
Dynamic Filters (Quotient & InfiniFilter)

Niv Dayan

Research Topics in Database Management

level

Does X exist? X Y Z
Set

What is a Filter?

DataDoes key
X exist

Memory

If key X does not exist

False
positive

with prob ε

True
negative

with prob 1-ε

DataDoes key
X exist

Memory

If key X does not exist

level

Saves storage accesses & network hops

DataDoes key
X exist

Memory

Lower FPRFaster

Blocked
Bloom XOR

Static - no deletes or resizing

Blocked
Bloom XOR

Supporting Dynamic Data

Supporting Dynamic Data

Deletes Resizing
(First hour) (Second hour)

Why Support Deletes?

Key XQuery(X) True
positive

Why Support Deletes?

Key X

Delete(X)

Key X

Delete(X)

Why should we also delete from filter?

delete(X)

Key X

Desired Outcome

Query(X)

Negative

Key X

Desired Outcome

Query(X)

Negative

Only possible if filter supports deletes

Why do last week’s filters not
support deletes?

Bloom XOR

0 1 0 1 0 0 1 0 0 0

Y
delete

X

Multiple keys may map to each bit

Bloom filter

0 1 0 0 0 0 1 0 0 0

Y
delete

X

Bloom filter

Multiple keys may map to each bit

Setting bits back to 0s can lead to false negatives

get

XOR filter

0000 0000 0000 0000110111000101 1111
0 1 2 3 4 5 6 7Slot #

Content

0000 0000 0000 0000110111000101 1111
0 1 2 3 4 5 6 7Slot #

Content

0, 1, 31, 4, 5

1001Fingerprints: 0001

Multiple keys share slots

0000 0000 0000 0000110111000101 1111
0 1 2 3 4 5 6 7Slot #

Content

0, 1, 31, 4, 5

delete()
10010001

Multiple keys share slots

0000 0000 0000 0000110100000101 1111

0, 1, 31, 4, 5

0 1 2 3 4 5 6 7Slot #
Content

delete()
10010001

0000 0000 0000 0000110100000101 1111
0 1 2 3 4 5 6 7Slot #

Content

1001

0, 1, 3

Resetting a slot for one entry will cause false negatives
over other entries

How to support deletes without false negatives?

(Last semester)
Cuckoo Filters

How to support deletes without false negatives?

(Last semester)
Quotient Filters

(Today)
Cuckoo Filters

How to support deletes without false negatives?

(Last semester)
Quotient Filters

(Today)
Cuckoo Filters

Why cover another filter that supports deletes?

Quotient Filters

Showcase cool encoding/decoding techniques

Quotient Filters

Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012.

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Michael A Bender, Martin Farach-Colton, Rob Johnson, Bradley C Kuszmaul, Dzejla
Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane, Erez Zadok.

Prashant Pandey, Michael A Bender, Rob Johnson, Rob Patro.

Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-Colton,
Rob Johnson.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design.
SIGMOD 2021.

Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012.

Which to focus on?

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design.
SIGMOD 2021.

Worse memory & query efficiency
Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design.
SIGMOD 2021.

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Uses SIMD & less tunable

Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design.
SIGMOD 2021.

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Worse memory & query efficiency

Our focus

A General-Purpose Counting Filter: Making Every Bit Count. 2017.

hash() = 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0

…

Canonical slot

…

query()

Canonical slot

…

Each inserted fingerprint corresponds to exactly one entry

…

Removing it won’t introduce false negatives for other entries
Each inserted fingerprint corresponds to exactly one entry

Hash collisions - multiple fingerprints map to same
canonical slot

…

Canonical slot

…

Address using Robin Hood Hashing

…

Address using Robin Hood Hashing
Variant of linear probing

…

Each fingerprint is pushed rightwards yet stays as
close as possible to its “canonical slot”

0 1 2 3 4 5 6 7

F(B)0
F(A)0

F(C)1

F(D)3
F(E)3
F(F)3 F(H)6F(G)5

Each fingerprint is pushed rightwards yet stays as
close as possible to its “canonical slot”

