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level

Does X exist? X  Y Z
Set

What is a Filter?



DataDoes key 
X exist

Memory

If key X does not exist



False 
positive  

with prob ε

True 
negative  

with prob 1-ε

DataDoes key 
X exist

Memory

If key X does not exist



level

Saves storage accesses & network hops

DataDoes key 
X exist

Memory



Lower FPRFaster

Blocked 
Bloom XOR



Static - no deletes or resizing

Blocked 
Bloom XOR



Supporting Dynamic Data



Supporting Dynamic Data

Deletes Resizing
(First hour) (Second hour)



Why Support Deletes?



Key XQuery(X) True 
positive

Why Support Deletes?



Key X

Delete(X)



Key X

Delete(X)

Why should we also delete from filter? 

delete(X)



Key X

Desired Outcome

Query(X)

Negative



Key X

Desired Outcome

Query(X)

Negative

Only possible if filter supports deletes



Why do last week’s filters not 
support deletes?

Bloom XOR



0 1 0 1 0 0 1 0 0 0

Y
delete

X

Multiple keys may map to each bit

Bloom filter



0 1 0 0 0 0 1 0 0 0

Y
delete

X

Bloom filter

Multiple keys may map to each bit

Setting bits back to 0s can lead to false negatives 

get



XOR filter

0000 0000 0000 0000110111000101 1111
0 1 2 3 4 5 6 7Slot #

Content



0000 0000 0000 0000110111000101 1111
0 1 2 3 4 5 6 7Slot #

Content

0, 1, 31, 4, 5

1001Fingerprints: 0001

Multiple keys share slots



0000 0000 0000 0000110111000101 1111
0 1 2 3 4 5 6 7Slot #

Content

0, 1, 31, 4, 5

delete(     )
10010001

Multiple keys share slots



0000 0000 0000 0000110100000101 1111

0, 1, 31, 4, 5

0 1 2 3 4 5 6 7Slot #
Content

delete(     )
10010001



0000 0000 0000 0000110100000101 1111
0 1 2 3 4 5 6 7Slot #

Content

1001

0, 1, 3

Resetting a slot for one entry will cause false negatives 
over other entries  



How to support deletes without false negatives?



(Last semester)
Cuckoo Filters

How to support deletes without false negatives?



(Last semester)
Quotient Filters

(Today)
Cuckoo Filters

How to support deletes without false negatives?



(Last semester)
Quotient Filters

(Today)
Cuckoo Filters

Why cover another filter that supports deletes? 



Quotient Filters

Showcase cool encoding/decoding techniques 



Quotient Filters

Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012. 

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Michael A Bender, Martin Farach-Colton, Rob Johnson, Bradley C Kuszmaul, Dzejla 
Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane, Erez Zadok.

Prashant Pandey, Michael A Bender, Rob Johnson, Rob Patro.

Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-Colton, 
Rob Johnson.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. 
SIGMOD 2021.



Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012. 

Which to focus on?

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. 
SIGMOD 2021.



Worse memory & query efficiency
Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012. 

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. 
SIGMOD 2021. 

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.



Uses SIMD & less tunable

Don’t Thrash: How to Cache Your Hash on Flash. VLDB 2012. 

Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. 
SIGMOD 2021. 

A General-Purpose Counting Filter: Making Every Bit Count. SIGMOD 2017.

Worse memory & query efficiency



Our focus

A General-Purpose Counting Filter: Making Every Bit Count. 2017. 



hash(        ) = 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0



…

Canonical slot



…

query(        )

Canonical slot



…

Each inserted fingerprint corresponds to exactly one entry



…

Removing it won’t introduce false negatives for other entries
Each inserted fingerprint corresponds to exactly one entry



Hash collisions - multiple fingerprints map to same 
canonical slot

…

Canonical slot



…

Address using Robin Hood Hashing



…

Address using Robin Hood Hashing
Variant of linear probing



…

Each fingerprint is pushed rightwards yet stays as 
close as possible to its “canonical slot”



