Research Lecture: LSM-trees & Filters

Niv Dayan

Projects

S

Feedback week
next week - will
announce when.

56 groups - 157 [169 students
mostly of threes registered

Midterm

¥

Oct 14 in class Open book

C

Recap on LSM

Today

©

Y

Bloom Filters

s,
\86/

\/fA

Research
Lecture

Many DB operations are: data

m

Many DB operations are: selective data

m

Many DB operations are: selective data
small data items

m

Many DB operations are: selective data
small data items
random keys

m

data

data

random writes to small entries: a bad idea

random writes to small entries: a bad idea

0

mechanical
latency

random writes to small entries: a bad idea

mechanical 4KB access
latency

random writes to small entries: a bad idea

mechanical AKB access
latency garbage-collection

The Log-Structured Merge-Tree
1996 - Patrick O'Nell

LSM-Tree

Google's BigTable
Amazon's DynamoDB
Facebook's RocksDB

Apache Cassandra

merge-sort

Inserts/updates/deletes

of key-value pairs #
v

o B

sort & flush }

sort-merge

o B

exponentially increasing capacities

\

newest to <
oldest '

.---------- -;-------------------

If tombstone is found,
report key doesn’t exist

|i

levels L = logr(N/P) <

levels L = logr(N/P) <

L

data size

levels L = logr(N/P) <

T

size ratio

p

o—e

levels L = logr{N/P) <

L

buffer size

.,%

w
r
it
e
S
m
e
g
ep
o
li
C
y
r
e
a
d
S

U

writes "\ merge policy \l/ reads

74

@ Tiering

two merge policies

Leveling

\i

—————————————————

’___\

’___\

—————————————————

| gather | |

—————————————————

74 Tiering Leveling

—————————————————

74 Tiering Leveling

—————————————————

—————————————————

74 Tiering Leveling

—————————————————

—< Sizeratio T

EJ

@ Tiering Leveling

7
7 I 4 Un
“N pey leve, Oer s Ve,

e

sizeratio T =2

=74 Tiering Leveling \i

/
I 7rng ® ooy
e
000 °- G
GEDGEDEGED G

Ve /

—< Sizeratio T

@ Tiering Leveling EJ
O(N/P) runs per level 1 run per level
sorted
log
array

size ratio T = N/P

%

sorted
array

= -

B-tree
internal nodes

— - /b Sk,b I'uns
- /—

Bloom
%ilters

) 4

Why use a Filter?

Data

Does key X exist
> 4

e’
D
o
Xees ke
xisty

D

M
emory
Data

If key X exists

. Does key
- X exist

D

Memory Data

If key X does not exist

Does key

Memor Data
X exist 4

If key X does not exist

Does key

Memor
X exist 4

positive Is
possible

f key X does not exist

Does key

Memor
X exist 4

True
negative positive
with prob 1-¢ with prob ¢

f key X does not exist

Does key
X exist

Memory

€ - false positive rate - FPR

Bloom Filters

Bloom Fllters

Space/time Trade-Offs in Hash Coding with Allowable Errors
Burton Howard Bloom. Communications of the ACM, 1970.

k hash functions

0000000000

insert: Set from 0 to 1 or keep 1

inert(X)

0000100010

insert: Set from 0 to 1 or keep 1

insert(Y)

’ \ ,’!l“d '\“g,; 14 ‘
\‘ “’ - 5‘

Queries: return positive if all hashed bits are 1s

0010100010

Queries: return positive if all hashed bits are 1s

True
ChCKX) lf) positive

'

Queries: return positive if all hashed bits are 1s

True
negative

0010100010

Queries: return positive if all hashed bits are 1s

False
CCK(Q) lﬁ Positive

1010100010

Bloom read(X)
filters

negative Y

4 f *, A .::;. t I

) 4

data

more memory — fewer false positives

Bloom read(X)

cata filters

negative

negative

How many hash functions should we use?

