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The Log-Structured Merge-Tree
1996 - Patrick O'Nell




LSM-Tree

Google's BigTable
Amazon's DynamoDB
Facebook's RocksDB

Apache Cassandra
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Why use a Filter?
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Bloom Fllters

Space/time Trade-Offs in Hash Coding with Allowable Errors
Burton Howard Bloom. Communications of the ACM, 1970.
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How many hash functions should we use”

N1 . )% One is too few: false positive
C ottt ottt occurs whenever we hit a 1

1 1 1 1 1 1 1 By adding hash functions, we
initially decrease the false
positive rate (FPR).

But too many hash functions
wind up increasing the FPR.
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Operation Costs (in memory accesses)

Insertion = M - In(2)
Positive Query = M - In(2)

Avg. Negative Query= 1 +1/2+1/4+ ... = 2

(fraction of ones In filter is 0.5 with
optimal number of hash functions)



Operation Costs (in memory accesses)

Insertion = M- In(2)
Positive Query = M- In(2)
Avg. Negative Query = 2

false positive rate = 2~ M)
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Let’s analyze overall filter access Positive Query = M - In(2)

cost for basic LSM-tree Avg. Negative Query = 2

Bloom get(X)
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Worst-case: O(M-L) Avg. worst-case: O(M+L)
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Construction contract

KNOW Specs In advance:

N - # entries to Insert
e - desired FPR

Allocate filter with: N - In(2) - log2(1/€) bits

Insert N elements using -In(e)/IN(2) hash functions

Guarantee FPR of ¢
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Can LSM-tree handle exponential data growth?
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logarithmic scaling

L = O(log N )




logarithmic scaling exponential growth

L = O(log N ) N € Q( 2 time)




linear scaling

O( time )
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Can we do better?
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Faster worst case

O(2-M < O(2Mlogr N/P)




Configuration
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bits/entry: 5
size ratio: 2

1KB entries
gueries to missing keys
hard disk storage
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Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store
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What would our read cost have been if we
employed uniform FPRs at all levels?
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