Research Lecture: LSM-trees & Filters

Niv Dayan

Projects

56 groups - mostly of threes

157 / 169 students registered

Feedback week next week - will announce when.

Midterm

Oct 14 in class

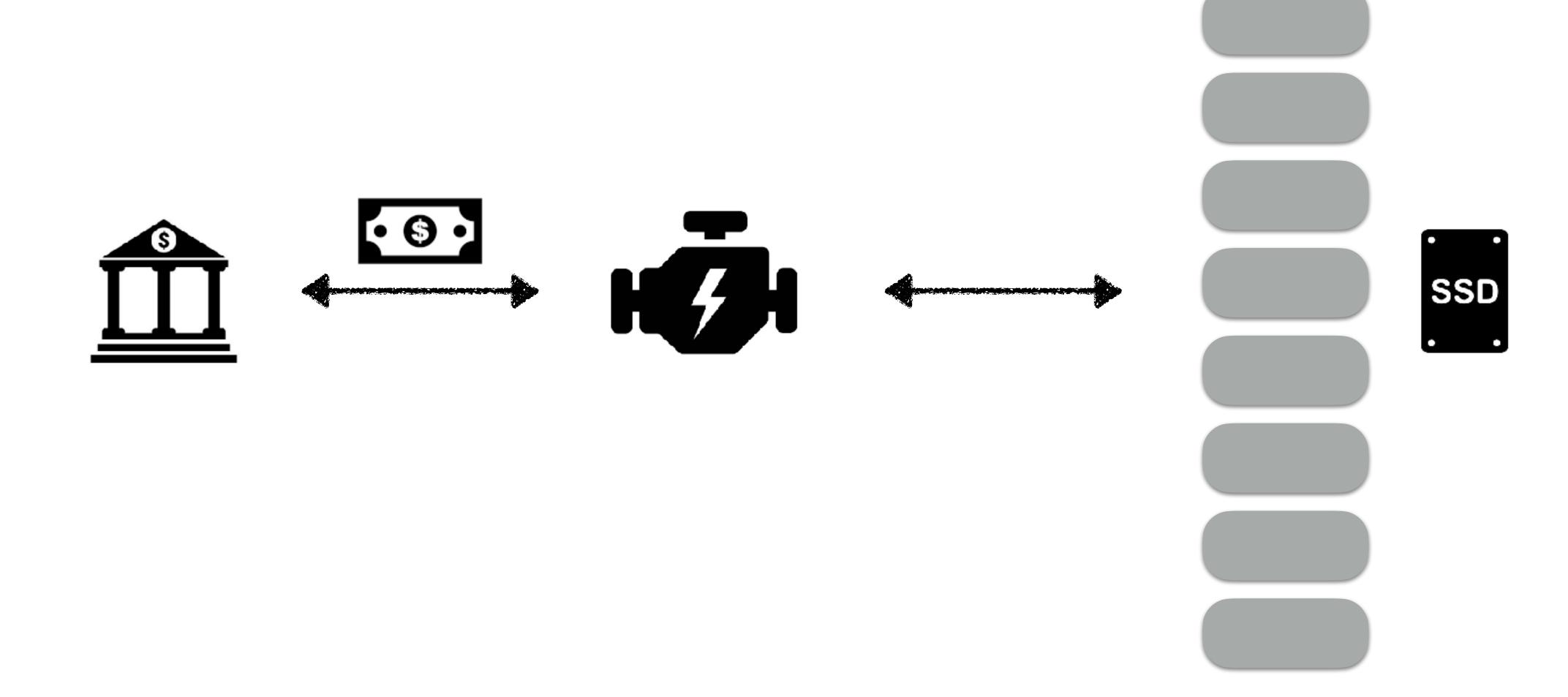
Open book

Today

Recap on LSM

Bloom Filters

Research Lecture Many DB operations are:

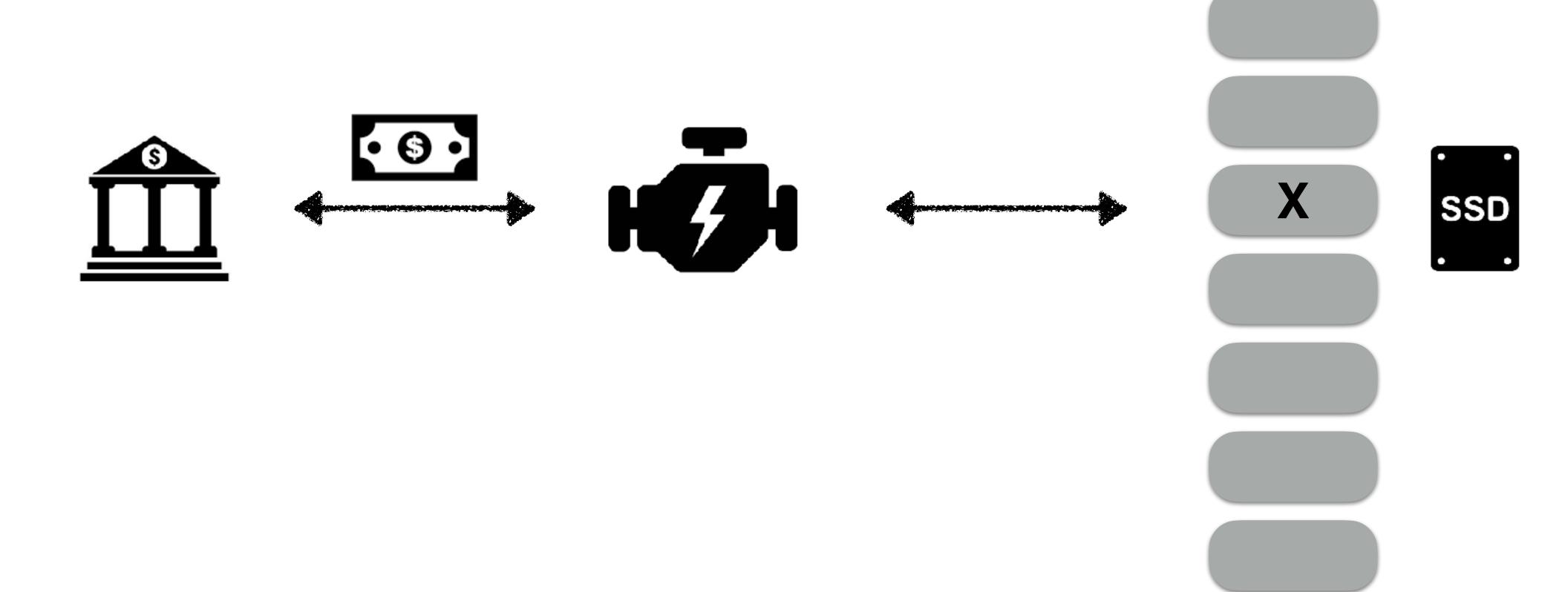


Many DB operations are: selective

SSD