F(A)0 F(B)0

0 1 2 3 4 5 6 7

F(C)1

F(D)3
F(E)3
F(F)3 F(H)6F(G)5

F(A)0 F(B)0 F(C)1

0 1 2 3 4 5 6 7

F(D)3
F(E)3
F(F)3 F(H)6F(G)5

F(C)1 F(F)3F(E)3F(D)3

0 1 2 3 4 5 6 7

F(A)0 F(B)0

F(H)6F(G)5

F(G)5F(C)1 F(F)3F(E)3F(D)3

0 1 2 3 4 5 6 7

F(H)6

F(A)0 F(B)0

F(G)5F(C)1

0 1 2 3 4 5 6 7

F(H)6F(A)0 F(B)0 F(F)3F(E)3F(D)3

Note: fingerprints belonging to same
canonical slot are contiguous

F(H)6F(G)5F(A)0 F(B)0 F(C)1 F(F)3F(E)3F(D)3

0 1 2 3 4 5 6 7

Note: fingerprints belonging to same
canonical slot are contiguous

.run. run run

F(C)1

0 1 2 3 4 5 6 7

,run, ;run;

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

On average, each run consists of ≈ 1 slot

.run. run run

F(C)1

0 1 2 3 4 5 6 7

,run, ;run;

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

query(H)

run run

F(G)5F(C)1 F(F)3F(E)3F(D)3

0 1 2 3 4 5 6

.run.

F(H)6

7

,run, ;run;

F(A)0 F(B)0

run run

F(G)5F(C)1

0 1 2 3 4 5 6

Problem?

.run.

query(H)

F(H)6

7

,run, ;run;

F(A)0 F(B)0 F(F)3F(E)3F(D)3

run run

F(G)5F(C)1

0 1 2 3 4 5 6

Problem? Fingerprint might have shifted to the right

.run.

F(H)6

7

query(H)

,run, ;run;

F(A)0 F(B)0 F(F)3F(E)3F(D)3

run run

F(G)5F(C)1

0 1 2 3 4 5 6

Solution?

.run. ;run;

F(H)6

7

query(H)

,run,

F(A)0 F(B)0 F(F)3F(E)3F(D)3

Problem? Fingerprint might have shifted to the right

Solution: delineate runs using 2 bitmaps

run run

F(H)6F(G)5F(C)1

0 1 2 3 4 5 6 7

Occupied:
End:

.run. ,run, ;run;

F(A)0 F(B)0 F(F)3F(E)3F(D)3

Occupied:
End:

1 if there is a run belonging to this slot

run run

F(H)6F(G)5F(A)0 F(B)0 F(C)1 F(F)3F(E)3F(D)3

0 1 2 3 4 5 6 7

.run. ,run, ;run;

Occupied:
End:

1 if there is a run belonging to this slot

F(H)6F(G)5F(A)0

F(B)0

F(C)1

F(F)3
F(E)3

F(D)3

0 1 2 3 4 5 6 7

Occupied:
End:

F(H)6F(G)5F(A)0

F(B)0

F(C)1

F(F)3
F(E)3

F(D)3

0 1 2 3 4 5 6 7

1 0 1 01. 0 1 .1.

Occupied:
End:

1 0 1 0

run run

F(C)1

0 1 2 3 4 5 6 7

.run.

1.

,run,

0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

run run

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 0 1 0

.run.

1.
1 for each slot where a run ends

,run,

0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

run run

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 0 1 0

0 1

.run.

1.

,run,

0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

run run

F(C)1

Occupied:
End:

1 0 1 0

.run.

1.
1

0 1 2 3 4 5 6 7

,run,

0 1
0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

run ,run, run

F(C)1

Occupied:
End:

1 0 1 0

.run.

1.
1 0 10

0 1 2 3 4 5 6 7

0 1
0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

run run

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 0 1 0

.run.

1.
1 0 1

,run,

0 1
0 1 0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

run run

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 0 1 0

.run.

1.
1 0 1

,run,

0 1
0 1 0 1

;run;

1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

ith set occupied bit corresponds to ith set end bit

run run

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

.run.

0

,run,

0 1
0 1 0 1

;run;

1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

How to query?

F(C)1

0 1 2 3 4 5 6 7

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

Occupied:
End:

1 1 0 1 0
0 1 1 0 1

0 1
0 1 1

.1.

