
Research Lecture: LSM-trees & Filters

Niv Dayan

Projects

56 groups -
mostly of threes

157 / 169 students
registered

Feedback week
next week - will
announce when.

Midterm

Oct 14 in class Open book

Today

Recap on LSM Bloom Filters Research
Lecture

dataMany DB operations are:

of small data items

with random keys

dataselective
small data items
random keys

Many DB operations are:

of small data items

with random keys

dataselective
small data items
random keys

X

Many DB operations are:

of small data items

with random keys

dataselective
small data items
random keys Y

Z

X

Many DB operations are:

of small data items

with random keys

B-tree
(1970’s)

data

X

Y

Z

data

X

Y

Z

random write
s

random writes to small entries: a bad idea

mechanical
latency

random writes to small entries: a bad idea

4KB access
garbage-collection

random writes to small entries: a bad idea

mechanical

latency

random writes to small entries: a bad idea

mechanical

latency

4KB access

garbage-collection

The Log-Structured Merge-Tree
1996 - Patrick O’Neil

LSM-Tree

Google's BigTable

Amazon’s DynamoDB
Facebook’s RocksDB

…

Apache Cassandra

1 3 6

2 4 5

1 2 3 4 5 6

buffer merge-sort

buffer

levelof key-value pairs
Inserts/updates/deletes

buffer

0

1

level

sort & flush run

buffer0

1

2

sort-merge

buffer0

1

2

3

level

exponentially increasing capacities

level 1

level 2

level 3

one I/O per run

buffer0

1

2

3

level

newest to
oldest X

get(X)

buffer0

1

2

3

get(X)

X

If tombstone is found,
report key doesn’t exist

Df

Df

logT(N/P)# levels L =

Df

Df

data size

logT(N/P)# levels L =

Df

Df

logT(N/P)

xT
xT

size ratio

levels L =

Df

logT(N/P)

buffer size

P

levels L =

merge policy

merge policywrites reads

merge policywrites reads

LevelingTiering

two merge policies

LevelingTiering

gather

LevelingTiering

merge & flush

gather

LevelingTiering

gather

LevelingTiering

mergegather

LevelingTiering

flush

mergegather

LevelingTiering

mergegather

LevelingTiering

1 run per level

size ratio T

LevelingTiering

T runs per level

1 run per level
1 run per level

size ratio T

LevelingTiering

= 2

T runs per level

1 run per level

size ratio T

LevelingTiering

1 run per level

log sorted
array

O(lN/Pl) runs per level

size ratio T

LevelingTiering

= N/P

Tiering

Leveling

log

sorted

array

0

1

2

3

level

skip runs

B-tree
internal nodes

0

1

2

3

level

Bloom
Filters

skip runs

level

Why use a Filter?

level

Data
Does key X exist

DataDoes key
X exist Memory

DataDoes key
X exist

Memory

true positive

If key X exists

No

If key X does not exist

DataDoes key
X exist

Memory

No

If key X does not exist

DataDoes key
X exist

Memory

False
positive is
possible

False
positive

with prob ε

True
negative

with prob 1-ε

DataDoes key
X exist

Memory

If key X does not exist

ε - false positive rate - FPR

DataDoes key
X exist

Memory

If key X does not exist

Bloom Filters

Bloom Filters

Space/time Trade-Offs in Hash Coding with Allowable Errors
Burton Howard Bloom. Communications of the ACM, 1970.

bitmap a

k hash functions a

0 0 0 0 0 0 0 0 0 0

insert(X)

0 0 0 0 1 0 0 0 1 0

insert: Set from 0 to 1 or keep 1

insert(Y)

0 0 1 0 1 0 0 0 1 0

insert: Set from 0 to 1 or keep 1

Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

check(X) True
positive

Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

check(Z) True
negative

Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

check(Q) False
Positive

Bloom

filters

data

negative

X true positive

false positive

read(X)

Bloom

filters

data

X

more memory fewer false positives

negative

read(X)

true positive

negative

0 0 0 0 0 0 0 0 0 0

How many hash functions should we use?

