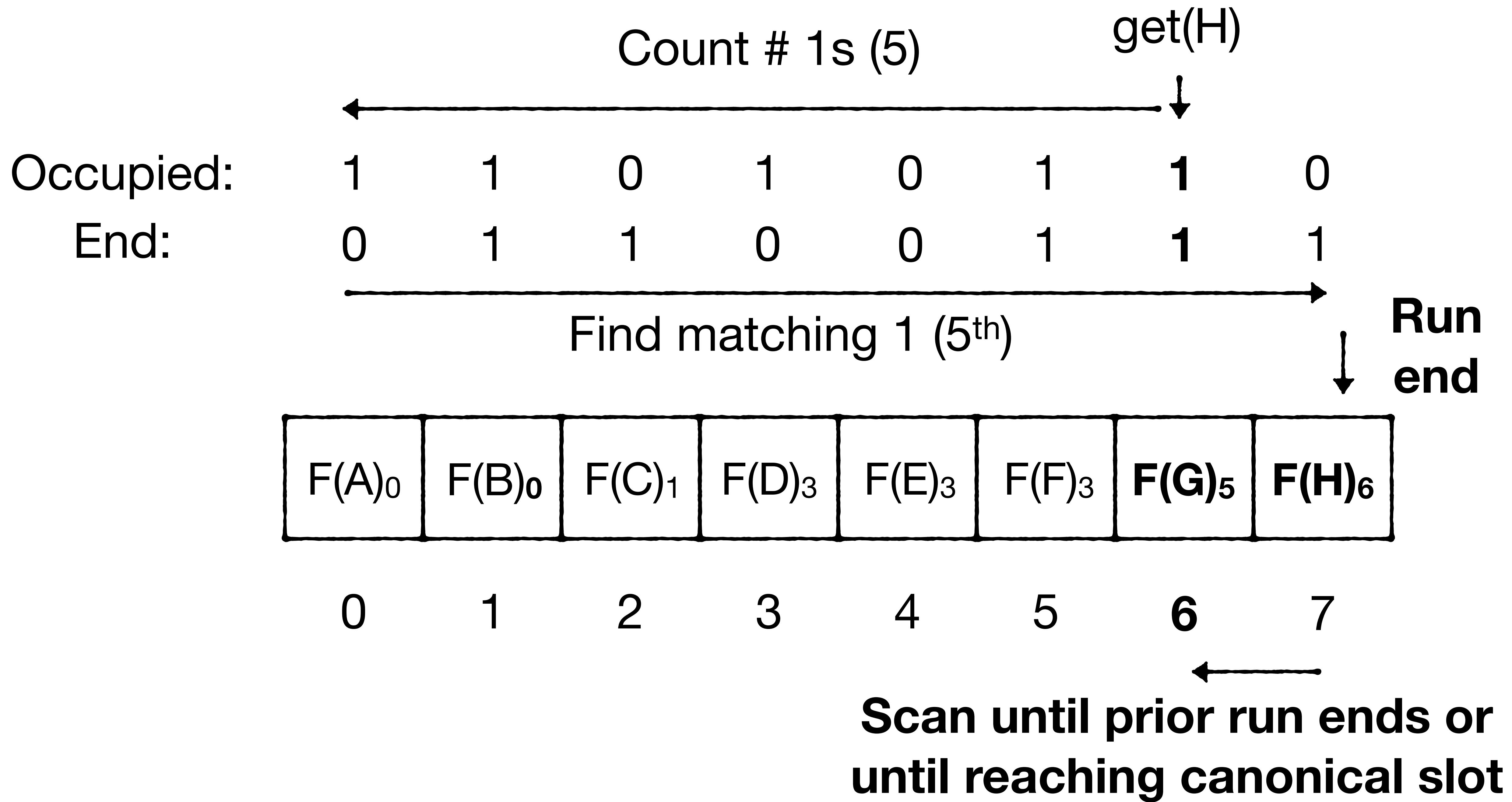
$F(A)_0$ $F(B)_0$ $F(C)_1$ $F(D)_3$ $F(E)_3$ $F(F)_3$ $F(G)_5$ $F(H)_6$

0 1 2 3 4 5 6 7









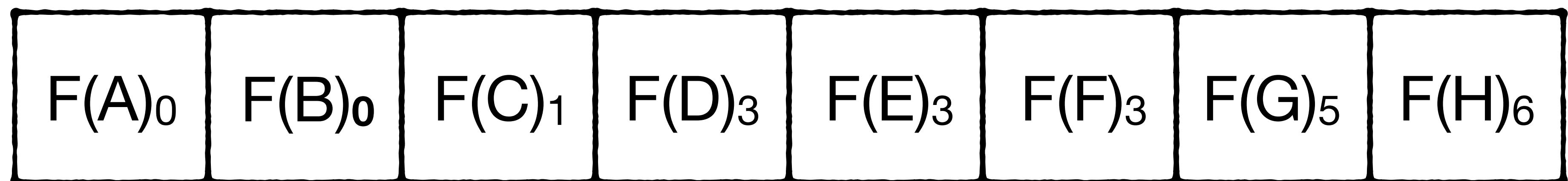
Can handle queries :)

Occupied:

1	1	0	1	0	1	1	0
---	---	---	---	---	---	---	---

End:

0	1	1	0	0	1	1	1
---	---	---	---	---	---	---	---



0 1 2 3 4 5 6 7

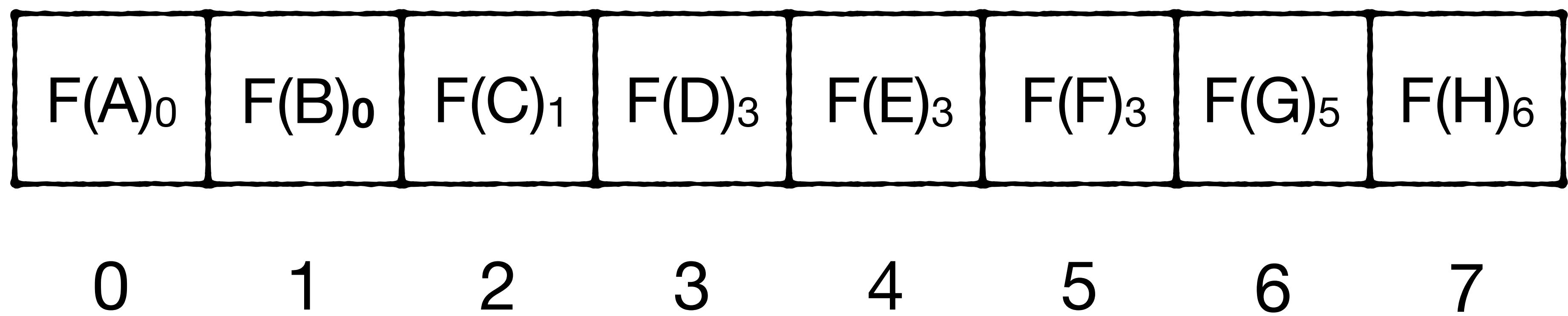
Can handle queries :) problem?

Occupied:

1	1	0	1	0	1	1	0
---	---	---	---	---	---	---	---

End:

0	1	1	0	0	1	1	1
---	---	---	---	---	---	---	---



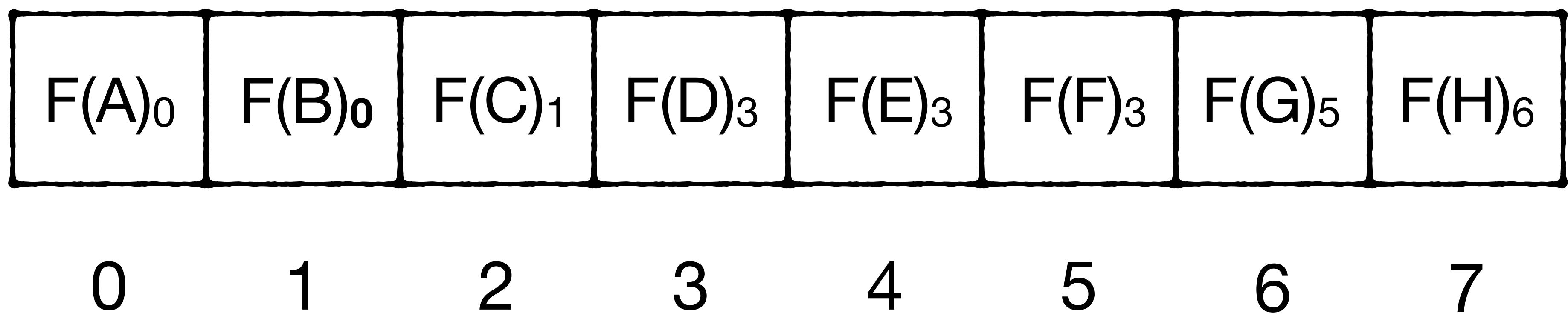
Scanning bitmaps takes $O(N)$

Occupied:

1	1	0	1	0	1	1	0
---	---	---	---	---	---	---	---

End:

0	1	1	0	0	1	1	1
---	---	---	---	---	---	---	---



Scanning bitmaps takes $O(N)$

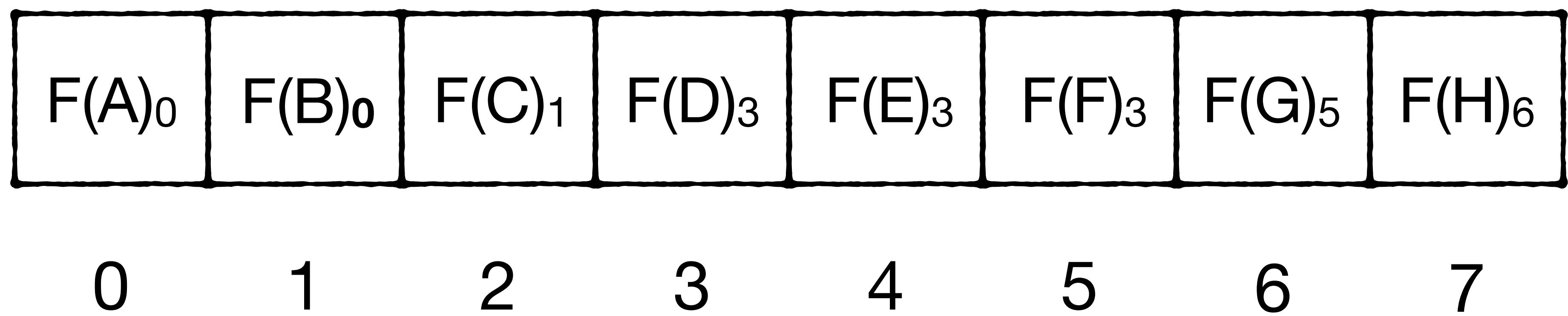
Ideas?

Occupied:

1	1	0	1	0	1	1	0
---	---	---	---	---	---	---	---

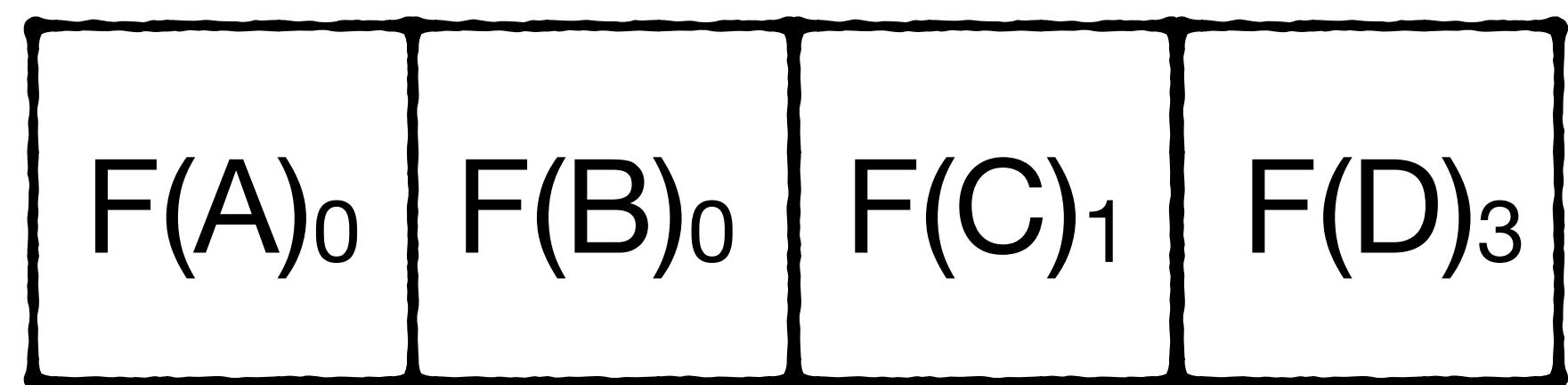
End:

0	1	1	0	0	1	1	1
---	---	---	---	---	---	---	---

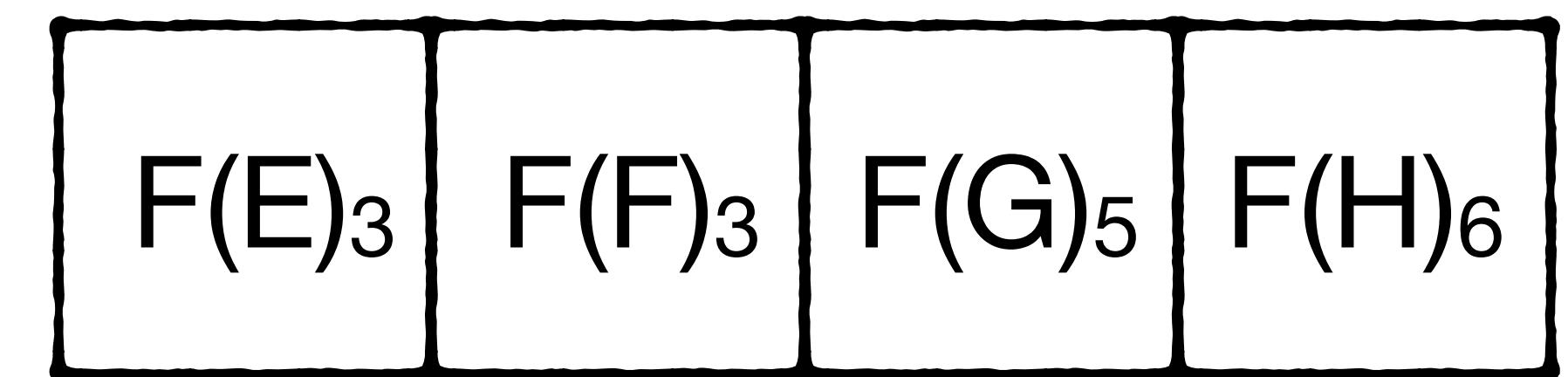


Split filter into chunks (64 slots in practice)

Occupied:	1	1	0	1	0	1	1	0
End:	0	1	1	0	0	1	1	1



0 1 2 3

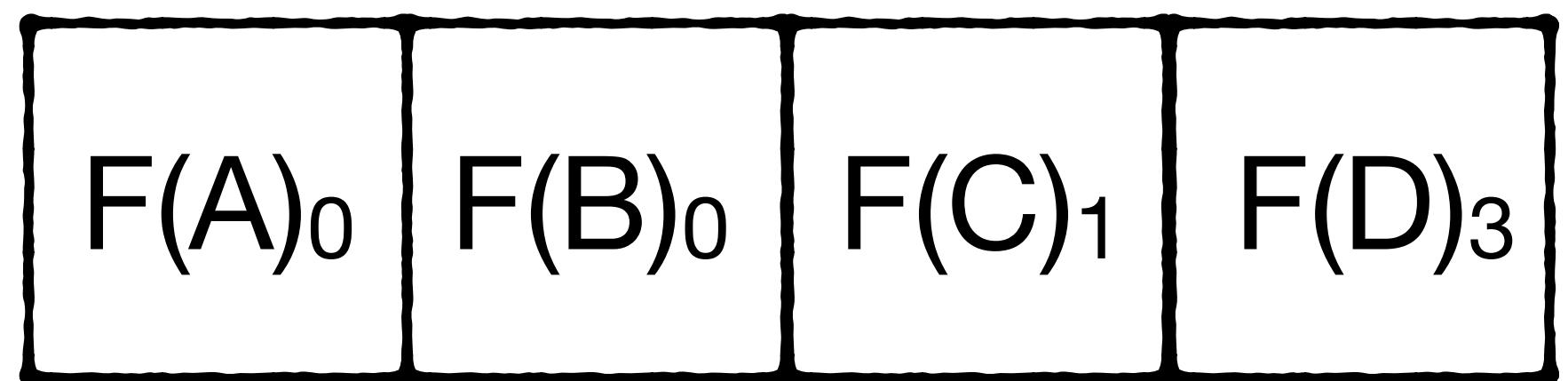


4 5 6 7

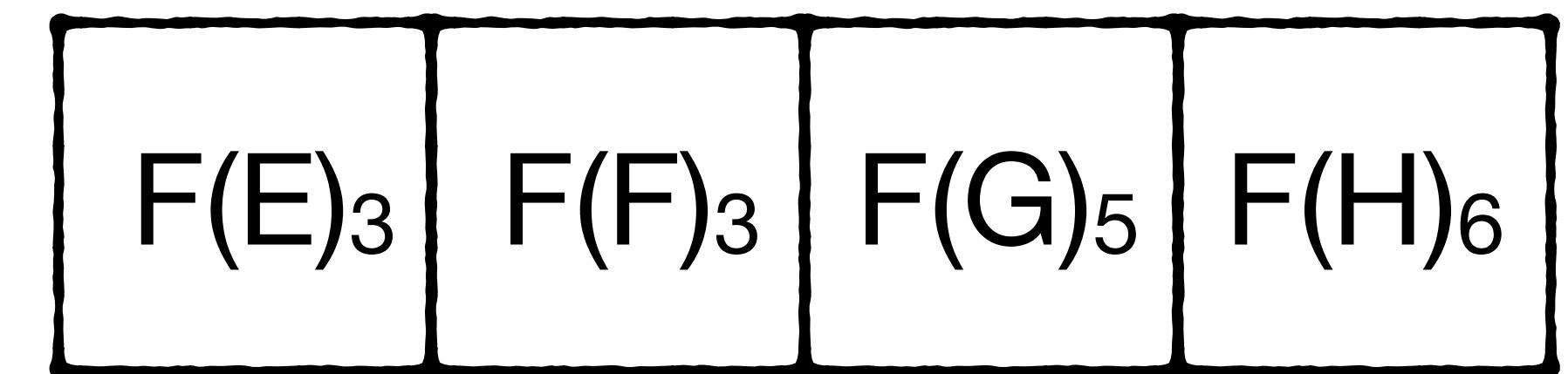
Split filter into chunks (64 slots in practice)

≈ 1-2 cache lines

Occupied:	1	1	0	1	0	1	1	0
End:	0	1	1	0	0	1	1	1



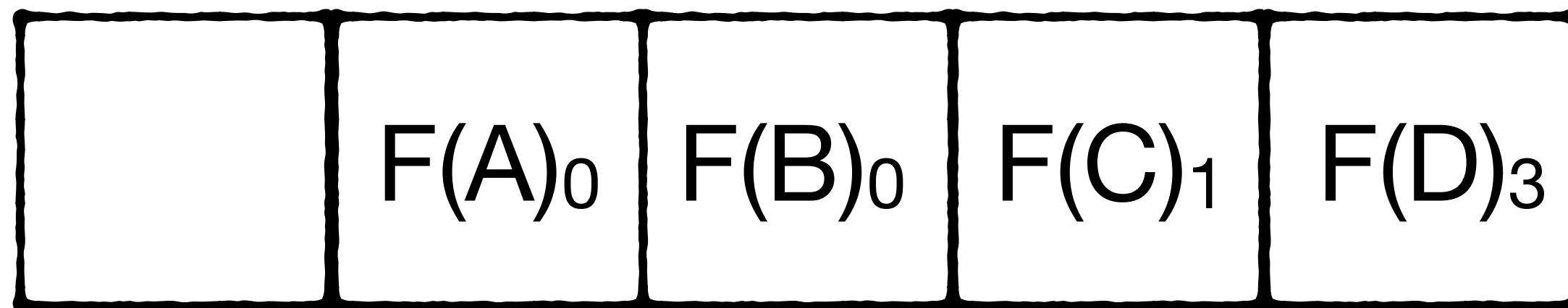
0 1 2 3



4 5 6 7

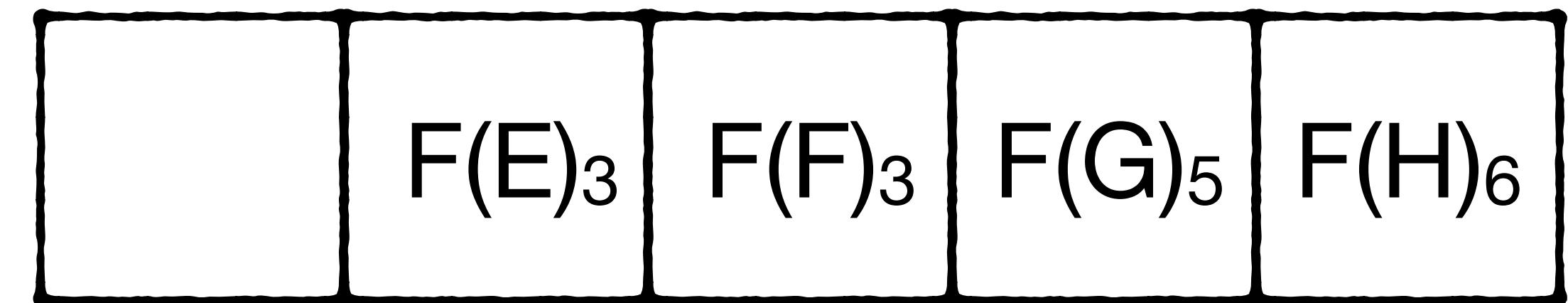
Each chunk has offset field (8 bits)

Occupied:	1	1	0	1
End:	0	1	1	0



Offset 0 1 2 3

0	1	1	0
0	1	1	1

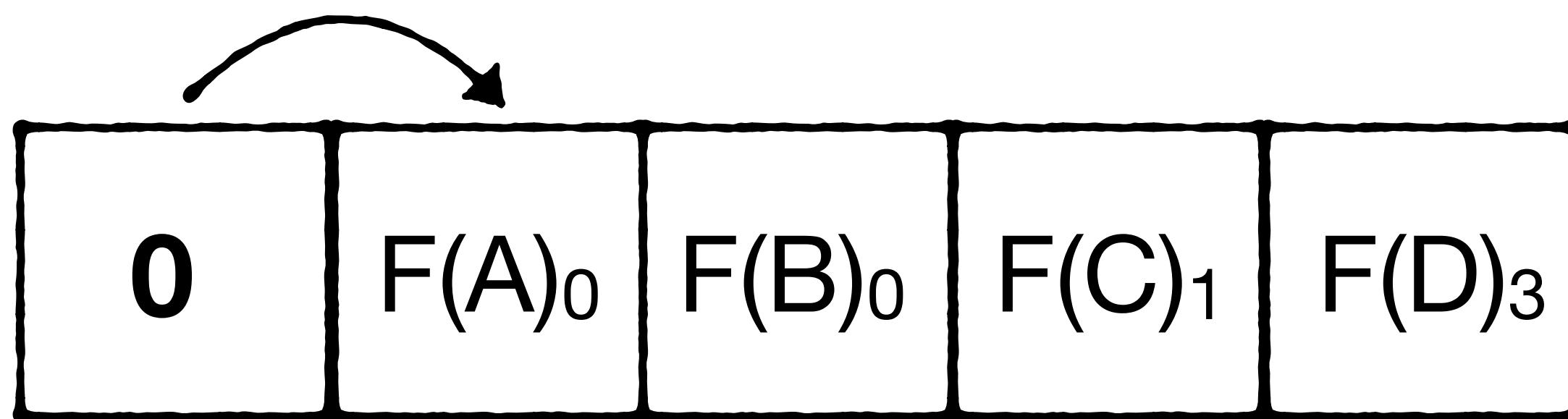


Offset 4 5 6 7

Each chunk has offset field

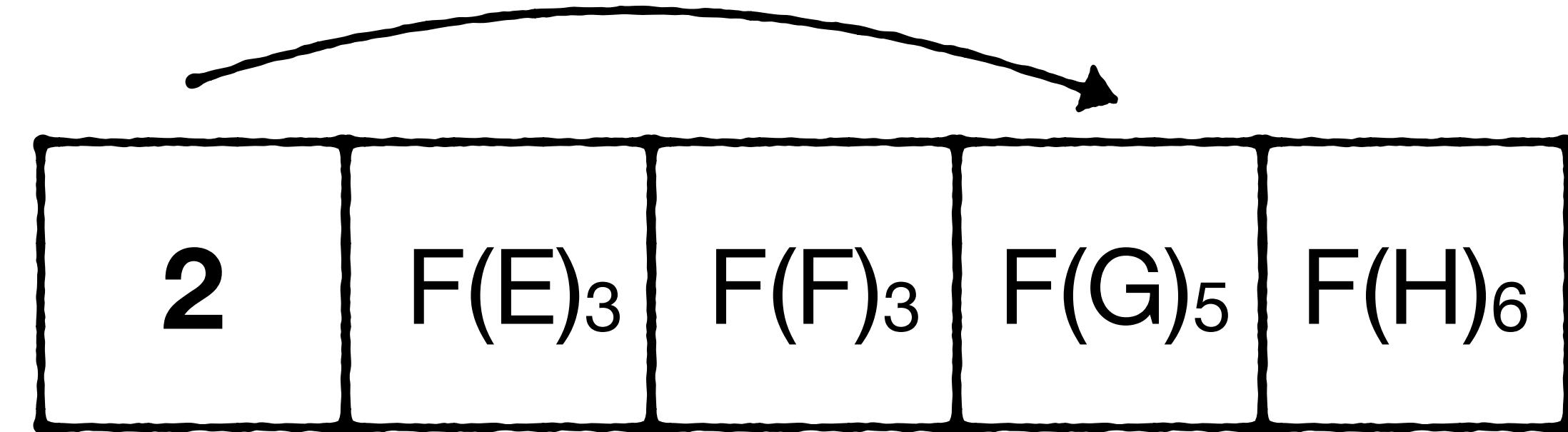
Measures distance to first entry of chunk

Occupied: 1 1 0 1
End: 0 1 1 0



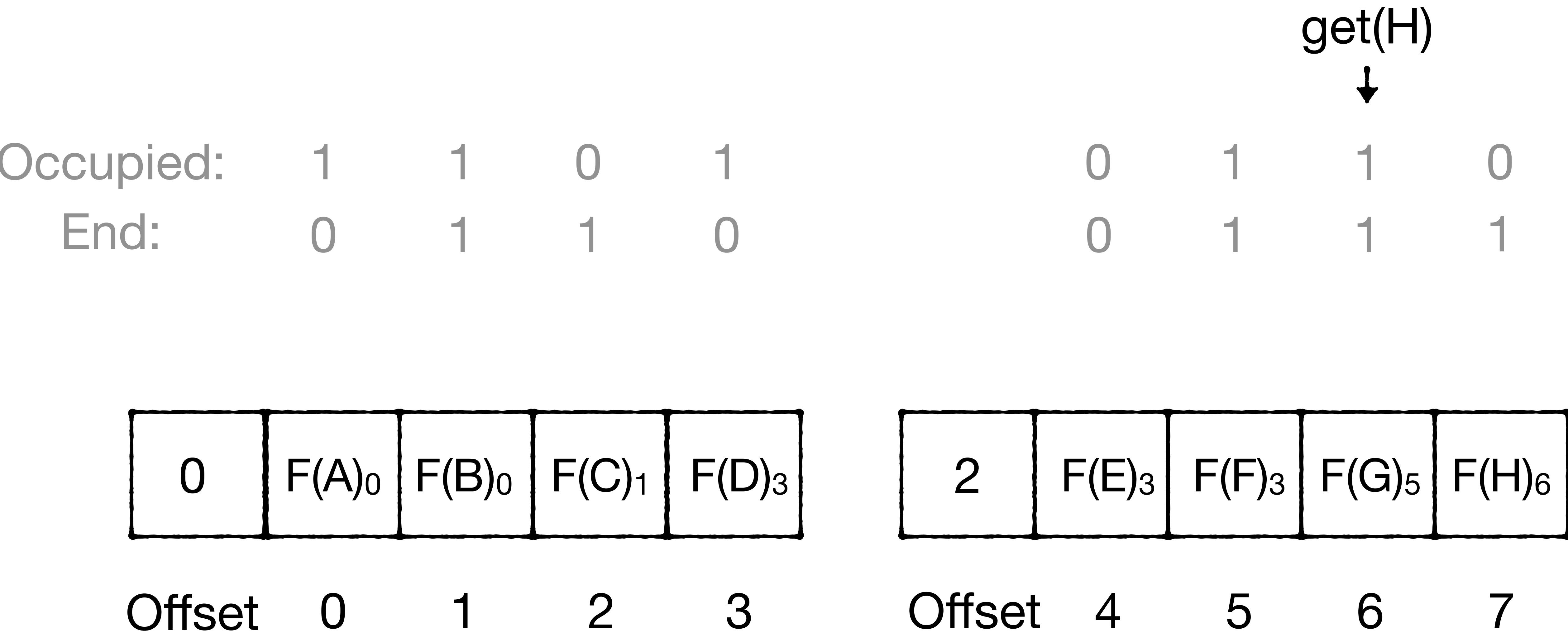
Offset 0 1 2 3

0 1 1 0
0 1 1 1

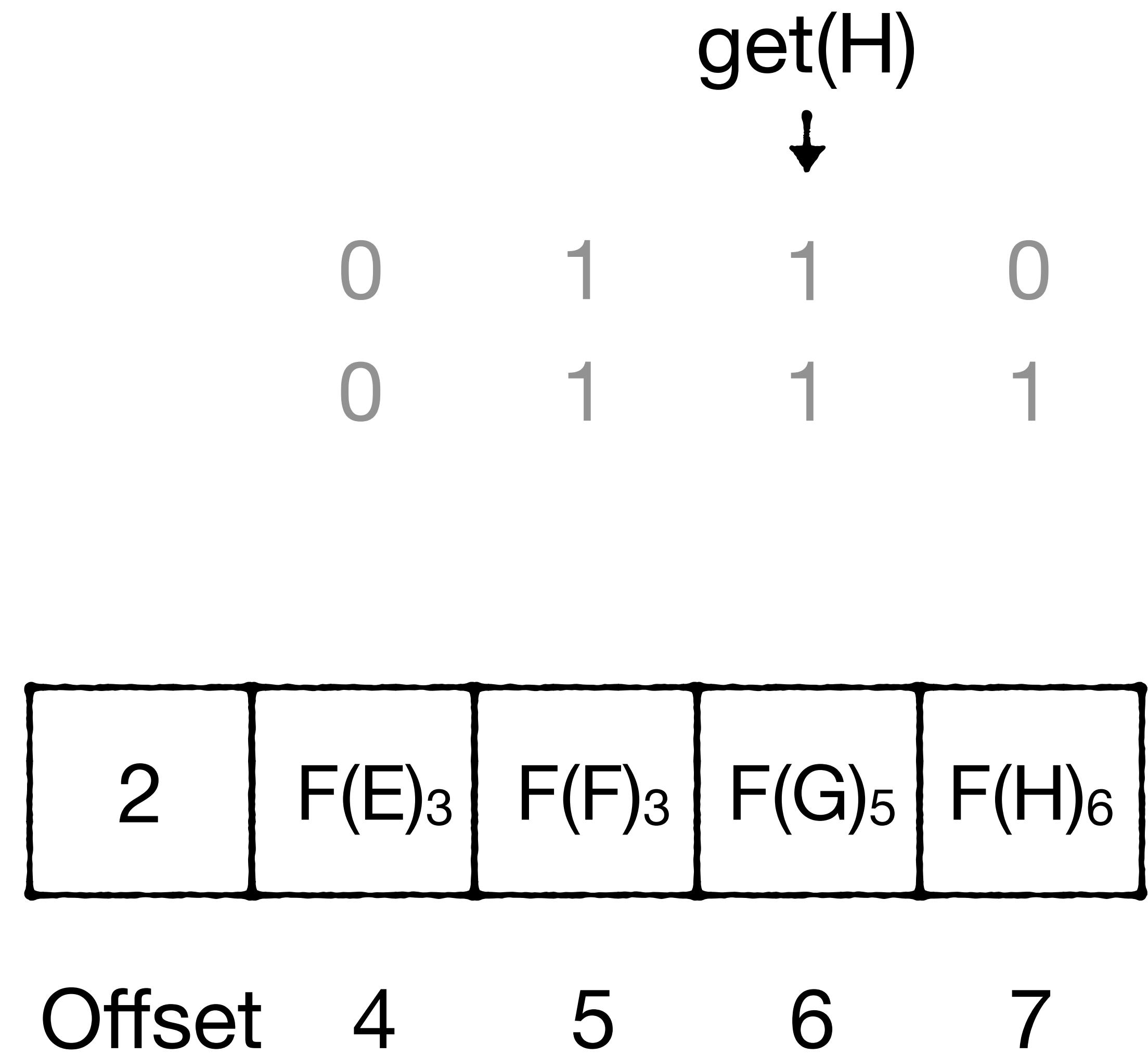


Offset 4 5 6 7

Back to Example

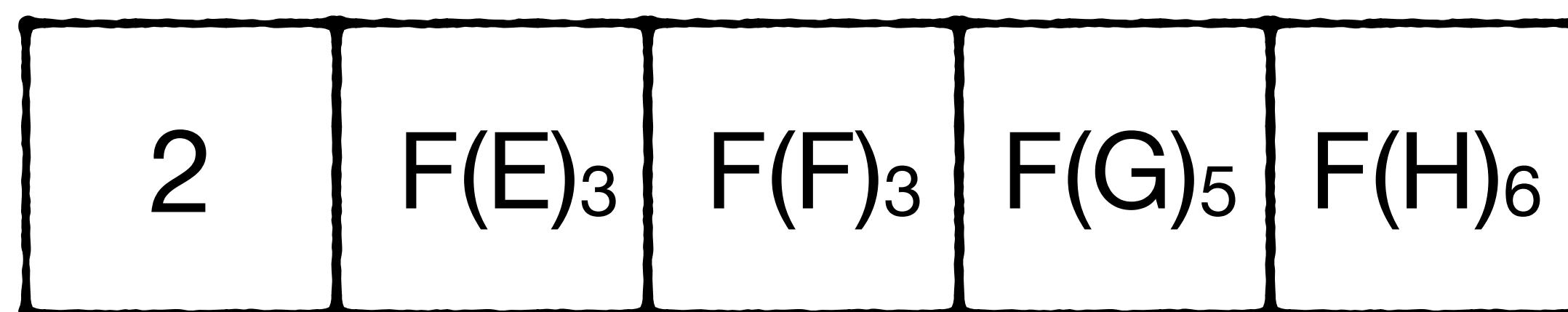


Back to Example



get(H)

Occupied:	0	1	1	0
End:	0	1	1	1

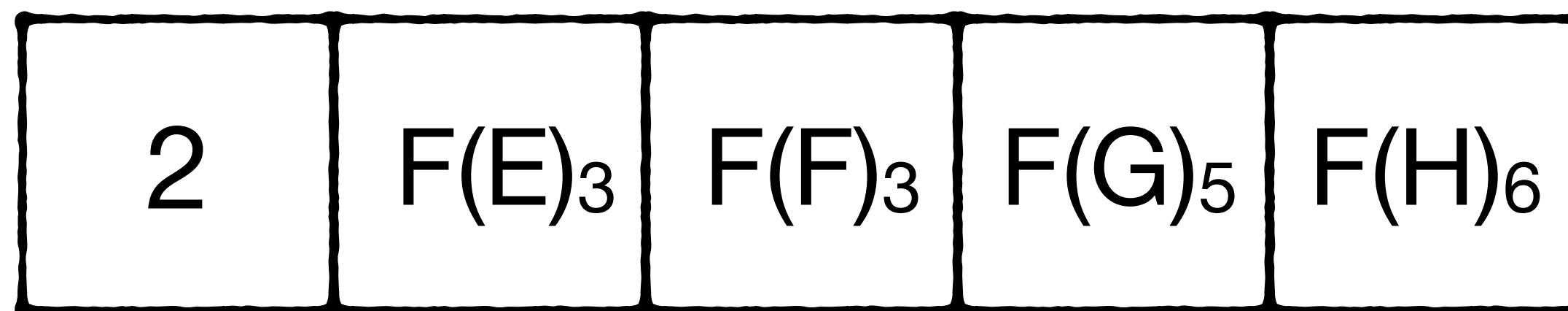


Offset 4 5 6 7

get(H)