0000000000

How many hash functions should we use”

One is too few: false positive
occurs whenever we hita 1

0100000000

How many hash functions should we use”

No N3 One is too few: false positive
occurs whenever we hit a 1

0100100100 By adding hash functions, we
initially decrease the false
positive rate (FPR).

How many hash functions should we use”

N1 .)% One is too few: false positive
C ottt ottt occurs whenever we hit a 1

1 1 1 1 1 1 1 By adding hash functions, we
initially decrease the false
positive rate (FPR).

But too many hash functions
wind up increasing the FPR.

How many hash functions should we use”

-
<

Minimum

l

false positive rate

© O O
-
S

-
N

-

0 5 10 15 20
hash functions

(Drawn for a filter using 10 bits per entry)

How many hash functions should we use”

0.1
+ 0.08
2 006 Minimum
k%
a 0.04
&
© 0.02

0

0 5 10 15 20

hash functions

Optimal # hash functions =In(2) - U

(M is the number of bits per entry)

assuming the optimal # hash functions,

. _M-In(2)
false positive rate = 2

N 1

o 0 5 10 15
PELL

S o0.01

8

o 0.001

~ 0.0001

bits per entry (M)

Operation Costs (in memory accesses)

Insertion =
Positive Query =

Avg. Negative Query =

Operation Costs (in memory accesses)

Insertion = M - In(2) (# hash functions)
Positive Query =

Avg. Negative Query =

Operation Costs (in memory accesses)

Insertion = M - In(2)

Positive Query = M- In(2) (# hash functions)

Avg. Negative Query =

Operation Costs (in memory accesses)

Insertion = M - In(2)
Positive Query = M - In(2)

Avg. Negative Query =

(fraction of ones In filter is 0.5 with
optimal number of hash functions)

Operation Costs (in memory accesses)

Insertion = M - In(2)
Positive Query = M - In(2)

Avg. Negative Query= 1 +1/2(1+1/2-(...))

(fraction of ones In filter is 0.5 with
optimal number of hash functions)

Operation Costs (in memory accesses)

Insertion = M - In(2)
Positive Query = M - In(2)

Avg. Negative Query= 1 +1/2+1/4+ ... = 2

(fraction of ones In filter is 0.5 with
optimal number of hash functions)

Operation Costs (in memory accesses)

Insertion = M- In(2)
Positive Query = M- In(2)
Avg. Negative Query = 2

false positive rate = 2~ M)

Let’s analyze overall filter access Positive Query = M - In(2)

cost for basic LSM-tree Avg. Negative Query = 2

data Bloom get(X)

filters

Worst-case: Avg. worst-case:

Let’s analyze overall filter access Positive Query = M - In(2)

cost for basic LSM-tree Avg. Negative Query = 2

data Bloom get(X)

filters

& iil.‘,:--s ' (M :

Worst-case: O(M-L) AvQg. worst-case:

Let’s analyze overall filter access Positive Query = M - In(2)

cost for basic LSM-tree Avg. Negative Query = 2

data Bloom get(X)
filters
P negative
&
e negative

Worst-case: O(M-L) Avg. worst-case:

Let’s analyze overall filter access Positive Query = M - In(2)

cost for basic LSM-tree Avg. Negative Query = 2

data Bloom get(X)

filters

Worst-case: O(M-L) Avg. worst-case:

Let’s analyze overall filter access Positive Query = M - In(2)

cost for basic LSM-tree Avg. Negative Query = 2

Bloom get(X)

Gata filters

Worst-case: O(M-L) Avg. worst-case: O(M+L)

Construction contract

Construction contract

Know specs In advance:

N - # entries to Iinsert
e - desired FPR

Construction contract

KNOW Specs In advance:

N - # entries to Insert
e - desired FPR

Allocate filter with: N - In(2) - logz2(1/€) bits

M

Construction contract

KNOW Specs In advance:

N - # entries to Insert
e - desired FPR

Allocate filter with: N - In(2) - logzo(1/€) bits &

Insert N elements using -In(€)/In(2) hash functions

Construction contract

KNOW Specs In advance:

N - # entries to Insert
e - desired FPR

Allocate filter with: N - In(2) - log2(1/€) bits

Insert N elements using -In(e)/IN(2) hash functions

Guarantee FPR of ¢

Research Question

Can LSM-tree handle exponential data growth?

e

data size }

time

logarithmic scaling

L = O(log N)

logarithmic scaling exponential growth

L = O(log N) N € Q(2 time)

linear scaling

O(time)

® B

Can we do better?

get /O

~ost O(2M- L) O(?)
insert 1/0O
~ost O(T- L)B) O(7?7)

= logr NIP

(Costs assuming leveling)

Monkey: Optimal Navigable Key-Value Store SIGMOD17

Monkey: Optimal Navigable Key-Value Store SIGMOD17

Bloom
filters

) 4
) 4

@
G
G Y

data

Bloom read(X)
filters

negative Y

4 f *, A .::;. t I

) 4

data

data

Bloom
filters

) 4
) 4
) 4

bits/entry
M
M

M

data

Bloom
filters

Y
) 4

) 4

bits/entry
M

M

data

Bloom
filters

Y
) 4

) 4

false
positive rate

2-M -In(2)
2-M1 -In(2)

2-M-In(2)

data

Bloom
filters

Y
) 4

) 4

false
positive rate

2-M
2-M

2-1

Bl\oom
filters

fals

ralse

positive rat
e

2-M
D-M

2D-M

.

O(2
M. logr N/P)

B.\oom
filters

fals

ralse

positive rat
e

2-M
D-M

2D-M

.

O(2
M. logr N/P)

,I

mmost
emory

Bl\oom
filters

fals

ralse

positive rat
e

DM
DM

D-M

Bloom false
filters positive rate

-M
D-M

memory saves at most 1 access!

bits / entry

Y M + 2
Y M + 1 reallocate
M -1

) 4

false
positive rates

D(M+2)

Y
) 4

Y OM-1) 4

OM+1)

relax

false positive rates

UASIab

@ Harvard SEAS

D e L L T T

relax

false positive rates

0 < po <1
0O < pr <1

0O < p2 <1

URSIlab

N Hanard QEAQ
o4 Alvdild OO

read
CcOSt

memory
footprint

L

3

l

N In(p))

TL—i In(2)2

relax modael optimize

" read
— P;
false positive rates ot 21:
0O < po <1
O < pr< memory _ZL: N In(p) |
footprint — 4T In(2) n terms of Po, P1 ..
O < IOZ <7 I

w2 geometric
progression

oM/ T > = O(2M)

2M/ 10

Faster worst case

O(2-M < O(2Mlogr N/P)

Configuration
bufter 2MB

bits/entry: 5
size ratio: 2

1KB entries
gueries to missing keys
hard disk storage

read latency (ms)

p—
S

S =N W ok Ot OO N oo OO

L O(2Mlogr N/P)

i

‘entries (log scale)

Analyze filter access with Monkey Positive Query = M- In(2)
Avg. Negative Query = 2

data Bloom get(X)

filters

Worst-case: Avg. worst-case:

Analyze filter access with Monkey Positive Query = M- In(2)

Avg. Negative Query = 2

data # hash Bloom get(X)
functions filters
O(M+2)
O(M+1)
O(M)

Worst-case: Avg. worst-case:

Analyze filter access with Monkey Positive Query = M- In(2)

Avg. Negative Query = 2

data # hash Bloom get(X)

functions filters
gasepasitive oy, 0

false posit O(M+1)

7
N _ =
S +
N
N

% ,; . -

O(M)

Worst-case: AvQg. worst-case:

Analyze filter access with Monkey Positive Query = M- In(2)

Avg. Negative Query = 2

data # hash Bloom get(X)

functions filters

glalsepositve g (M+2)