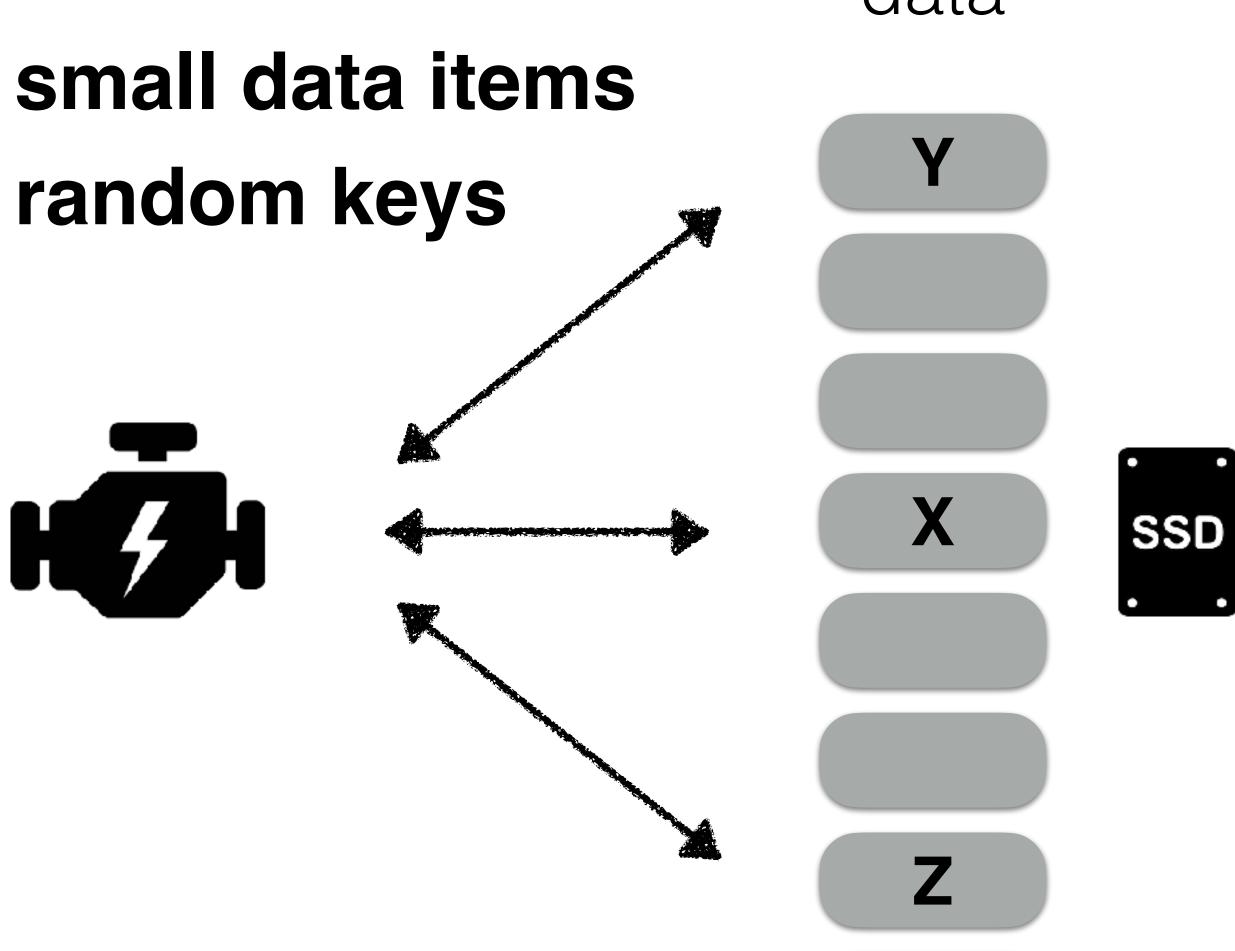
Many DB operations are: selective