Count # 1s (2) ↓

Occupied:	0	1	1	0
End:	0	1	1	1



Offset 4 5 6 7

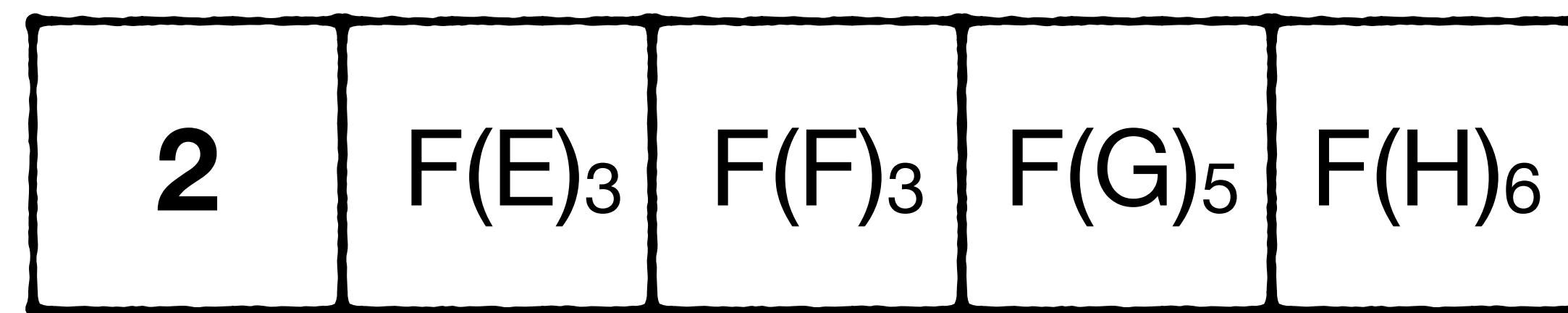
get(H)

Count # 1s (2) ↓

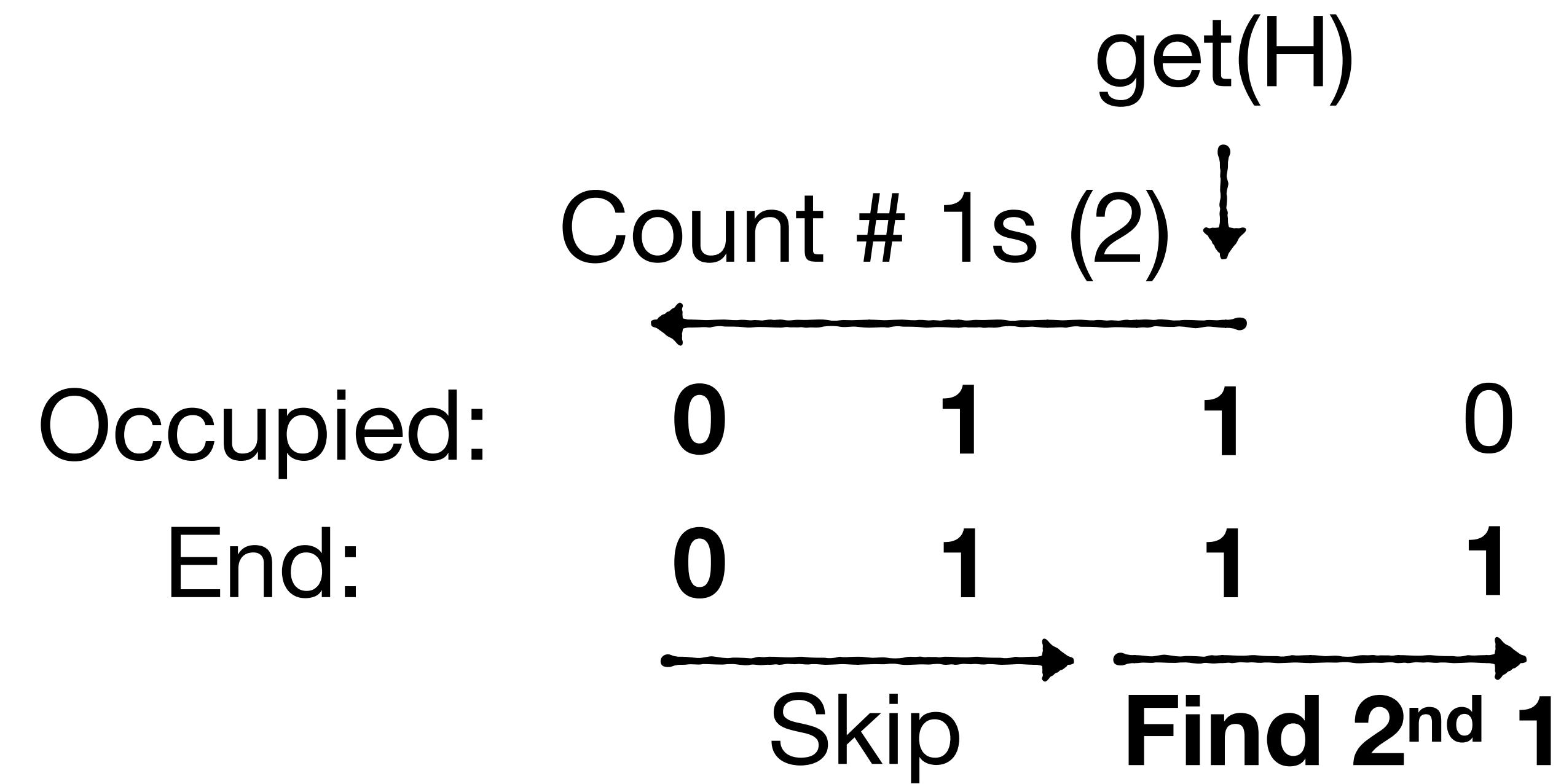
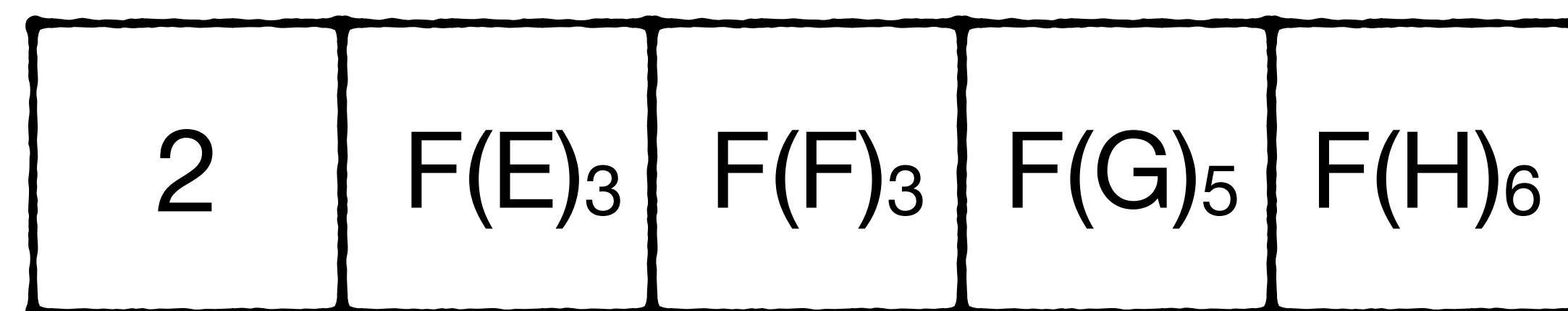
Occupied: 0 1 1 0

End: 0 1 1 1

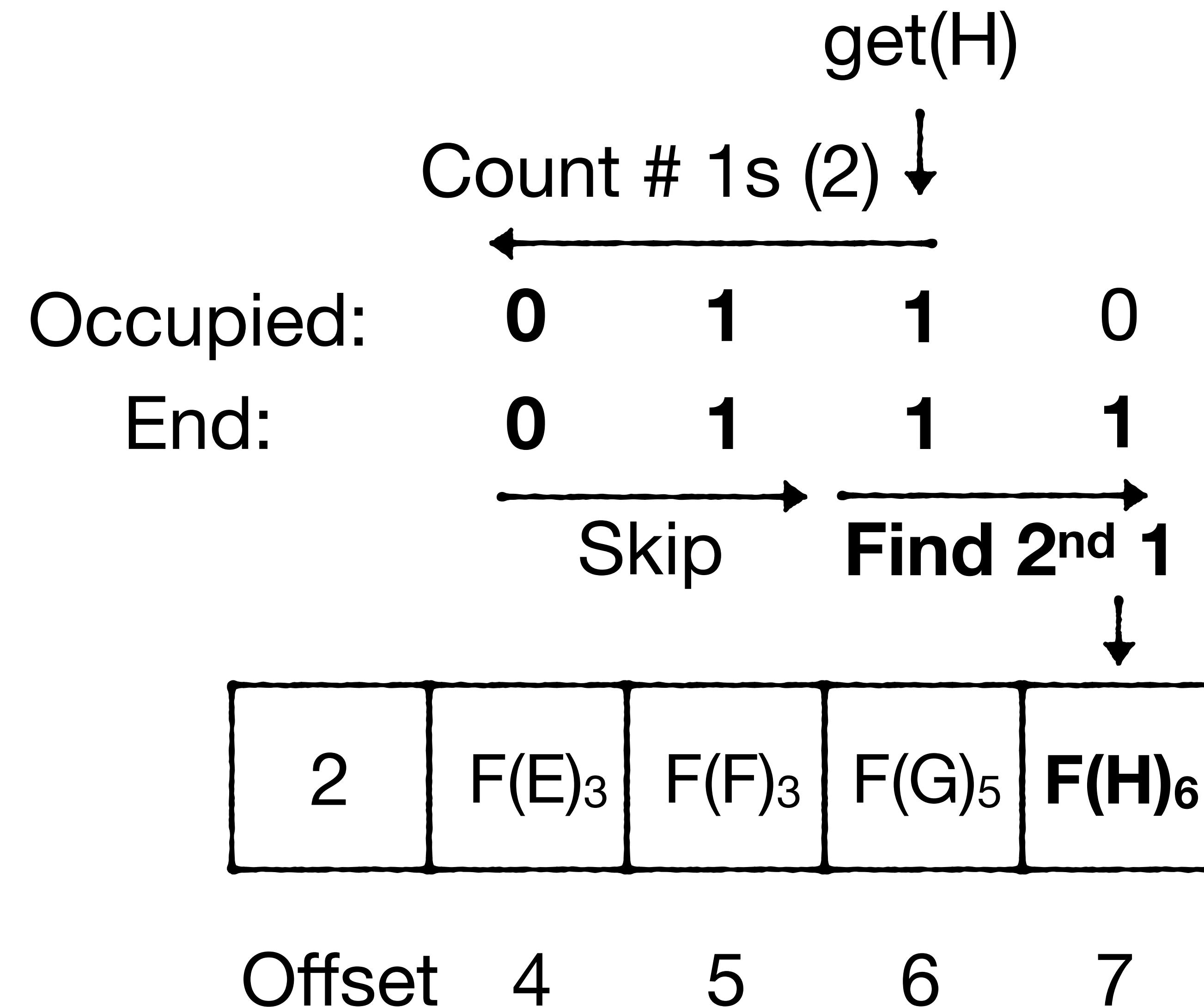
→ Skip

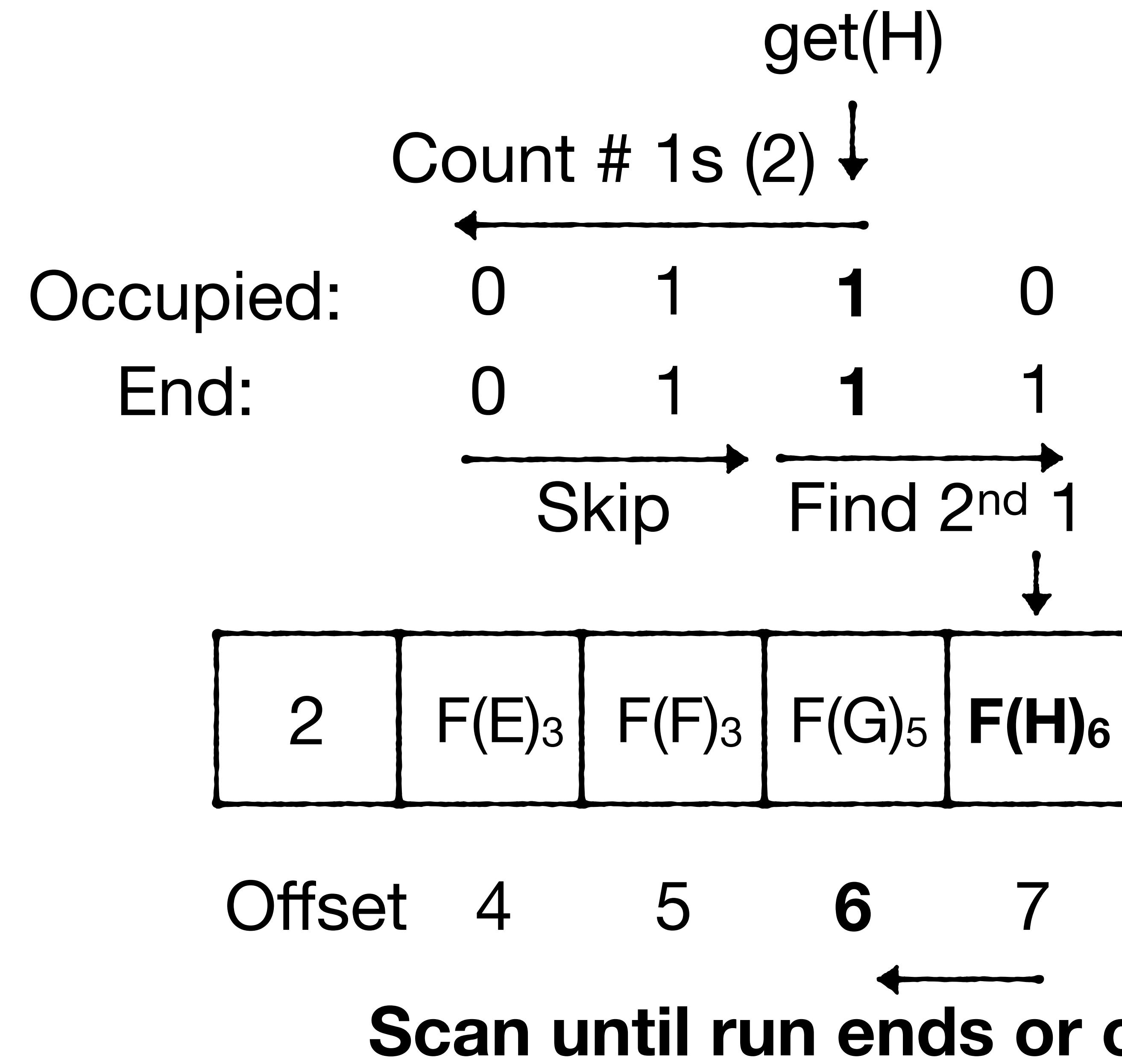


Offset 4 5 6 7



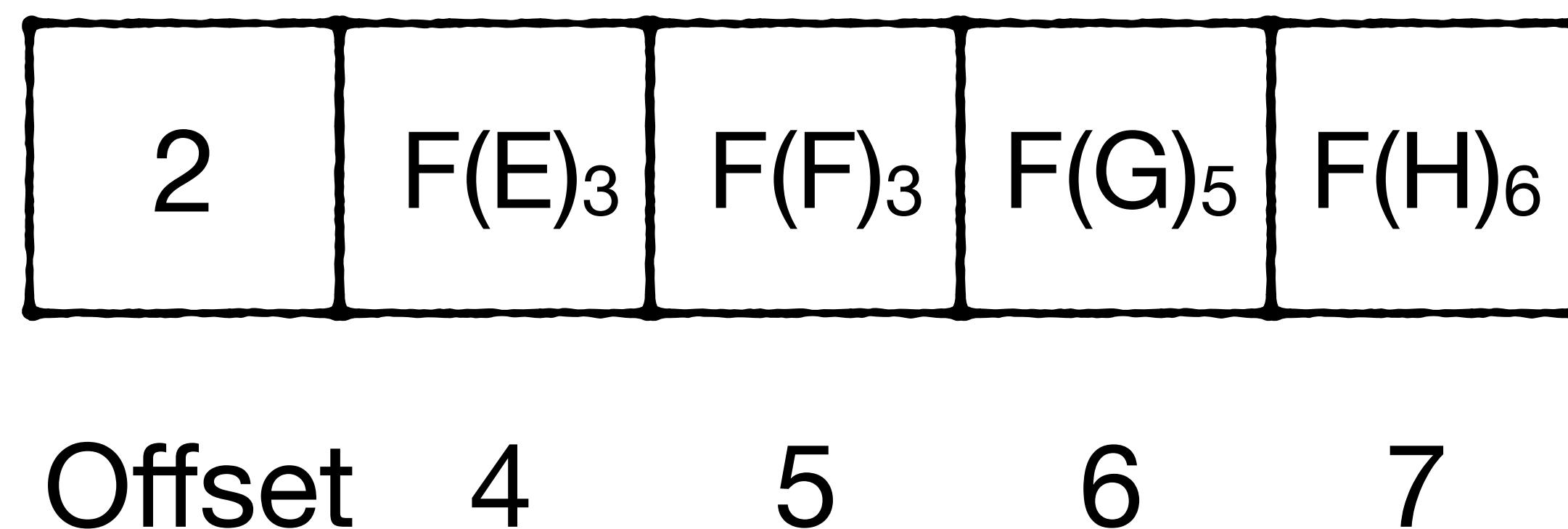
Offset 4 5 6 7





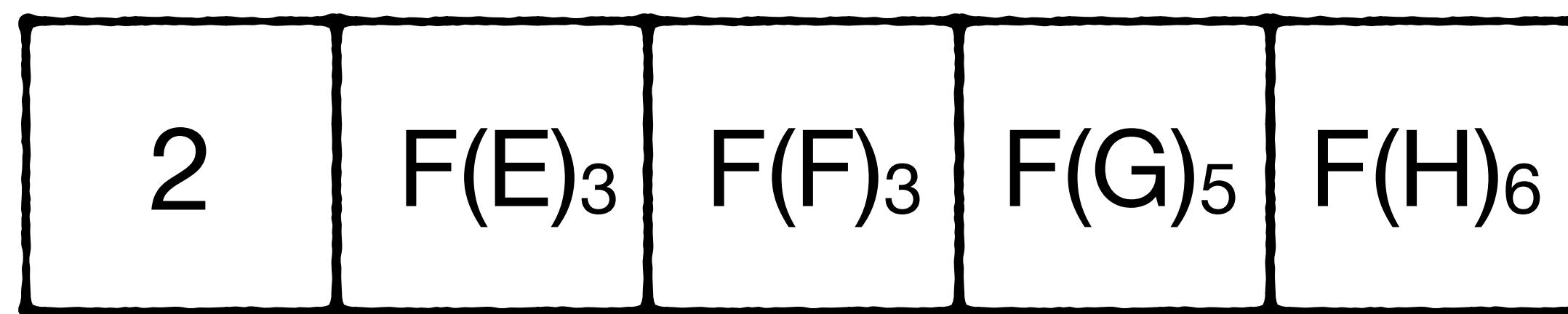
Target run may have been pushed to next chunk

Occupied:	0	1	1	0
End:	0	1	1	1



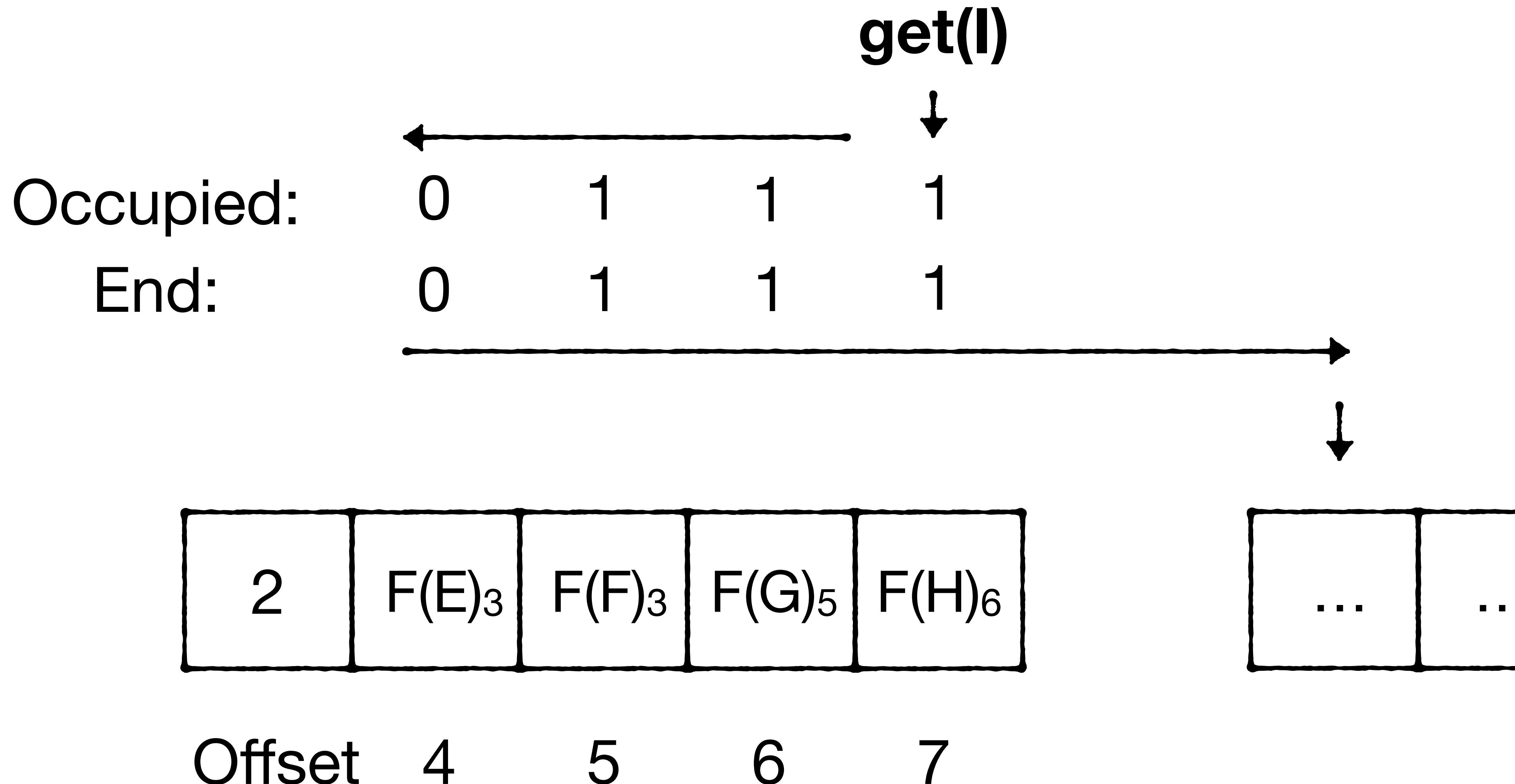
Target run may have been pushed to next chunk

	get(l)			
Occupied:	0	1	1	1
End:	0	1	1	1

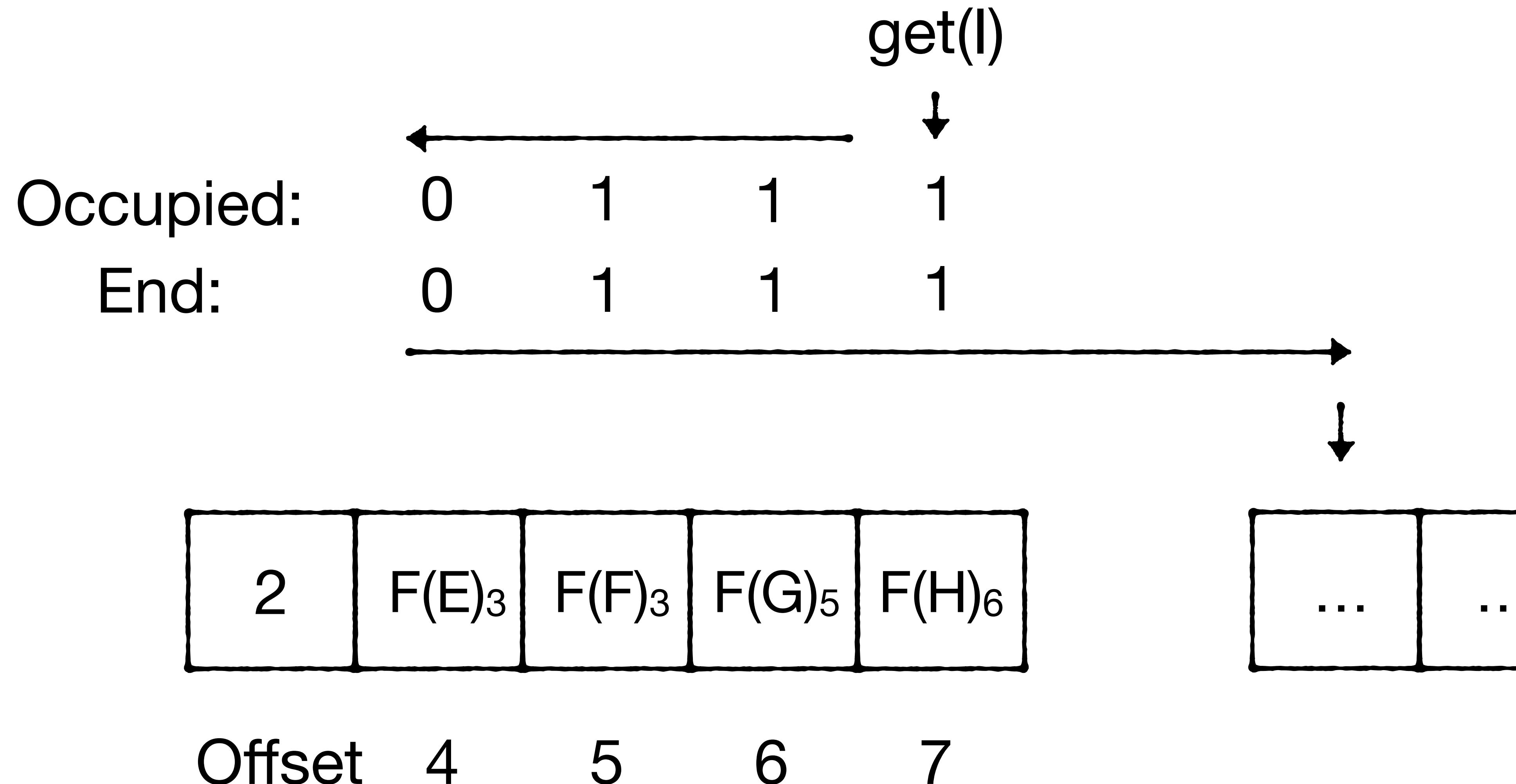


Offset 4 5 6 7

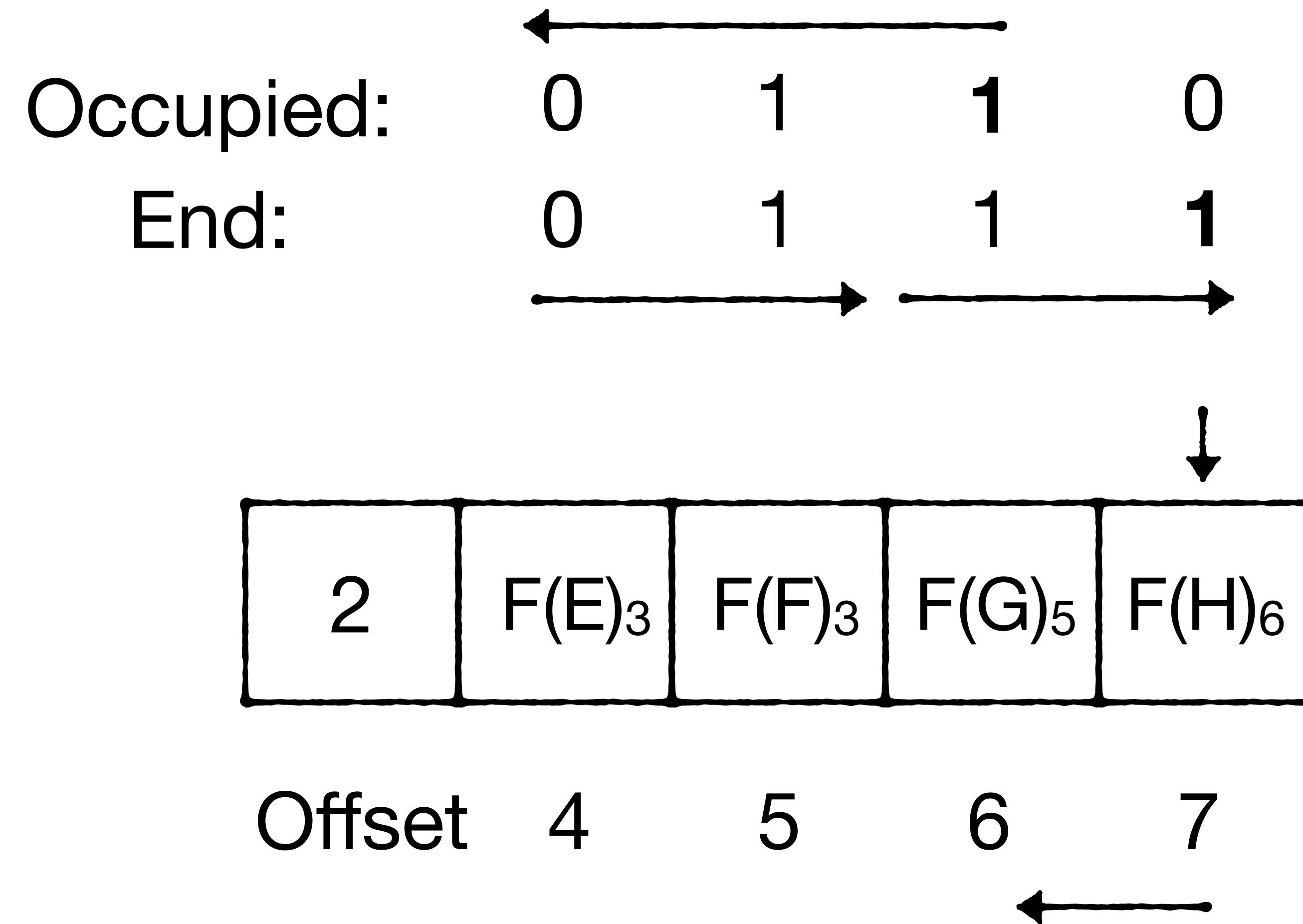
Target run may have been pushed to next chunk



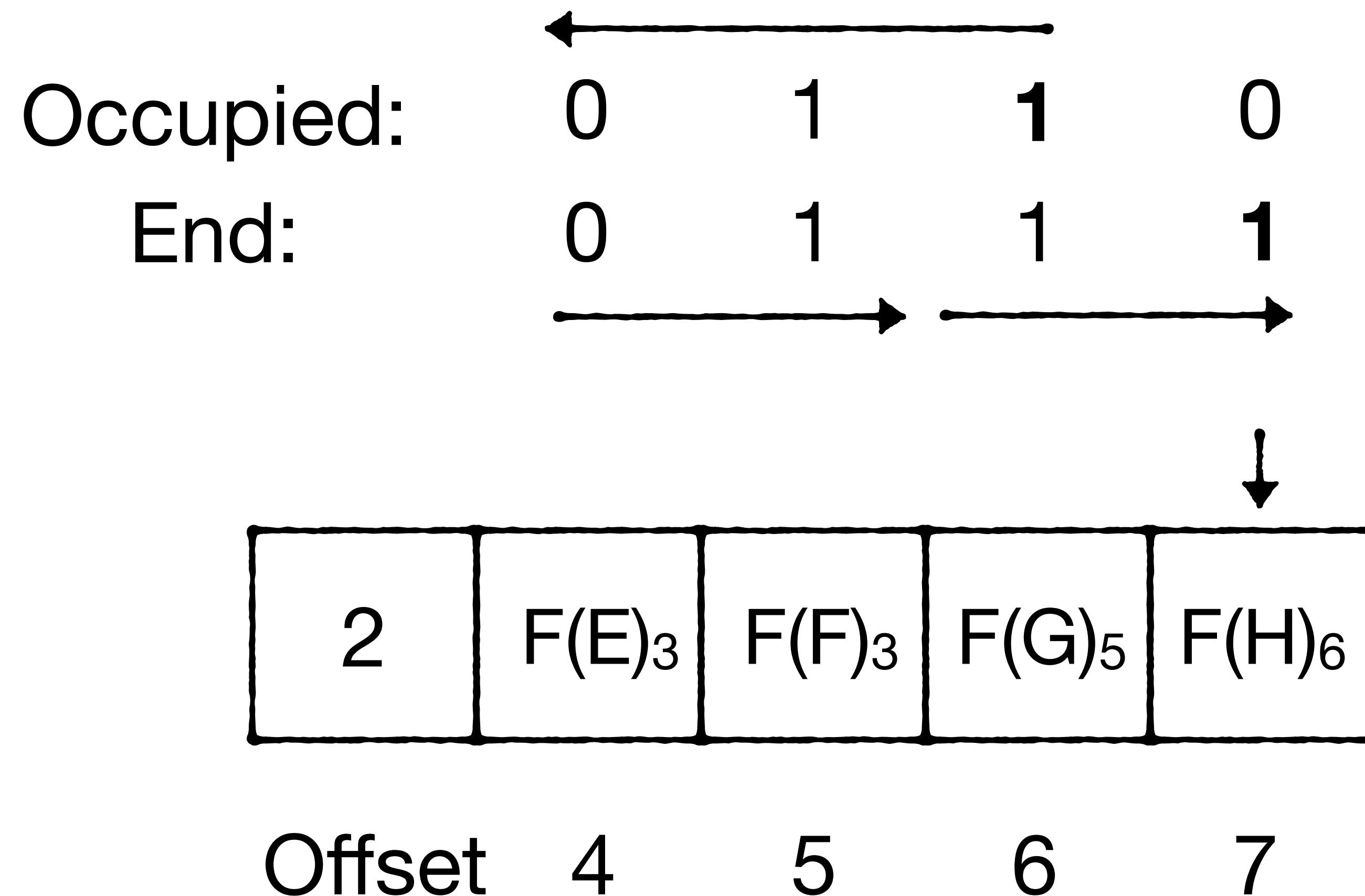
Sequential cache misses, since chunks are adjacent (not too shabby)



Queries in expected $O(C)$, where $C=64$ is chunk size



Queries in expected $O(C)$, where $C=64$ is chunk size
Can we do $O(1)$?