F(C)1

0 1 2 3 4 5 6 7

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

Occupied:
End:

1 1 0 1 0
0 1 1 0 1

0 1
0 1 1

.1.

get(Z)

F(C)1

0 1 2 3 4 5 6 7

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

Occupied:
End:

1 1 0 1 0
0 1 1 0 1

0 1
0 1 1

.1.

get(Z) return negative

F(H)6F(G)5F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 10
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3

get(H)

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

Count # 1s (5)

0
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

get(H)

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

Count # 1s (5)

Find matching 1 (5th)

0
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

get(H)

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

Count # 1s (5)

Find matching 1 (5th)

0
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

get(H)

Run
end

F(H)6F(G)5F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

Count # 1s (5)

Find matching 1 (5th) Run
end

Scan until prior run ends or
until reaching canonical slot

0
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3

get(H)

Can handle queries :)

F(H)6F(G)5F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 10
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3

Can handle queries :) problem?

F(H)6F(G)5F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 10
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3

Scanning bitmaps takes O(N)

F(H)6F(G)5F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 10
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

Ideas?

0

Scanning bitmaps takes O(N)

0 1
0 1 0 1 1

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

Split filter into chunks (64 slots in practice)

F(H)6F(G)5F(A)0 F(B)0 F(C)1 F(F)3F(E)3F(D)3

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 0 1
0 1

0 1 0 1 1
.1.

Split filter into chunks (64 slots in practice)

F(H)6F(G)5F(A)0 F(B)0 F(C)1 F(F)3F(E)3F(D)3

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 0 1
0 1

0 1 0 1 1
.1.

≈ 1-2 cache lines

Each chunk has offset field (8 bits)

F(H)6F(G)5F(A)0 F(B)0 F(C)1 F(F)3F(E)3F(D)3

Occupied:

0 1 2 3 4 5 6 7

End:
0 1 0

1 0 1

Offset Offset

0 11 1
0 1 0 1 1

.1.

Measures distance to first entry of chunk

F(C)1 F(F)3F(E)3F(D)3

0 1 2 3Offset Offset

0 2

4 5 6 7

Occupied:
End:

0 1 0
1 0 1
0 11 1

0 1 0 1 1
.1.

Each chunk has offset field

F(A)0 F(B)0 F(H)6F(G)5

F(C)1 F(F)3F(E)3F(D)3

0 1 2 3Offset

0 2

get(H)

Offset 4 5 6 7

Occupied:
End:

1 0
1 0 1
0 11 1

0 1
0
0 1 1

.1.

Back to Example

F(A)0 F(B)0 F(H)6F(G)5

F(F)3F(E)32

Offset 4 5 6 7

0 1 0
10 1 1

.1.

get(H)

Back to Example

F(H)6F(G)5

F(H)6F(G)5F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

get(H)

F(H)6F(G)5F(F)3F(E)3

0 1 0
1

2

Offset

Count # 1s (2)

Occupied:
End:

4 5 6 7

0 1 1
.1.

get(H)

F(E)3

0 1 0
1

2

Skip

Offset

Count # 1s (2)

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(H)6F(G)5F(F)3

get(H)

F(E)3

0 1 0
1

2

Skip

Offset

Find 2nd 1

Count # 1s (2)

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(H)6F(G)5F(F)3

get(H)

F(H)6F(G)5F(E)3

0 1 0
1

2

Count # 1s (2)

Skip

Offset

Find 2nd 1

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

get(H)

F(H)6F(G)5F(E)3

0 1 0
1

2

Count # 1s (2)

Skip

Offset

Find 2nd 1

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

get(H)

Scan until run ends or canonical slot

F(H)6F(G)5F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

Target run may have been pushed to next chunk

F(H)6F(G)5F(E)3

0 1 1
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

get(I)

Target run may have been pushed to next chunk

… …F(H)6F(G)5F(E)3

0 1 1
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

get(I)

Target run may have been pushed to next chunk

… …F(H)6F(G)5F(E)3

0 1 1
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

get(I)

Sequential cache misses, since chunks are adjacent
(not too shabby)

F(H)6F(G)5F(E)3

0 1 0
1

2

Queries in expected O(C), where C=64 is chunk size

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

F(E)3

0 1 0
1

2

Offset

Occupied:
End:

Can we do O(1)?

4 5 6 7

0 1 1
.1.

F(F)3 F(H)6F(G)5

Queries in expected O(C), where C=64 is chunk size

Rank & Select

F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3 F(H)6F(G)5

Rank & Select

F(H)6F(G)5F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

Can parse a 64-bit bitmap in constant time

4 5 6 7

0 1 1
.1.

Rank & Select

F(E)3

0 1 0
1

2

Offset

Occupied:
End:

j j+1 j+2 j+3

… …

…
… 0

1

64 bits

j+63

0 1 1
.1.