0 1 2 3 4 5 6 7

F(B)0
F(A)0

F(C)1

F(D)3
F(E)3
F(F)3 F(H)6F(G)5

Each fingerprint is pushed rightwards yet stays as 
close as possible to its “canonical slot”



F(A)0 F(B)0

0 1 2 3 4 5 6 7

F(C)1

F(D)3
F(E)3
F(F)3 F(H)6F(G)5



F(A)0 F(B)0 F(C)1

0 1 2 3 4 5 6 7

F(D)3
F(E)3
F(F)3 F(H)6F(G)5



F(C)1 F(F)3F(E)3F(D)3

0 1 2 3 4 5 6 7

F(A)0 F(B)0

F(H)6F(G)5



F(G)5F(C)1 F(F)3F(E)3F(D)3

0 1 2 3 4 5 6 7

F(H)6

F(A)0 F(B)0



F(G)5F(C)1

0 1 2 3 4 5 6 7

F(H)6F(A)0 F(B)0 F(F)3F(E)3F(D)3



Note: fingerprints belonging to same 
canonical slot are contiguous

F(H)6F(G)5F(A)0 F(B)0 F(C)1 F(F)3F(E)3F(D)3

0 1 2 3 4 5 6 7



Note: fingerprints belonging to same 
canonical slot are contiguous

.run. run run

F(C)1

0 1 2 3 4 5 6 7

,run, ;run;

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



On average, each run consists of ≈ 1 slot

.run. run run

F(C)1

0 1 2 3 4 5 6 7

,run, ;run;

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



query(H)

run run

F(G)5F(C)1 F(F)3F(E)3F(D)3

0 1 2 3 4 5 6

.run.

F(H)6

7

,run, ;run;

F(A)0 F(B)0



run run

F(G)5F(C)1

0 1 2 3 4 5 6

Problem?

.run.

query(H)

F(H)6

7

,run, ;run;

F(A)0 F(B)0 F(F)3F(E)3F(D)3



run run

F(G)5F(C)1

0 1 2 3 4 5 6

Problem? Fingerprint might have shifted to the right

.run.

F(H)6

7

query(H)

,run, ;run;

F(A)0 F(B)0 F(F)3F(E)3F(D)3



run run

F(G)5F(C)1

0 1 2 3 4 5 6

Solution?

.run. ;run;

F(H)6

7

query(H)

,run,

F(A)0 F(B)0 F(F)3F(E)3F(D)3

Problem? Fingerprint might have shifted to the right



Solution: delineate runs using 2 bitmaps

run run

F(H)6F(G)5F(C)1

0 1 2 3 4 5 6 7

Occupied:
End:

.run. ,run, ;run;

F(A)0 F(B)0 F(F)3F(E)3F(D)3



Occupied:
End:

1 if there is a run belonging to this slot

run run

F(H)6F(G)5F(A)0 F(B)0 F(C)1 F(F)3F(E)3F(D)3

0 1 2 3 4 5 6 7

.run. ,run, ;run;



Occupied:
End:

1 if there is a run belonging to this slot

F(H)6F(G)5F(A)0

F(B)0

F(C)1

F(F)3
F(E)3

F(D)3

0 1 2 3 4 5 6 7



Occupied:
End:

F(H)6F(G)5F(A)0

F(B)0

F(C)1

F(F)3
F(E)3

F(D)3

0 1 2 3 4 5 6 7

1 0 1 01. 0 1 .1.



Occupied:
End:

1 0 1 0

run run

F(C)1

0 1 2 3 4 5 6 7

.run.

1.

,run,

0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



run run

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 0 1 0

.run.

1.
1 for each slot where a run ends

,run,

0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



run run

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 0 1 0

0 1

.run.

1.

,run,

0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



run run

F(C)1

Occupied:
End:

1 0 1 0

.run.

1.
1

0 1 2 3 4 5 6 7

,run,

0 1
0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



run ,run, run

F(C)1

Occupied:
End:

1 0 1 0

.run.