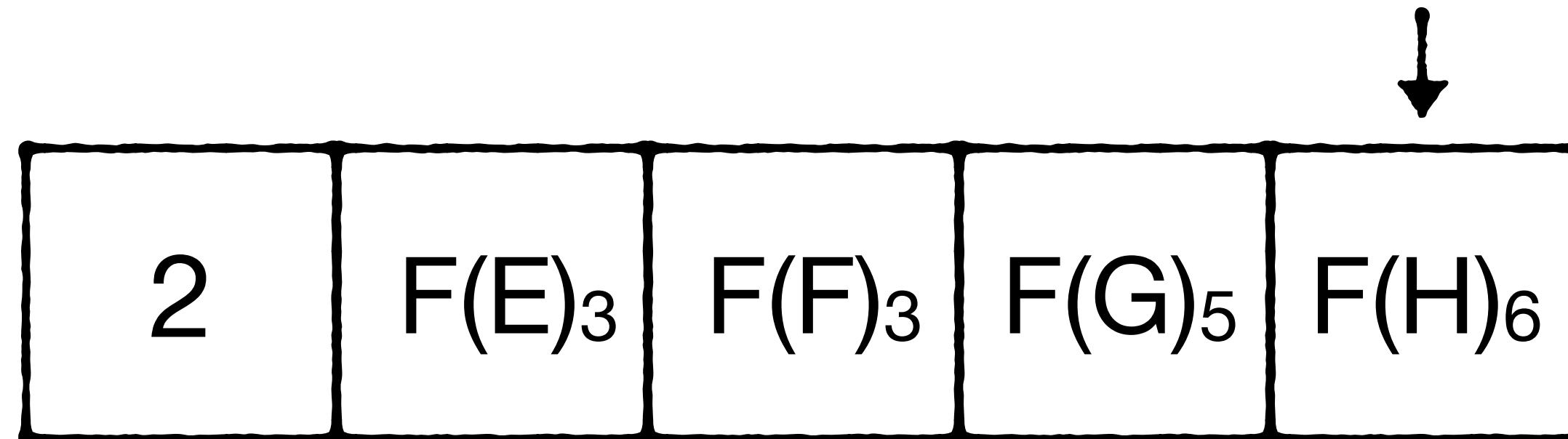
Rank & Select

Occupied:

0	1	1	0
---	---	---	---

End:

0	1	1	1
---	---	---	---

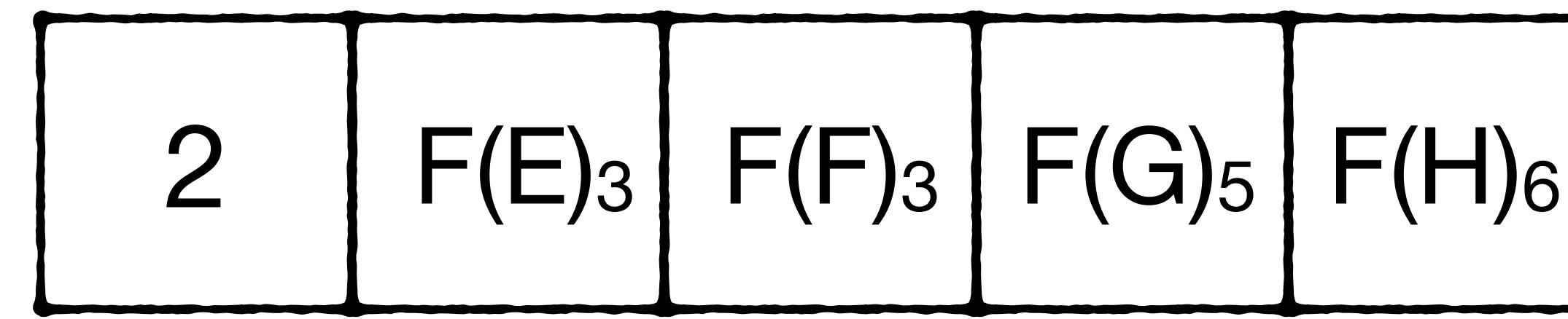


Offset 4 5 6 7

Rank & Select

Can parse a 64-bit bitmap in constant time

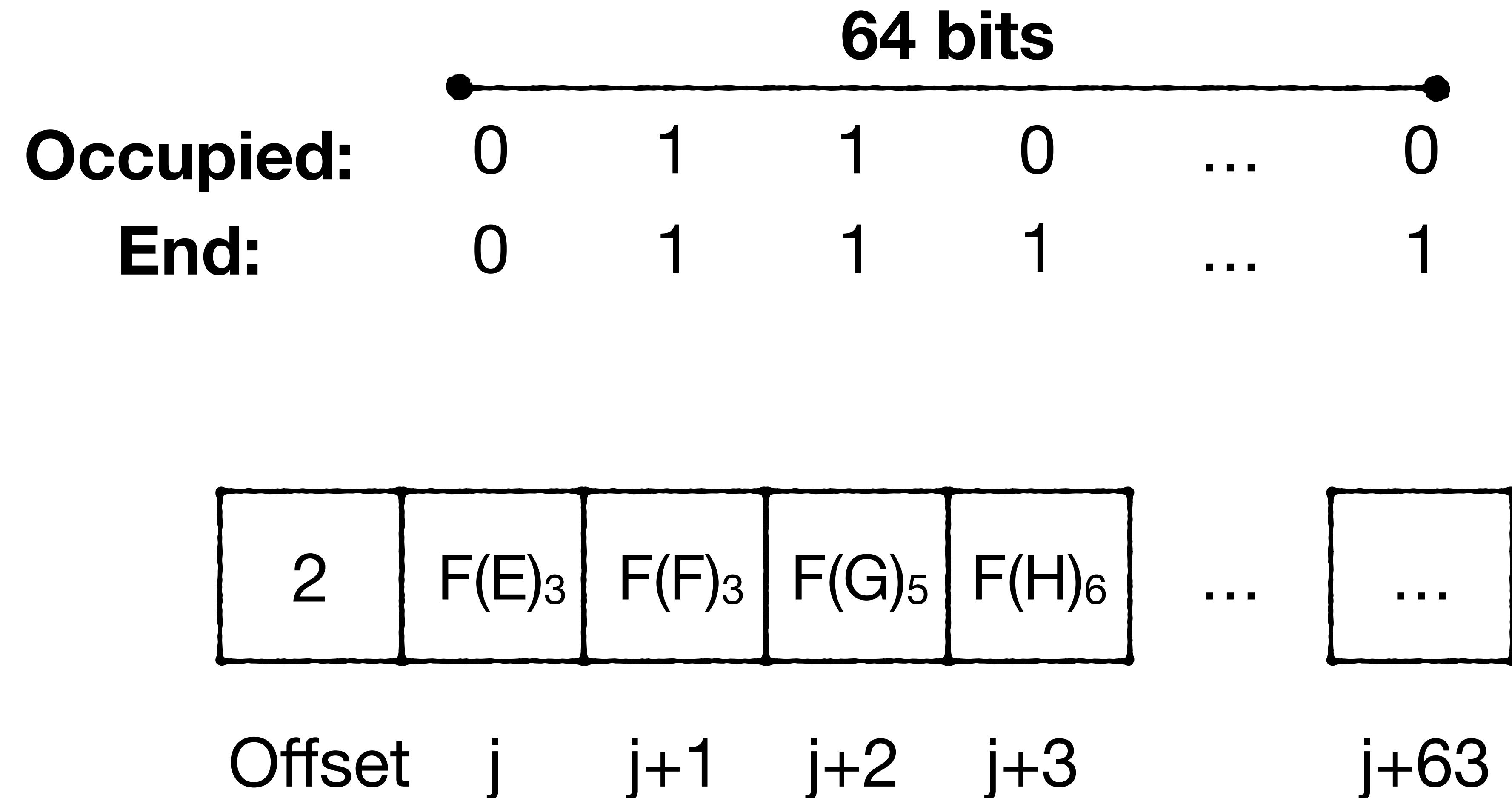
Occupied:	0	1	1	0
End:	0	1	1	1



Offset 4 5 6 7

Rank & Select

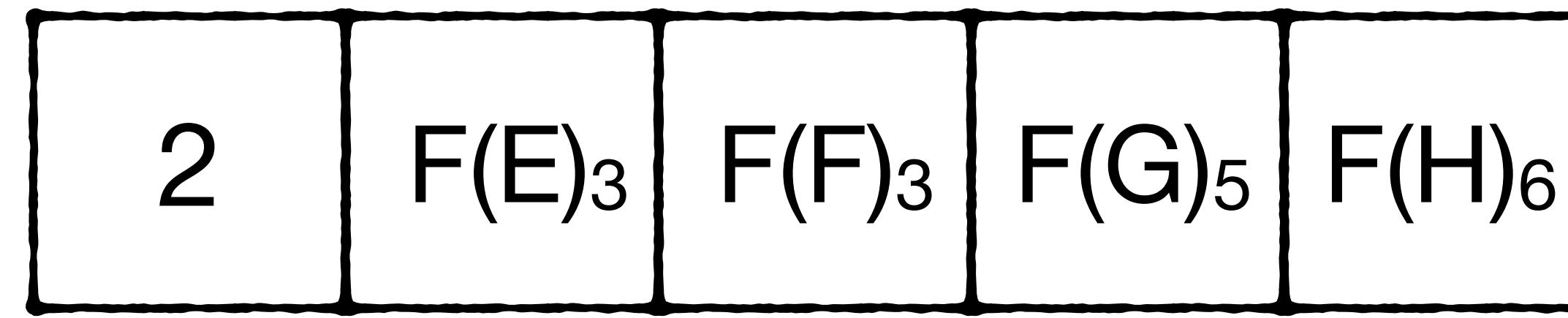
Can parse a 64-bit bitmap in constant time



Rank(i) counts # 1s before the i^{th} bit

Select(i)

Occupied:	0	1	1	0
End:	0	1	1	1

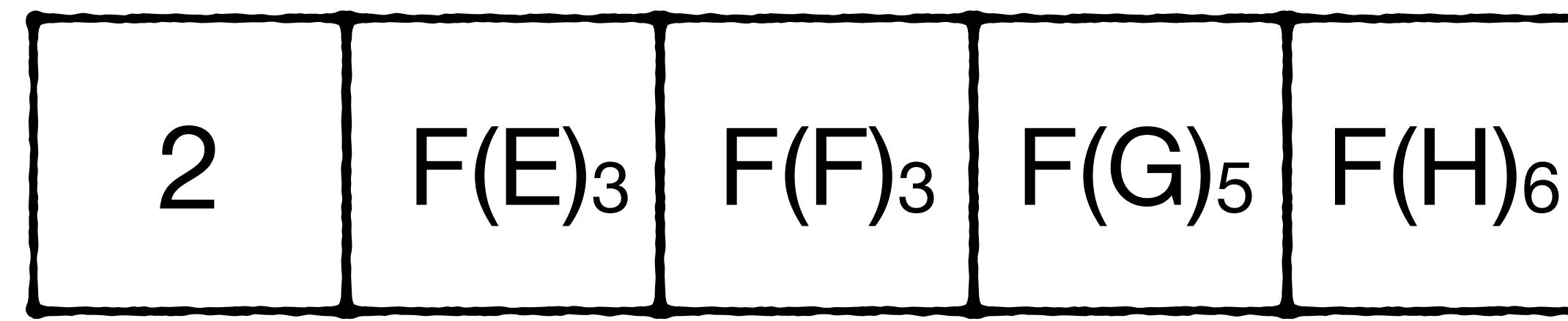


Offset 4 5 6 7

Rank(i) counts # 1s before the i^{th} bit

Select(i) returns the offset of the i^{th} 1

Occupied:	0	1	1	0
End:	0	1	1	1



Offset 4 5 6 7

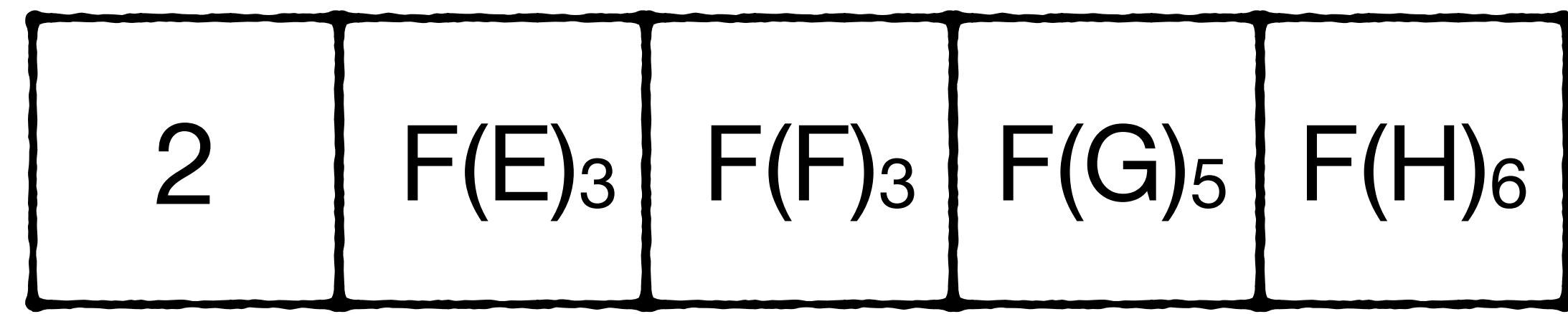
Rank(i) counts # 1s before the i^{th} bit

Select(i) returns the offset of the i^{th} 1

(1) How to use?

(2) How to implement?

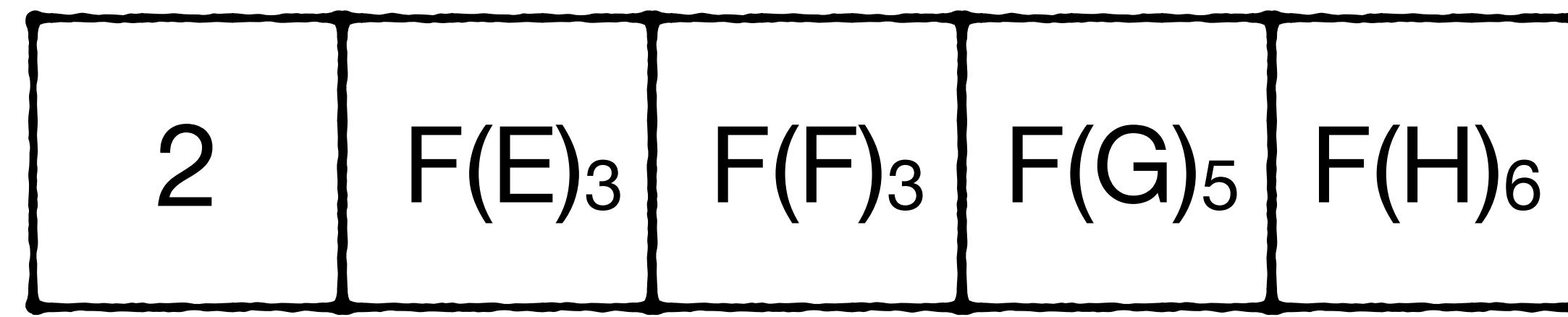
Occupied:	0	1	1	0
End:	0	1	1	1



Offset 4 5 6 7

Back to example: `get(H)`

Occupied:	0	1	1	0
End:	0	1	1	1



Offset 4 5 6 7

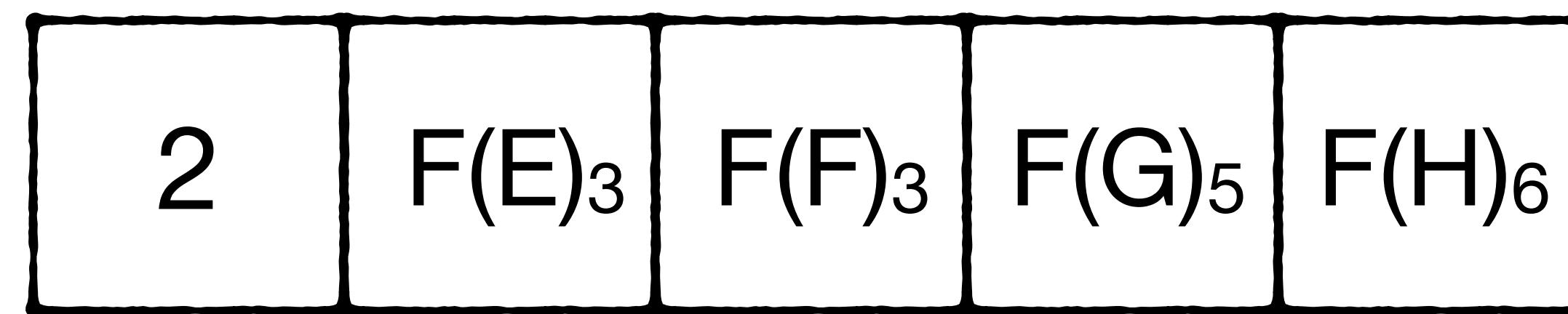
(A) Count # of runs ends belonging to previous chunks

Occupied: 0 1 1 0

End: 0 1 1 1

•—————•

$a = \text{Rank}(\text{Offset})$



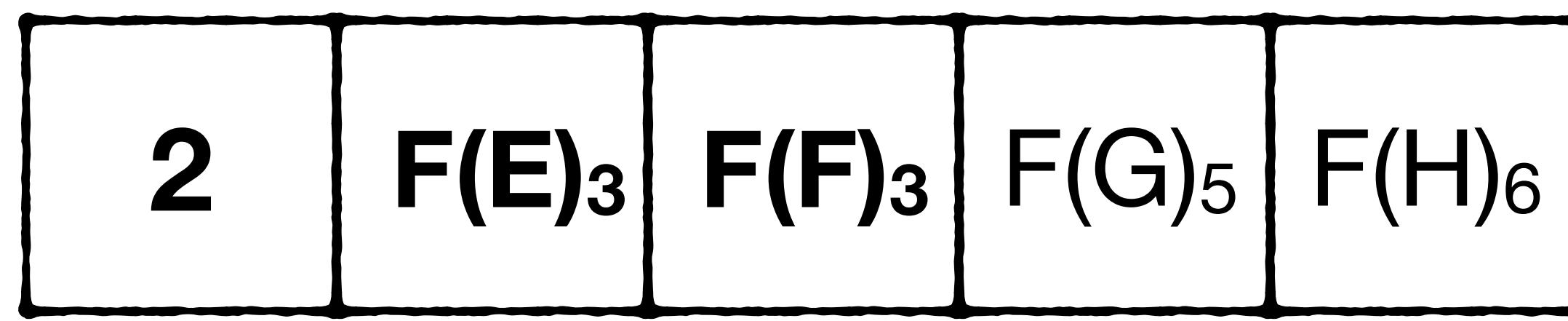
Offset 4 5 6 7

(A) Count # of runs ends belonging to previous chunks

Occupied:	0	1	1	0
End:	0	1	1	1

\bullet — \bullet

$a = \text{Rank}(2) = 1$



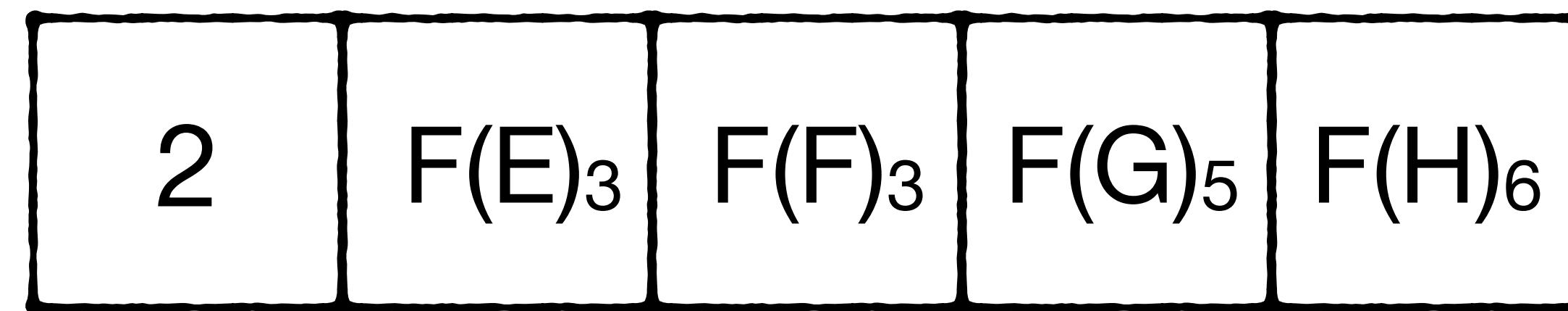
Offset 4 5 6 7

(B) Count # of run ends belonging to this chunk before target

Occupied: 0 1 1 0

End: 0 1 1 1

$$a = \text{Rank}(2) = 1$$



Offset 4 5 6 7

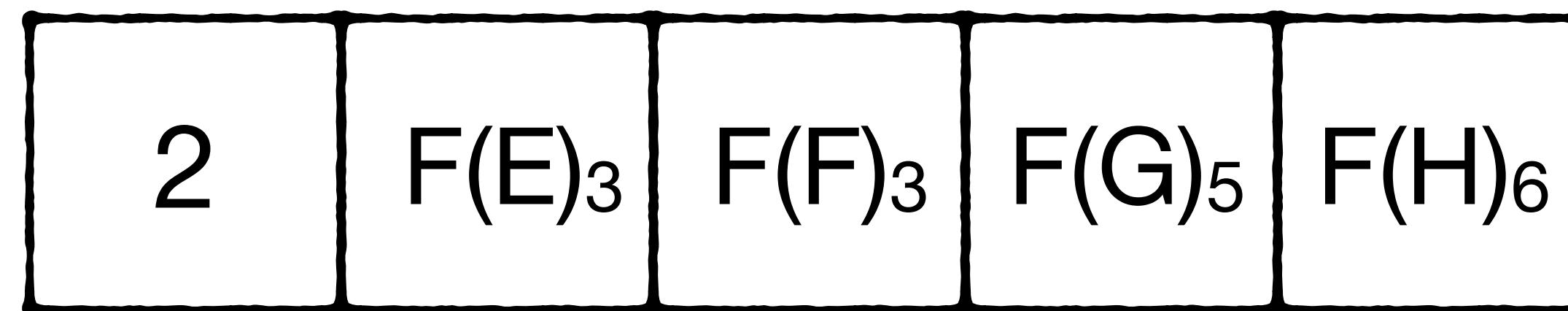
(B) Count # of run ends belonging to this chunk before target

$$b = \text{Rank}(\text{targetSlot} - \text{firstChunkSlot})$$

Occupied: 0 1 1 0

End: 0 1 1 1

$$a = \text{Rank}(2) = 1$$



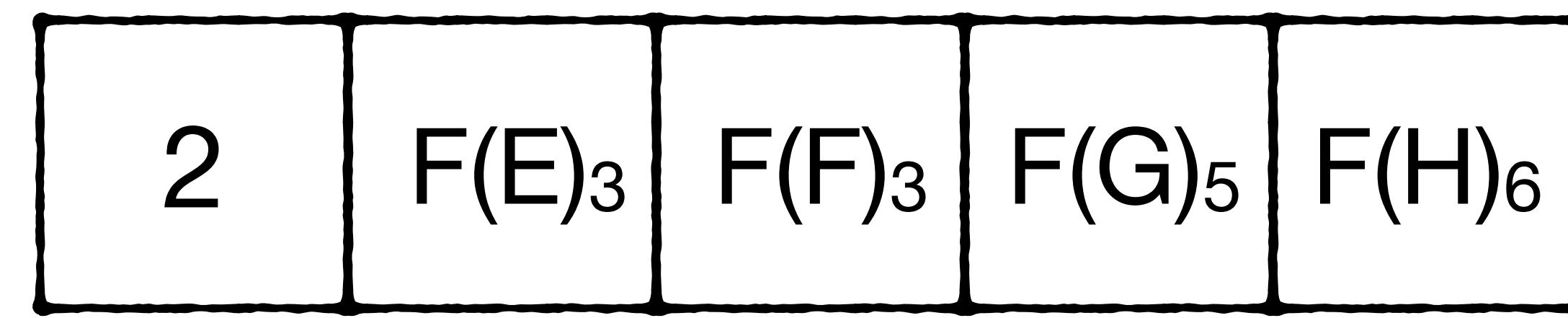
Offset 4 5 6 7

(B) Count # of run ends belonging to this chunk before target

$b = \text{Rank}(6 - 4)$

Occupied:	0	1	1	0
End:	0	1	1	1

$a = \text{Rank}(2) = 1$



Offset 4 5 6 7

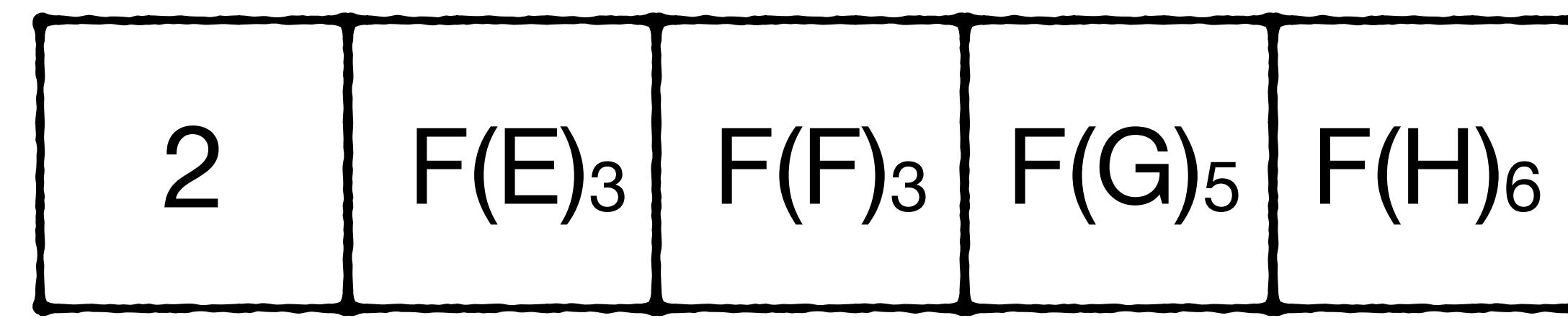
(B) Count # of run ends belonging to this chunk before target

$b = \text{Rank}(2) = 1$

Occupied: 0 1 1 0

End: 0 1 1 1

$a = \text{Rank}(2) = 1$



Offset 4 5 6 7

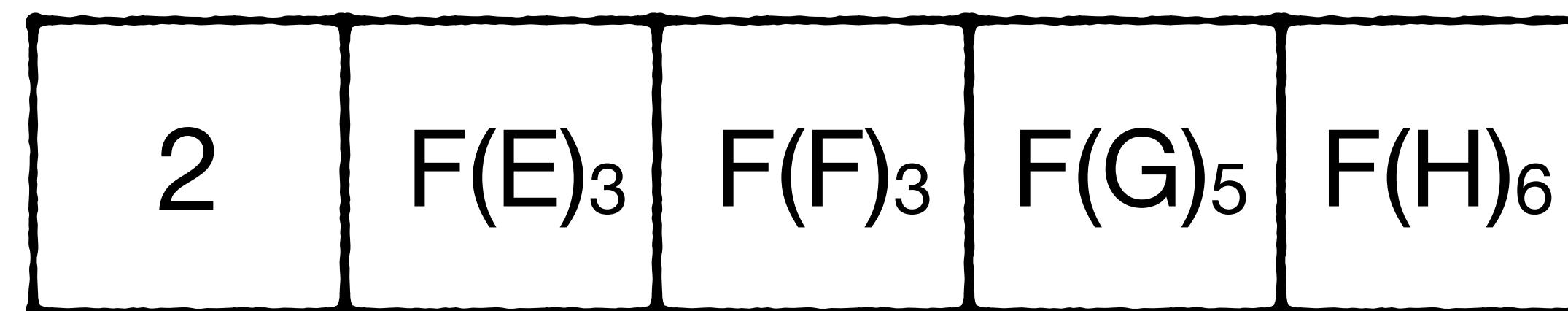
(C) skip to the $(a+b)^{\text{th}}$ run end

$$b = \text{Rank}(2) = 1$$

Occupied: 0 1 1 0

End: 0 1 1 1

$$a = \text{Rank}(2) = 1$$



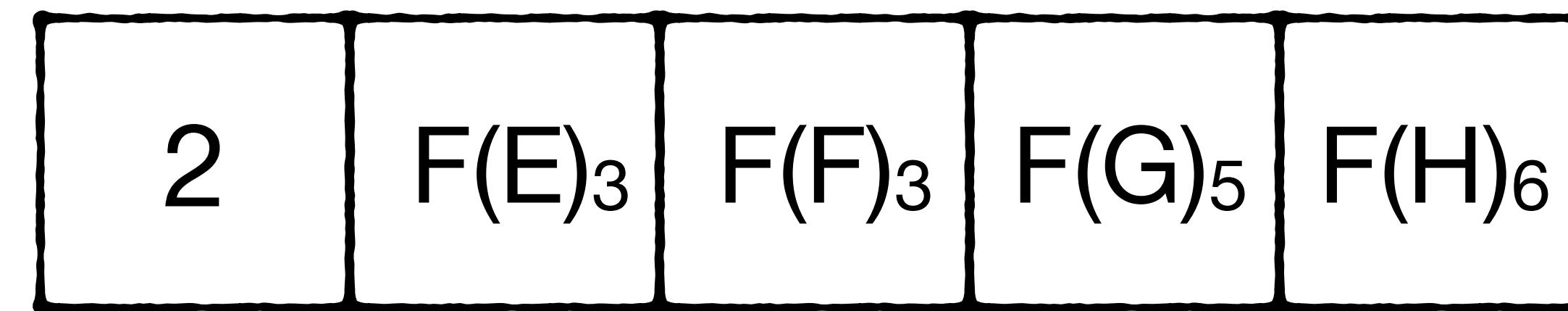
Offset 4 5 6 7

(C) skip to the $(a+b)^{\text{th}}$ run end

Occupied: 0 1 1 0

End: 0 1 1 1

Select($a + b$)



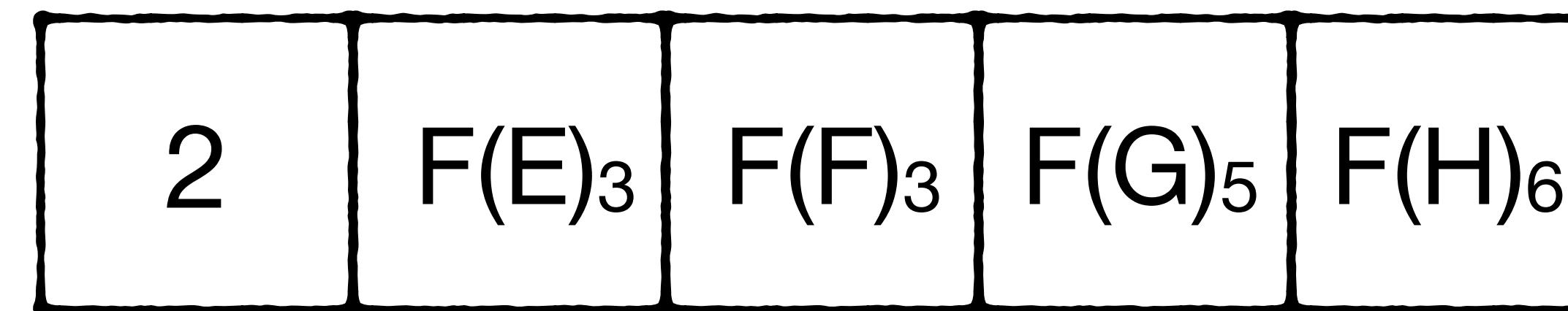
Offset 4 5 6 7

(C) skip to the $(a+b)^{\text{th}}$ run end

Occupied: 0 1 1 0

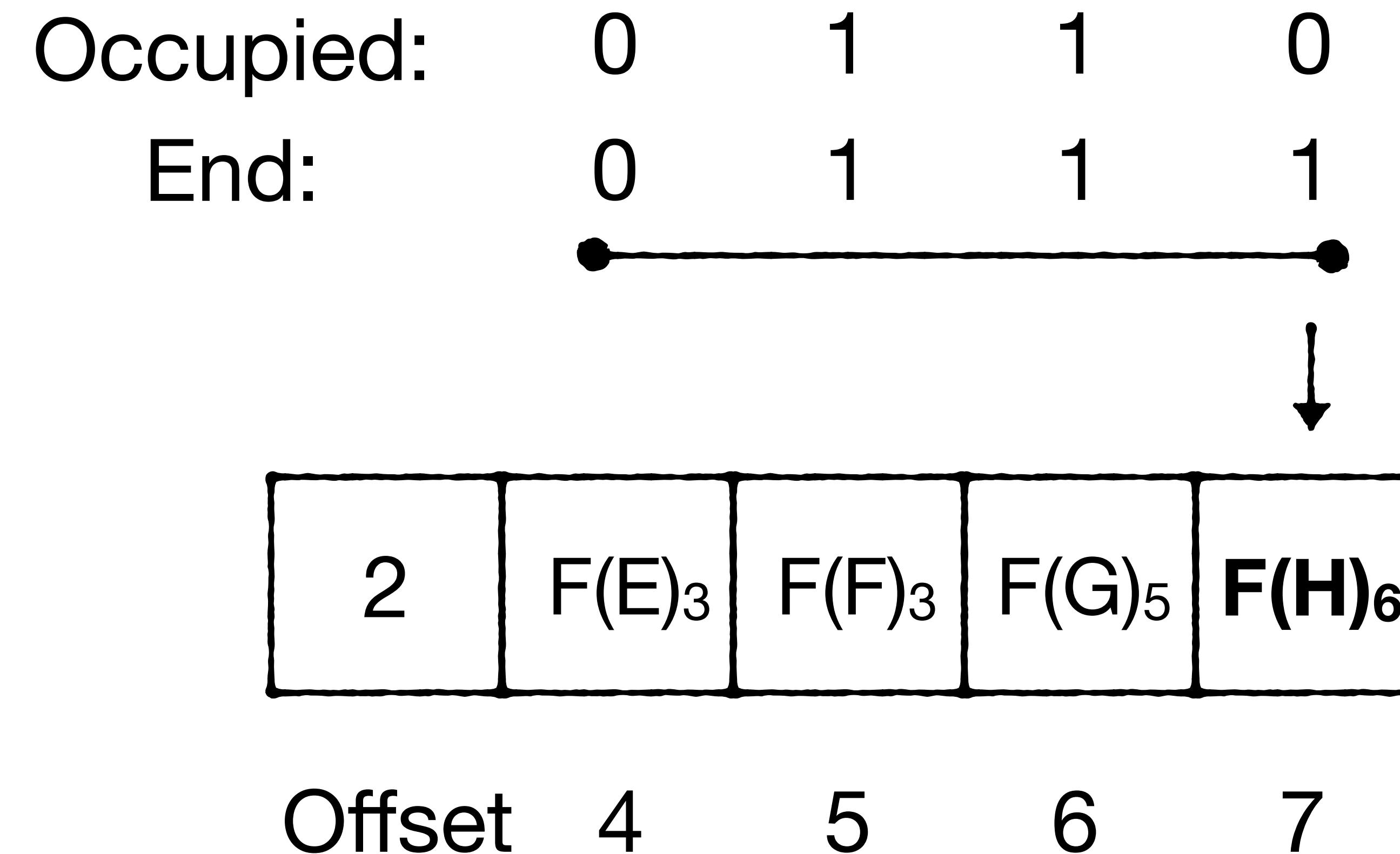
End: 0 1 1 1

Select(2) = 3 ↑

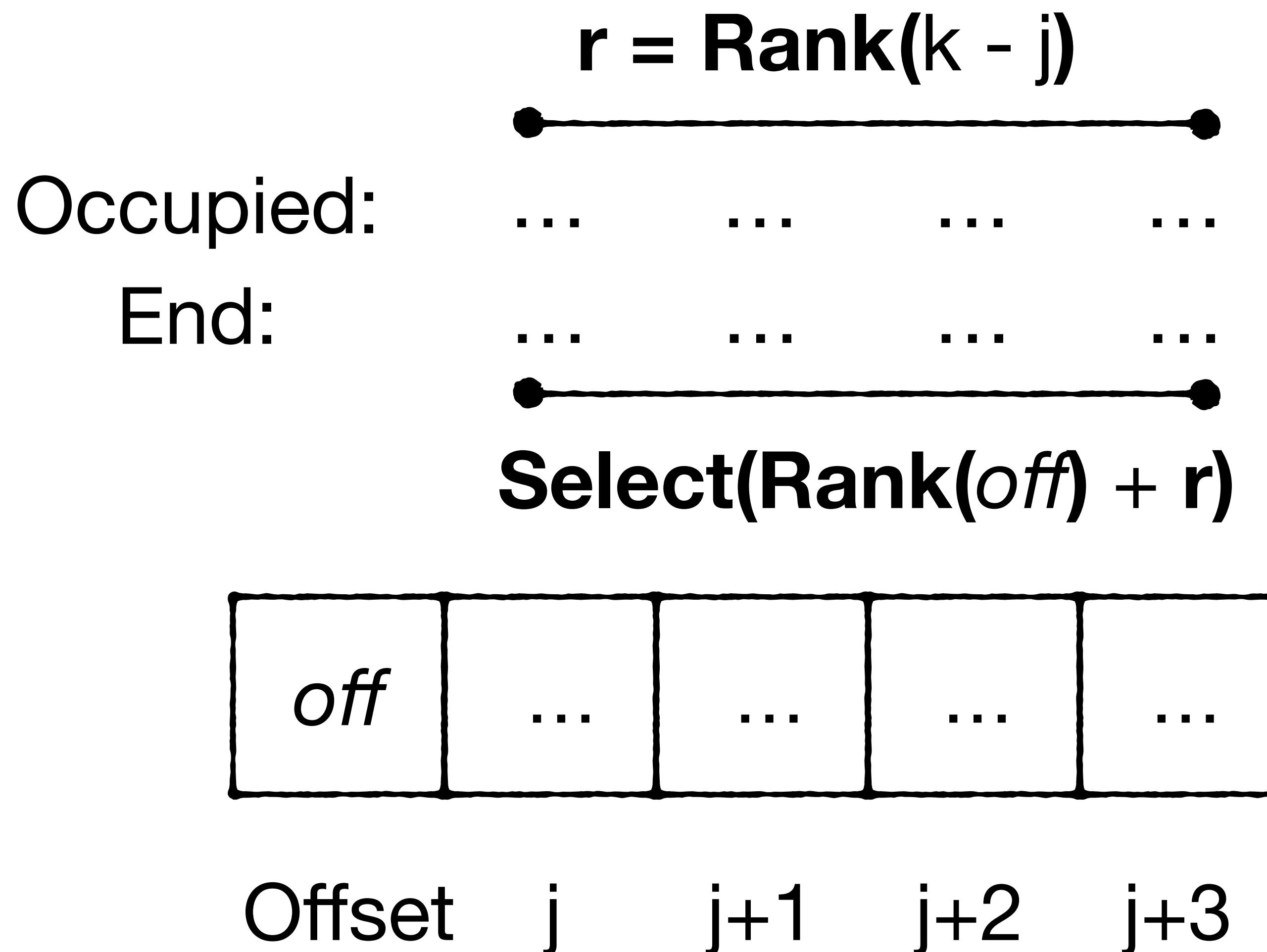


Offset 4 5 6 7

(C) skip to the $(a+b)^{\text{th}}$ run end



General algorithm to bring us to end of slot k's run



Implementing Rank and Select Efficiently

Implementing Rank and Select Efficiently

No looping

Implementing Rank Efficiently

rank(i) = $\text{popcount}(B \ \& \ (2^i - 1))$

Implementing Rank Efficiently

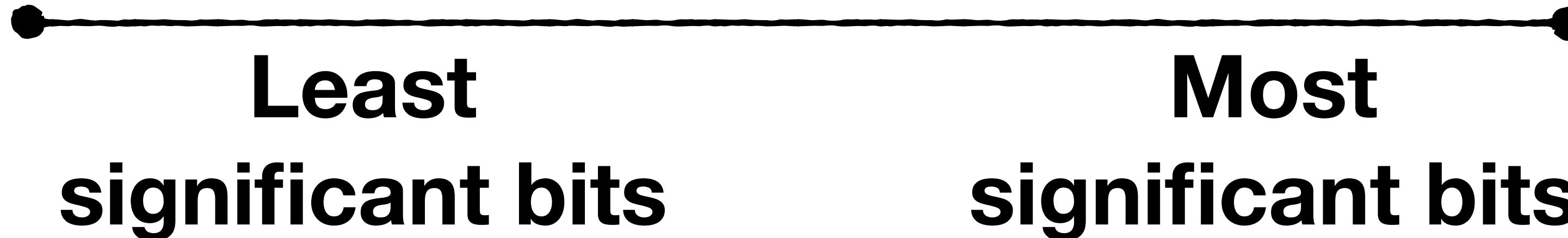
$$\text{rank}(i) = \text{popcount}(\mathbf{B} \& (2^i - 1))$$