F(F)3 F(H)6F(G)5

Can parse a 64-bit bitmap in constant time

F(E)32

Offset

0 1 0
1

Occupied:
End:

Rank

4 5 6 7

0 1 1
.1.

Select
(i) counts # 1s before the ith bit
(i)

F(F)3 F(H)6F(G)5

F(F)3F(E)32

Offset

(i) counts # 1s before the ith bit

0 1 0
1

Occupied:
End:

returns the offset of the ith 1Select
Rank

4 5 6 7

0 1 1
.1.

(i)

F(H)6F(G)5

F(E)32

Offset

(i) counts # 1s before the ith bit

0 1 0
1

Occupied:
End:

returns the offset of the ith 1Select
Rank

4 5 6 7

0 1 1
.1.

(i)
(1) How to use?
(2) How to implement?

F(F)3 F(H)6F(G)5

F(E)32

Offset

0 1 0
1

Occupied:
End:

Back to example:

4 5 6 7

0 1 1
.1.

F(F)3 F(H)6F(G)5

get(H)

F(E)32

Offset

0 1 0
1

Occupied:

a = Rank(Offset)

(A) Count # of runs ends belonging to previous chunks

4 5 6 7

0 1 1
.1.

F(F)3 F(H)6F(G)5

End:

F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

a = Rank(2) = 1

4 5 6 7

0 1 1
.1.

F(H)6F(G)5

(A) Count # of runs ends belonging to previous chunks

F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

a = Rank(2) = 1

(B) Count # of run ends belonging to this chunk before target

4 5 6 7

0 1 1
.1.

F(H)6F(G)5

F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

a = Rank(2) = 1

b = Rank(targetSlot - firstChunkSlot)

4 5 6 7

0 1 1
.1.

F(H)6F(G)5

(B) Count # of run ends belonging to this chunk before target

F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

a = Rank(2) = 1

b = Rank(6 - 4)

4 5 6 7

0 1 1
.1.

F(H)6F(G)5

(B) Count # of run ends belonging to this chunk before target

F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

a = Rank(2) = 1

b = Rank(2) = 1

4 5 6 7

0 1 1
.1.

F(H)6F(G)5

(B) Count # of run ends belonging to this chunk before target

F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

a = Rank(2) = 1

(C) skip to the (a+b)th run end

b = Rank(2) = 1

0 1 1

F(F)3 F(H)6F(G)5

.1.

F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

Select()a + b

0 1 1

F(F)3 F(H)6F(G)5

(C) skip to the (a+b)th run end

.1.

F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

Select(2) = 3

0 1 1

F(F)3 F(H)6F(G)5

(C) skip to the (a+b)th run end

.1.

F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1

F(F)3 F(H)6F(G)5

(C) skip to the (a+b)th run end

.1.

…………

… … … …

of

Offset

Occupied:
End:

Select(Rank(of) + r)

… … … …

r = (k - j)

j j+1 j+2 j+3

Rank

General algorithm to bring us to end of slot k’s run

Implementing Rank and Select Efficiently

Implementing Rank and Select Efficiently

No looping

rank(i) = popcount(B & (2i - 1))

Implementing Rank Efficiently

rank(i) = popcount(B & (2i - 1))

Implementing Rank Efficiently

Bitmap (64 bits long)

rank(i) = popcount(B & (2i - 1))

Implementing Rank Efficiently

Bitmap (64 bits long)

Least
significant bits

Most
significant bits

rank(i) = popcount(B & (2i - 1))

Implementing Rank Efficiently

Total # of 1s

rank(i) = popcount(B & (2i - 1))

Implementing Rank Efficiently

Mask out irrelevant more significant bits

rank(i) = popcount(B & (2i - 1))

e.g., B = 0 1 1 0 1 0 1 1

rank(i) = popcount(B & (2i - 1))

e.g., B = 0 1 1 0 1 0 1 1 rank(6) = 3

rank(i) = popcount(B & (2i - 1))

e.g., B = 0 1 1 0 1 0 1 1 rank(6) = 3

26 - 1 = 1 1 1 1 1 1 0 0mask:

rank(i) = popcount(B & (2i - 1))

e.g., B = 0 1 1 0 1 0 1 1 rank(6) = 3

1 1 1 1 1 1 0 0

0 1 1 0 1 0 0 0

&

=

rank(i) = popcount(B & (2i - 1))

e.g., B = 0 1 1 0 1 0 1 1 rank(6) = 3

0 1 1 0 1 0 0 0popcount() = 3

Implementing Select Efficiently

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

Bitmap (64 bits long)