0 1 0 0 0 0 0 0 0 0

How many hash functions should we use?

h1 One is too few: false positive
occurs whenever we hit a 1

0 1 0 0 1 0 0 1 0 0

How many hash functions should we use?

h1 h2 h3 One is too few: false positive
occurs whenever we hit a 1

By adding hash functions, we
initially decrease the false

positive rate (FPR).

1 1 1 1 1 1 1 1 1 1

How many hash functions should we use?

h1 hX…

But too many hash functions
wind up increasing the FPR.

By adding hash functions, we
initially decrease the false

positive rate (FPR).

One is too few: false positive
occurs whenever we hit a 1

How many hash functions should we use?

(Drawn for a filter using 10 bits per entry)

Minimum

How many hash functions should we use?

Optimal # hash functions = ln(2) · M
(M is the number of bits per entry)

Minimum

assuming the optimal # hash functions,
2−M⋅ln(2)false positive rate =

Positive Query =

Insertion =

Avg. Negative Query =

Operation Costs (in memory accesses)

Positive Query =

Insertion =

Avg. Negative Query =

M · ln(2) (# hash functions)

Operation Costs (in memory accesses)

Positive Query =

Insertion =

Avg. Negative Query =

M · ln(2)

M · ln(2)

(# hash functions)

Operation Costs (in memory accesses)

Positive Query =

Insertion =

Avg. Negative Query =

M · ln(2)

M · ln(2)

(fraction of ones in filter is 0.5 with
optimal number of hash functions)

Operation Costs (in memory accesses)

Positive Query =

Insertion =

Avg. Negative Query =

M · ln(2)

M · ln(2)

1 + 1/2 (1 + 1/2 · (…))
(fraction of ones in filter is 0.5 with
optimal number of hash functions)

Operation Costs (in memory accesses)

Positive Query =

Insertion =

Avg. Negative Query =

M · ln(2)

M · ln(2)

1 + 1/2 + 1/4 + … =
(fraction of ones in filter is 0.5 with
optimal number of hash functions)

Operation Costs (in memory accesses)

2

Positive Query =

Insertion =

Avg. Negative Query =

M · ln(2)

M · ln(2)

2−M⋅ln(2)false positive rate =

2

Operation Costs (in memory accesses)

Bloom

filters

data get(X)

Positive Query =
Avg. Negative Query =

M · ln(2)
2

Let’s analyze overall filter access
cost for basic LSM-tree

Worst-case: Avg. worst-case:

L levels

Bloom

filters

data

X

false positive

get(X)

Positive Query =
Avg. Negative Query =

M · ln(2)
2

Let’s analyze overall filter access
cost for basic LSM-tree

Worst-case: Avg. worst-case: O(M·L)

false positive

L levels

true positive

Bloom

filters

data

negative

X true positive

get(X)

Positive Query =
Avg. Negative Query =

M · ln(2)
2

Let’s analyze overall filter access
cost for basic LSM-tree

Worst-case: Avg. worst-case: O(M·L)

negativeL levels

Bloom

filters

data

2

X M · ln(2)

get(X)

Positive Query =
Avg. Negative Query =

M · ln(2)
2

Let’s analyze overall filter access
cost for basic LSM-tree

Worst-case: Avg. worst-case: O(M·L)

2L levels

Bloom

filters

data

2

X M · ln(2)

get(X)

Positive Query =
Avg. Negative Query =

M · ln(2)
2

Let’s analyze overall filter access
cost for basic LSM-tree

Worst-case: Avg. worst-case: O(M·L)

2L levels

O(M+L)

Construction contract

 N - # entries to insert
 ε - desired FPR

Know specs in advance:

Construction contract

 N - # entries to insert
 ε - desired FPR

Construction contract

Allocate filter with: N · ln(2) · log2(1/ε) bits

Know specs in advance:

 N - # entries to insert
 ε - desired FPR

Construction contract

Insert N elements using -ln(ε)/ln(2) hash functions

Allocate filter with: N · ln(2) · log2(1/ε) bits

Know specs in advance:

 N - # entries to insert
 ε - desired FPR

Construction contract

Allocate filter with: N · ln(2) · log2(1/ε) bits

Guarantee FPR of ε

Know specs in advance:

Insert N elements using -ln(ε)/ln(2) hash functions

Research Question

Can LSM-tree handle exponential data growth?

data size

time

logarithmic scaling

L = O(log N)

logarithmic scaling

L = O(log N) O(2 time)

exponential growth

N ∈

O(time)

linear scaling

Can we do better?

insert I/O

cost

get I/O

cost

O(?)

O(?)

(Costs assuming leveling)

O((T · L)/B)

O(2-M · L)

L = logT N/P

Monkey: Optimal Navigable Key-Value Store SIGMOD17

Bloom
filters

data

Monkey: Optimal Navigable Key-Value Store SIGMOD17

Bloom

filters

data

negative

X true positive

false positive

read(X)

M

M

M

Bloom

filters

data bits/entry

Bloom

filters

data

M

M

M

bits/entry

Bloom

filters

false
positive rate

2-M ·ln(2)

2-M ·ln(2)

2-M ·ln(2)

data

Bloom

filters

false
positive rate

2-M

2-M

2-M

data

Bloom

filters

false

positive rate

O(2-M · logT N/P) I/O =

2-M

2-M

2-M

Bloom

filters

false

positive rate

= O(2-M · logT N/P) I/O

2-M

2-M

2-M

false

positive rate

2-M

2-M

2-M

Bloom

filters

most
memory

false

positive rate

Bloom

filters

saves at most 1 access!
2-M

2-M

2-M

most
memory

M - 1

M + 1

M + 2

reallocate

bits / entry

2-(M - 1)

2-(M + 1)

2-(M + 2)

false

positive rates

false positive rates

relax

0 < p0 < 1

0 < p1 < 1

0 < p2 < 1

read

cost false positive rates

relax model

memory

footprint

L

∑
1

pi

−
L

∑
i

N
TL−i

⋅
ln(pi)
ln(2)2

=

=

0 < p0 < 1

0 < p1 < 1

0 < p2 < 1

in terms of p0, p1 …

model

false positive rates

relax optimize

read

cost

memory

footprint

=

=

L

∑
1

pi

−
L

∑
i

N
TL−i

⋅
ln(pi)
ln(2)2

0 < p0 < 1

0 < p1 < 1

0 < p2 < 1

2-M / T0

2-M / T1

2-M / T2∝
∝
∝

O(2-M) I/O =

geometric
 progression

2-M / T0

2-M / T1

2-M / T2

O(2-M) I/O < O(2-M logT-N/P)

Faster worst case

O(2-M logT-N/P)

O(2-M)

#entries (log scale)

re
ad

 la
te

nc
y

(m
s)

RocksDB

Monkey

buffer 2MB

bits/entry: 5

size ratio: 2

1KB entries

queries to missing keys

hard disk storage

Configuration

Bloom

filters

data get(X)

Positive Query =
Avg. Negative Query =

M · ln(2)
2

Worst-case: Avg. worst-case:

Analyze filter access with Monkey

Bloom

filters

get(X)

Positive Query =
Avg. Negative Query = 2

Worst-case: Avg. worst-case:

hash
functions

O(M)

O(M+1)

O(M+2)

Analyze filter access with Monkey

data

M · ln(2)

Bloom

filters

data get(X)

Positive Query =
Avg. Negative Query = 2

Analyze filter access with Monkey

Worst-case: Avg. worst-case:

hash

functions

O(M)

O(M+1)