7
" ac R -~
A - - - , -
S +
N
N

” t r u e
<4 ’f//___ St it . e — -
\ AP Do = a2 e T L
A A
N
NS

O(M+1)

O(Mm)

Worst-case: O(M-L+L2) Avg. worst-case:

Analyze filter access with Monkey Positive Query = M- In(2)

Avg. Negative Query = 2

data # hash Bloom get(X)

functions filters
hegative O(M+2)

negative O(M+1)
O(M)

% ,; . -

Worst-case: O(M-L+L2) Avg. worst-case:

Analyze filter access with Monkey Positive Query = M- In(2)

Avg. Negative Query = 2

da’[a H haSh B.‘OOm get(X)
functions filters |
2 O(M+2)
2 O(M+1)

O(M)

Worst-case: O(M-L+L?2) Avg. worst-case: O(M+L)

get 1/O

-M . -M
~ost o2M- L) O(2-M)
insert 1/O | 5
o 0T L)B) 0(?)
fransient
2X O(7)
space-amp

= logr NIP

(Costs assuming leveling)

@

Dostoevsky
SIGMOD18

Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store

reads & writes cost breakdown

reads

false positive rates

2-V/ T2

exponentially

decreasing 2T

_
-

false positive rates
2| T2 ®
27 QD

reads writes
O(2-M)

Wwrites

merge 1

Wwrites

Wwrites

~ O((T-LyB)

writes

O((T-L)/B)

O(7/B)

|

- O(T/B)

|

o oo

reads writes
largest level all levels

< O(1/B)
< O(7/B)
oM ~ O(I/B)

reads writes

~ O(T/B |
excessive

~ O(7/B) £

o
-
- @ - o

reads writes

@

® - 0B) o
make lazy

O e/

v~) = O(T/B)

Dostoevsky

lazy

Dostoevsky

'" merge when

... level fills up
g

Dostoevsky

QU - Mmerge when

new run comes in

reads writes

reads writes

false positive rates

DM/ T3 1]
S 11

reads writes
O(2-M)

reads writes
O(2-M)

||| O(1/B)
O(1/B)

O(7/B)

reads writes
O(2-M)

| O(1/B)
O(1/B) > O((T + LY/B)

G os

reads writes
O(2-M) O((T + L)/B)

What would our read cost have been if we
employed uniform FPRs at all levels?

reads Writes
O(2-M) O(T + L)/B)

What would our read cost have been if we
employed uniform FPRs at all levels?

uniform

.
reads 2V

o@M-T-L) < oM

D-M

-

Configuration

buffer 2MB
size ratio: 5

1KB entries

SSD storage

avg. write latency (us)

—
I~

-

()

data size

64 G

write latency

1G

data size

64 G

120

N

O

GC) -~ —— o “_,.A—-/‘\"_/'” O(e'M)
S Dostoevsky

=

q»

D

0
1 GB 64 GB
data size

get I/O

O(2M- L) — O(2-M)
cost
insert /O
~ost ((T-L)/B) — O((T+L)/B)

= logr NIP

(Costs assuming leveling)

Better scalability with data growth

Reads

~ sorted
. array

"Q

Writes

/

Reads E

i_J

Writes

Reads

A
A N
N
X
s~ N
)
&
k.
]
$
&
\
\ .

Reads

\. 9 N
it 8 g
> h \
s -
" Ry
Y
N
| . PR N
Y T e
N
:))
. k- K
8 .)
. e
N] 8
3 .
- N N
A" N <Y
o N &
O .))
ARX |
= d 3 = i
e "
sy - A
: 3
N
3 - R,
- N
3 9 Y
N X
S . -~
i .‘\ x . ¥
o A
N)
- -
T

Reads

Reads Range Scans

Memory Writes

Reads

Storage

Space Scans

Memory Writes

Reads

T

* Amorphous
data structures

v v

Storage » Y Scans

Memory Writes

Thanks

¥3DASIab PLIOPSP