Bitmap (64 bits long)

Implementing Rank Efficiently

$$\text{rank}(i) = \text{popcount}(\mathbf{B} \& (2^i - 1))$$

Bitmap (64 bits long)



Implementing Rank Efficiently

$\text{rank}(i) = \text{popcount}(B \& (2^i - 1))$

Total # of 1s

Implementing Rank Efficiently

$$\text{rank}(i) = \text{popcount}(B \& (2^i - 1))$$

Mask out irrelevant more significant bits

$$\text{rank}(i) = \text{popcount}(B \ \& \ (2^i - 1))$$

e.g.,

$$B = 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1$$

$$\text{rank}(i) = \text{popcount}(B \& (2^i - 1))$$

e.g.,

$$B = \begin{matrix} 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \end{matrix}$$

$$\text{rank}(6) = 3$$

$$\text{rank}(i) = \text{popcount}(B \& (2^i - 1))$$

e.g., $B = 01101011$ **rank(6) = 3**

mask: $2^6 - 1 = 11111100$

$$\text{rank}(i) = \text{popcount}(B \& (2^i - 1))$$

e.g., $B = 01101011$ **rank(6) = 3**

&

11111100

=

01101000

$$\text{rank}(i) = \text{popcount}(B \& (2^i - 1))$$

e.g., $B = 01101011$ **rank(6) = 3**

popcount(01101000) = 3

Implementing Select Efficiently

Implementing Select Efficiently

select(i) = tzcnt(pdep(2^i , B))

Implementing Select Efficiently

$$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, \mathbf{B}))$$

Bitmap (64 bits long)

Implementing Select Efficiently

$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, B))$

Count trailing zeros

Implementing Select Efficiently

$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, B))$

Count trailing zeros

$\text{tzcnt}(\underline{000}11101) = 3$

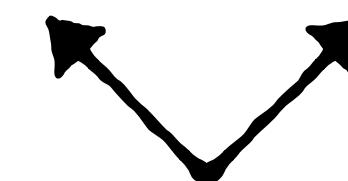
Implementing Select Efficiently

$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, B))$

Scatter bits in first operand at 1s in second operand

Implementing Select Efficiently

$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, B))$



Available on x86

<https://www.felixcloutier.com/x86/>

Implementing Select Efficiently

$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, B))$

e.g.,

B = 0 1 1 0 1 0 1 1

Implementing Select Efficiently

$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, B))$

e.g.,

$B = 01101011$

Select(2) = 4

Implementing Select Efficiently

$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, B))$

e.g., $B = 01101011$ $\text{Select}(2) = 4$

$2^2 = 00100000$

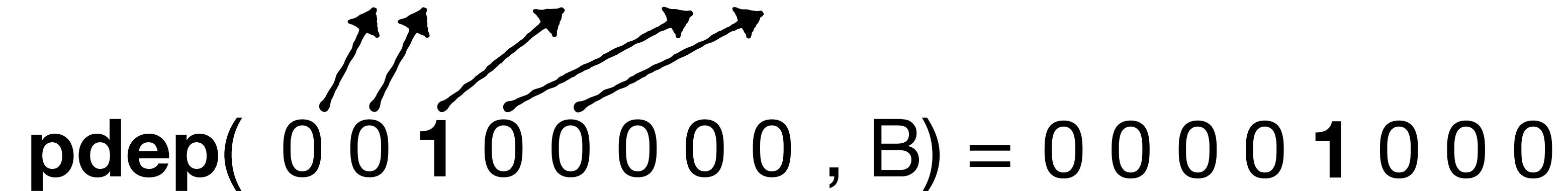
Implementing Select Efficiently

$$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, B))$$

e.g.,

$$B = 01101011$$

$$\text{Select}(2) = 4$$


$$\text{pdep}(00100000, B) = 00001000$$

Scatter bits in first operand at 1s in second operand

Implementing Select Efficiently

$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, B))$

e.g., $B = 01101011$ $\text{Select}(2) = 4$

$\text{pdep}(00100000, B) = 00001000$

Only the 1 at relevant position is now set

Implementing Select Efficiently

$\text{select}(i) = \text{tzcnt}(\text{pdep}(2^i, B))$

e.g., $B = 01101011$ $\text{Select}(2) = 4$

$\text{tzcnt}(00001000) = 4$

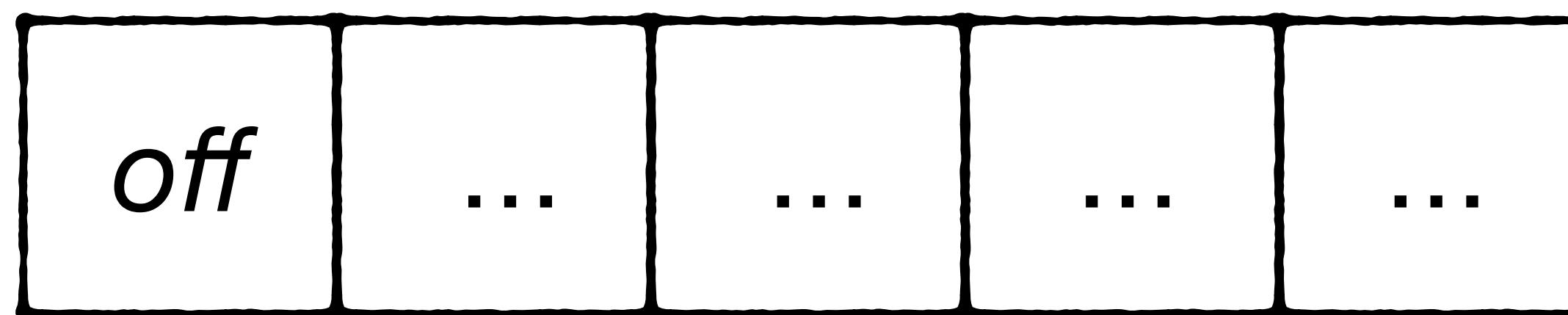
queries in $O(1)$ due to fast rank and select

$r = \text{Rank}(k - j)$

Occupied:

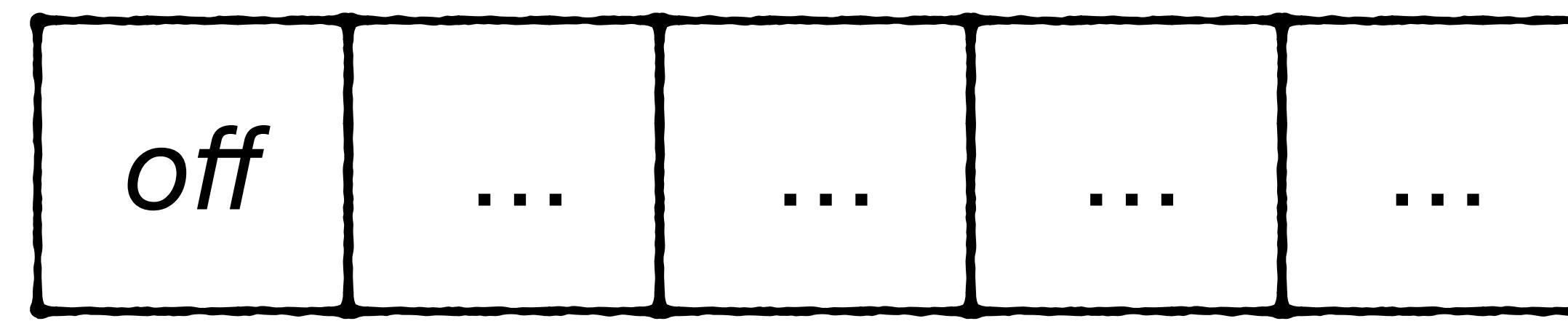
End:

$\text{Select}(\text{Rank}(off) + r)$



Offset j j+1 j+2 j+3

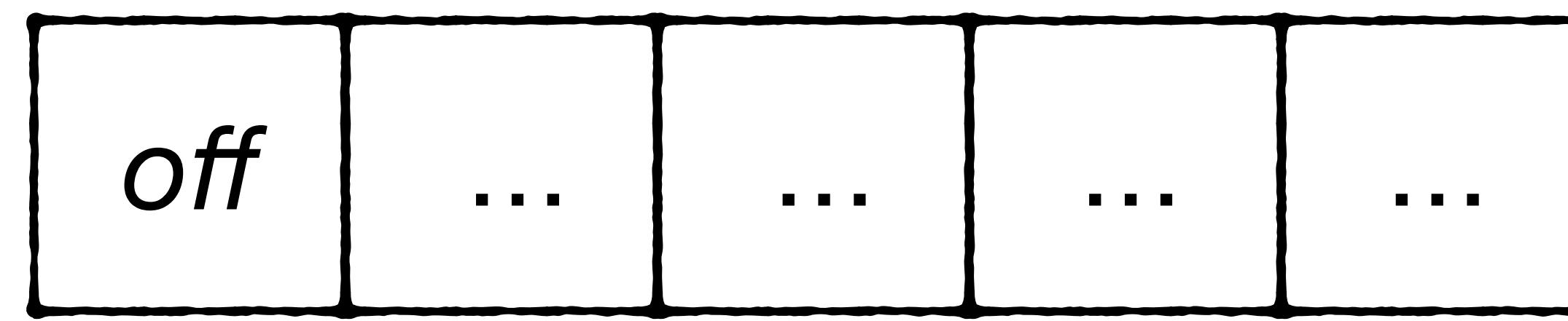
Insertions?



Offset j j+1 j+2 j+3

Insertions

Find target run, push colliding entries to right, insert

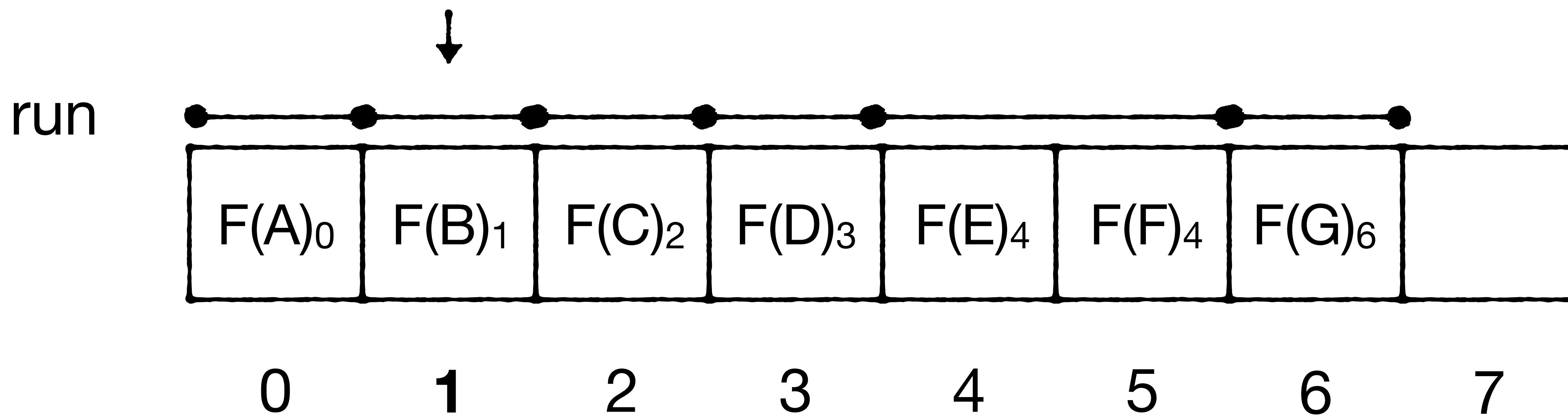


Offset j j+1 j+2 j+3

Insertions

Find target run, push colliding entries to right, insert

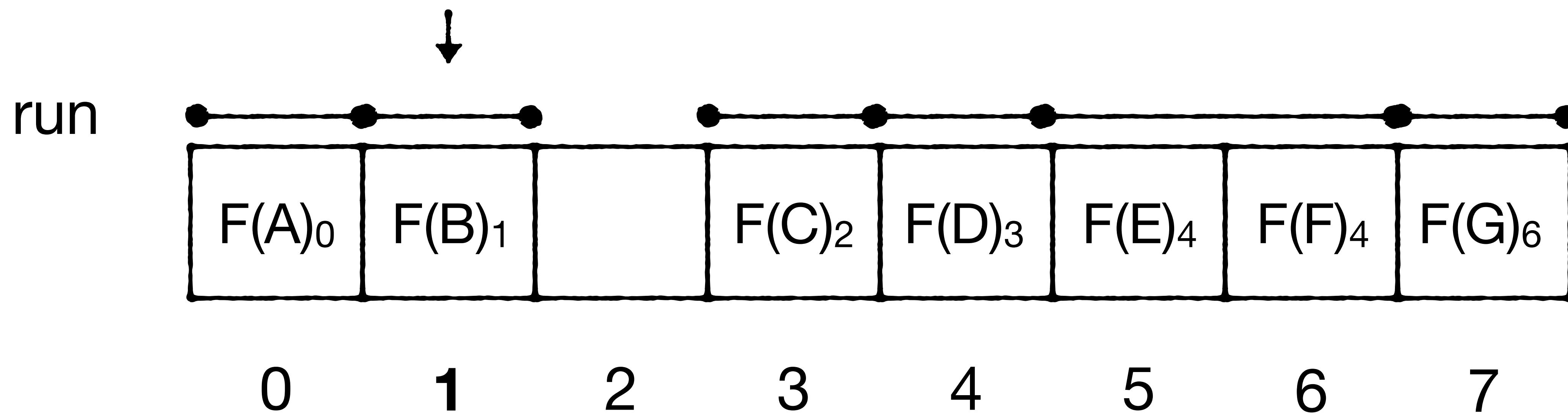
Insert $F(X)_1$



Insertions

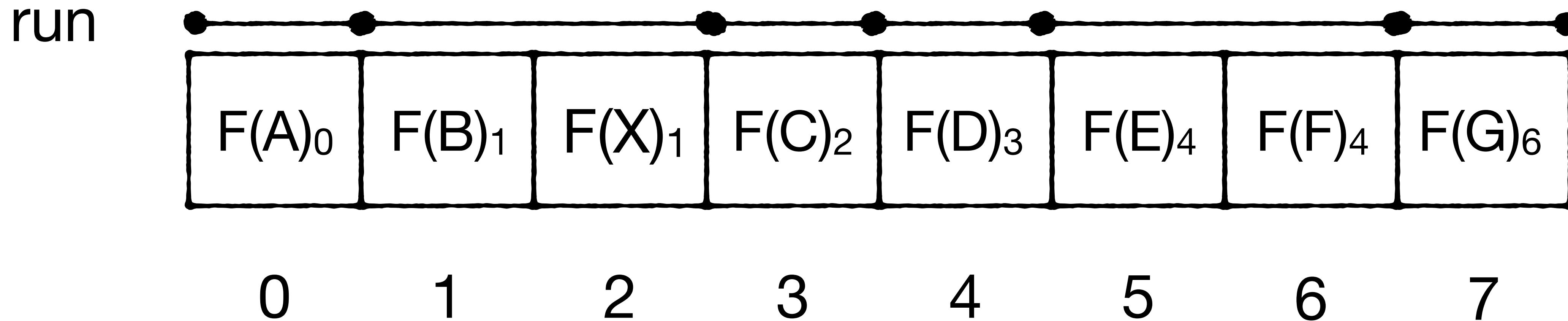
Find target run, push colliding entries to right, insert

Insert $F(X)_1$



Insertions

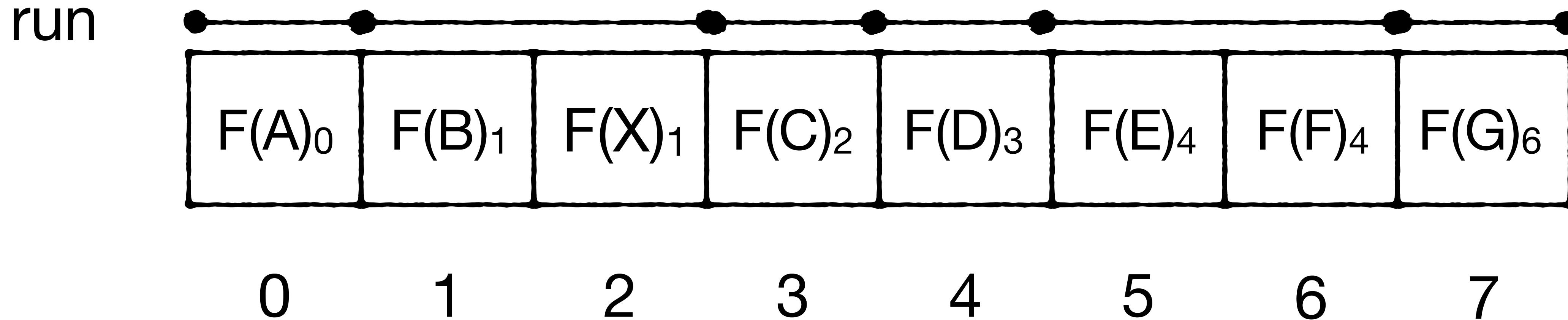
Find target run, push colliding entries to right, insert



Insertions

Find target run, push colliding entries to right, insert

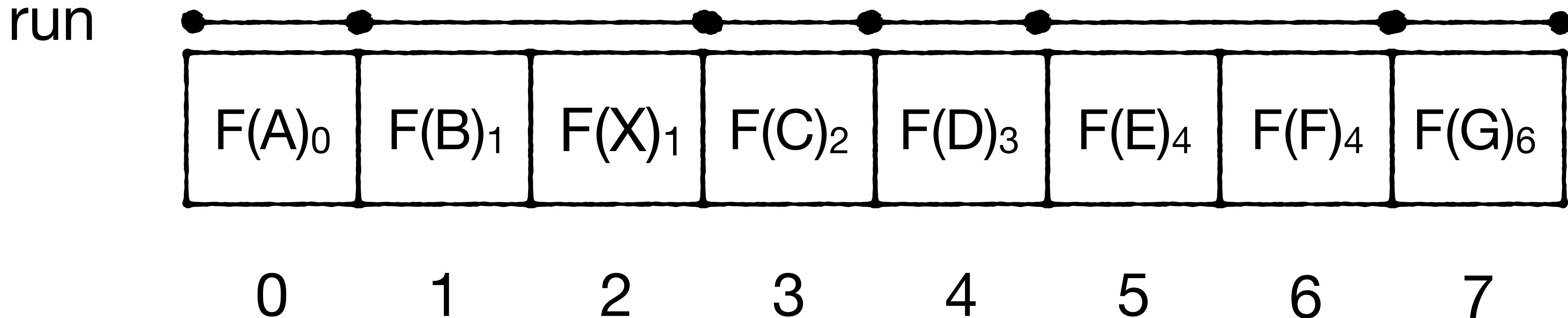
Problem?



Insertions

Find target run, **push colliding entries to right**, insert

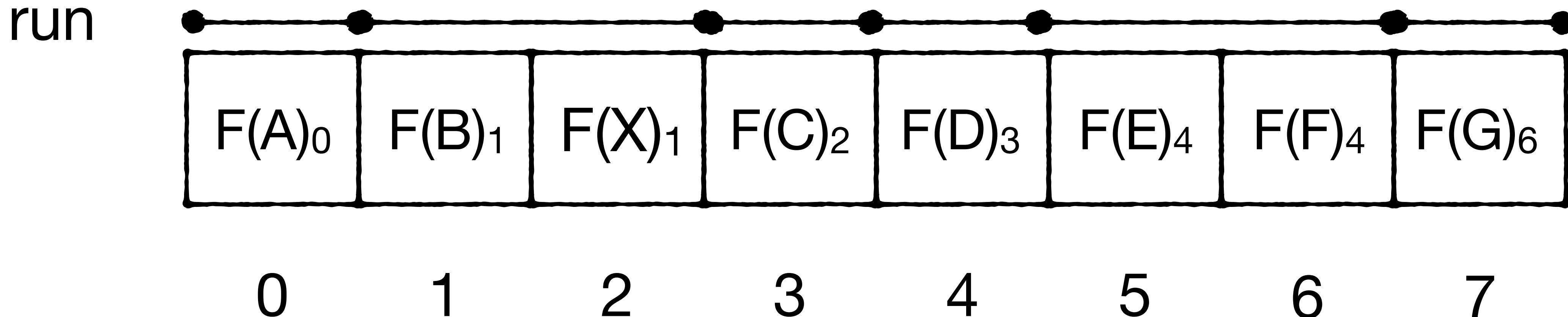
potentially $O(N)$



Insertions

Find target run, **push colliding entries to right**, insert

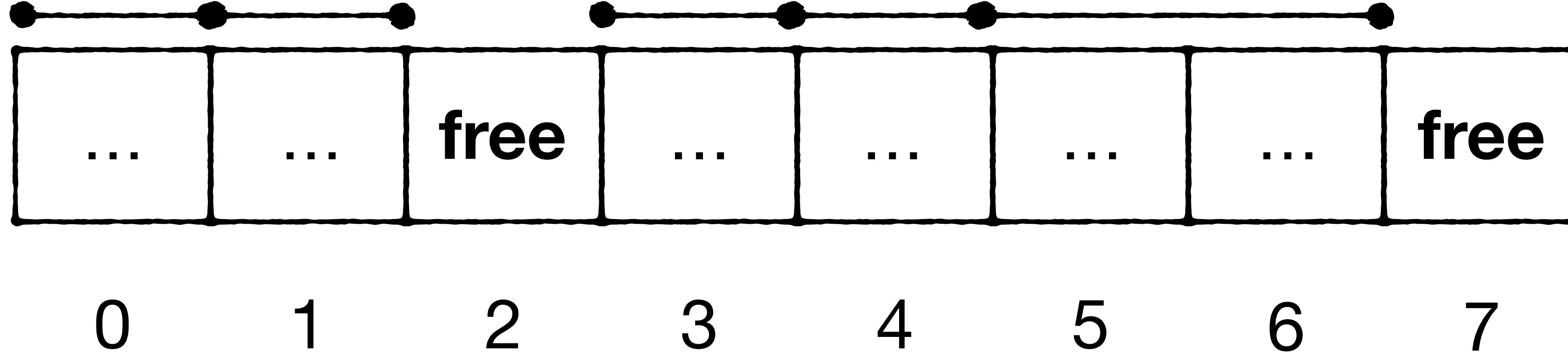
potentially $O(N)$ - **solution?**



Insertions

Keep at least 5% spare capacity

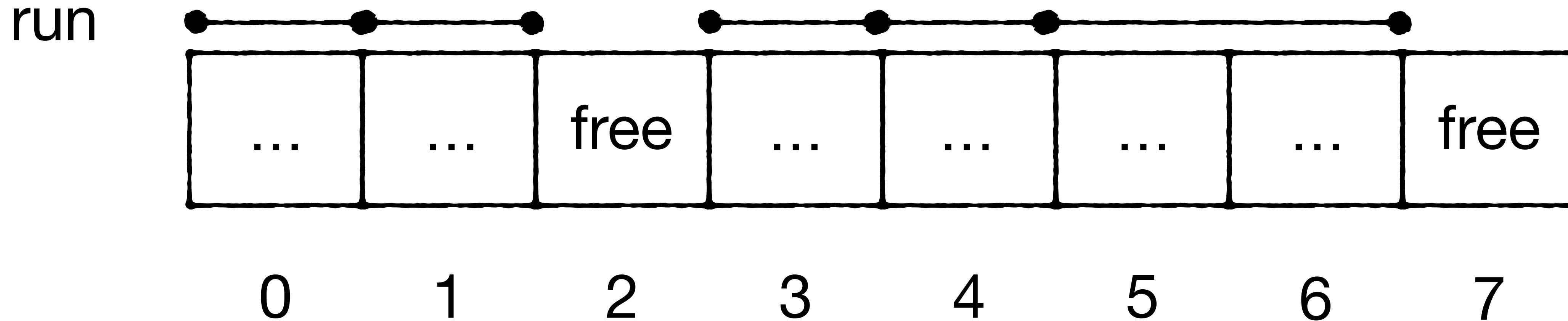
run



Insertions

Keep at least 5% spare capacity

Push on avg. 20 entries on avg due to hashing

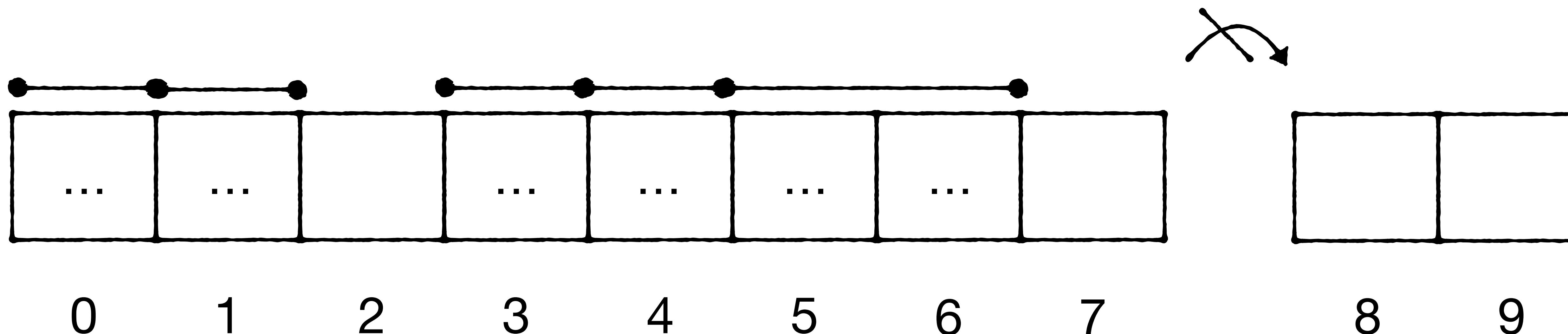


Insertions

Keep at least 5% spare capacity

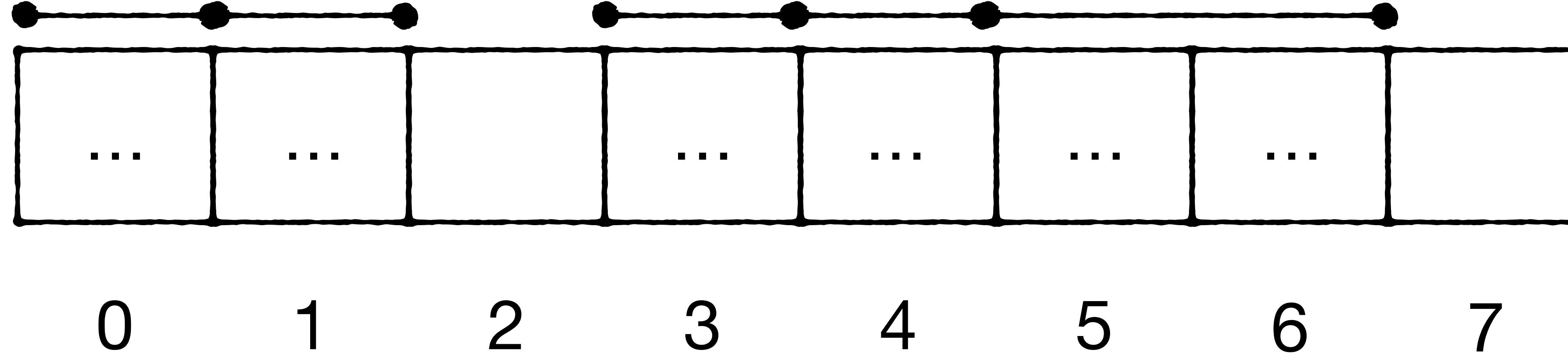
Push on avg. 20 entries on avg due to hashing

Most insertions don't spill to the next chunk

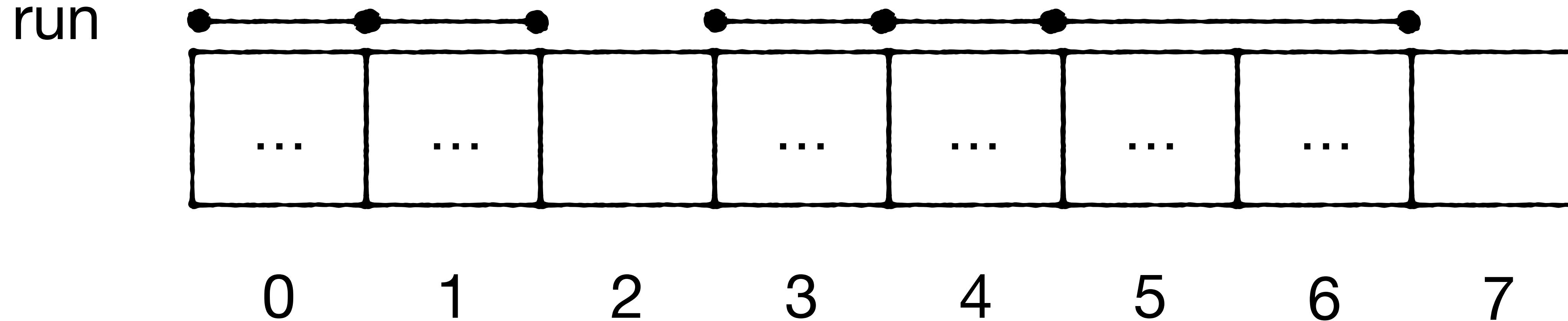


deletes?

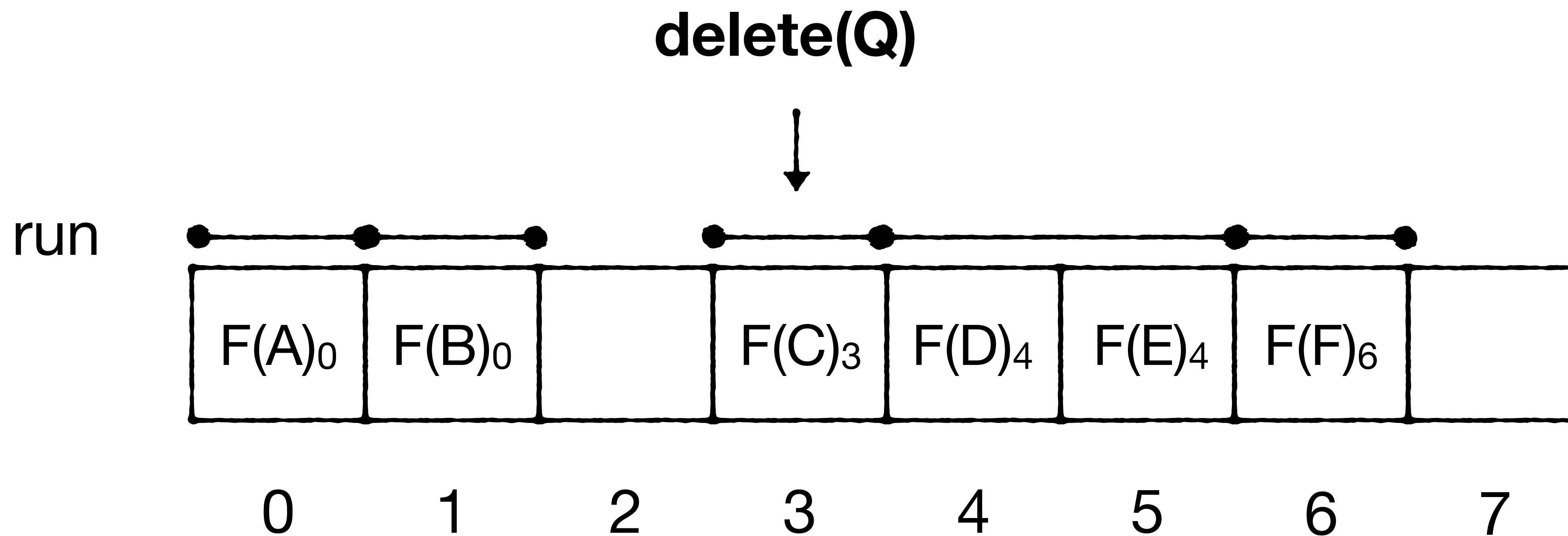
run



Can only delete entry we know exists. Why?