1.
1 0 10

0 1 2 3 4 5 6 7

0 1
0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



run run

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 0 1 0

.run.

1.
1 0 1

,run,

0 1
0 1 0 1

;run;

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



run run

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 0 1 0

.run.

1.
1 0 1

,run,

0 1
0 1 0 1

;run;

1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



ith set occupied bit corresponds to ith set end bit

run run

F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

.run.

0

,run,

0 1
0 1 0 1

;run;

1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



How to query?

F(C)1

0 1 2 3 4 5 6 7

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

Occupied:
End:

1 1 0 1 0
0 1 1 0 1

0 1
0 1 1

.1.



F(C)1

0 1 2 3 4 5 6 7

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

Occupied:
End:

1 1 0 1 0
0 1 1 0 1

0 1
0 1 1

.1.

get(Z)



F(C)1

0 1 2 3 4 5 6 7

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

Occupied:
End:

1 1 0 1 0
0 1 1 0 1

0 1
0 1 1

.1.

get(Z) return negative 



F(H)6F(G)5F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 10
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3

get(H)



F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

Count # 1s (5)

0
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

get(H)



F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

Count # 1s (5)

Find matching 1 (5th)

0
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

get(H)



F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

Count # 1s (5)

Find matching 1 (5th)

0
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5

get(H)

Run 
end



F(H)6F(G)5F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

Count # 1s (5)

Find matching 1 (5th) Run 
end

Scan until prior run ends or 
until reaching canonical slot

0
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3

get(H)



Can handle queries :)

F(H)6F(G)5F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 10
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3



Can handle queries :) problem?

F(H)6F(G)5F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 10
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3



Scanning bitmaps takes O(N)

F(H)6F(G)5F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 10
0 1

0 1 0 1 1
.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3



F(C)1

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 1

Ideas?

0

Scanning bitmaps takes O(N)

0 1
0 1 0 1 1

.1.

F(A)0 F(B)0 F(F)3F(E)3F(D)3 F(H)6F(G)5



Split filter into chunks (64 slots in practice)

F(H)6F(G)5F(A)0 F(B)0 F(C)1 F(F)3F(E)3F(D)3

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 0 1
0 1

0 1 0 1 1
.1.



Split filter into chunks (64 slots in practice)

F(H)6F(G)5F(A)0 F(B)0 F(C)1 F(F)3F(E)3F(D)3

Occupied:

0 1 2 3 4 5 6 7

End:
1 1 0 1 0

1 0 1
0 1

0 1 0 1 1
.1.

≈ 1-2 cache lines



Each chunk has offset field (8 bits)

F(H)6F(G)5F(A)0 F(B)0 F(C)1 F(F)3F(E)3F(D)3

Occupied:

0 1 2 3 4 5 6 7

End:
0 1 0

1 0 1

Offset Offset

0 11 1
0 1 0 1 1

.1.



Measures distance to first entry of chunk 

F(C)1 F(F)3F(E)3F(D)3

0 1 2 3Offset Offset

0 2

4 5 6 7

Occupied:
End:

0 1 0
1 0 1
0 11 1

0 1 0 1 1
.1.

Each chunk has offset field

F(A)0 F(B)0 F(H)6F(G)5



F(C)1 F(F)3F(E)3F(D)3

0 1 2 3Offset

0 2

get(H)

Offset 4 5 6 7

Occupied:
End:

1 0
1 0 1
0 11 1

0 1
0
0 1 1

.1.

Back to Example

F(A)0 F(B)0 F(H)6F(G)5



F(F)3F(E)32

Offset 4 5 6 7

0 1 0
10 1 1

.1.

get(H)

Back to Example

F(H)6F(G)5



F(H)6F(G)5F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

get(H)



F(H)6F(G)5F(F)3F(E)3

0 1 0
1

2

Offset

Count # 1s (2)

Occupied:
End:

4 5 6 7

0 1 1
.1.

get(H)



F(E)3

0 1 0
1

2

Skip

Offset

Count # 1s (2)

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(H)6F(G)5F(F)3

get(H)