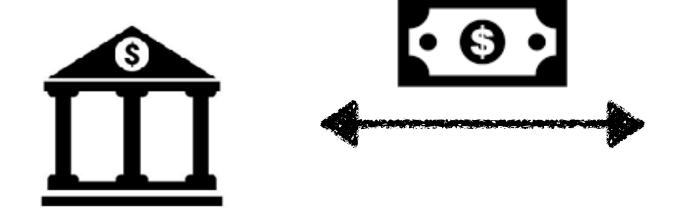
selective small data items

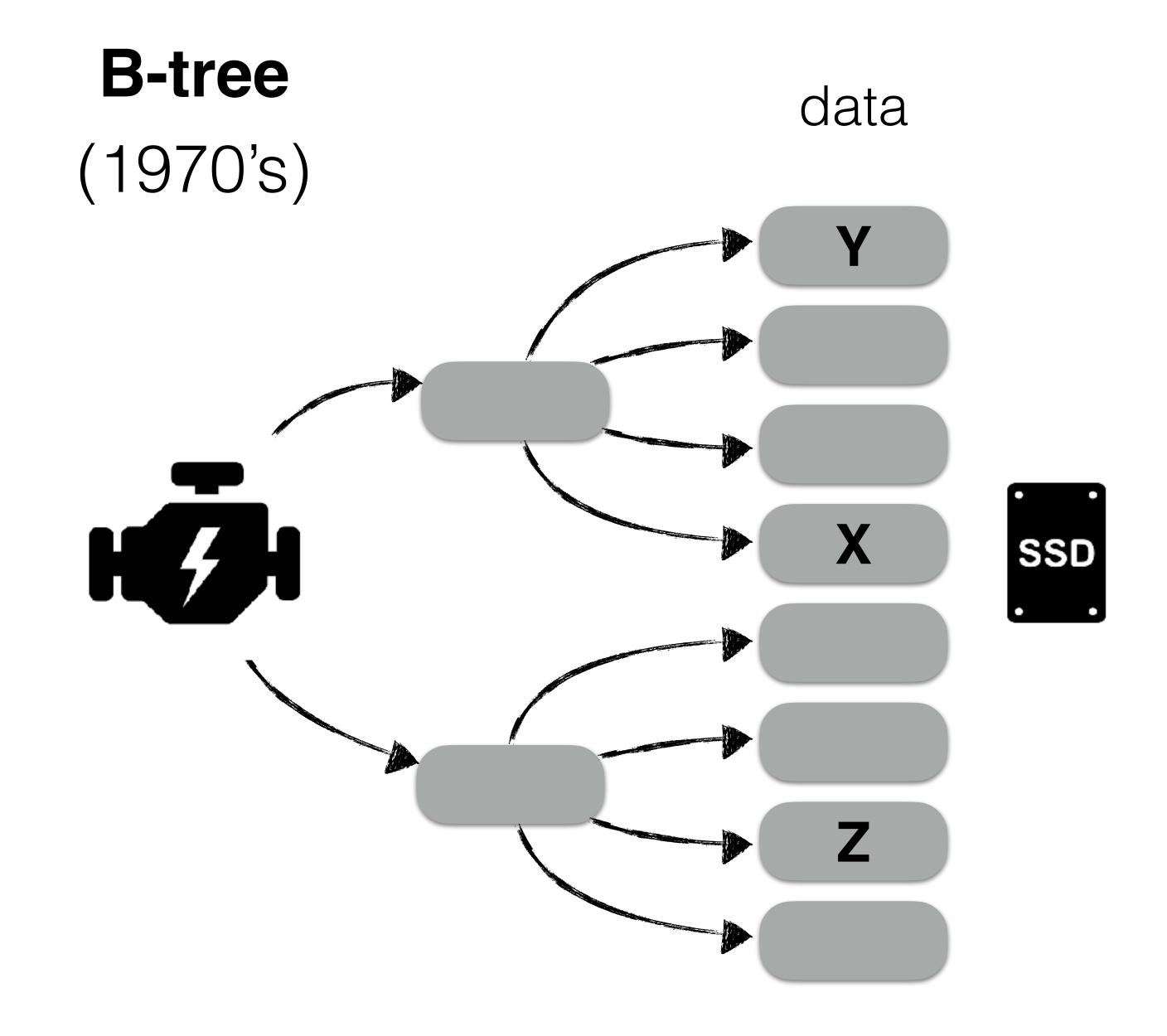