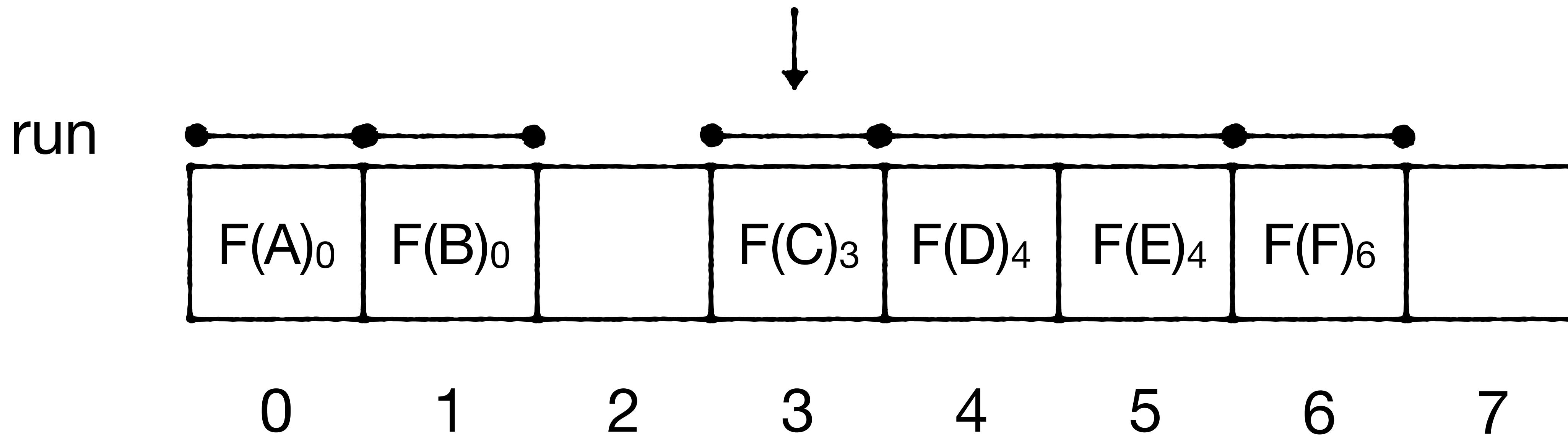


Can only delete entry we know exists. Why?

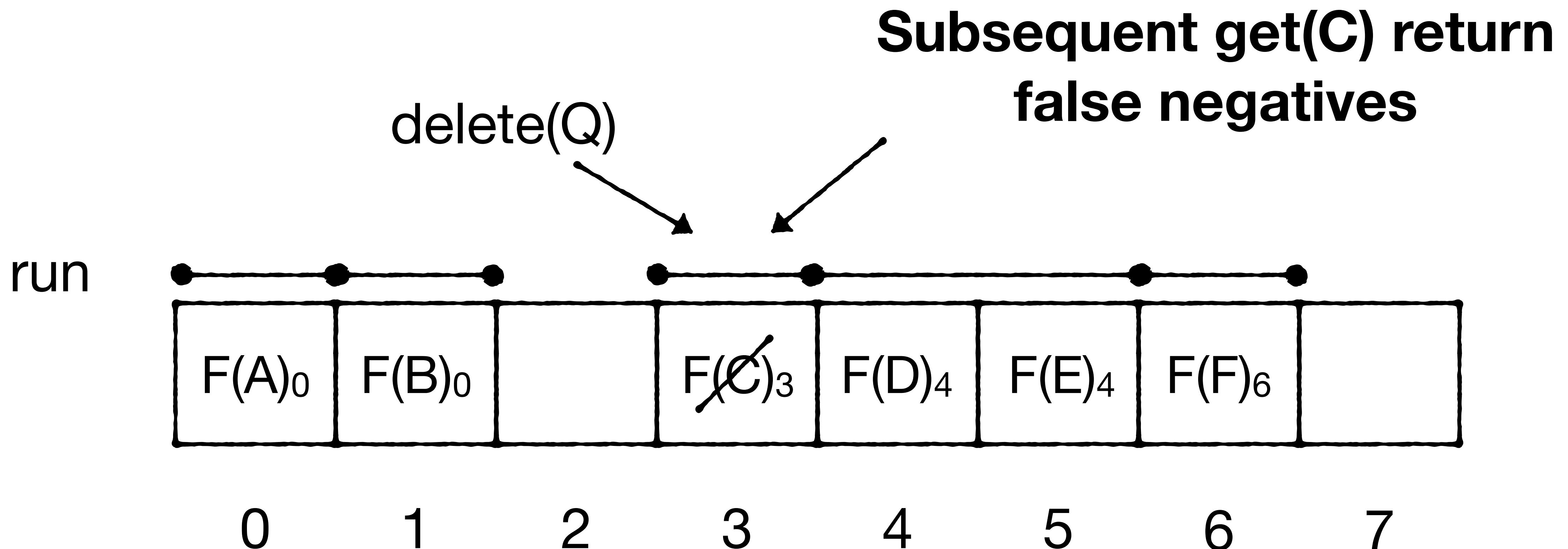


Can only delete entry we know exists. Why?

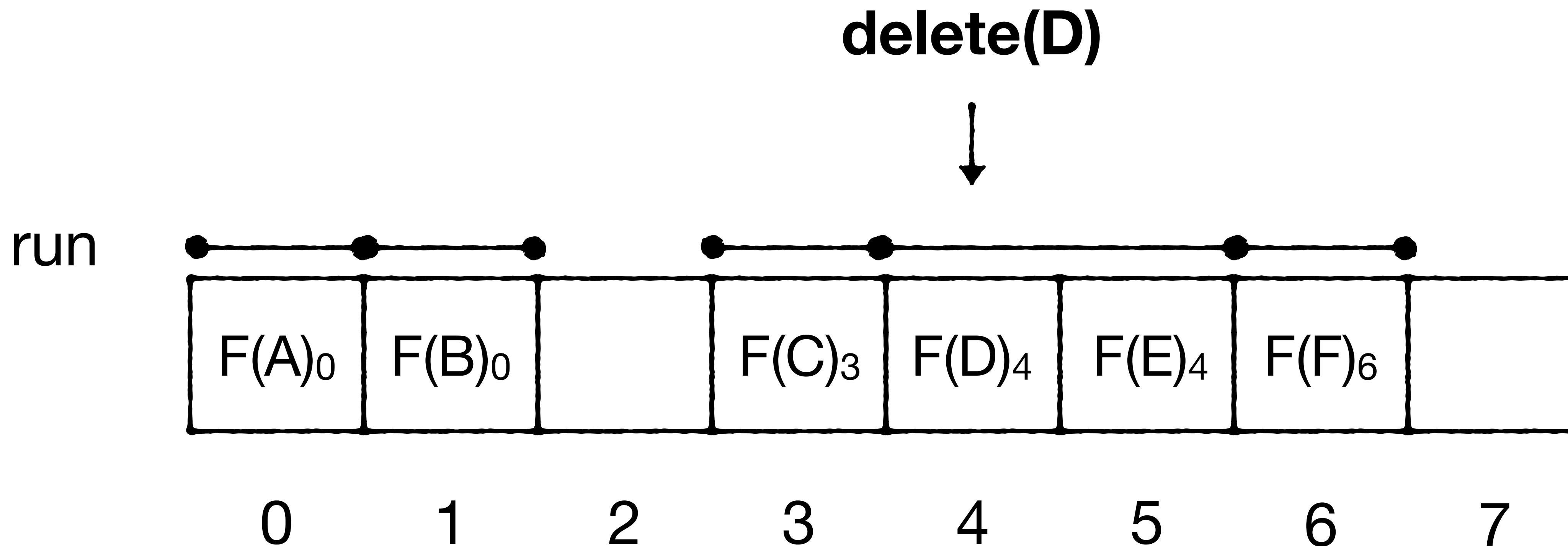
delete(Q) - matches C's FP at slot 3



Can only delete entry we know exists. Why?

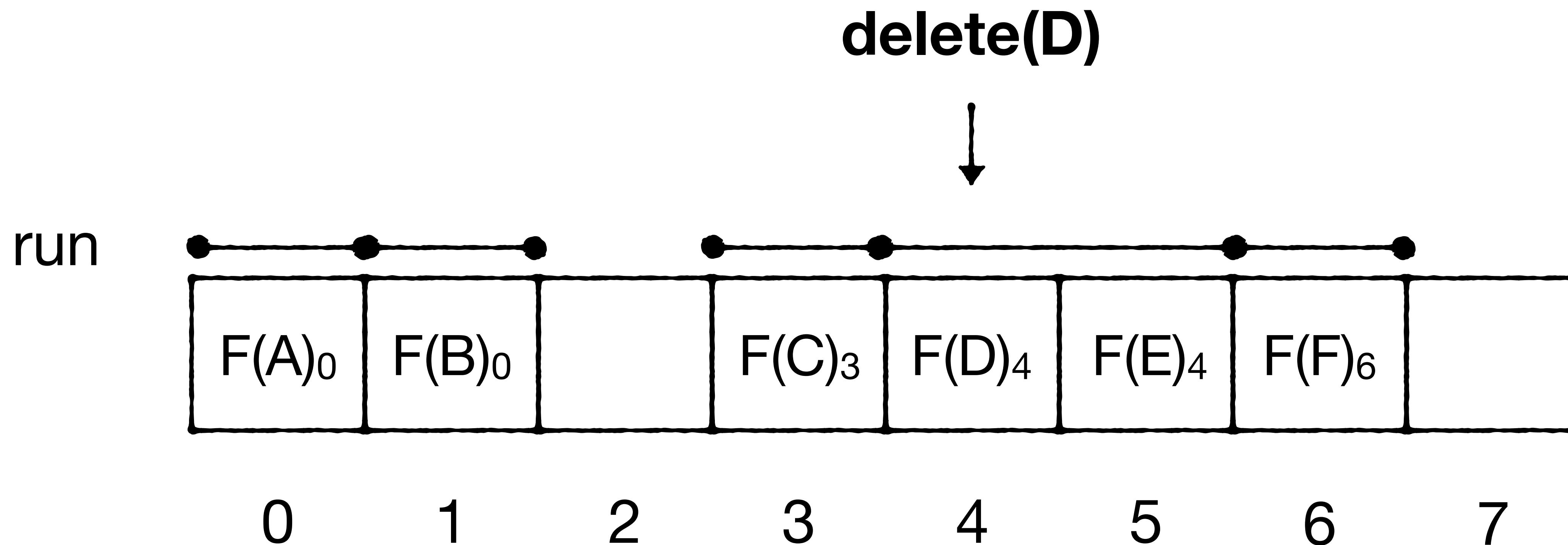


How to delete an entry we know exists?



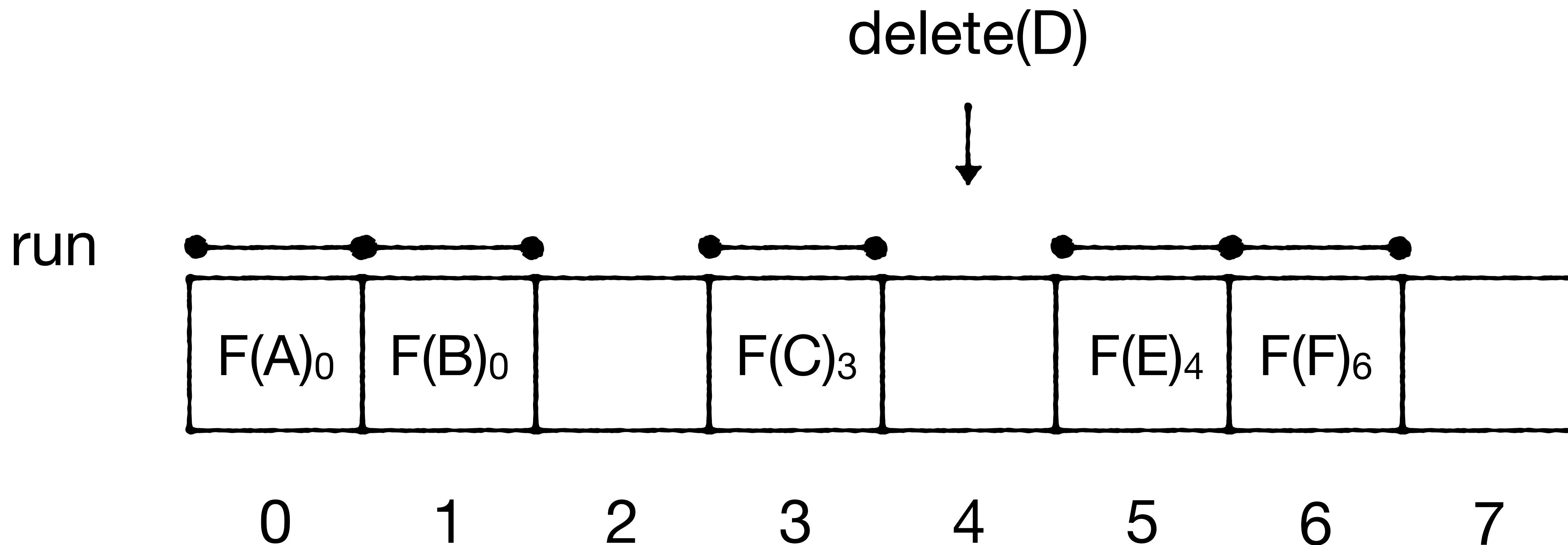
How to delete an entry we know exists?

(1) Find run, remove matching fingerprint

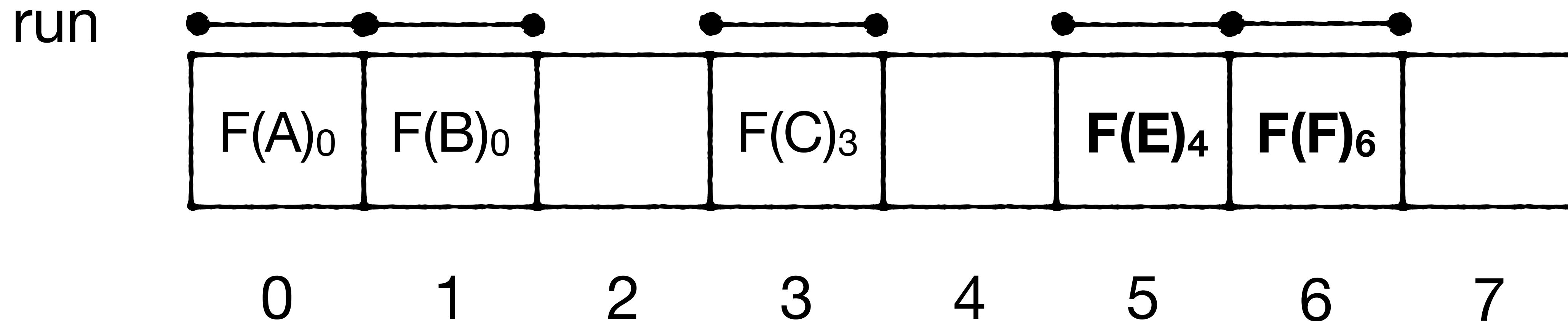


How to delete an entry we know exists?

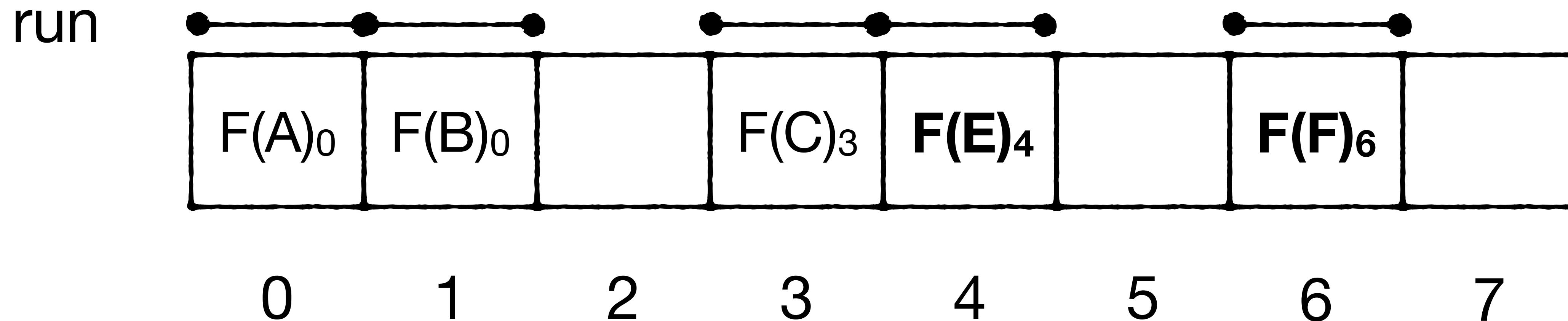
(1) Find run, remove matching fingerprint



(2) shift entries leftwards if needed to maintain contiguous runs as close as possible to their canonical slot



(2) shift entries leftwards if needed to maintain contiguous runs as close as possible to their canonical slot



Analysis

Query/insert/delete

False positive rate

Analysis

Query/insert/delete

$O(1)$ expected time

False positive rate

Analysis

Query/insert/delete

$O(1)$ expected time

False positive rate

$\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$

Analysis

Query/insert/delete

$O(1)$

False positive rate

$\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$

Bits / entry budget

Analysis

Query/insert/delete

$O(1)$

False positive rate

$\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$

Metadata bits

(2 bitmaps and offsets field)

Analysis

Query/insert/delete

$O(1)$

False positive rate

$\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$

Load factor, $\alpha < 0.95$

Analysis

Query/insert/delete

$O(1)$

False positive rate

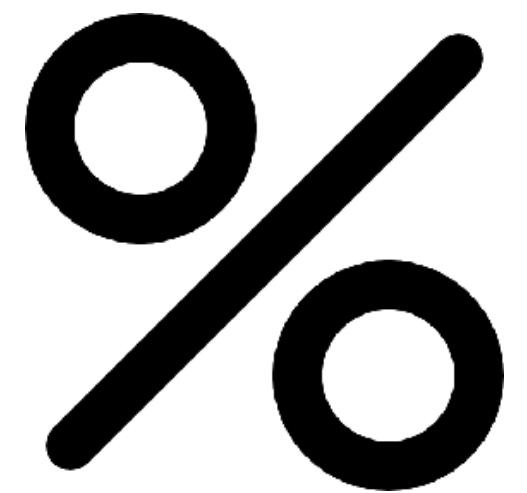
$\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$

Avg run length

Bloom

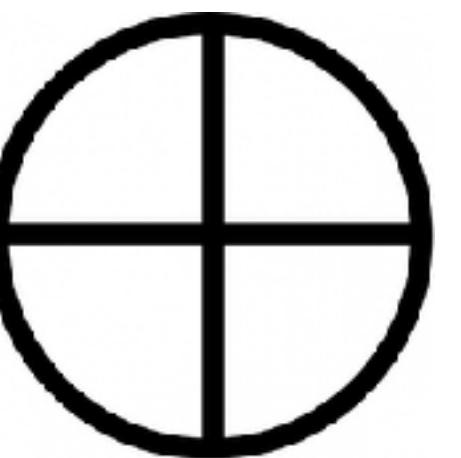
$\approx 2^{-M/N} \cdot 0.69$

Quotient



$\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$

XOR



$\approx 2^{-M/N} \cdot 0.81$

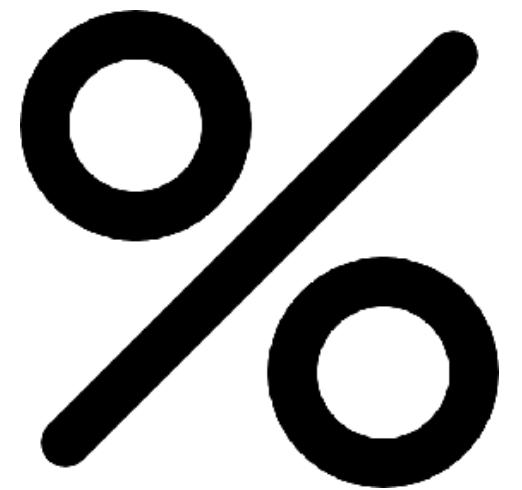
Idealized

$\approx 2^{-M/N}$

Bloom

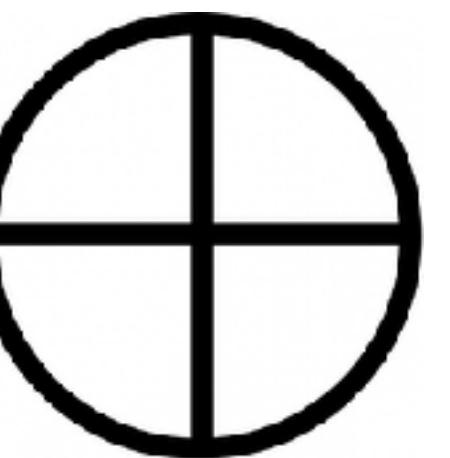
$$\approx 2^{-M/N} \cdot 0.69$$

Quotient



$$\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$$

XOR



$$\approx 2^{-M/N} \cdot 0.81$$

Idealized

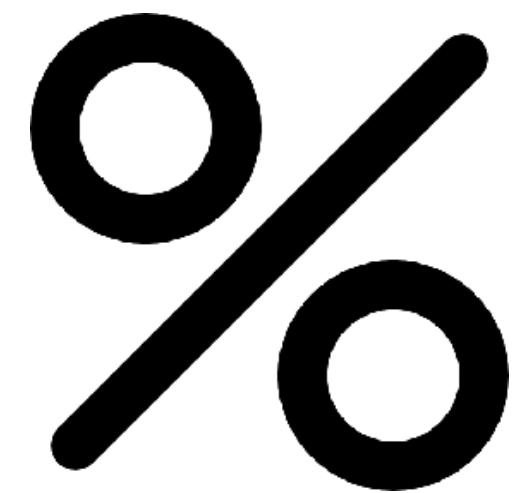
$$\approx 2^{-M/N}$$

Lower than Bloom for $M/N > 10$

Bloom

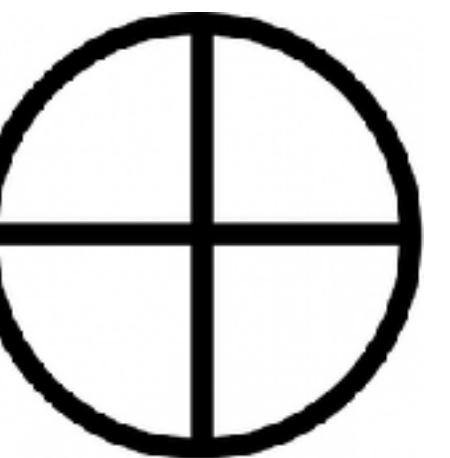
$$\approx 2^{-M/N} \cdot 0.69$$

Quotient



$$\approx \alpha \cdot 2^{-(M/N - 2.125)/\alpha}$$

XOR



$$\approx 2^{-M/N} \cdot 0.81$$

Idealized

$$\approx 2^{-M/N}$$

Lower than Bloom for $M/N > 10$

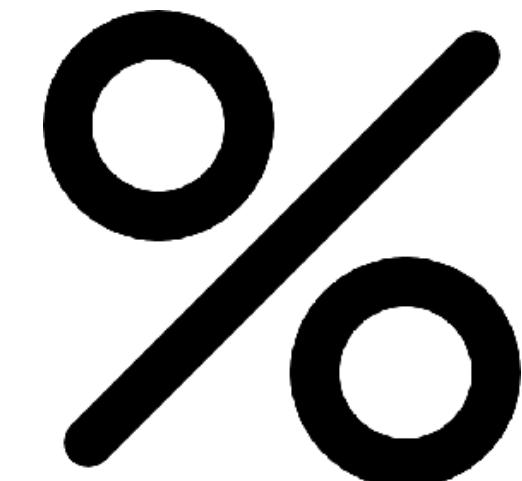
Supports deletes :)

Performance (cache misses)

Blocked Bloom

1

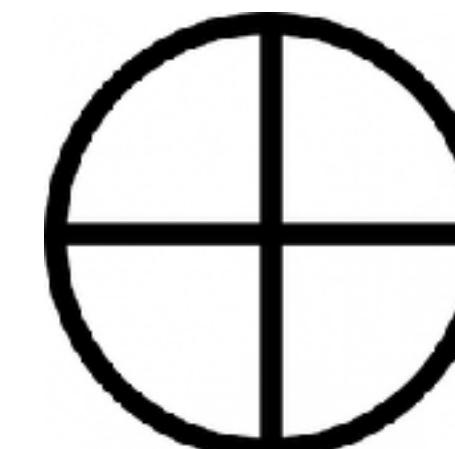
Quotient



≈ 1-2 on avg

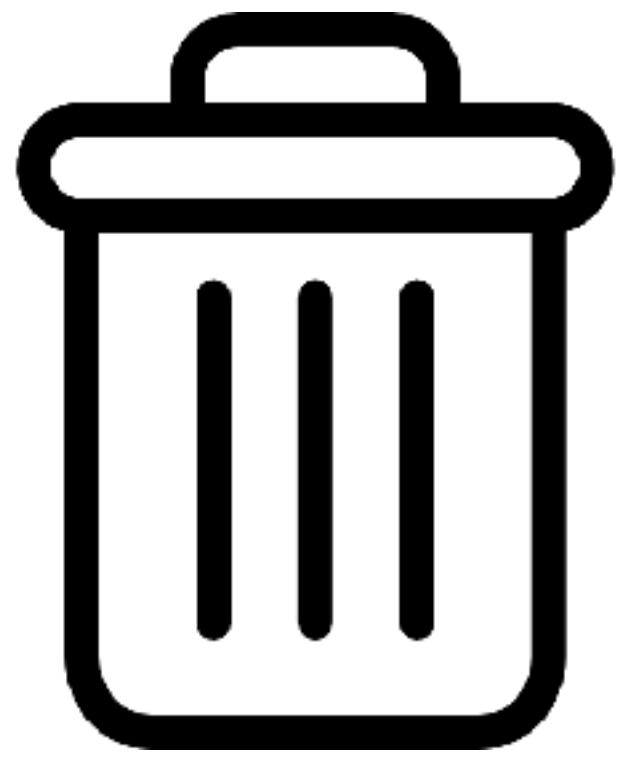
sequential

XOR



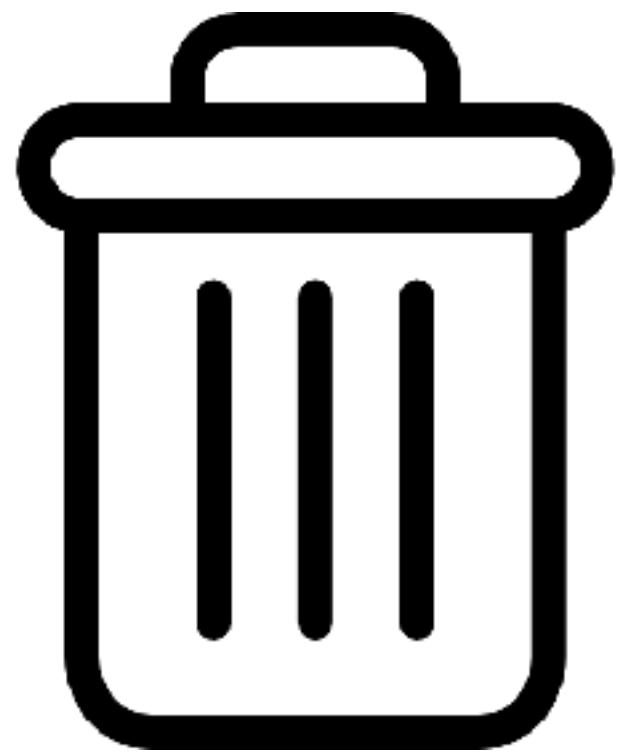
3

random



Deletes

Resizing

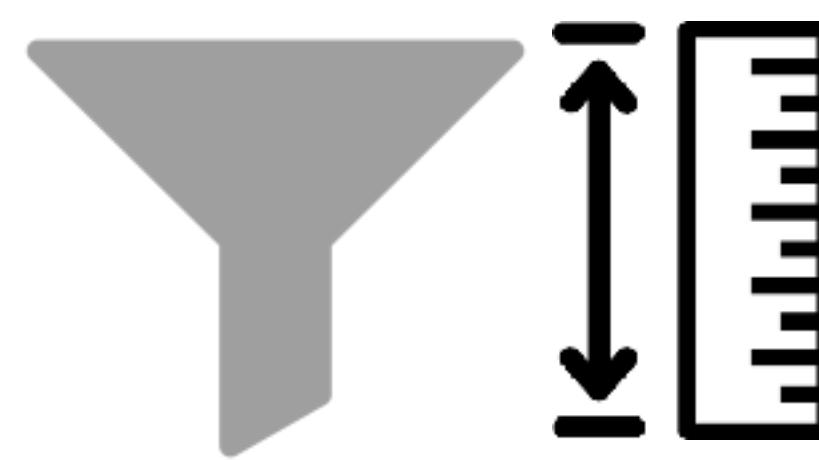


Deletes

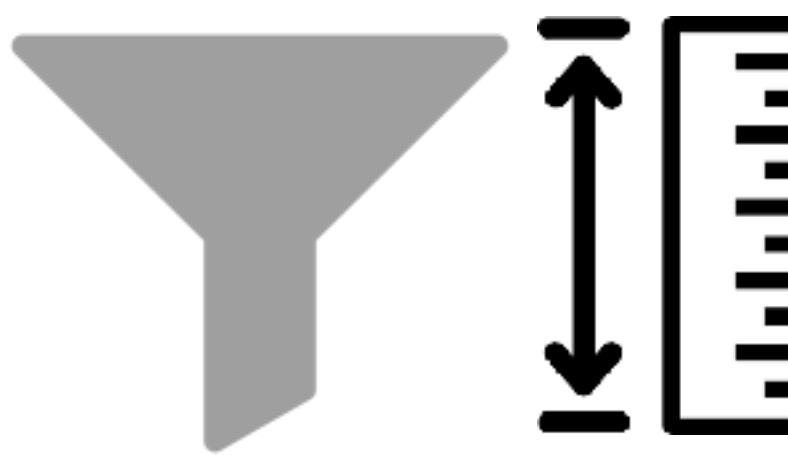
Resizing

Break

Allocated with fixed capacity

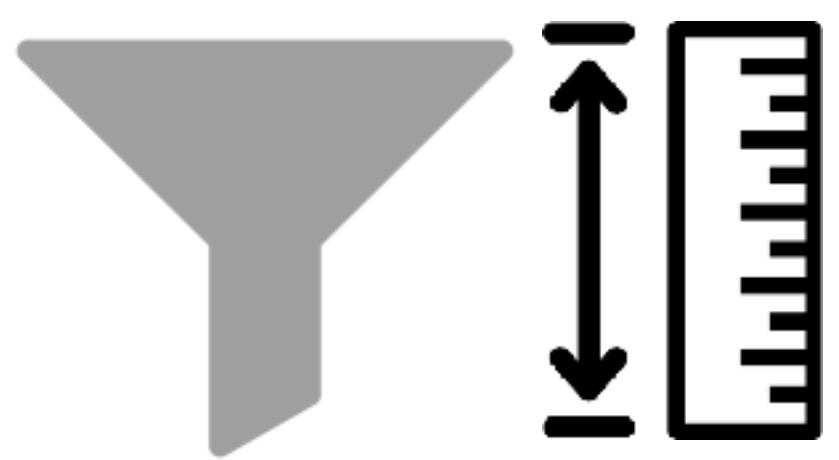


Allocated with fixed capacity



**False positive
rate**

**Insertion/query/
delete cost**



Data growth

How to Expand Filters Efficiently?

Data growth

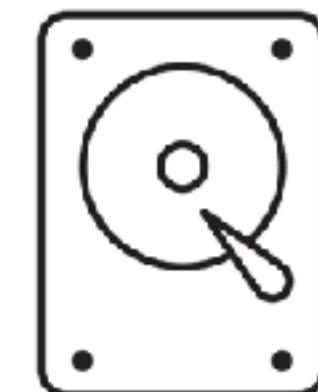
How to Expand Filters Efficiently?

?