F(E)3

0 1 0
1

2

Skip

Offset

Find 2nd 1

Count # 1s (2)

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(H)6F(G)5F(F)3

get(H)



F(H)6F(G)5F(E)3

0 1 0
1

2

Count # 1s (2)

Skip

Offset

Find 2nd 1

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

get(H)



F(H)6F(G)5F(E)3

0 1 0
1

2

Count # 1s (2)

Skip

Offset

Find 2nd 1

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

get(H)

Scan until run ends or canonical slot



F(H)6F(G)5F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

Target run may have been pushed to next chunk



F(H)6F(G)5F(E)3

0 1 1
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

get(I)

Target run may have been pushed to next chunk



… …F(H)6F(G)5F(E)3

0 1 1
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

get(I)

Target run may have been pushed to next chunk



… …F(H)6F(G)5F(E)3

0 1 1
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3

get(I)

Sequential cache misses, since chunks are adjacent 
(not too shabby)



F(H)6F(G)5F(E)3

0 1 0
1

2

Queries in expected O(C), where C=64 is chunk size

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3



F(E)3

0 1 0
1

2

Offset

Occupied:
End:

Can we do O(1)?

4 5 6 7

0 1 1
.1.

F(F)3 F(H)6F(G)5

Queries in expected O(C), where C=64 is chunk size



Rank & Select

F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1
.1.

F(F)3 F(H)6F(G)5



Rank & Select

F(H)6F(G)5F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

Can parse a 64-bit bitmap in constant time

4 5 6 7

0 1 1
.1.



Rank & Select

F(E)3

0 1 0
1

2

Offset

Occupied:
End:

j j+1 j+2 j+3

… …

…
… 0

1

64 bits

j+63

0 1 1
.1.

F(F)3 F(H)6F(G)5

Can parse a 64-bit bitmap in constant time



F(E)32

Offset

0 1 0
1

Occupied:
End:

Rank

4 5 6 7

0 1 1
.1.

Select
(i) counts # 1s before the ith bit
(i)

F(F)3 F(H)6F(G)5



F(F)3F(E)32

Offset

(i) counts # 1s before the ith bit

0 1 0
1

Occupied:
End:

returns the offset of the ith 1Select
Rank

4 5 6 7

0 1 1
.1.

(i)

F(H)6F(G)5



F(E)32

Offset

(i) counts # 1s before the ith bit

0 1 0
1

Occupied:
End:

returns the offset of the ith 1Select
Rank

4 5 6 7

0 1 1
.1.

(i)
(1) How to use?
(2) How to implement?

F(F)3 F(H)6F(G)5



F(E)32

Offset

0 1 0
1

Occupied:
End:

Back to example:

4 5 6 7

0 1 1
.1.

F(F)3 F(H)6F(G)5

get(H)



F(E)32

Offset

0 1 0
1

Occupied:

a = Rank(Offset)

(A) Count # of runs ends belonging to previous chunks

4 5 6 7

0 1 1
.1.

F(F)3 F(H)6F(G)5

End:



F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

a = Rank(2) = 1

4 5 6 7

0 1 1
.1.

F(H)6F(G)5

(A) Count # of runs ends belonging to previous chunks



F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

a = Rank(2) = 1

(B) Count # of run ends belonging to this chunk before target

4 5 6 7

0 1 1
.1.

F(H)6F(G)5



F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

a = Rank(2) = 1

b = Rank(targetSlot - firstChunkSlot)

4 5 6 7

0 1 1
.1.

F(H)6F(G)5

(B) Count # of run ends belonging to this chunk before target



F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

a = Rank(2) = 1

b = Rank(6 - 4)

4 5 6 7

0 1 1
.1.

F(H)6F(G)5

(B) Count # of run ends belonging to this chunk before target



F(F)3F(E)3

0 1 0
1

2

Offset

Occupied:
End:

a = Rank(2) = 1

b = Rank(2) = 1

4 5 6 7

0 1 1
.1.