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

Count trailing zeros

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

Count trailing zeros
tzcnt(00011101) = 3

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

Scatter bits in first operand at 1s in second operand

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

Available on x86
https://www.felixcloutier.com/x86/

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1 Select(2) = 4

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1 Select(2) = 4

22 0 0 1 0 0 0 0 0=

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1 Select(2) = 4

 pdep(, B) =0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

Scatter bits in first operand at 1s in second operand

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1 Select(2) = 4

 pdep(, B) =0 0 1 0 0 0 0 0

Only the 1 at relevant
position is now set

0 0 0 0 1 0 0 0

Implementing Select Efficiently

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1 Select(2) = 4

 tzcnt() =0 0 0 0 1 0 0 0 4

…………

… … … …
… … … …

of

Offset

Occupied:
End:

Select(Rank(of) + r)

r = Rank(k - j)

j j+1 j+2 j+3

queries in O(1) due to fast rank and select

…………of

Offset j j+1 j+2 j+3

Insertions?

…………of

Offset j j+1 j+2 j+3

Insertions

Find target run, push colliding entries to right, insert

Insertions

Insert F(X)1

F(G)6F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3

Find target run, push colliding entries to right, insert

Insertions

Find target run, push colliding entries to right, insert

Insert F(X)1Insert F(X)1

F(G)6F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3

Insertions

Find target run, push colliding entries to right, insert

F(G)6F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3F(X)1

Insertions

Problem?

F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3F(X)1 F(G)6

Find target run, push colliding entries to right, insert

Insertions

potentially O(N)

F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3F(X)1 F(G)6

Find target run, push colliding entries to right, insert

potentially O(N) - solution?

Insertions

F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3F(X)1 F(G)6

Find target run, push colliding entries to right, insert

Insertions

Keep at least 5% spare capacity

…

0 1 2 3 4 5 6

.run.

7

… … ………free free

Insertions

Keep at least 5% spare capacity

…

0 1 2 3 4 5 6

.run.

7

… … ………free free

Push on avg. 20 entries on avg due to hashing

Most insertions don’t spill to the next chunk

8 9

Insertions

Keep at least 5% spare capacity

…

0 1 2 3 4 5 6

.run.

7

… … ………

Push on avg. 20 entries on avg due to hashing

deletes?

…

0 1 2 3 4 5 6

.run.

7

… … ………

Can only delete entry we know exists. Why?

…

0 1 2 3 4 5 6

.run.

7

… … ………

Can only delete entry we know exists. Why?

delete(Q)

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(D)4F(C)3 F(F)6F(B)0

Can only delete entry we know exists. Why?

delete(Q) - matches C’s FP at slot 3

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(D)4F(C)3 F(F)6F(B)0

Can only delete entry we know exists. Why?

Subsequent get(C) return
false negativesdelete(Q)

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(D)4F(C)3 F(F)6F(B)0

How to delete an entry we know exists?

delete(D)

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(D)4F(C)3 F(F)6F(B)0

How to delete an entry we know exists?

(1) Find run, remove matching fingerprint

delete(D)

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(D)4F(C)3 F(F)6F(B)0

How to delete an entry we know exists?

(1) Find run, remove matching fingerprint

delete(D)

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(C)3 F(F)6F(B)0

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(C)3 F(F)6F(B)0

(2) shift entries leftwards if needed to maintain contiguous runs
as close as possible to their canonical slot

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(C)3 F(F)6F(B)0

(2) shift entries leftwards if needed to maintain contiguous runs
as close as possible to their canonical slot

Analysis

False positive rate

Query/insert/delete

False positive rate

Query/insert/delete O(1)

Analysis

expected time

False positive rate

Query/insert/delete O(1)

Analysis

≈ ⍺ · 2-(M/N - 2.125)/⍺

expected time

False positive rate

Query/insert/delete O(1)

Analysis

≈ ⍺ · 2-(M/N - 2.125)/⍺

Bits / entry budget

False positive rate

Query/insert/delete O(1)

Analysis

≈ ⍺ · 2-(M/N - 2.125)/⍺

Metadata bits
(2 bitmaps and offsets field)