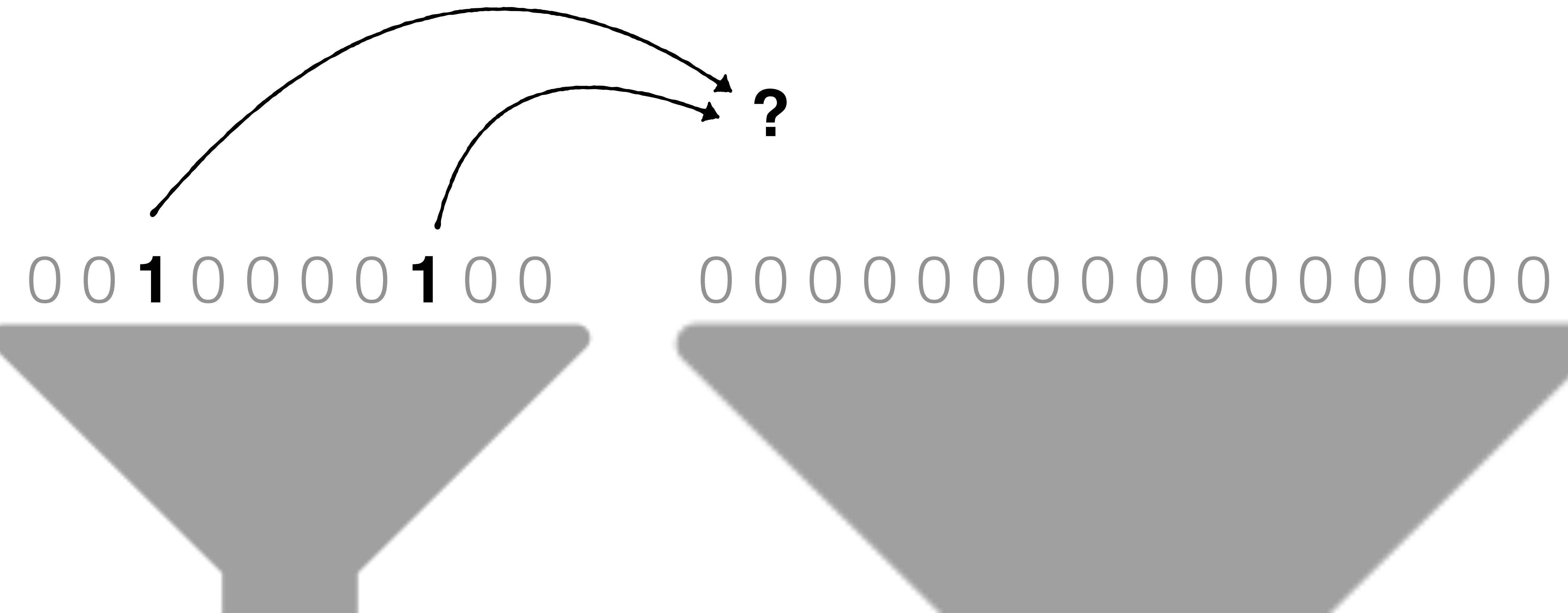


Data growth

Without rereading the original data

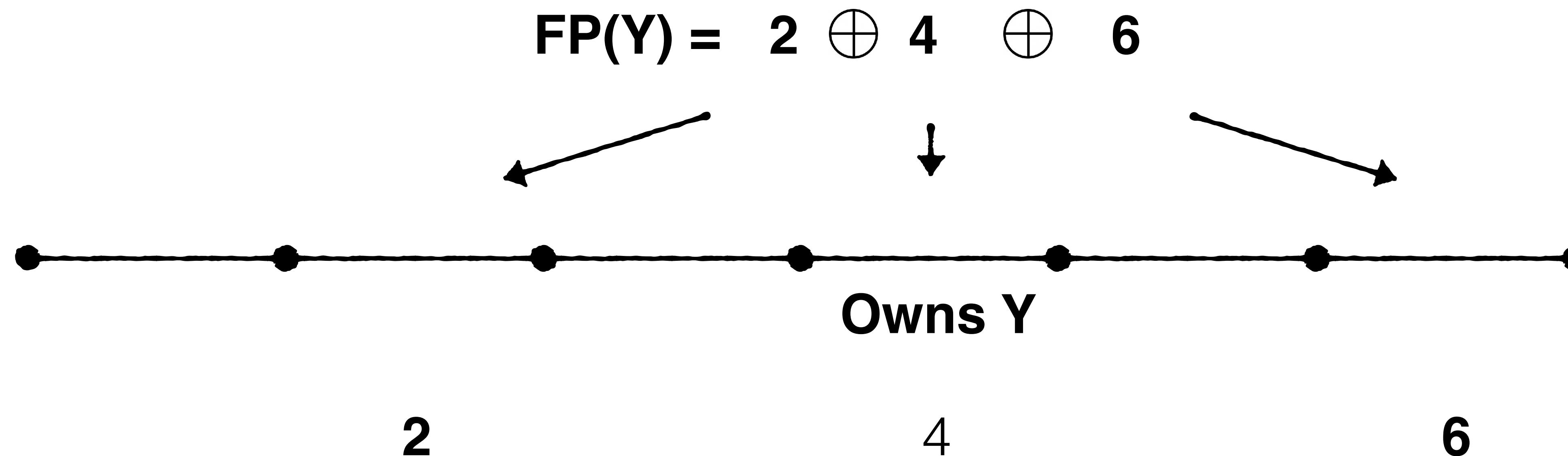


Bloom Filters: unexpandable



XOR Filters: unexpandable

Can't recover original fingerprints without
accessing the original data



Expansion Workarounds

Expansion Workarounds

Pre-Allocation

Memory

Expansion Workarounds

Pre-Allocation

Reconstruction

Memory

Full scan

Agenda

Chaining

Quotient Filter

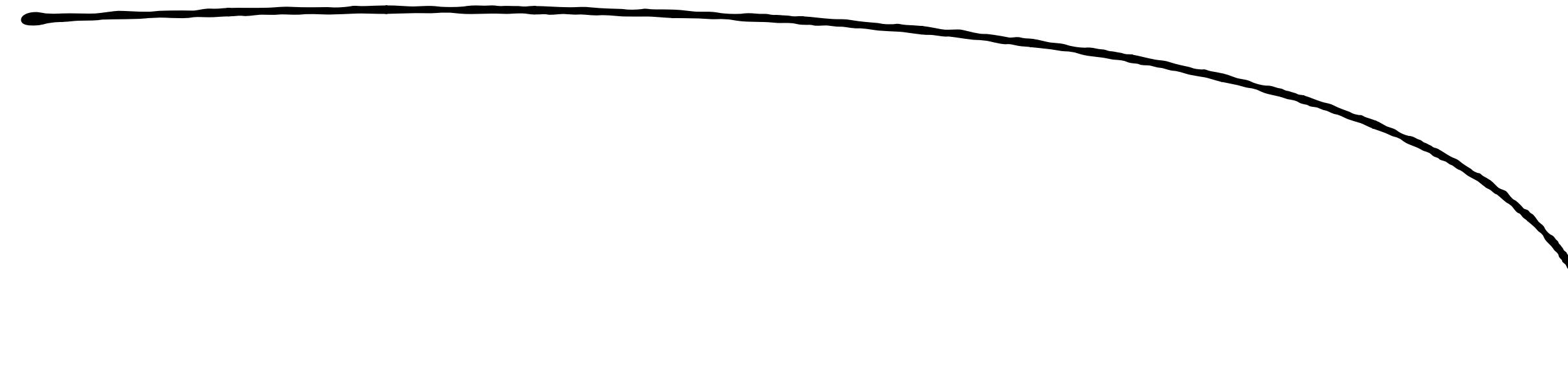
InfiniFilter &
Aleph Filter

Chaining

Create 2x larger filter when former reaches capacity

Chaining

Insertions



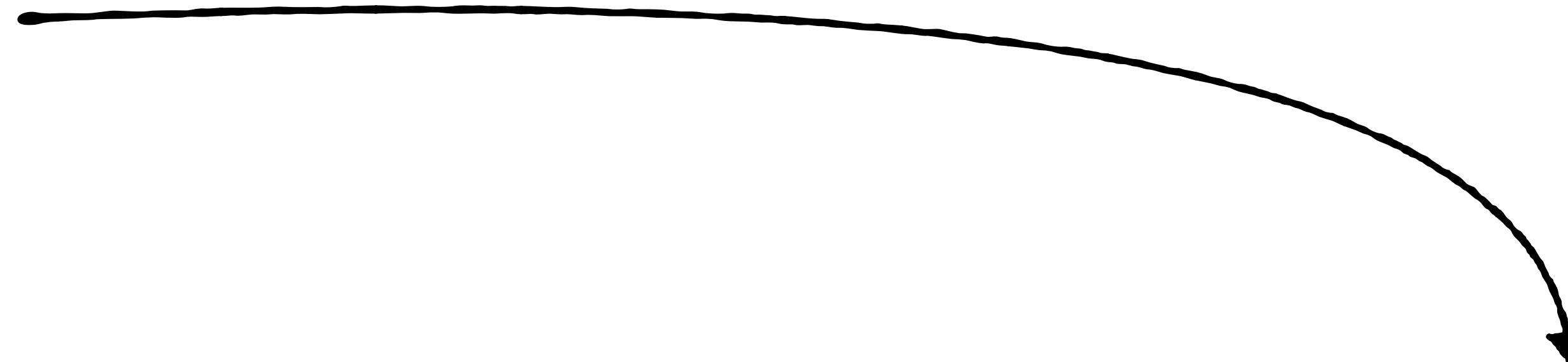
Chaining

Insertions

Full

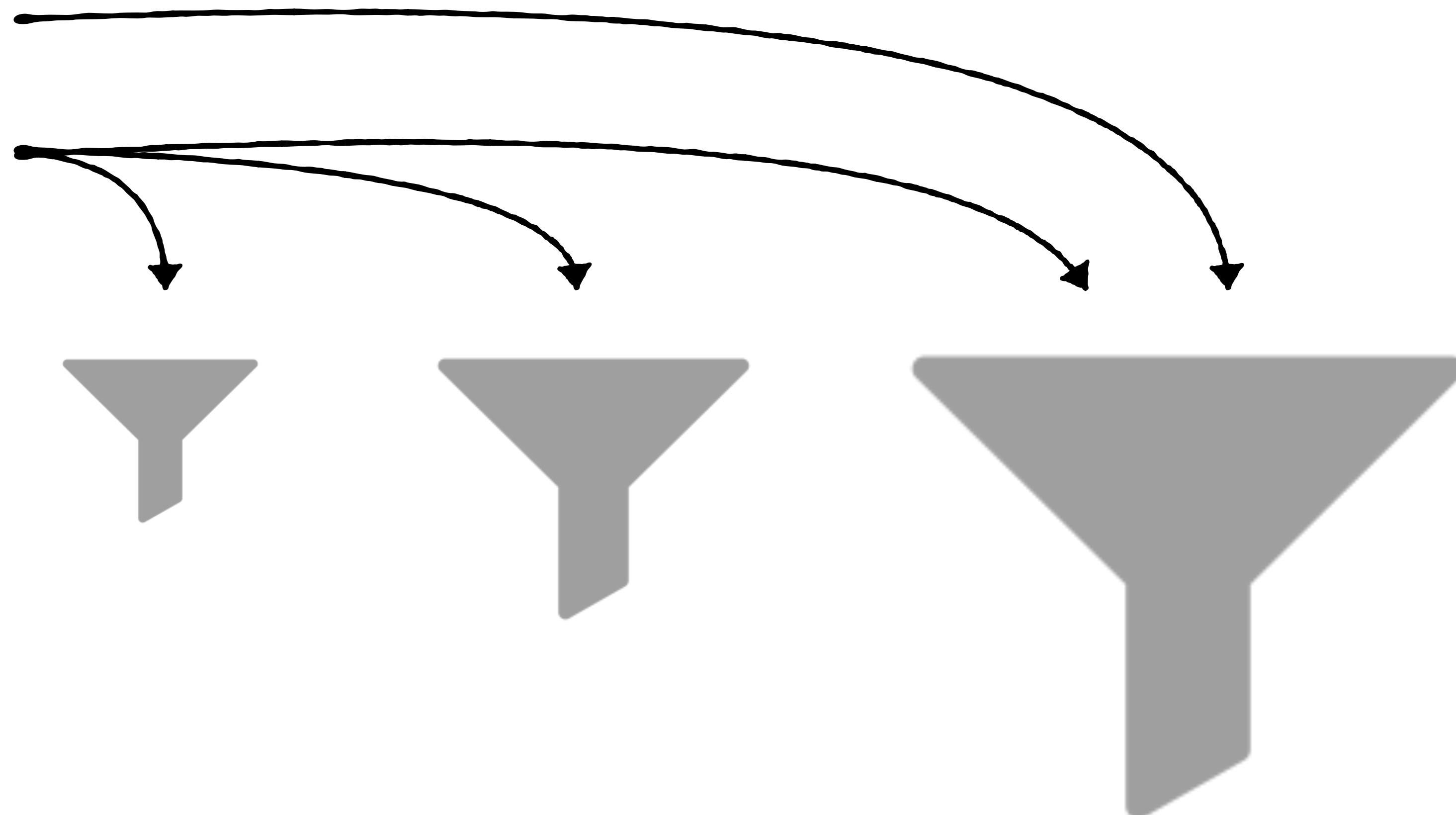
**Create 2x
larger**

Insertions



Insertions

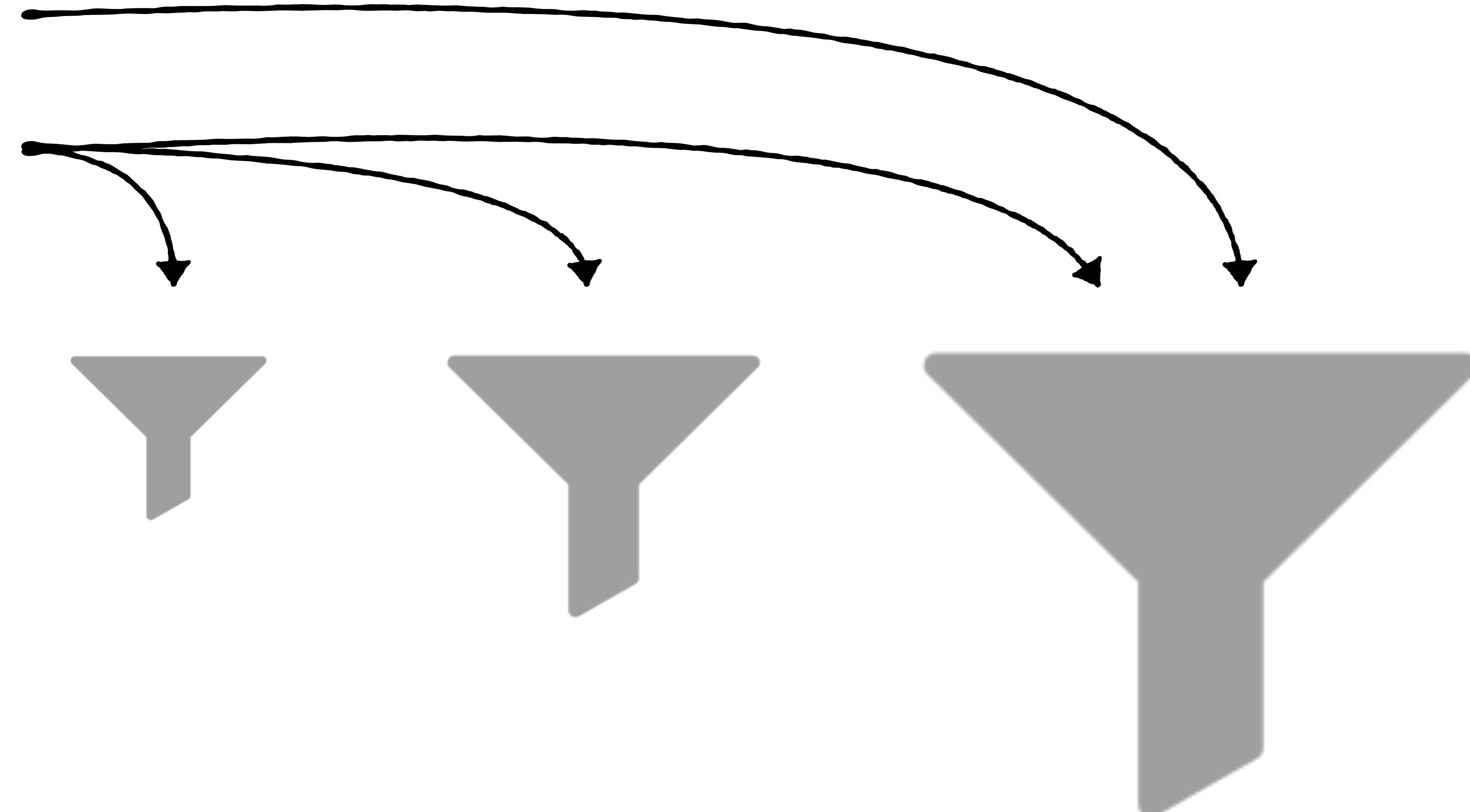
Queries



Works with any filter

Insertions

Queries

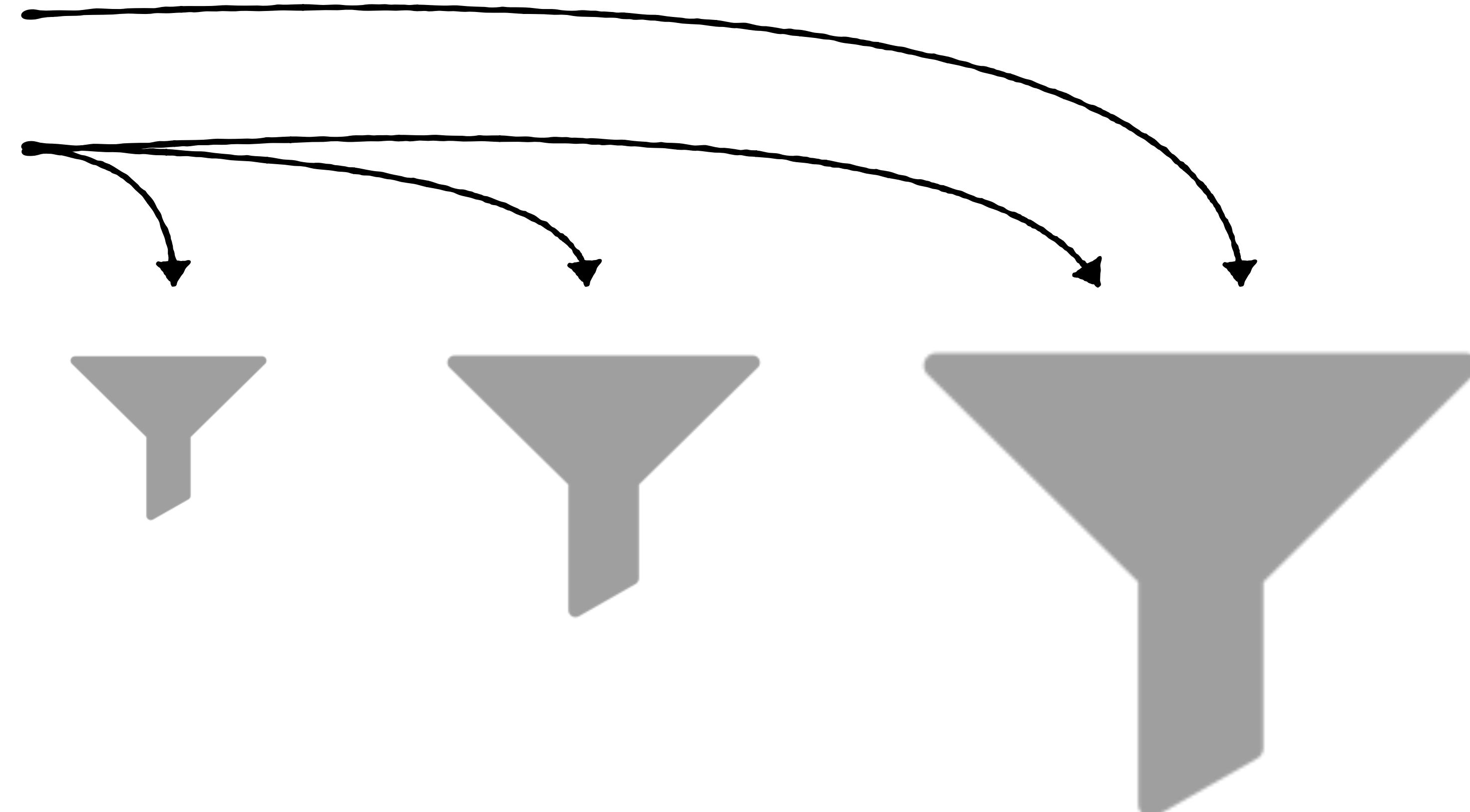


Works with any filter

Downsides?

Insertions

Queries



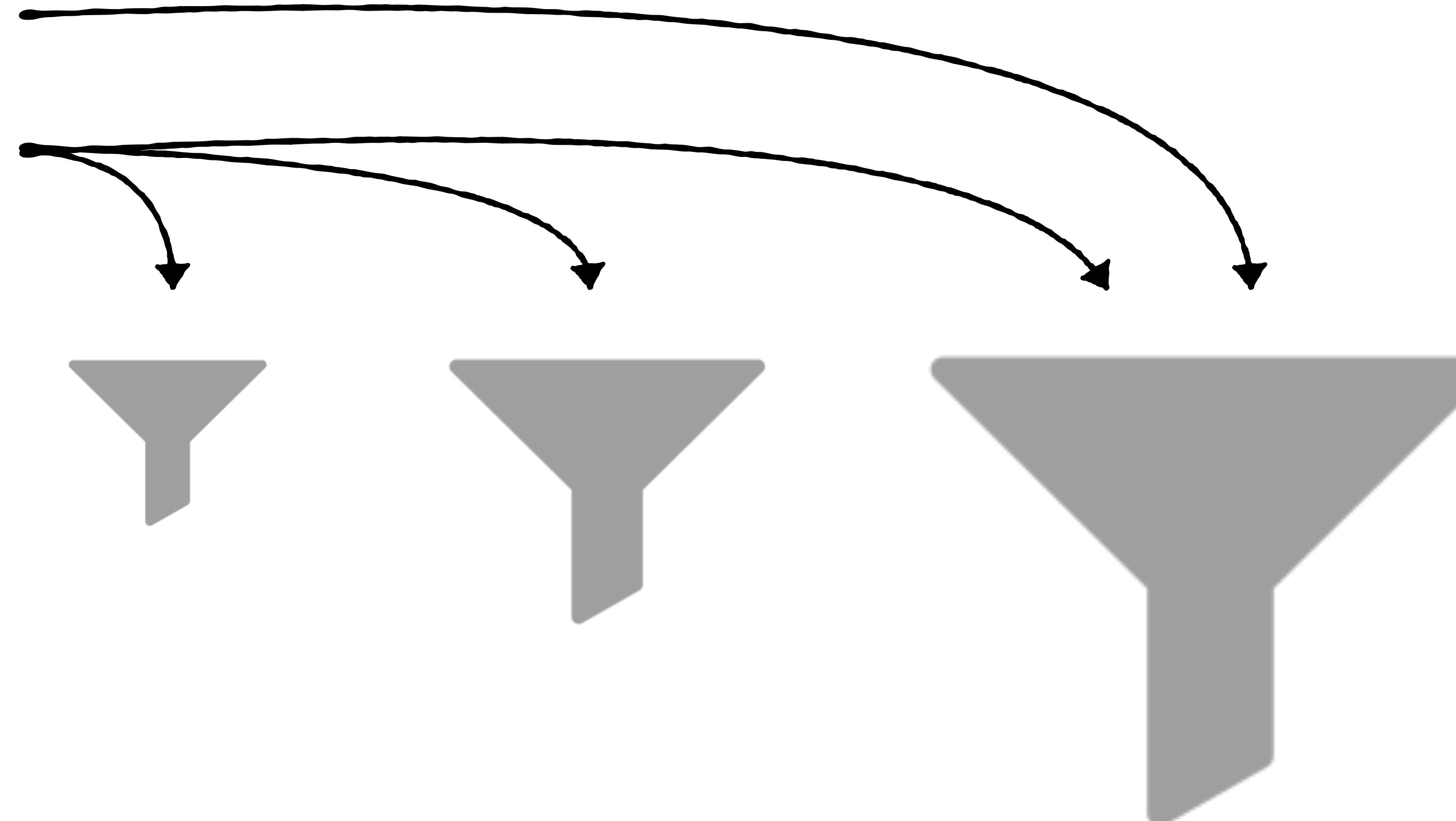
Works with any filter

Downsides?

Insertions

Queries

$O(\log_2 N)$



Works with any filter

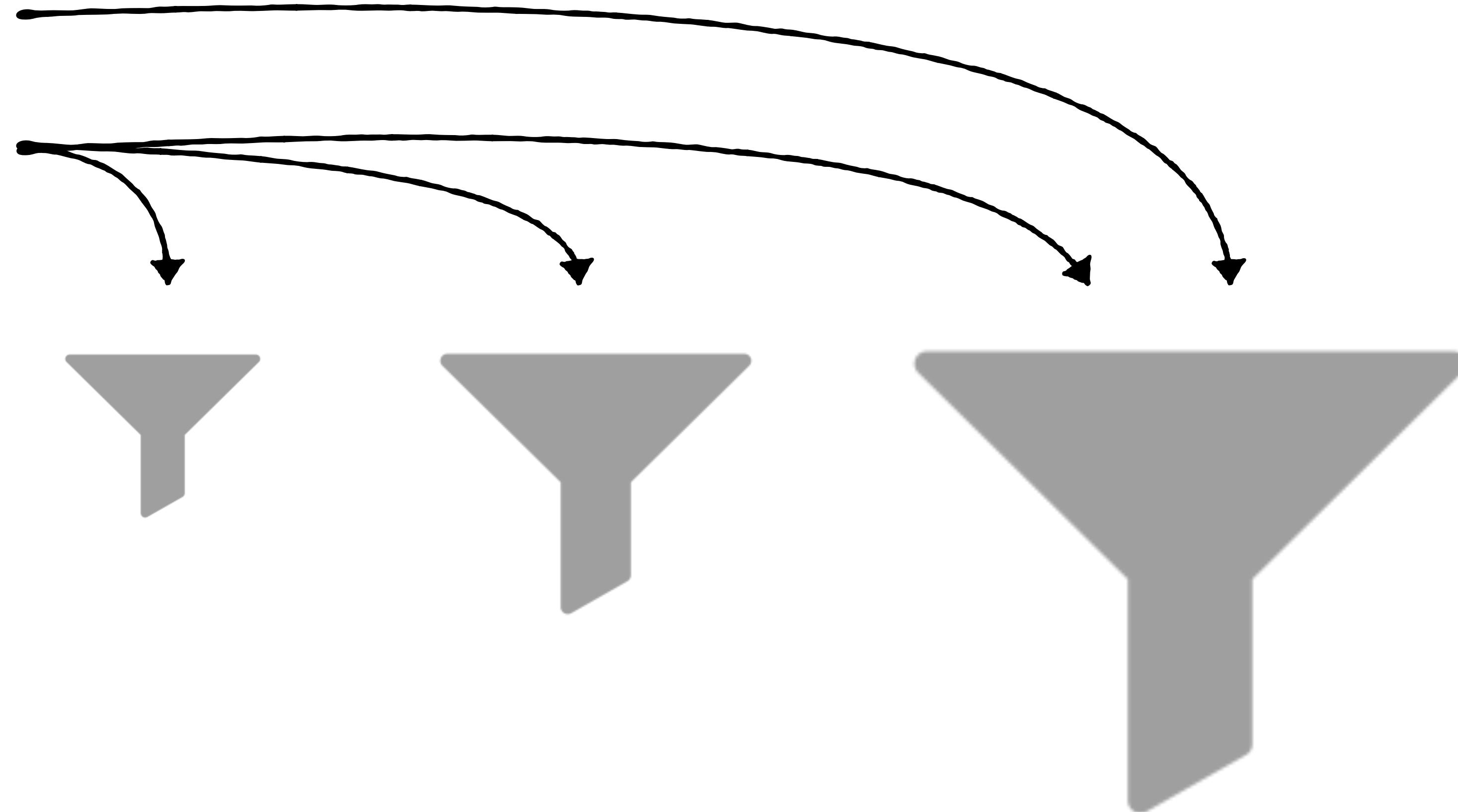
Downsides?

Insertions

Queries

$O(\log_2 N)$

FPR?



$$\text{FPR} \leq \varepsilon + \varepsilon + \varepsilon = O(\varepsilon \cdot \log_2 N)$$

Suppose we want to keep it ϵ ?

$$\text{FPR} \leq \epsilon + \epsilon + \epsilon = O(\epsilon \cdot \log_2 N)$$

Suppose we want to keep it ϵ ?

$$\text{FPR} \leq \epsilon + \epsilon + \epsilon = O(\epsilon \cdot \log_2 N)$$

Set lower FPRs for newer filters

Geometrically decreasing. Any issue?

$$\text{FPR} \leq \varepsilon + \varepsilon/2 + \varepsilon/4 = O(\varepsilon \cdot \cancel{\log_2 N})$$

$$\text{FPR} \lesssim \varepsilon + \varepsilon/2 + \varepsilon/4 = O(\varepsilon)$$

Most Memory
Most data, lowest FPR

$$\text{FPR} \lesssim \varepsilon + \varepsilon/2 + \varepsilon/4 = O(\varepsilon)$$

Bits / entry: $\log(4/\varepsilon)$

$$\text{FPR} \lesssim \varepsilon + \varepsilon/2 + \varepsilon/4 = O(\varepsilon)$$

Bits / entry:

$\log(2^{\log N}/\varepsilon)$

Can we better scale memory?

$$\text{FPR} \lesssim \varepsilon + \varepsilon/2 + \varepsilon/4 = O(\varepsilon)$$

Bits / entry:

$$\log_2 N + \log(1/\varepsilon)$$

The FPRs should decrease more slowly but still converge

$$\text{FPR} \lesssim \varepsilon + \varepsilon/2 + \varepsilon/4 = O(\varepsilon)$$

Bits / entry:

$$\log_2 N + \log(1/\varepsilon)$$

Reciprocal of square numbers

$$1/1^2 + 1/2^2 + 1/3^2 + \dots = ?$$

**Solved by Euler
in 1734**

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \pi^2/6$$

**Solved by Euler
in 1734**

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \pi^2/6$$
$$= 1.645$$

Solved by Euler
in 1734

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \pi^2/6$$

Polynomially decreasing yet still convergent

$$\mathbf{FPR} \lesssim \frac{\varepsilon}{1^2} + \frac{\varepsilon}{2^2} + \frac{\varepsilon}{3^2} = \varepsilon \cdot \frac{\pi^2}{6}$$

$$\text{FPR} \leq \frac{\varepsilon}{1^2} + \frac{\varepsilon}{2^2} + \frac{\varepsilon}{3^2} = \varepsilon \cdot \frac{\pi^2}{6}$$

Bits / entry:

$\log(3^2/\varepsilon)$

$$\text{FPR} \leq \frac{\varepsilon}{1^2} + \frac{\varepsilon}{2^2} + \frac{\varepsilon}{3^2} = \varepsilon \cdot \frac{\pi^2}{6}$$

Bits / entry:

$\log(\log(N)^2/\varepsilon)$

$$\text{FPR} \leq \frac{\varepsilon}{1^2} + \frac{\varepsilon}{2^2} + \frac{\varepsilon}{3^2} = \varepsilon \cdot \frac{\pi^2}{6}$$

Bits / entry:

$2 \log_2 \log_2(N) + \log(1/\varepsilon)$

FPR \lesssim ε

Bits / entry: $2 \log_2 \log_2(N) + \log(1/\varepsilon)$ < $\log N + \log(1/\varepsilon)$

$FPR \lesssim$

ϵ

Bits / entry:

$$2 \log_2 \log_2 (N) + \log(1/\epsilon)$$

Close to lower bound

How to Approximate A Set Without Knowing Its Size In Advance

Rasmus Pagh, Gil Segev, Udi Wieder. **FOCS 2013.**

$$\text{FPR} \leq \epsilon$$

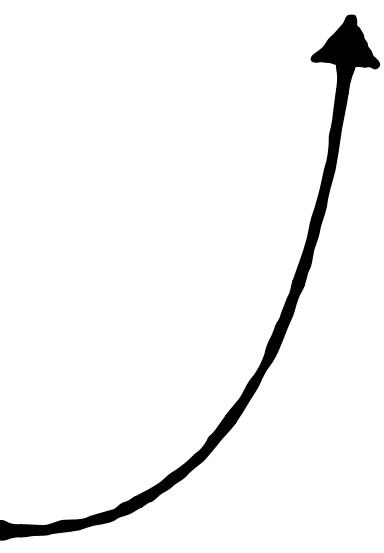
Bits / entry:

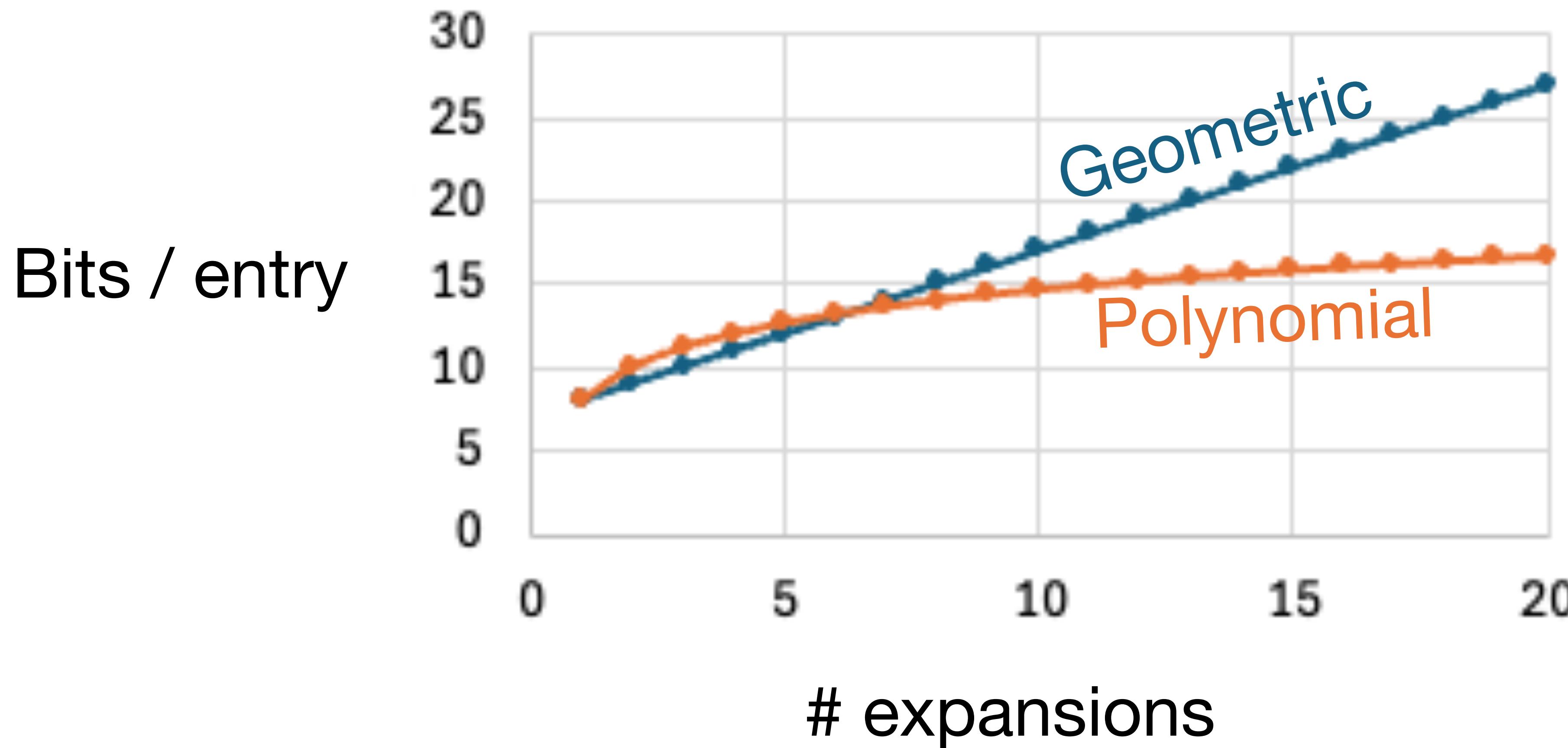
$$2 \log_2 \log_2 (N) + \log(1/\epsilon)$$

Close to lower bound

How to Approximate A Set Without Knowing Its Size In Advance
Rasmus Pagh, Gil Segev, Udi Wieder. FOCS 2013.