F(H)6F(G)5

(B) Count # of run ends belonging to this chunk before target



F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

a = Rank(2) = 1

(C) skip to the (a+b)th run end

b = Rank(2) = 1

0 1 1

F(F)3 F(H)6F(G)5

.1.



F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

Select(         )a + b

0 1 1

F(F)3 F(H)6F(G)5

(C) skip to the (a+b)th run end

.1.



F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

Select(2) = 3

0 1 1

F(F)3 F(H)6F(G)5

(C) skip to the (a+b)th run end

.1.



F(E)3

0 1 0
1

2

Offset

Occupied:
End:

4 5 6 7

0 1 1

F(F)3 F(H)6F(G)5

(C) skip to the (a+b)th run end

.1.



…………

… … … …

of

Offset

Occupied:
End:

Select(Rank(of) + r)

… … … …

r =          (k - j)

j j+1 j+2 j+3

Rank

General algorithm to bring us to end of slot k’s run



Implementing Rank and Select Efficiently 



Implementing Rank and Select Efficiently 

No looping



rank(i) = popcount(B & (2i - 1))

Implementing Rank Efficiently 



rank(i) = popcount(B & (2i - 1))

Implementing Rank Efficiently 

Bitmap (64 bits long)



rank(i) = popcount(B & (2i - 1))

Implementing Rank Efficiently 

Bitmap (64 bits long)

Least 
significant bits

Most 
significant bits



rank(i) = popcount(B & (2i - 1))

Implementing Rank Efficiently 

Total # of 1s 



rank(i) = popcount(B & (2i - 1))

Implementing Rank Efficiently 

Mask out irrelevant more significant bits



rank(i) = popcount(B & (2i - 1))

e.g., B = 0 1 1 0 1 0 1 1



rank(i) = popcount(B & (2i - 1))

e.g., B = 0 1 1 0 1 0 1 1 rank(6) = 3



rank(i) = popcount(B & (2i - 1))

e.g., B = 0 1 1 0 1 0 1 1 rank(6) = 3

26 - 1 = 1 1 1 1 1 1 0 0mask:



rank(i) = popcount(B & (2i - 1))

e.g., B = 0 1 1 0 1 0 1 1 rank(6) = 3

1 1 1 1 1 1 0 0

0 1 1 0 1 0 0 0

&

=



rank(i) = popcount(B & (2i - 1))

e.g., B = 0 1 1 0 1 0 1 1 rank(6) = 3

0 1 1 0 1 0 0 0popcount( ) = 3
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Implementing Select Efficiently 
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Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

Bitmap (64 bits long)



Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

Count trailing zeros



Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

Count trailing zeros
tzcnt(00011101) = 3



Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

Scatter bits in first operand at 1s in second operand 



Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

Available on x86
https://www.felixcloutier.com/x86/



Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1



Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1 Select(2) = 4



Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1 Select(2) = 4

22 0 0 1 0 0 0 0 0=



Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1 Select(2) = 4

 pdep(                          , B) =0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

Scatter bits in first operand at 1s in second operand 



Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1 Select(2) = 4

 pdep(                          , B) =0 0 1 0 0 0 0 0

Only the 1 at relevant 
position is now set

0 0 0 0 1 0 0 0



Implementing Select Efficiently 

select(i) = tzcnt(pdep(2i, B))

e.g., B = 0 1 1 0 1 0 1 1 Select(2) = 4

 tzcnt(                         ) =0 0 0 0 1 0 0 0 4



…………

… … … …
… … … …

of

Offset

Occupied:
End:

Select(Rank(of) + r)

r = Rank(k - j)

j j+1 j+2 j+3

queries in O(1) due to fast rank and select 



…………of

Offset j j+1 j+2 j+3

Insertions?



…………of

Offset j j+1 j+2 j+3

Insertions

Find target run, push colliding entries to right, insert



Insertions

Insert F(X)1

F(G)6F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3

Find target run, push colliding entries to right, insert



Insertions

Find target run, push colliding entries to right, insert

Insert F(X)1Insert F(X)1

F(G)6F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3



Insertions

Find target run, push colliding entries to right, insert

F(G)6F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3F(X)1



Insertions

Problem?