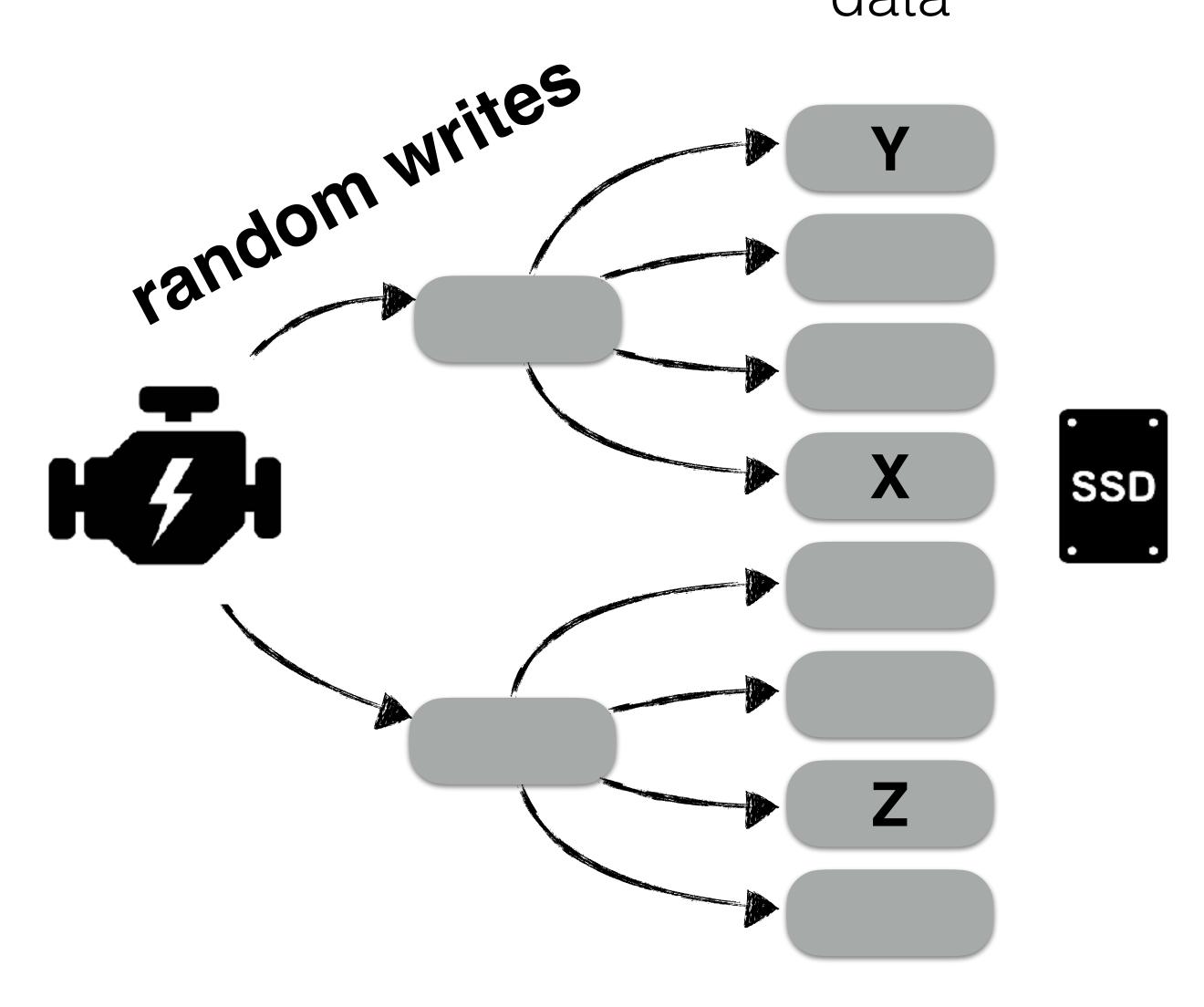
Many DB operations are:

selective data









SSD

mechanical latency

mechanical latency

4KB access

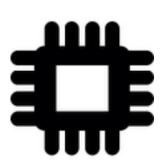
mechanical latency

4KB access garbage-collection

The Log-Structured Merge-Tree

1996 - Patrick O'Neil

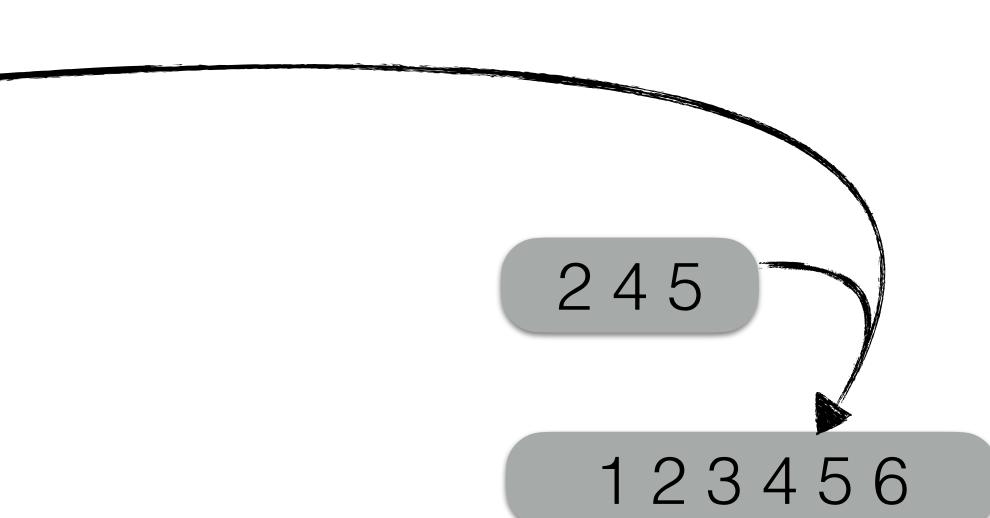
LSM-Tree



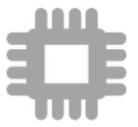
buffer

1 3 6

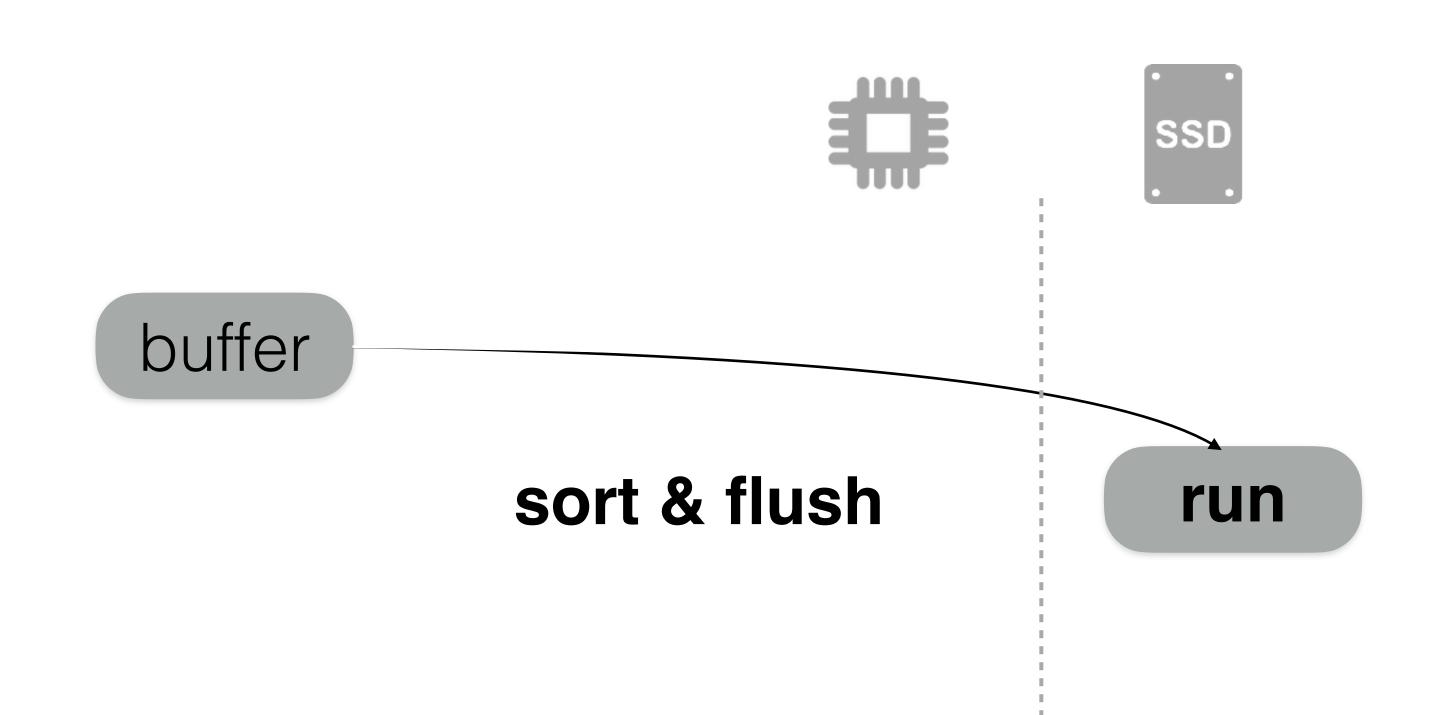