O(M+2)

true positive

false positive

false positive

M · ln(2)

Bloom

filters

data get(X)

Positive Query =
Avg. Negative Query = 2

Analyze filter access with Monkey

Worst-case: Avg. worst-case:

hash

functions

O(M)

O(M+1)

O(M+2)

true positive

false positive

false positive

O(M·L+L2)

M · ln(2)

Bloom

filters

data get(X)

Positive Query =
Avg. Negative Query = 2

Analyze filter access with Monkey

Worst-case: Avg. worst-case:

hash

functions

O(M)

O(M+1)

O(M+2)

true positive

O(M·L+L2)

negative

negative

M · ln(2)

Bloom

filters

data get(X)

Positive Query =
Avg. Negative Query = 2

Analyze filter access with Monkey

Worst-case: Avg. worst-case:

hash

functions

O(M)

O(M+1)

O(M+2)

M · ln(2)

O(M·L+L2)

2

2

O(M+L)

M · ln(2)

O(?)

O(2-M)

O((T · L)/B)

2x O(?)

O(2-M · L)

(Costs assuming leveling)

insert I/O

cost

get I/O

cost

transient

space-amp

L = logT N/P

Dostoevsky
SIGMOD18

Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store

reads & writes cost breakdown

exponentially
decreasing

2-M

2-M/T

2-M/T2

false positive rates

reads

false positive rates

 largest levelreads 2-M

2-M/T

2-M/T2

O(2-M)

reads writes

merge 1

writes

Tmerge

writes

O((T ·L)/B)O(T/B)

O(T/B)

O(T/B)

writes

O(2-M) O((T ·L)/B)

2-M

2-M/T

2-M/T2

=

+

+

=

+

+

O(T/B)

O(T/B)

O(T/B)

writesreads

O(T/B)

O(T/B)

O(T/B)

largest level all levels
writesreads

2-M

excessive

writesreads

O(T/B)

O(T/B)

O(T/B)2-M

make lazy

writesreads

O(T/B)

O(T/B)

O(T/B)2-M

Dostoevsky

greedy

lazy

merge when

level fills up

Dostoevsky

merge when

new run comes in

Dostoevsky

reads writes

false positive rates

2-M

2-M/T2

2-M/T3

reads writes

O(2-M)
reads writes

O(1/B)

O(1/B)

O(T/B)

O(2-M)
writesreads

O((T + L)/B)

O(2-M)
writesreads

O(1/B)

O(1/B)

O(T/B)

O((T + L)/B)O(2-M)
writesreads

O((T + L)/B)O(2-M)
writesreads

What would our read cost have been if we
employed uniform FPRs at all levels?

2-M

2-M

2-M

O(2-M · T · L)

uniform

What would our read cost have been if we
employed uniform FPRs at all levels?

reads

14

0av
g.

 w
rit

e
la

te
nc

y
(u

s)

data size

1 GB 64 GB

buffer 2MB

size ratio: 5

1KB entries

SSD storage

Configuration

O((T+L)/B)

O((T · L)/B)

Dostoevsky

RocksDB

14

0

w
rit

e
la

te
nc

y

data size
1 GB 64 GB

O((T+L)/B)

O((T · L)/B)

Dostoevsky

RocksDB O(e-M · L)

O(e-M)

re
ad

 la
te

nc
y

data size
1 GB 64 GB

0

120

O(2-M)

O((T+L)/B)insert I/O

cost

get I/O

cost

O((T · L)/B)

O(2-M · L)

(Costs assuming leveling)
L = logT N/P

Better scalability with data growth

log

sorted

array

Reads

Writes

Reads

Writes

Reads

Writes

optimal

Reads

Writes

Reads

Writes

Memory

Reads

WritesMemory

Range Scans

Reads

WritesMemory

ScansStorage
Space

WritesMemory

ScansStorage

Reads

Amorphous
data structures

Thanks