F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3F(X)1 F(G)6

Find target run, push colliding entries to right, insert



Insertions

potentially O(N)

F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3F(X)1 F(G)6

Find target run, push colliding entries to right, insert



potentially O(N) - solution?

Insertions

F(C)2

0 1 2 3 4 5 6

.run.

7

F(A)0 F(B)1 F(F)4F(E)4F(D)3F(X)1 F(G)6

Find target run, push colliding entries to right, insert



Insertions

Keep at least 5% spare capacity

…

0 1 2 3 4 5 6

.run.

7

… … ………free free



Insertions

Keep at least 5% spare capacity

…

0 1 2 3 4 5 6

.run.

7

… … ………free free

Push on avg. 20 entries on avg due to hashing



Most insertions don’t spill to the next chunk

8 9

Insertions

Keep at least 5% spare capacity

…

0 1 2 3 4 5 6

.run.

7

… … ………

Push on avg. 20 entries on avg due to hashing



deletes?

…

0 1 2 3 4 5 6

.run.

7

… … ………



Can only delete entry we know exists. Why?

…

0 1 2 3 4 5 6

.run.

7

… … ………



Can only delete entry we know exists. Why?

delete(Q)

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(D)4F(C)3 F(F)6F(B)0



Can only delete entry we know exists. Why?

delete(Q) - matches C’s FP at slot 3

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(D)4F(C)3 F(F)6F(B)0



Can only delete entry we know exists. Why?

Subsequent get(C) return 
false negativesdelete(Q)

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(D)4F(C)3 F(F)6F(B)0



How to delete an entry we know exists?

delete(D)

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(D)4F(C)3 F(F)6F(B)0



How to delete an entry we know exists?

(1) Find run, remove matching fingerprint

delete(D)

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(D)4F(C)3 F(F)6F(B)0



How to delete an entry we know exists?

(1) Find run, remove matching fingerprint

delete(D)

0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(C)3 F(F)6F(B)0



0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(C)3 F(F)6F(B)0

(2) shift entries leftwards if needed to maintain contiguous runs 
as close as possible to their canonical slot 



0 1 2 3 4 5 6

.run.

7

F(A)0 F(E)4F(C)3 F(F)6F(B)0

(2) shift entries leftwards if needed to maintain contiguous runs 
as close as possible to their canonical slot 
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Query/insert/delete



False positive rate

Query/insert/delete O(1)

Analysis

expected time



False positive rate

Query/insert/delete O(1)

Analysis

≈  ⍺ · 2-(M/N - 2.125)/⍺

expected time



False positive rate

Query/insert/delete O(1)

Analysis

≈  ⍺ · 2-(M/N - 2.125)/⍺

Bits / entry budget



False positive rate

Query/insert/delete O(1)

Analysis

≈  ⍺ · 2-(M/N - 2.125)/⍺

Metadata bits
(2 bitmaps and offsets field)



False positive rate

Query/insert/delete O(1)

Analysis

≈  ⍺ · 2-(M/N - 2.125)/⍺

Load factor, ⍺ < 0.95



False positive rate

Query/insert/delete O(1)

Analysis

≈  ⍺ · 2-(M/N - 2.125)/⍺

Avg run length



Bloom 

≈ 2 -M/N · 0.69

Idealized

≈ 2 -M/N

XOR

≈ 2 -M/N ·0.81

Quotient

≈ ⍺ · 2-(M/N - 2.125)/⍺



Bloom 

≈ 2 -M/N · 0.69

Idealized

≈ 2 -M/N

XORQuotient

Lower than Bloom for M/N > 10

≈ ⍺ · 2-(M/N - 2.125)/⍺ ≈ 2 -M/N ·0.81



Bloom 

≈ 2 -M/N · 0.69

Idealized

≈ 2 -M/N

XORQuotient

Supports deletes :)

≈ ⍺ · 2-(M/N - 2.125)/⍺

Lower than Bloom for M/N > 10

≈ 2 -M/N ·0.81



Blocked Bloom 

1

XOR

3

Quotient

≈ 1-2 on avg 

Performance (cache misses)

sequential random



Deletes Resizing



Deletes Resizing



Break



Allocated with fixed capacity



Allocated with fixed capacity

False positive 
rate

Insertion/query/
delete cost



X  Y Z

Data growth

…



X  Y Z …

How to Expand Filters Efficiently? 