Much of what follows originates from here :)





Chaining

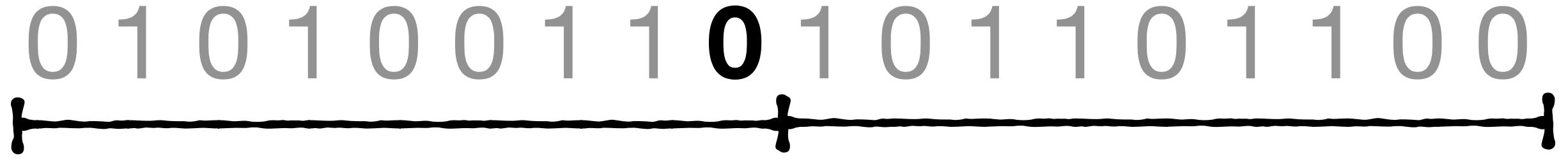
queries

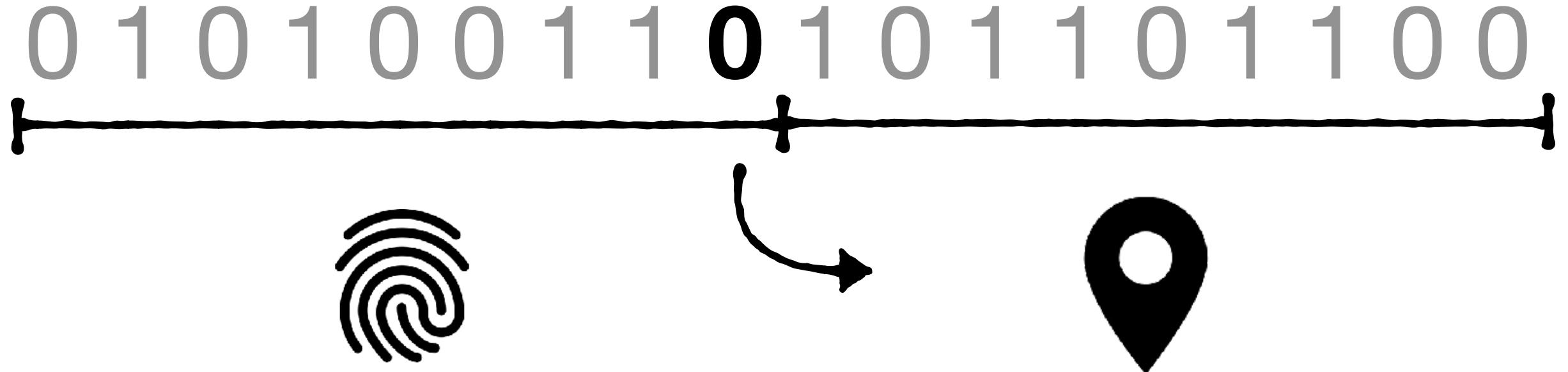
Quotient Filters

InfiniFilter &
Aleph Filter

Quotient Filters are Semi-Expandable

Semi-Expandable

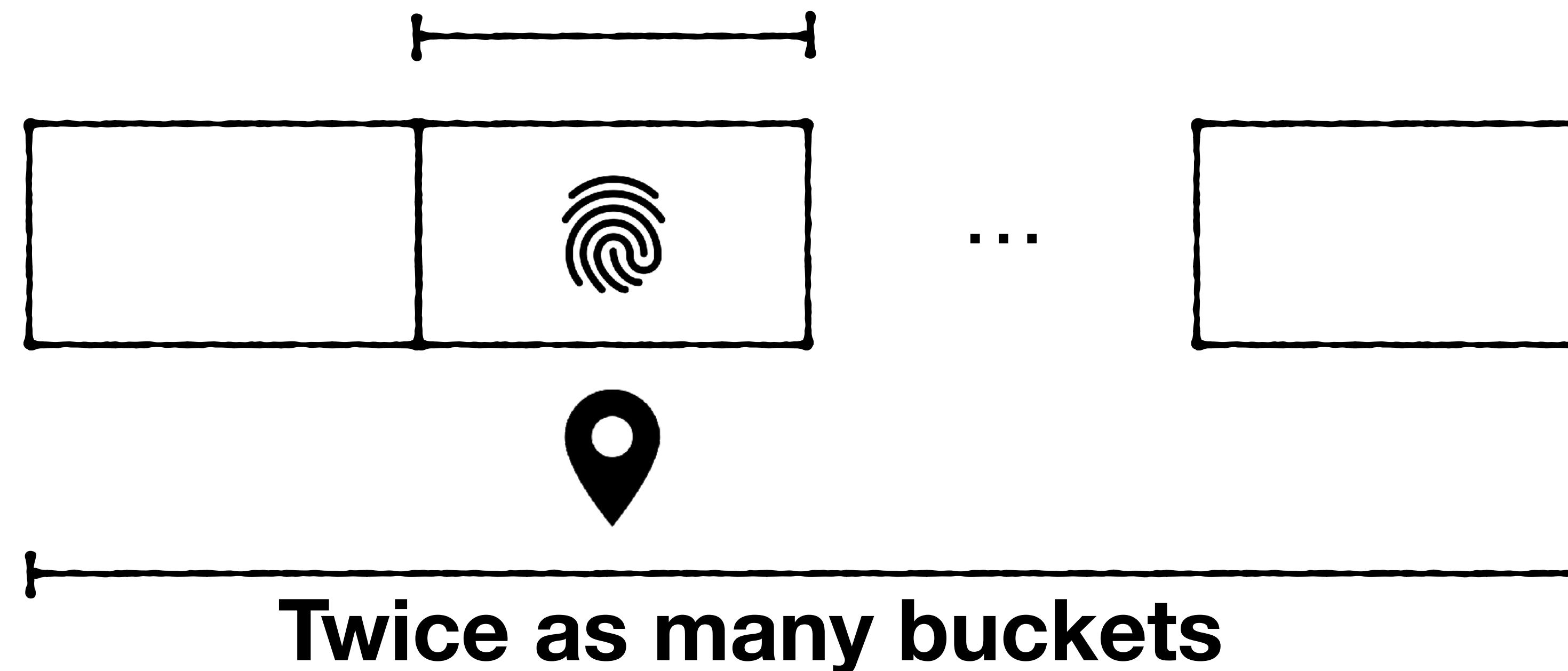
hash() = 



hash() = 01010011**0**101101100

One bit narrower

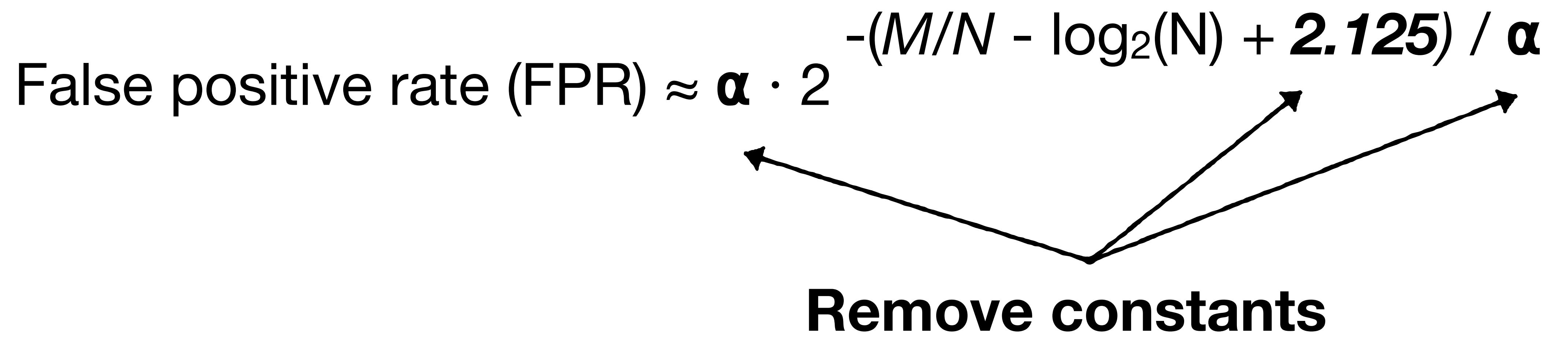
One bit narrower



$$\text{False positive rate (FPR)} \approx \alpha \cdot 2^{-(M/N + 2.125) / \alpha}$$

$$\text{False positive rate (FPR)} \approx \alpha \cdot 2^{-(M/N - \log_2(N) + 2.125) / \alpha}$$

**Lose 1 fingerprint bit in
each expansion**



False positive rate (FPR) $\approx 2^{-(M/N - \log_2(N))}$

Simplify

False positive rate (FPR) $\approx N \cdot 2^{-M/N}$

Supports up to M/N expansions

False positive rate (FPR) $\approx N \cdot 2^{-M/N}$

Supports up to M/N expansions

$O(1)$ operations

Chaining

queries

Quotient Filters

FPR

expansions

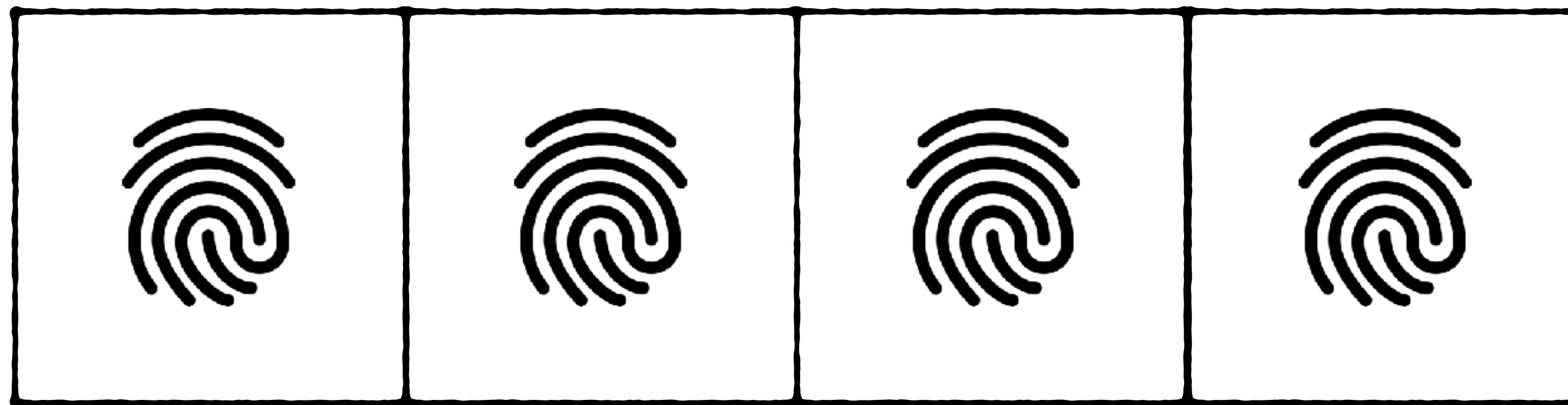
InfiniFilter & Aleph Filter

InfiniFilter: Expanding Filters to Infinity and Beyond

Niv Dayan, Ioana Bercea, Pedro Reviriego, Rasmus Pagh. SIGMOD 2023

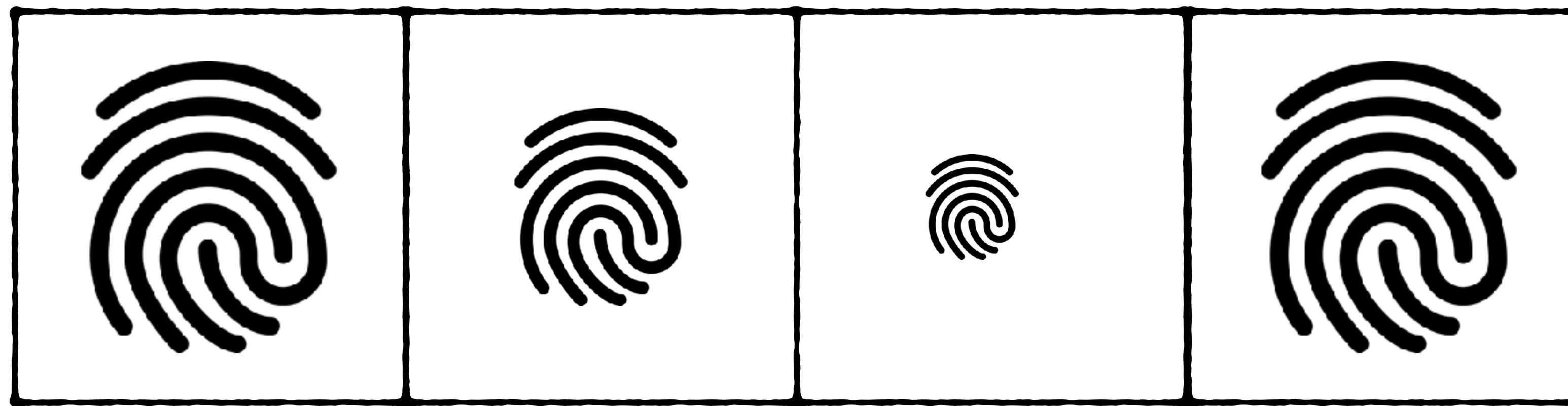


InfiniFilter



Quotient filter

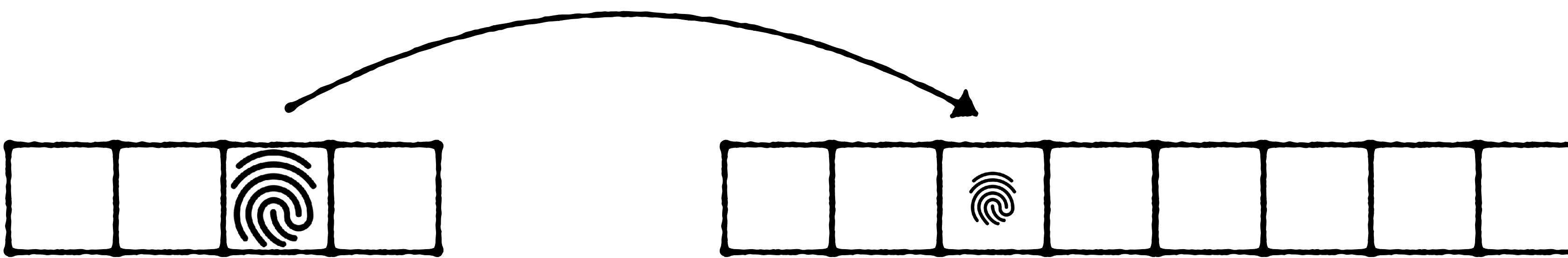
InfiniFilter



Variable-sized fingerprints

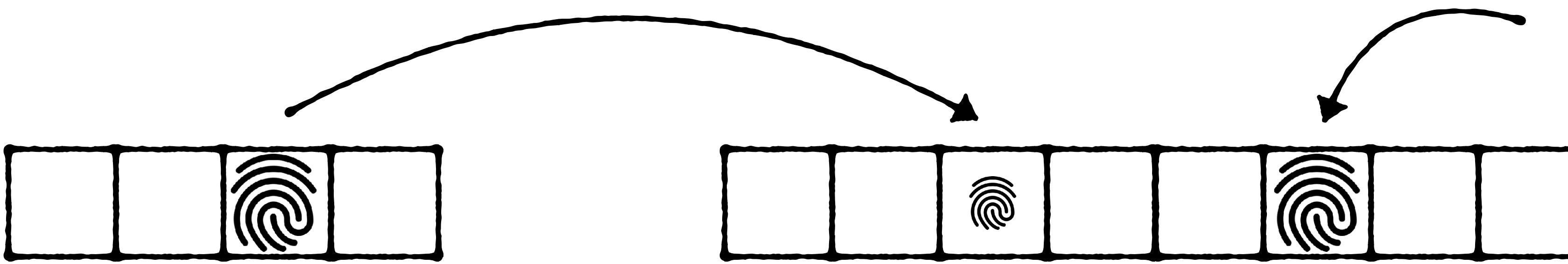
InfiniFilter

**(1) sacrifice one bit
during expansion**



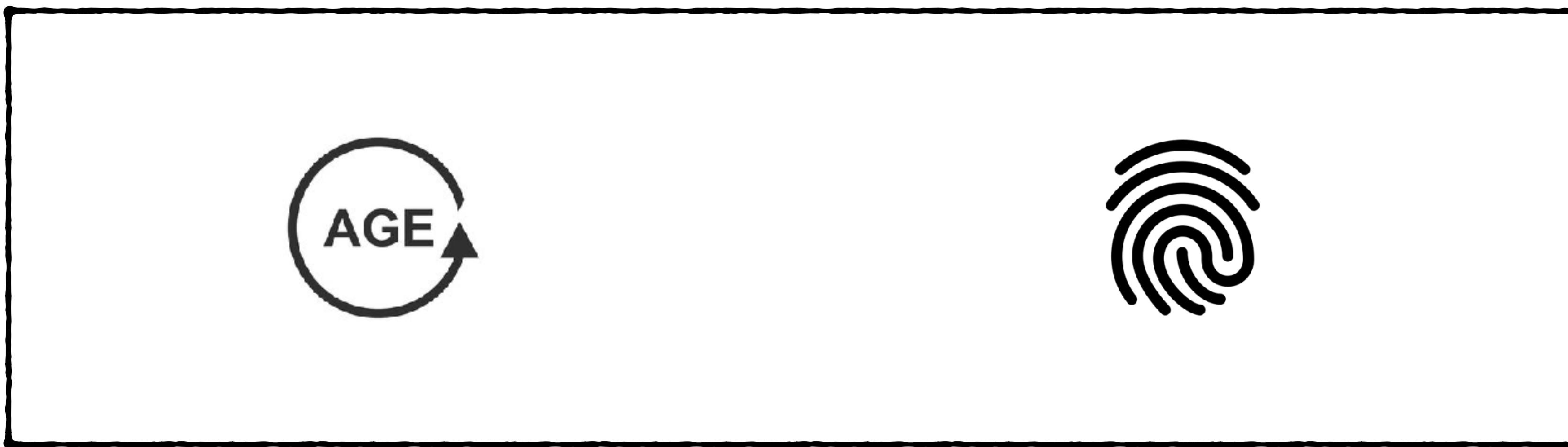
InfiniFilter

(1) sacrifice one bit
during expansion

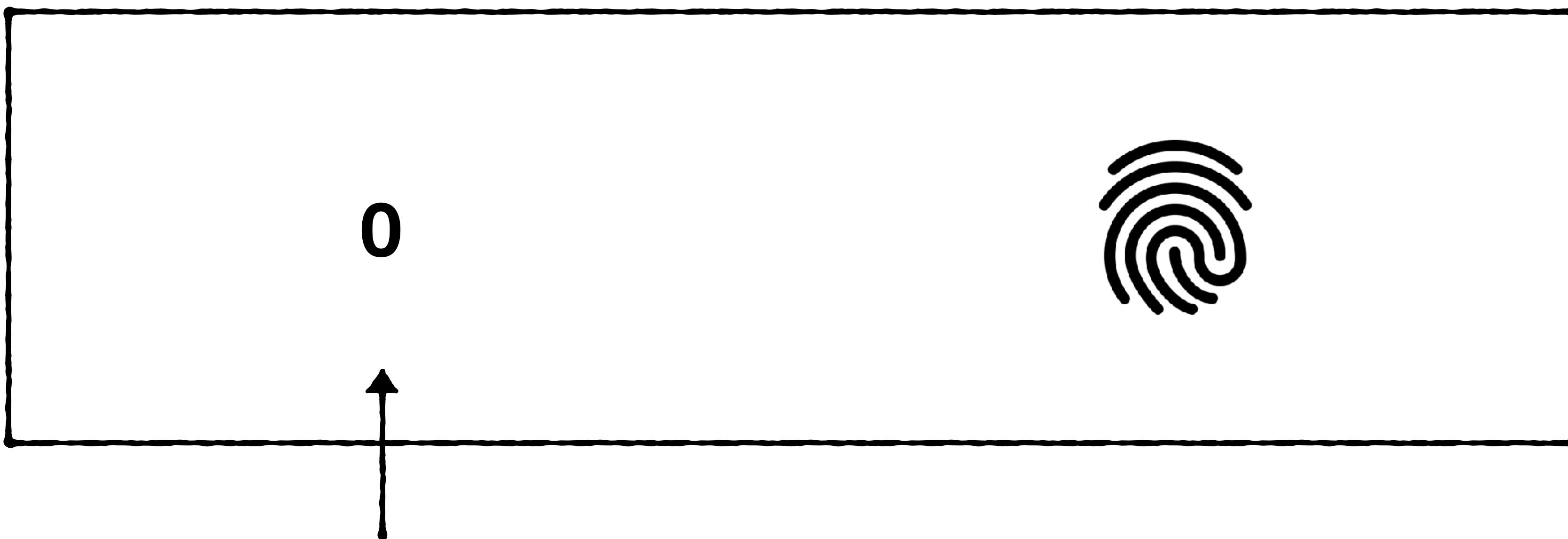


**(2) Newer entries get
longer fingerprints**

Unary age counter



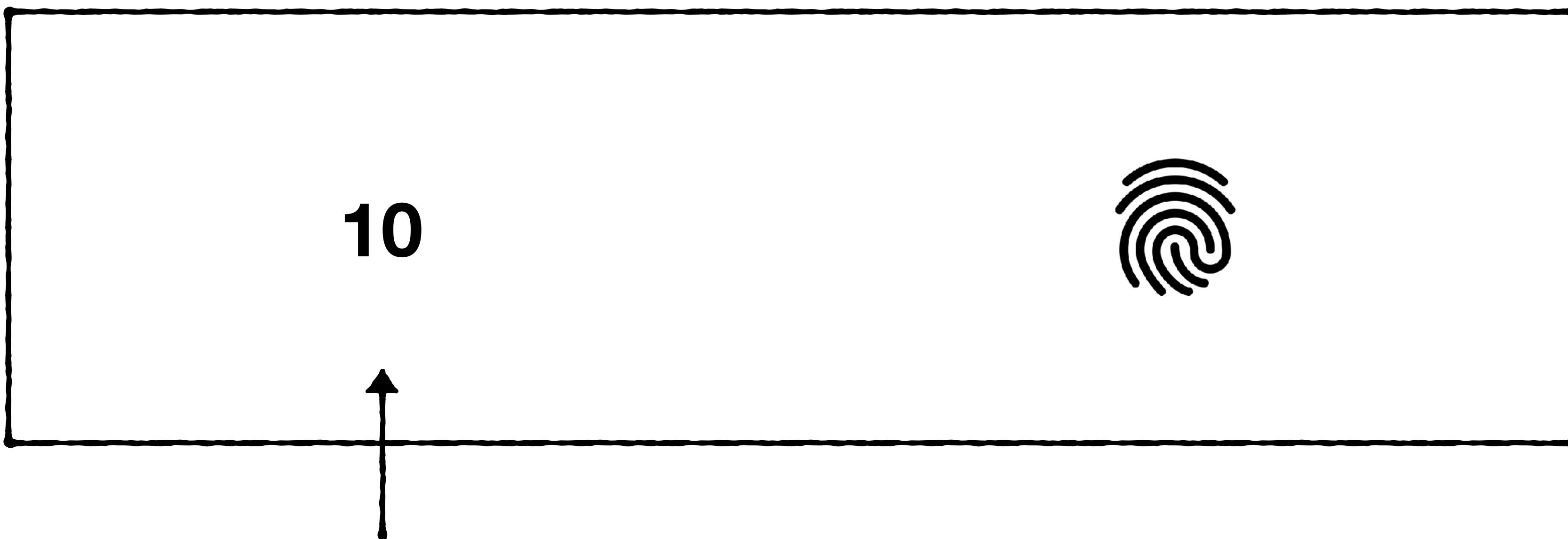
Unary age counter



0 expansions ago

Fingerprint

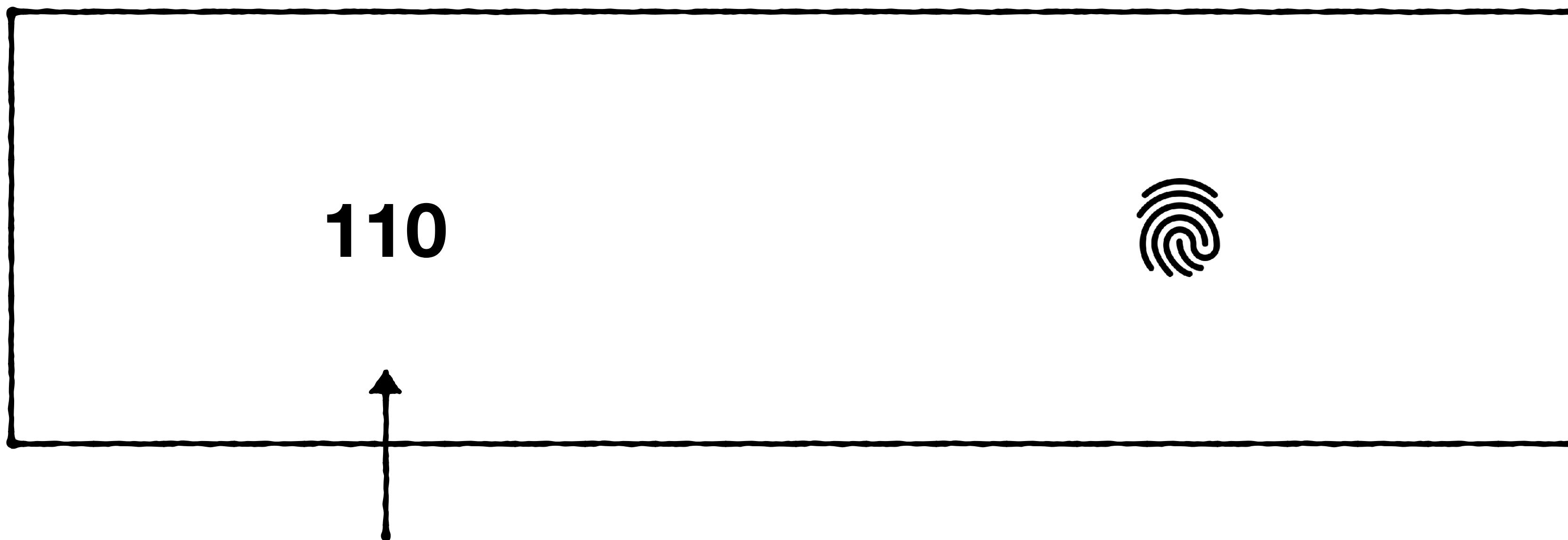
Unary age counter



1 expansions ago

Fingerprint

Unary age counter



Fingerprint

2 expansions ago

Unary age counter

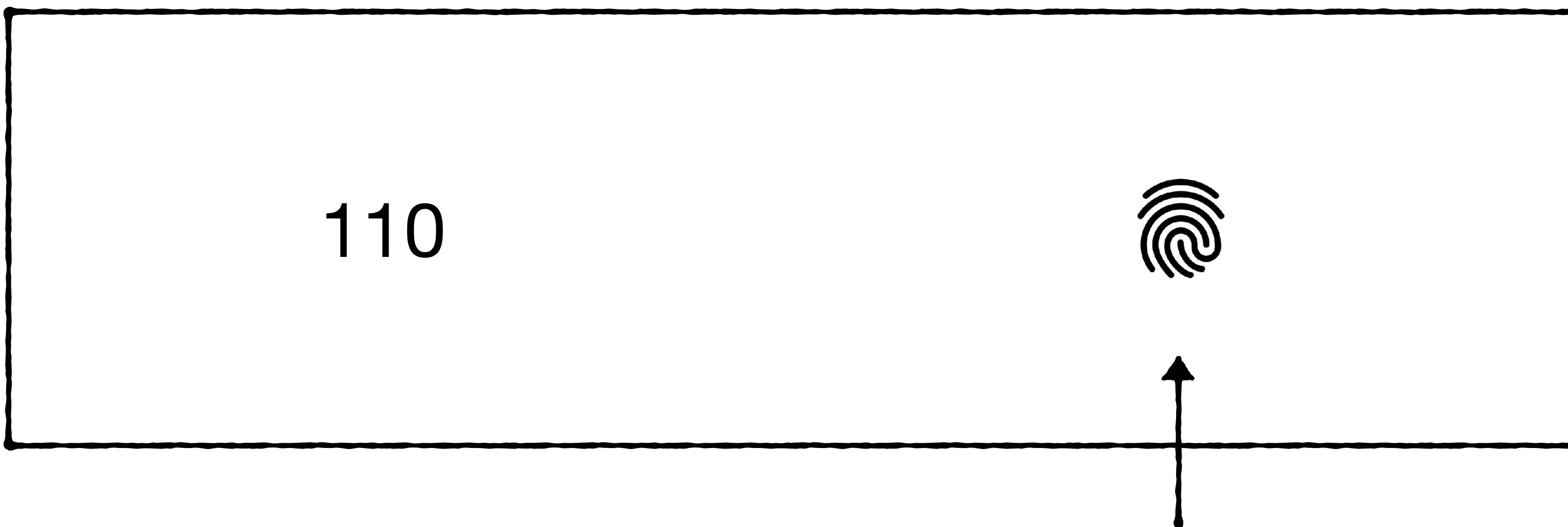
Fingerprint



Delimiter

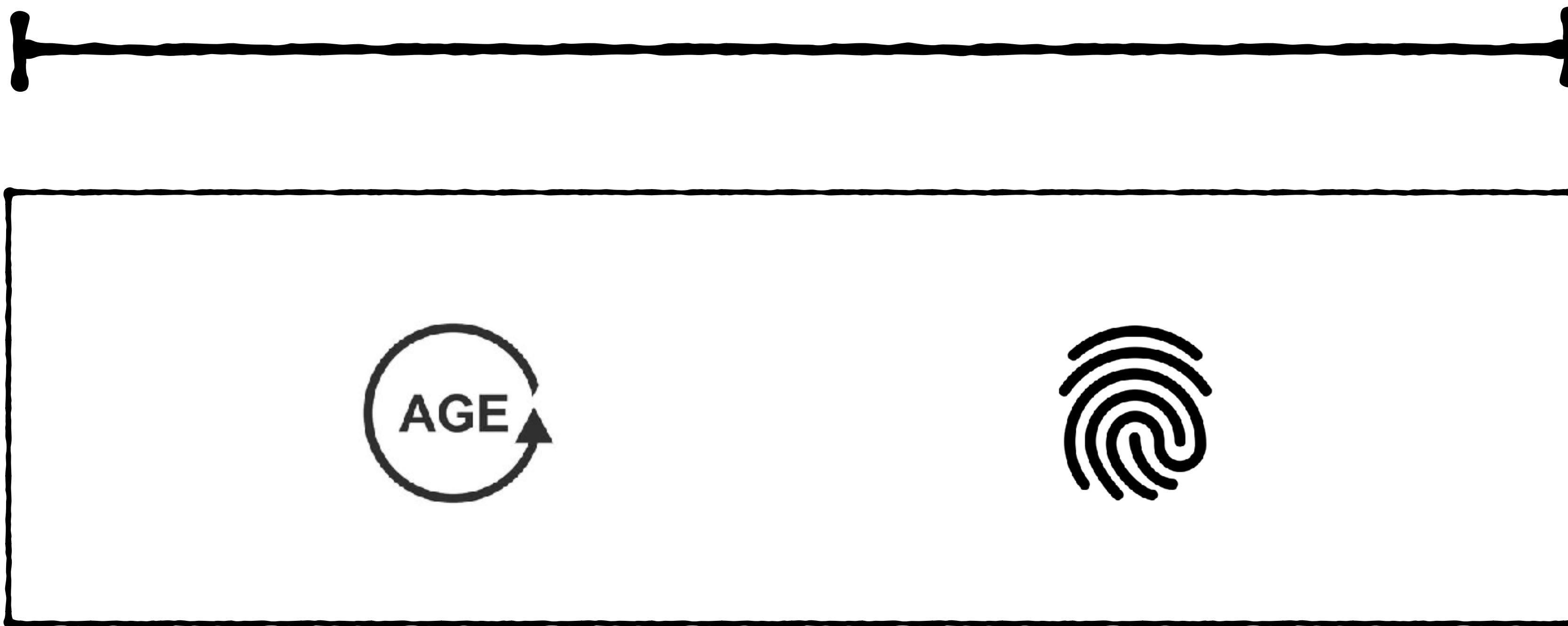
Unary age counter

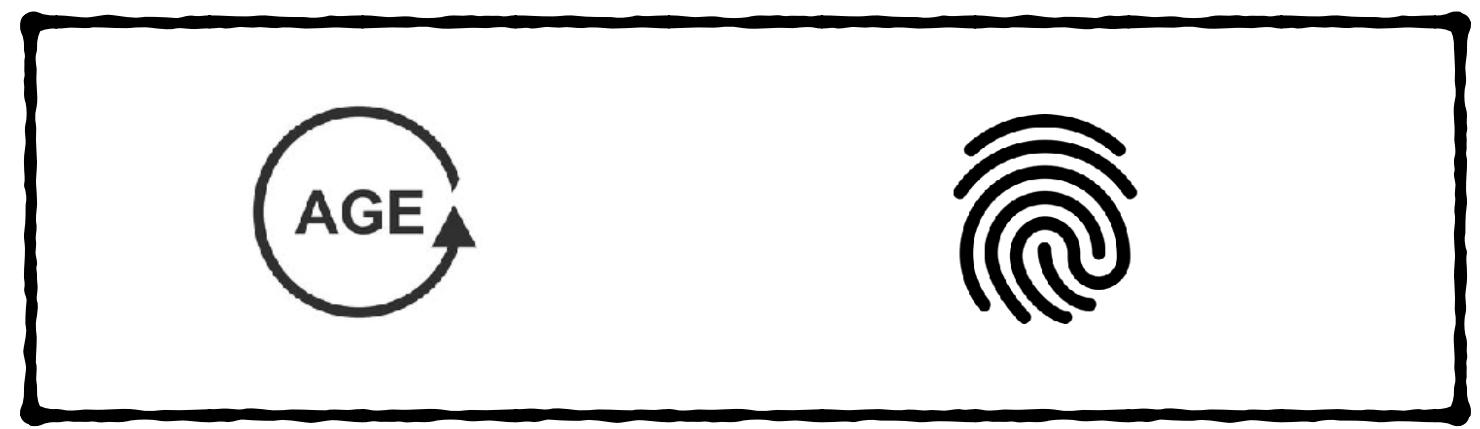
Fingerprint



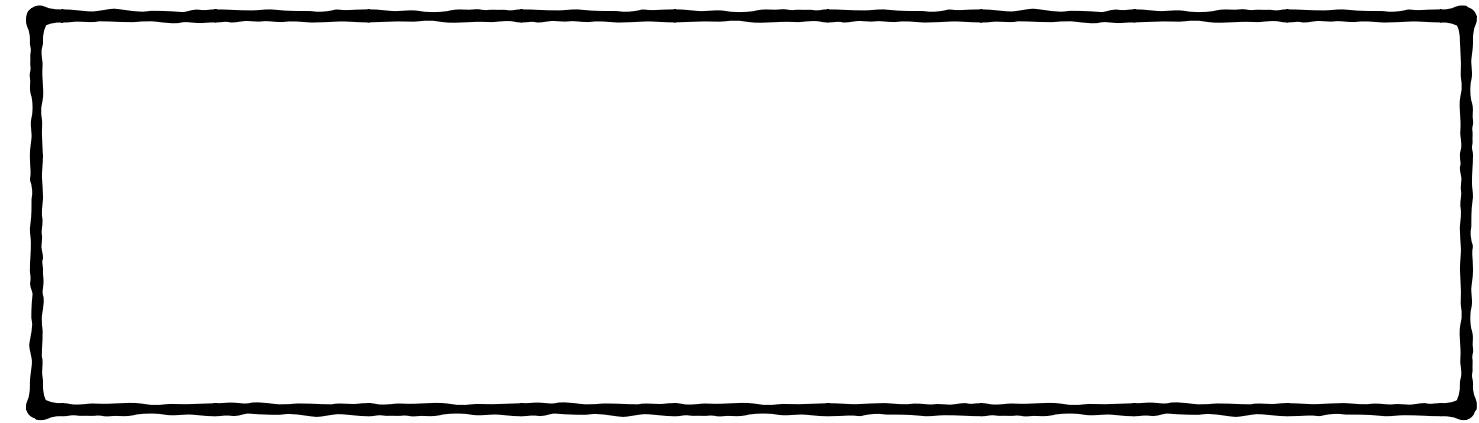
All remaining slot bits

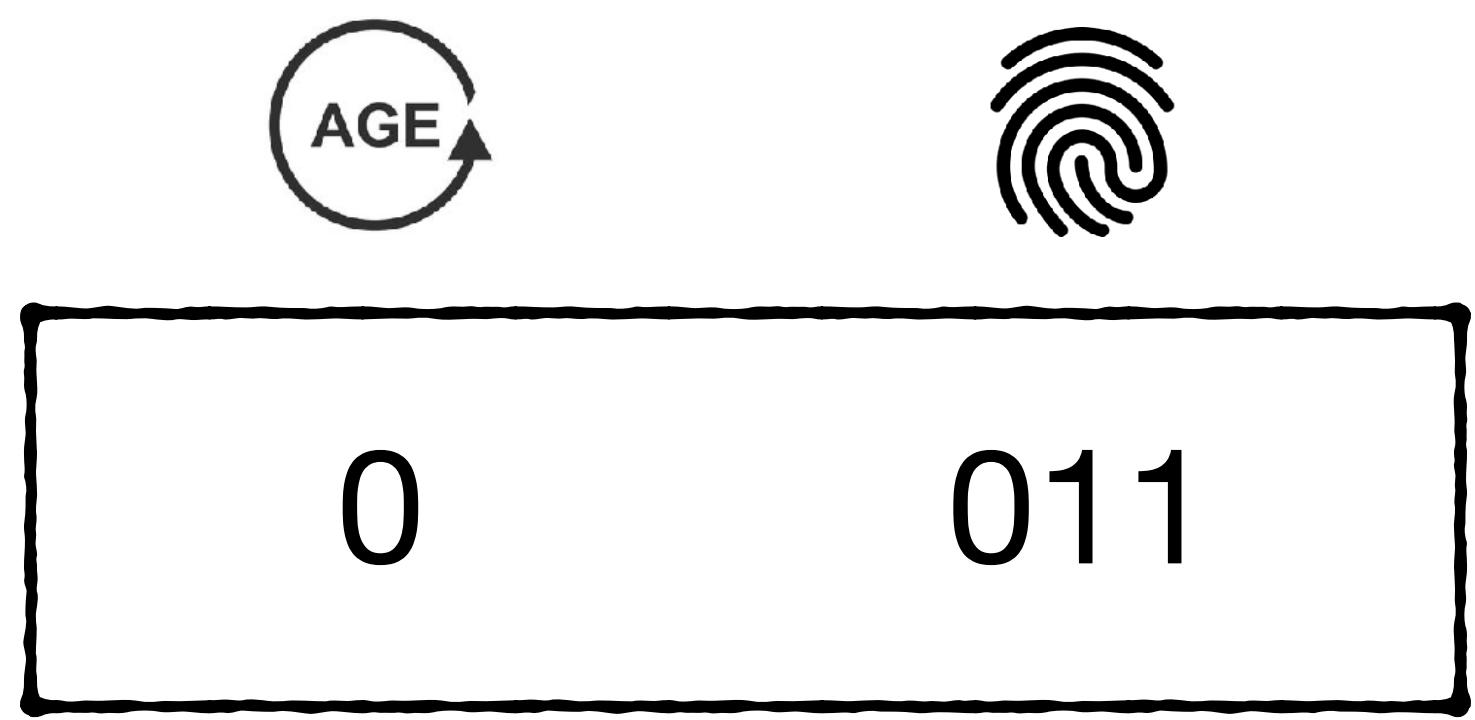
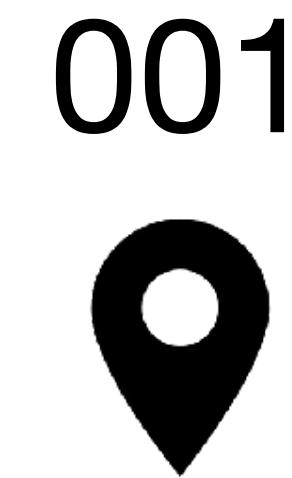
Fixed-length