False positive rate

Query/insert/delete O(1)

Analysis

≈ ⍺ · 2-(M/N - 2.125)/⍺

Load factor, ⍺ < 0.95

False positive rate

Query/insert/delete O(1)

Analysis

≈ ⍺ · 2-(M/N - 2.125)/⍺

Avg run length

Bloom

≈ 2 -M/N · 0.69

Idealized

≈ 2 -M/N

XOR

≈ 2 -M/N ·0.81

Quotient

≈ ⍺ · 2-(M/N - 2.125)/⍺

Bloom

≈ 2 -M/N · 0.69

Idealized

≈ 2 -M/N

XORQuotient

Lower than Bloom for M/N > 10

≈ ⍺ · 2-(M/N - 2.125)/⍺ ≈ 2 -M/N ·0.81

Bloom

≈ 2 -M/N · 0.69

Idealized

≈ 2 -M/N

XORQuotient

Supports deletes :)

≈ ⍺ · 2-(M/N - 2.125)/⍺

Lower than Bloom for M/N > 10

≈ 2 -M/N ·0.81

Blocked Bloom

1

XOR

3

Quotient

≈ 1-2 on avg

Performance (cache misses)

sequential random

Deletes Resizing

Deletes Resizing

Break

Allocated with fixed capacity

Allocated with fixed capacity

False positive
rate

Insertion/query/
delete cost

X Y Z

Data growth

…

X Y Z …

How to Expand Filters Efficiently?

Data growth

?

X Y Z …

How to Expand Filters Efficiently?

Data growth

?

Without rereading the original data

Bloom Filters: unexpandable

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

?

0 0 1 0 0 0 0 1 0 0

XOR Filters: unexpandable

Can’t recover original fingerprints without
accessing the original data

Owns Y

2 4 6

get(Y) returns true if FP(Y) = 2 64

Expansion Workarounds

Pre-Allocation

Expansion Workarounds

Memory

ReconstructionPre-Allocation

Expansion Workarounds

Memory Full scan

Quotient FilterChaining

Agenda

InfiniFilter &
Aleph Filter

Chaining

Create 2x larger filter when former reaches capacity

Chaining

Insertions

Chaining

Insertions

Full
Create 2x

larger

Insertions

Insertions
Queries

Insertions

Works with any filter

Queries

Insertions

Downsides?
Works with any filter

Queries

Insertions

O(log2 N)

Downsides?
Works with any filter

Queries

FPR?

Insertions

O(log2 N)

Downsides?
Works with any filter

Queries

FPR ≲ ε ε ε+ + = O(ε · log2 N)

ε ε ε+ + = O(ε · log2 N)

Suppose we want to keep it ε?

FPR ≲

ε ε ε+ + = O(ε · log2 N)

Set lower FPRs for newer filters

Suppose we want to keep it ε?

FPR ≲

ε ε/2 ε/4+ + =

Geometrically decreasing. Any issue?

O(ε · log2 N)FPR ≲

FPR ≲ ε ε/2 ε/4+ + = O(ε)

Most Memory
Most data, lowest FPR

log(4/ε)

ε ε/2 ε/4+ + = O(ε)

Bits / entry:

FPR ≲

log(2logN/ε)

ε ε/2 ε/4+ + = O(ε)

Bits / entry:

FPR ≲

log2N + log(1/ε)

ε ε/2 ε/4+ + = O(ε)

Bits / entry:

Can we better scale memory?

FPR ≲

The FPRs should decrease more slowly but still converge

ε ε/2 ε/4+ + = O(ε)

Bits / entry: log2N + log(1/ε)

FPR ≲

1/12 1/22+ + = ?

Reciprocal of square numbers

1/32 + …

π2/6

Solved by Euler
in 1734

1/12 1/22+ + =1/32 + …

π2/6

Solved by Euler
in 1734

1.645=

1/12 1/22+ + =1/32 + …

= π2/6

Solved by Euler
in 1734

Polynomially decreasing yet still convergent

1/12 1/22+ + 1/32 + …

ε/12 ε/22+ + =ε/32 ε · π2/6FPR ≲

ε/12 ε/22+ + =ε/32 ε · π2/6

Bits / entry: log(32/ε)

FPR ≲

Bits / entry: log(log(N)2/ε)

ε/12 ε/22+ + =ε/32 ε · π2/6FPR ≲

Bits / entry: 2 + log(/ε)log2 log2(N)

ε/12 ε/22+ + =ε/32 ε · π2/6FPR ≲

ε · π2/6

Bits / entry: 2 + log(/ε)log2 log2(N) < logN + log(1/ε)

FPR ≲

Bits / entry: 2 + log(1/ε)log2 log2 (N)

Close to lower bound

How to Approximate A Set Without Knowing Its Size In Advance
Rasmus Pagh, Gil Segev, Udi Wieder. FOCS 2013.