Data growth

?



X  Y Z …

How to Expand Filters Efficiently? 

Data growth

?

Without rereading the original data



Bloom Filters: unexpandable

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

?

0 0 1 0 0 0 0 1 0 0



XOR Filters: unexpandable

Can’t recover original fingerprints without 
accessing the original data

Owns Y

2 4 6

get(Y) returns true if      FP(Y) =  2 64



Expansion Workarounds



Pre-Allocation

Expansion Workarounds

Memory



ReconstructionPre-Allocation

Expansion Workarounds

Memory Full scan



Quotient FilterChaining

Agenda

InfiniFilter & 
Aleph Filter



Chaining

Create 2x larger filter when former reaches capacity



Chaining

Insertions



Chaining

Insertions

Full
Create 2x 

larger



Insertions



Insertions
Queries



Insertions

Works with any filter

Queries



Insertions

Downsides?
Works with any filter

Queries



Insertions

O(log2 N)

Downsides?
Works with any filter

Queries



FPR?

Insertions

O(log2 N)

Downsides?
Works with any filter

Queries



FPR ≲  ε ε ε+ + = O(ε · log2 N)



ε ε ε+ + = O(ε · log2 N)

Suppose we want to keep it ε?

FPR ≲ 



ε ε ε+ + = O(ε · log2 N)

Set lower FPRs for newer filters

Suppose we want to keep it ε?

FPR ≲ 



ε ε/2 ε/4+ + =

Geometrically decreasing. Any issue?

O(ε · log2 N)FPR ≲ 



FPR ≲  ε ε/2 ε/4+ + = O(ε)

Most Memory
Most data, lowest FPR



log(4/ε)

ε ε/2 ε/4+ + = O(ε)

Bits / entry:

FPR ≲ 



log(2logN/ε)

ε ε/2 ε/4+ + = O(ε)

Bits / entry:

FPR ≲ 



log2N + log(1/ε)

ε ε/2 ε/4+ + = O(ε)

Bits / entry:

Can we better scale memory?

FPR ≲ 



The FPRs should decrease more slowly but still converge

ε ε/2 ε/4+ + = O(ε)

Bits / entry: log2N + log(1/ε)

FPR ≲ 



1/12 1/22+ + = ?

Reciprocal of square numbers 

1/32 + …



π2/6

Solved by Euler 
in 1734

1/12 1/22+ + =1/32 + …



π2/6

Solved by Euler 
in 1734

1.645=

1/12 1/22+ + =1/32 + …



= π2/6

Solved by Euler 
in 1734

Polynomially decreasing yet still convergent

1/12 1/22+ + 1/32 + …



ε/12 ε/22+ + =ε/32 ε · π2/6FPR ≲ 



ε/12 ε/22+ + =ε/32 ε · π2/6

Bits / entry: log(32/ε)

FPR ≲ 



Bits / entry: log(log(N)2/ε)

ε/12 ε/22+ + =ε/32 ε · π2/6FPR ≲ 



Bits / entry: 2                     + log(/ε)log2 log2(N)

ε/12 ε/22+ + =ε/32 ε · π2/6FPR ≲ 



ε · π2/6

Bits / entry: 2                     + log(/ε)log2 log2(N) < logN + log(1/ε)

FPR ≲ 



Bits / entry: 2                     + log(1/ε)log2 log2 (N)

Close to lower bound

How to Approximate A Set Without Knowing Its Size In Advance
Rasmus Pagh, Gil Segev, Udi Wieder. FOCS 2013. 