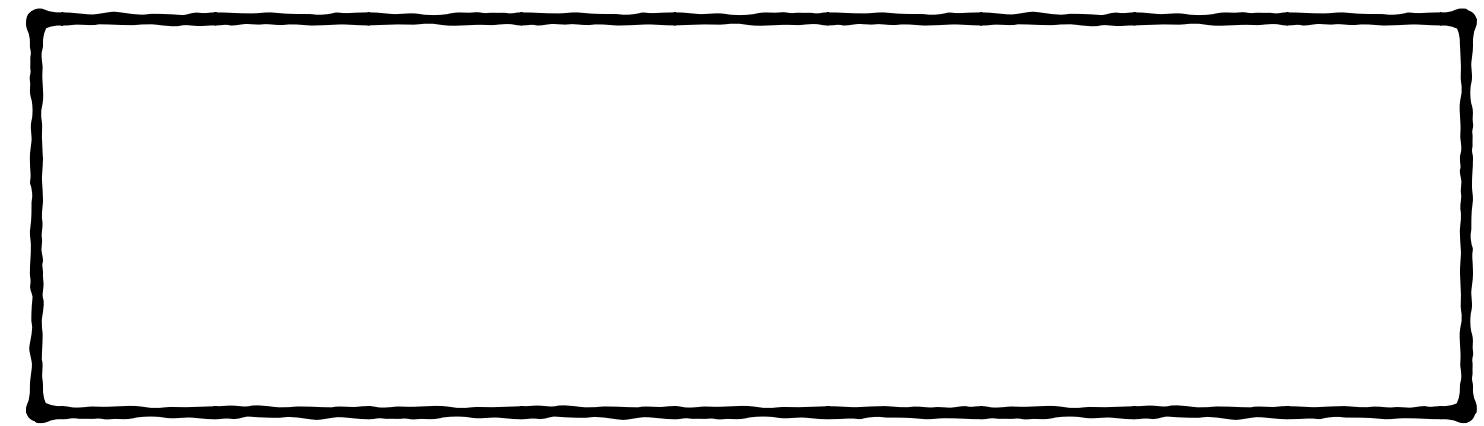


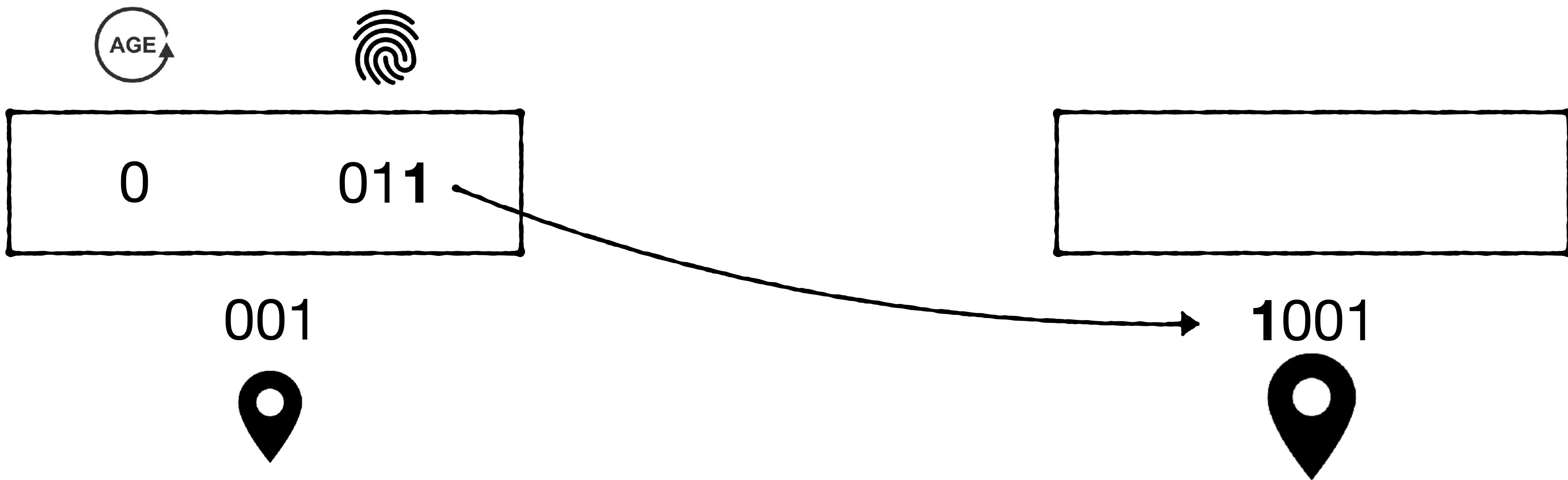
Expansion

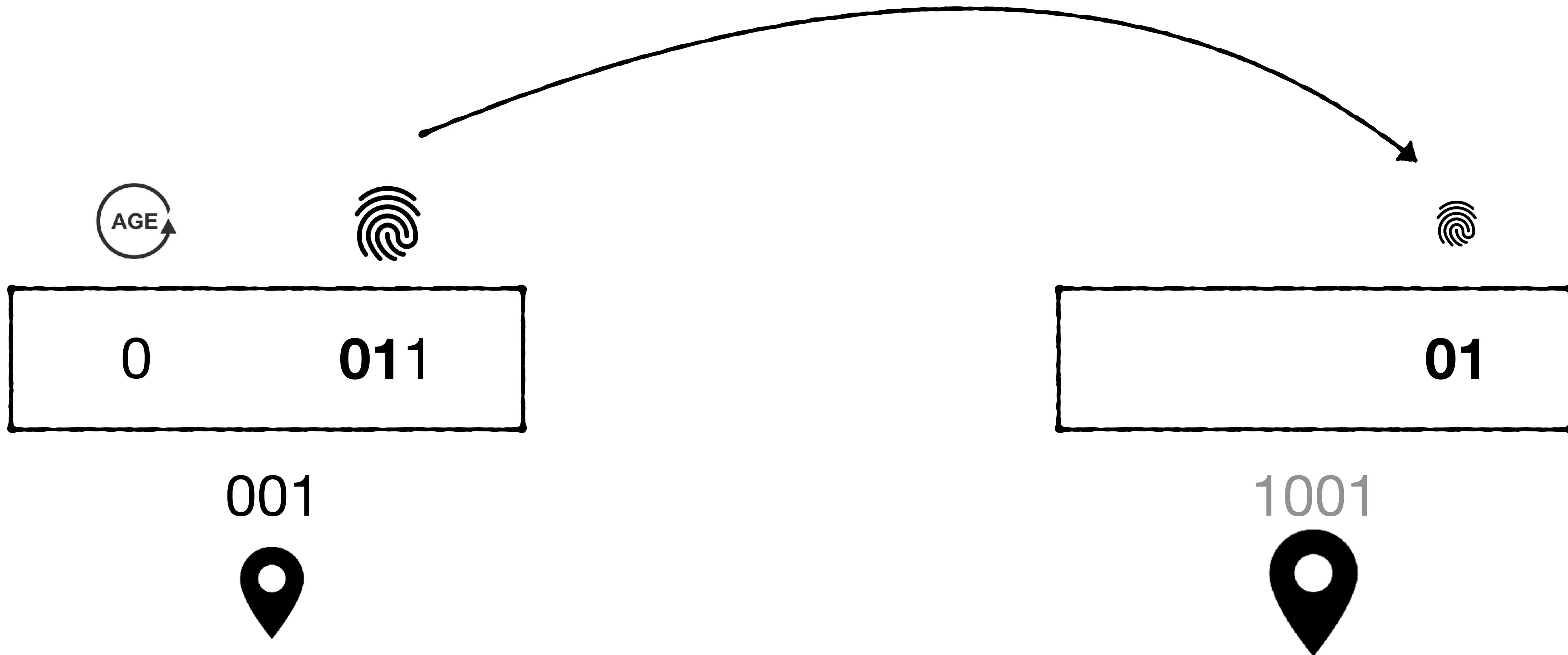


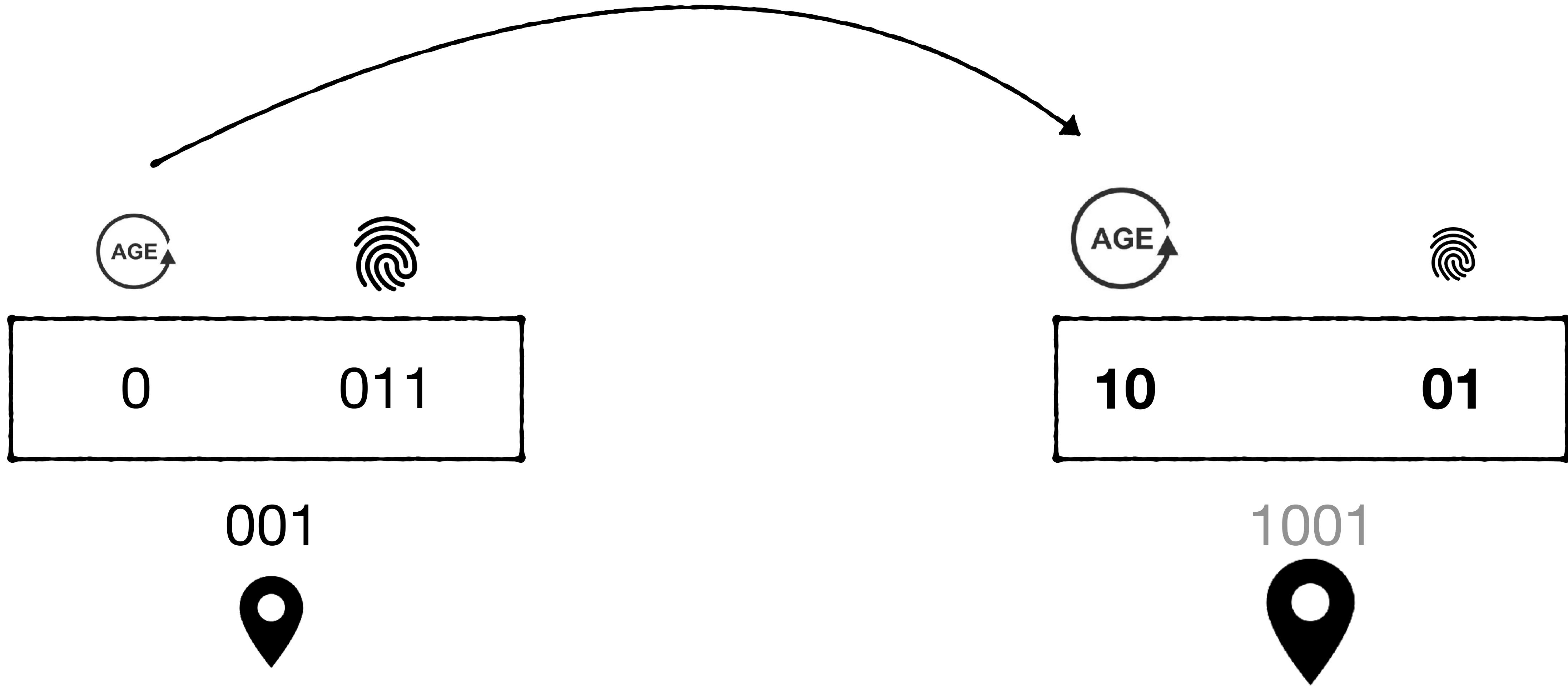


Expansion →

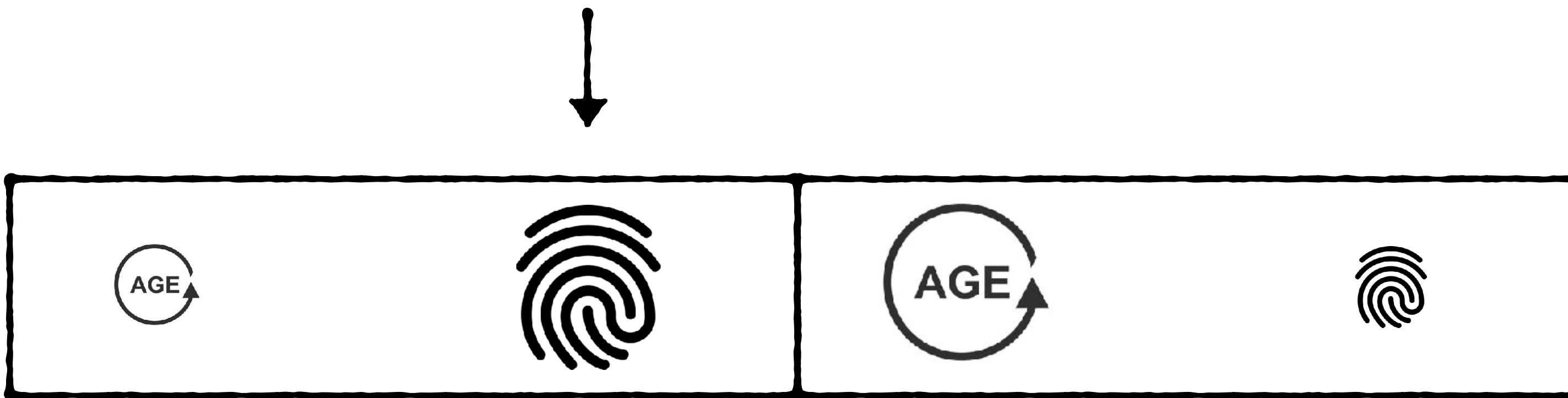




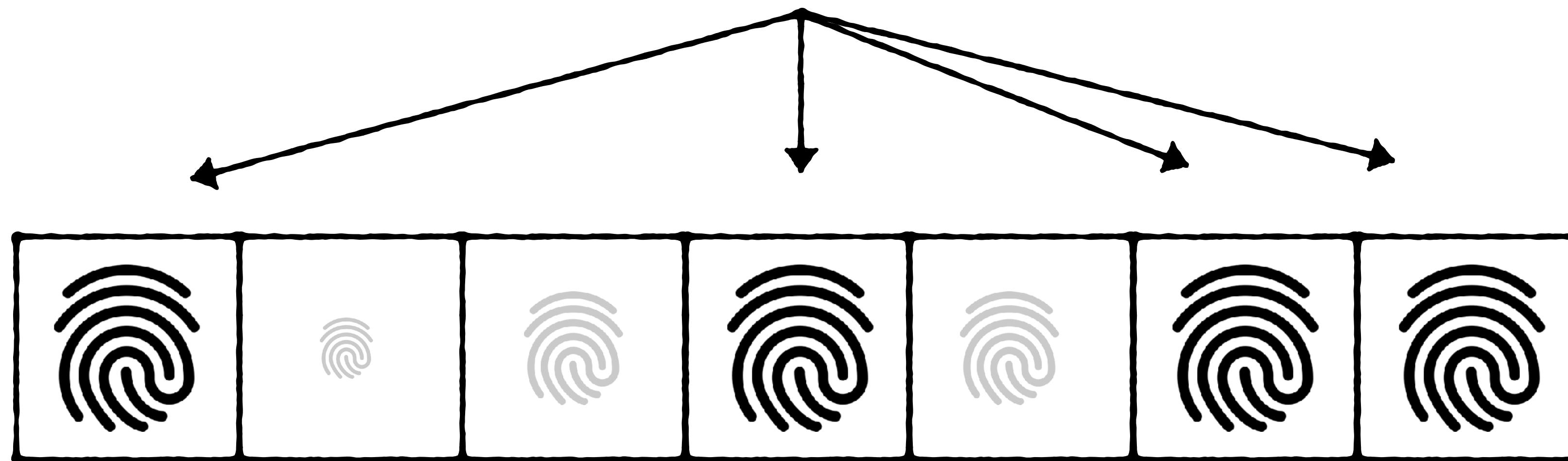




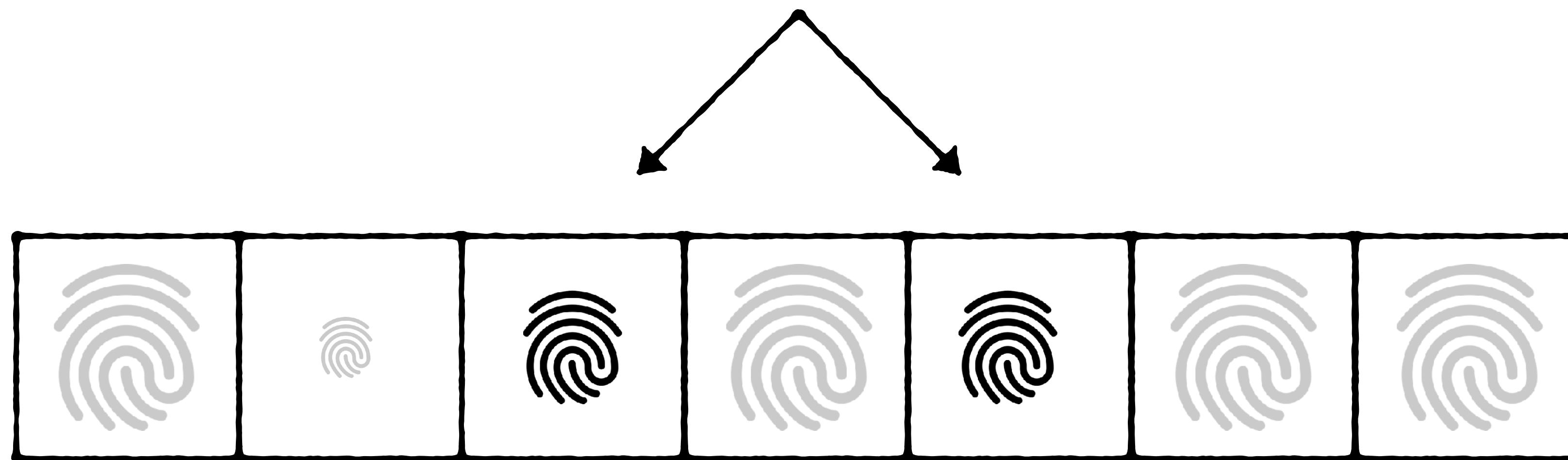
**Longer fingerprints can be inserted
after expansion**



Half of entries have F bit fingerprints



Quarter have $F-1$ bit fingerprints



Eighth have $F-2$ bit fingerprints

weighted false positive rate $\approx \log_2(N) \cdot 2^{-F}$

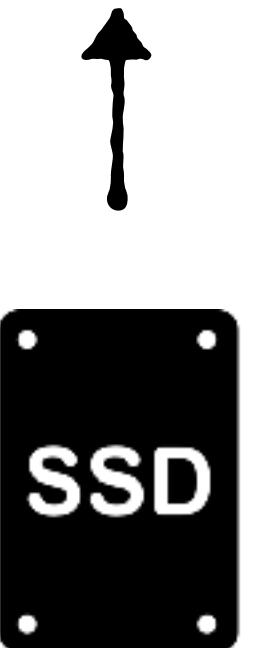
$$\text{false positive rate} = \log_2(N) \cdot 2^{-M/N} < N \cdot 2^{-M/N}$$

with quotient
filter

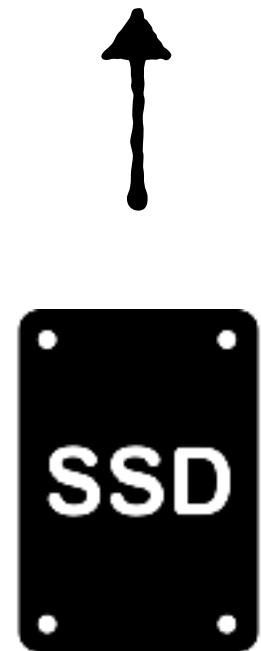
Query()

**fetch **

Rehash() &
rejuvenate
fingerprint



Rehash() &
rejuvenate
fingerprint



FPR

$$\log N \cdot 2^{-M/N} \rightarrow 2^{-M/N}$$

Increase slot width at rate of $\approx 2 \log_2 \log_2 N$

$$\text{FPR} \approx \log N \cdot 2^{-M/N}$$

$$FPR \approx \cancel{\log N} \cdot 2^{-M/N} - 2 \log_2 \log_2 N$$

$$\mathbf{FPR} \approx 2^{-M/N}$$

After F expansions, oldest fingerprints run out of bits

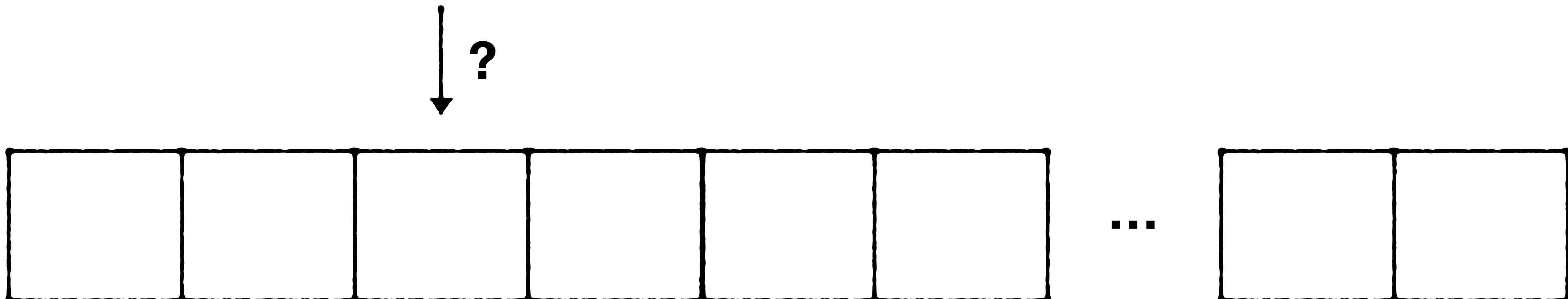
Unary padding occupies whole slot

Unary padding occupies whole slot

Any query

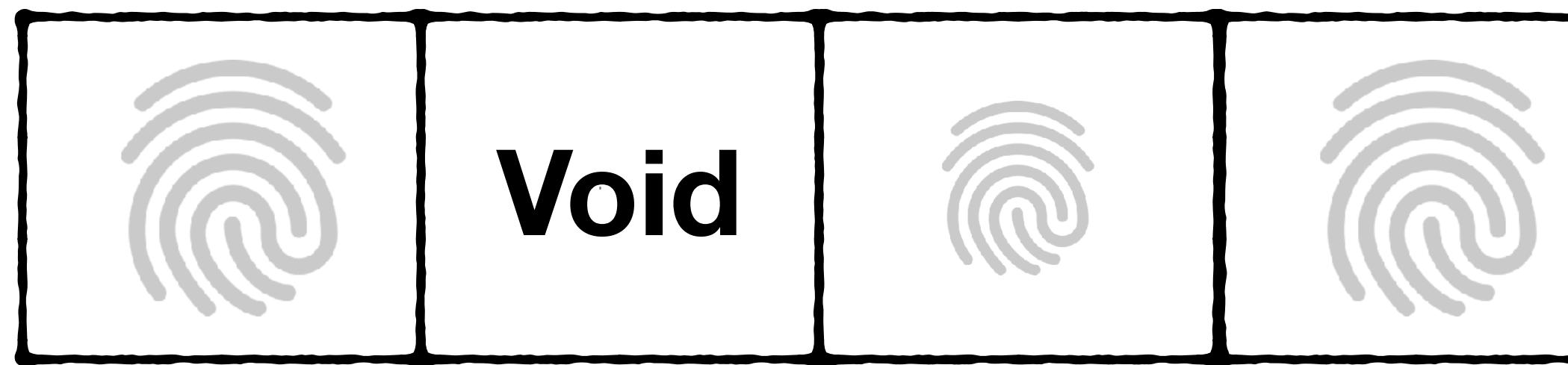
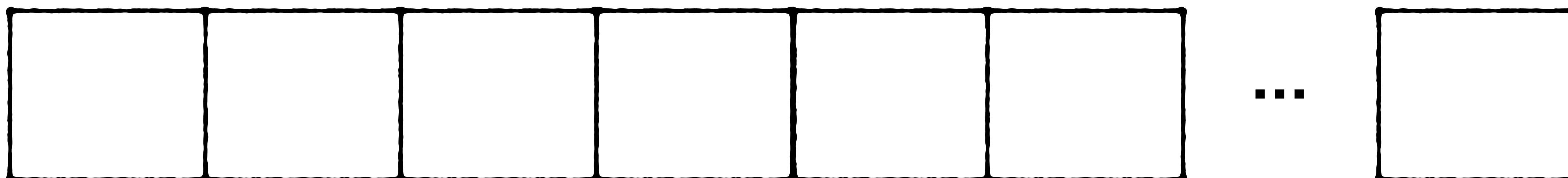
Positive

How to continue expanding?

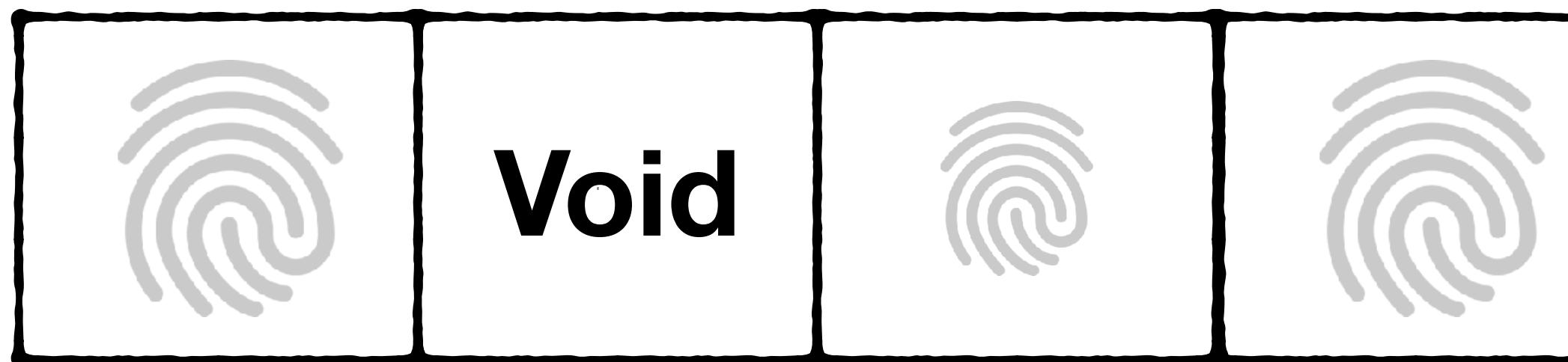
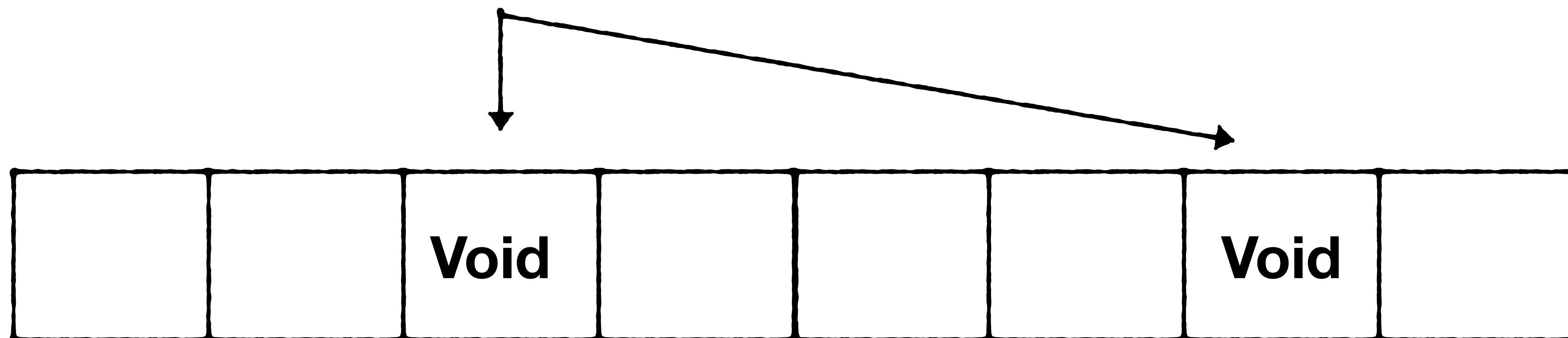


Aleph Filter: To Infinity in Constant Time

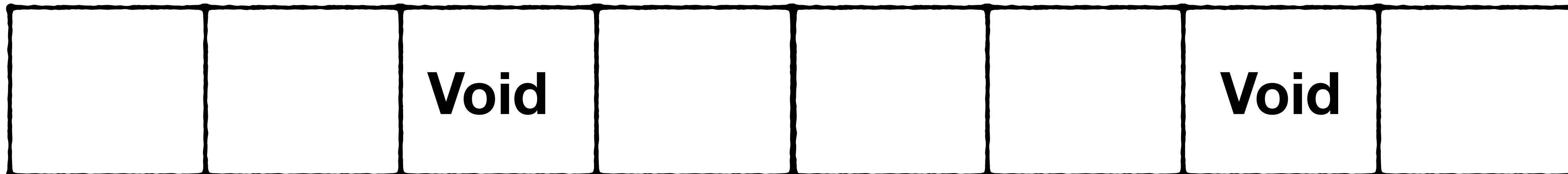
Niv Dayan, Ioana Bercea, Rasmus Pagh. VLDB 2024



Duplicate

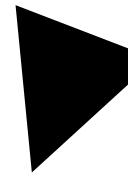


query(old key)



query(old key)

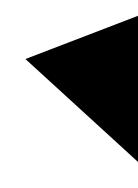
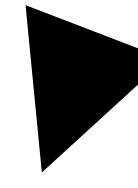
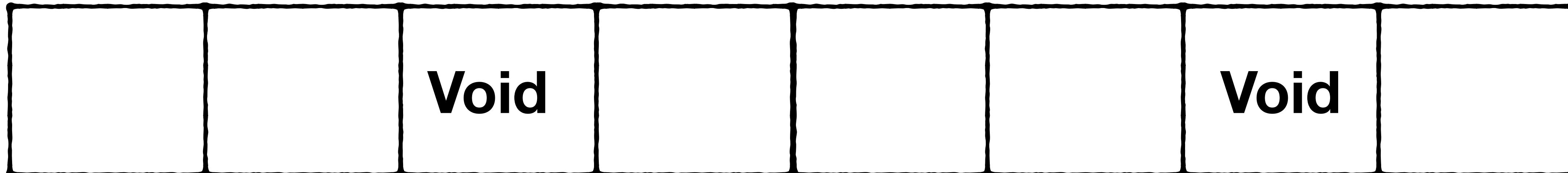
**positive whichever bucket
the key belongs to**



Expand Indefinitely with O(1) performance

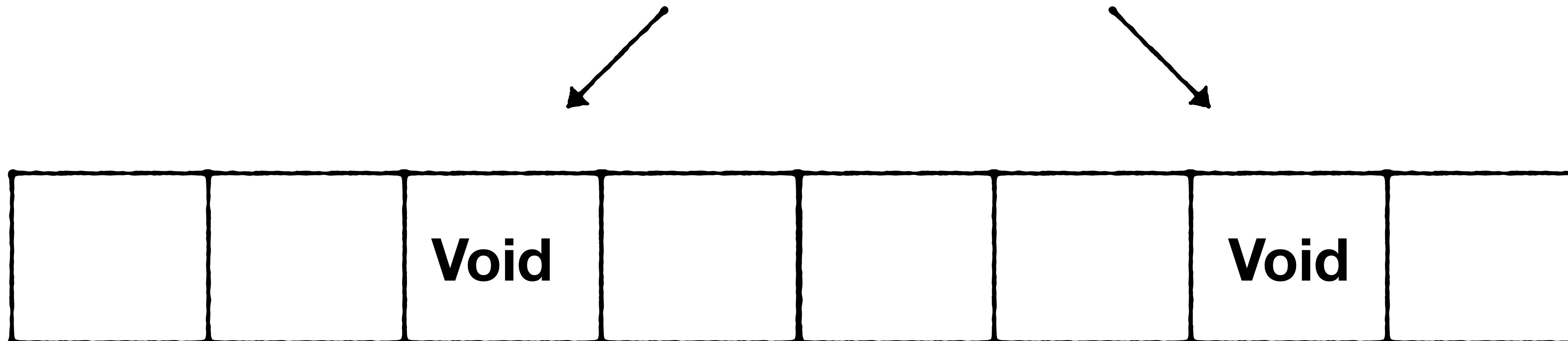
query(old key)

positive whichever bucket
the key belongs to



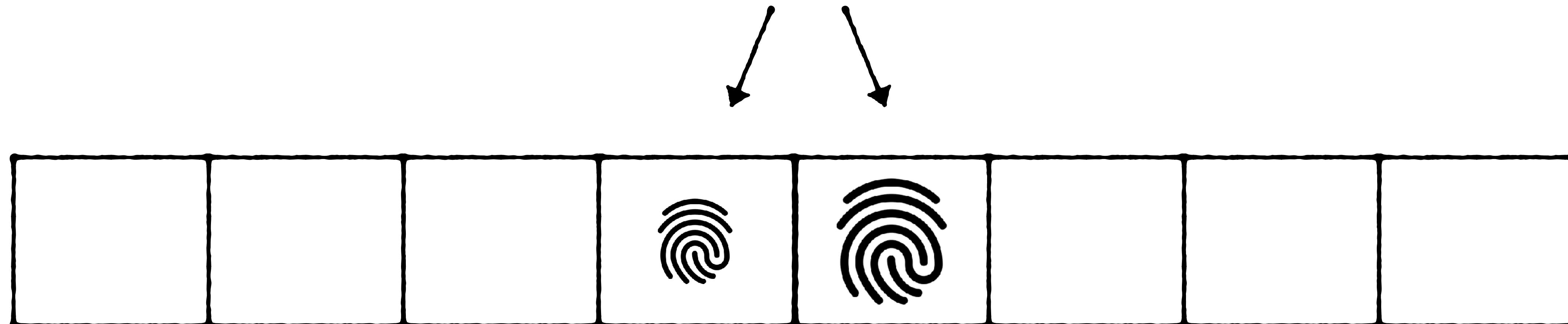
Expandable Filters Complicate Deletes

Identify how many void entries to remove



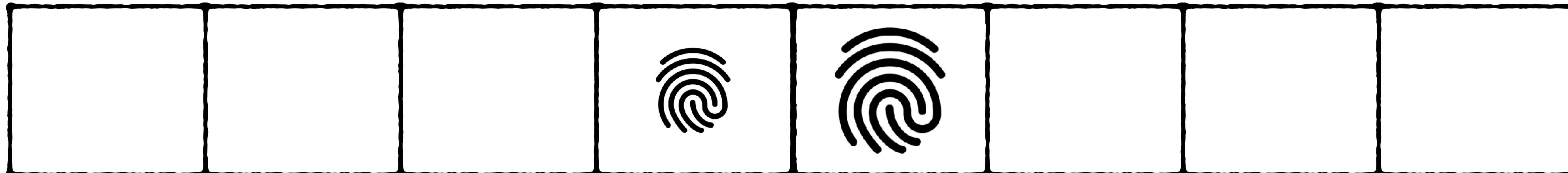
Expandable Filters Complicate Deletes

Multiple fingerprints of diff lengths may match key to delete



Expandable Filters Complicate Deletes

Solutions exist in the papers :)



Thank you!