ε · π2/6FPR ≲

Bits / entry: 2 + log(1/ε)log2 log2 (N)

Close to lower bound

How to Approximate A Set Without Knowing Its Size In Advance
Rasmus Pagh, Gil Segev, Udi Wieder. FOCS 2013.

Much of what follows originates from here :)

ε · π2/6FPR ≲

Bits / entry

expansions

Polynomial

Geometric

Quotient FiltersChaining InfiniFilter &
Aleph Filter

queries

Quotient Filters are Semi-Expandable

…

Semi-Expandable

hash() = 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0

hash() = 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0

…

One bit narrower

…

One bit narrower

Twice as many buckets

False positive rate (FPR) ≈ ⍺ · 2
-(M/N + 2.125) / ⍺

False positive rate (FPR) ≈ ⍺ · 2
-(M/N - log2(N) + 2.125) / ⍺

Lose 1 fingerprint bit in
each expansion

False positive rate (FPR) ≈ ⍺ · 2
-(M/N - log2(N) + 2.125) / ⍺

Remove constants

False positive rate (FPR) ≈ 2
-(M/N - log2(N))

Simplify

Supports up to M/N expansions

False positive rate (FPR) ≈ N · 2
-M/N

O(1) operations

Supports up to M/N expansions

False positive rate (FPR) ≈ N · 2
-M/N

InfiniFilter &
Aleph FilterChaining

queries

Quotient Filters

FPR
expansions

InfiniFilter: Expanding Filters to Infinity and Beyond
SIGMOD 2023Niv Dayan, Ioana Bercea, Pedro Reviriego, Rasmus Pagh.

InfiniFilter

Quotient filter

InfiniFilter

Variable-sized fingerprints

InfiniFilter

(1) sacrifice one bit
during expansion

InfiniFilter

(2) Newer entries get
longer fingerprints

(1) sacrifice one bit
during expansion

Unary age counter Fingerprint

0

expansions ago0

Unary age counter Fingerprint

expansions ago1

Unary age counter Fingerprint

10

expansions ago2

Unary age counter Fingerprint

110

Unary age counter Fingerprint

110

Delimiter

Unary age counter Fingerprint

110

All remaining slot bits

Fixed-length

Expansion

0

001

011 Expansion

1001

0

001

011

1001

010

001

011

100

001

011

1001

01

Longer fingerprints can be inserted
after expansion

Half of entries have F bit fingerprints

Quarter have F-1 bit fingerprints

Eighth have F-2 bit fingerprints

 ≈ log2(N) · 2-Fweighted false positive rate

 < N · 2-M/N = log2(N) · 2-M/Nweighted false positive rate
with quotient

filter

Query()

fetch

Rehash() &
rejuvenate
fingerprint

log N · 2-M/N

FPR
2-M/N

Rehash() &
rejuvenate

fingerprint

Increase slot width at rate of ≈ 2 log2 log2 N

log N · 2-M/NFPR ≈

- 2 log2 log2 Nlog N · 2-M/NFPR ≈

FPR ≈ 2-M/N

After F expansions, oldest fingerprints run out of bits

11110

Unary padding occupies whole slot

Void

Unary padding occupies whole slot

Any query Positive

Void

How to continue expanding?

Void

…

?

Aleph Filter: To Infinity in Constant Time

Void

?

Niv Dayan, Ioana Bercea, Rasmus Pagh. VLDB 2024

…

Duplicate

Void

Void Void

Void Void

query(old key)

Void Void

query(old key)

positive whichever bucket
the key belongs to

Void Void

query(old key)

positive whichever bucket
the key belongs to

Expand Indefinitely with O(1) performance

Void Void

Expandable Filters Complicate Deletes

Identify how many void entries to remove

Expandable Filters Complicate Deletes

Multiple fingerprints of diff lengths may match key to delete

Expandable Filters Complicate Deletes

Solutions exist in the papers :)

Thank you!