ε · π2/6FPR ≲ 



Bits / entry: 2                     + log(1/ε)log2 log2 (N)

Close to lower bound

How to Approximate A Set Without Knowing Its Size In Advance
Rasmus Pagh, Gil Segev, Udi Wieder. FOCS 2013. 

Much of what follows originates from here :)

ε · π2/6FPR ≲ 



Bits / entry

# expansions

Polynomial

Geometric



Quotient FiltersChaining InfiniFilter & 
Aleph Filter

queries



Quotient Filters are Semi-Expandable 



…

Semi-Expandable



hash(        ) = 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0



hash(        ) = 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0



…

One bit narrower



…

One bit narrower

Twice as many buckets



False positive rate (FPR) ≈ ⍺ · 2
-(M/N + 2.125) / ⍺



False positive rate (FPR) ≈ ⍺ · 2
-(M/N - log2(N) + 2.125) / ⍺

Lose 1 fingerprint bit in 
each expansion



False positive rate (FPR) ≈ ⍺ · 2
-(M/N - log2(N) + 2.125) / ⍺

Remove constants



False positive rate (FPR) ≈ 2
-(M/N - log2(N))

Simplify



Supports up to M/N expansions 

False positive rate (FPR) ≈ N · 2
-M/N



O(1) operations

Supports up to M/N expansions 

False positive rate (FPR) ≈ N · 2
-M/N



InfiniFilter & 
Aleph FilterChaining

queries

Quotient Filters

FPR
# expansions



InfiniFilter: Expanding Filters to Infinity and Beyond
SIGMOD 2023Niv Dayan, Ioana Bercea, Pedro Reviriego, Rasmus Pagh.



InfiniFilter

Quotient filter



InfiniFilter

Variable-sized fingerprints



InfiniFilter

(1) sacrifice one bit 
during expansion 



InfiniFilter

(2) Newer entries get 
longer fingerprints

(1) sacrifice one bit 
during expansion 



Unary age counter Fingerprint



0

expansions ago0

Unary age counter Fingerprint



expansions ago1

Unary age counter Fingerprint

10



expansions ago2

Unary age counter Fingerprint

110



Unary age counter Fingerprint

110

Delimiter



Unary age counter Fingerprint

110

All remaining slot bits



Fixed-length



Expansion



0

001

011 Expansion



1001

0

001

011



1001

010

001

011



100

001

011

1001

01



Longer fingerprints can be inserted 
after expansion 



Half of entries have F bit fingerprints



Quarter have F-1 bit fingerprints



Eighth have F-2 bit fingerprints



 ≈    log2(N) · 2-Fweighted false positive rate



 <    N · 2-M/N =    log2(N) · 2-M/Nweighted false positive rate
with quotient 

filter



Query(        )

fetch



Rehash(        ) & 
rejuvenate  
fingerprint



log N · 2-M/N

FPR
2-M/N

Rehash(        ) & 
rejuvenate 

fingerprint



Increase slot width at rate of ≈ 2 log2 log2 N

log N · 2-M/NFPR  ≈ 



- 2 log2 log2 Nlog N · 2-M/NFPR  ≈ 



FPR  ≈ 2-M/N



After F expansions, oldest fingerprints run out of bits



11110

Unary padding occupies whole slot



Void

Unary padding occupies whole slot



Any query  Positive

Void



How to continue expanding?

Void

…

?



Aleph Filter: To Infinity in Constant Time

Void

?

Niv Dayan, Ioana Bercea, Rasmus Pagh. VLDB 2024

…



Duplicate

Void

Void Void



Void Void

query(old key)



Void Void

query(old key)

positive whichever bucket 
the key belongs to



Void Void

query(old key)

positive whichever bucket 
the key belongs to

Expand Indefinitely with O(1) performance



Void Void

Expandable Filters Complicate Deletes 

Identify how many void entries to remove



Expandable Filters Complicate Deletes 

Multiple fingerprints of diff lengths may match key to delete



Expandable Filters Complicate Deletes 

Solutions exist in the papers :)



Thank you! 