merge-sort

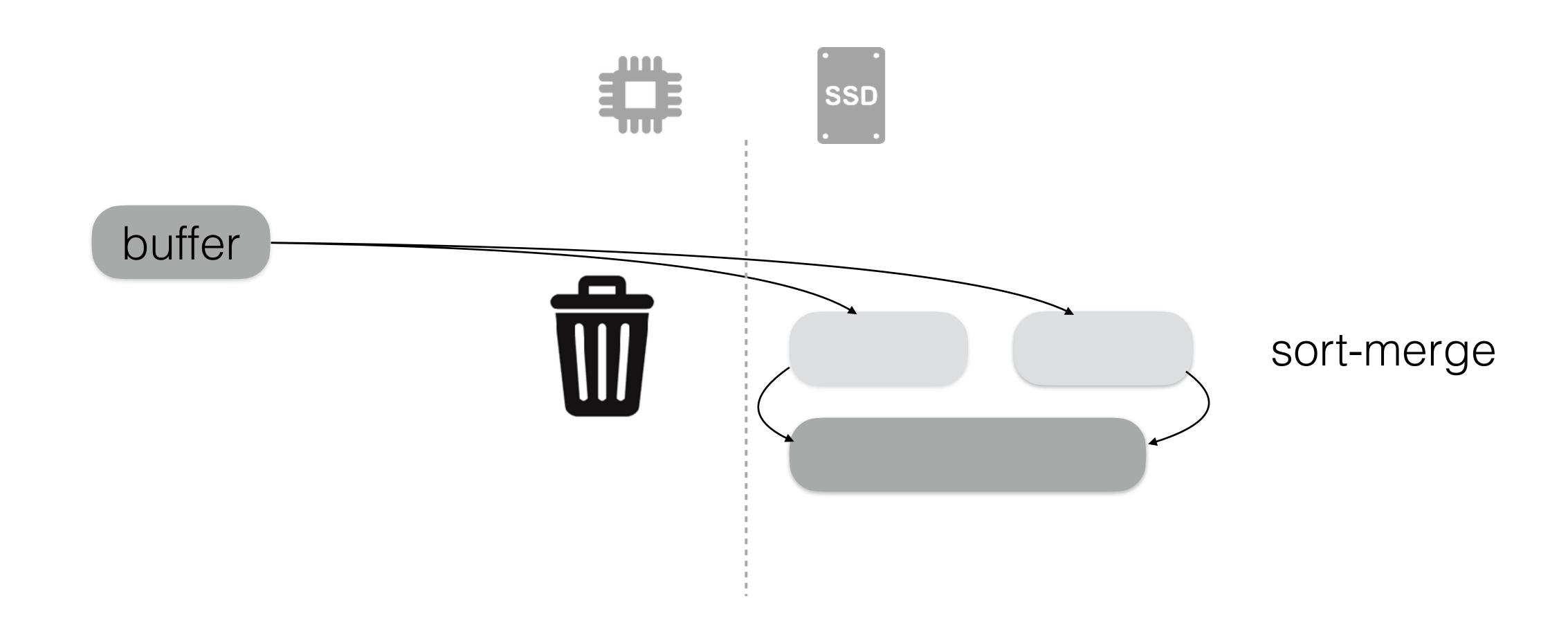


Inserts/updates/deletes of key-value pairs



buffer





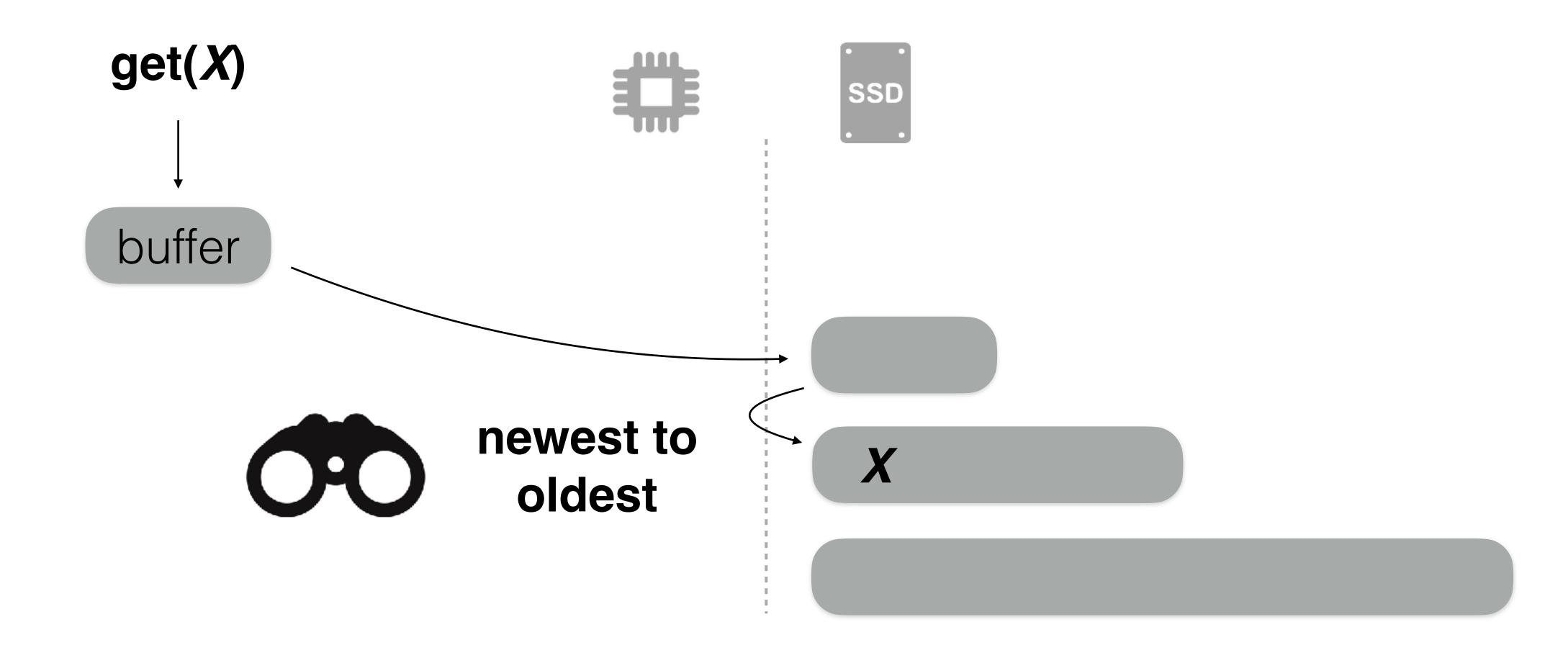
buffer

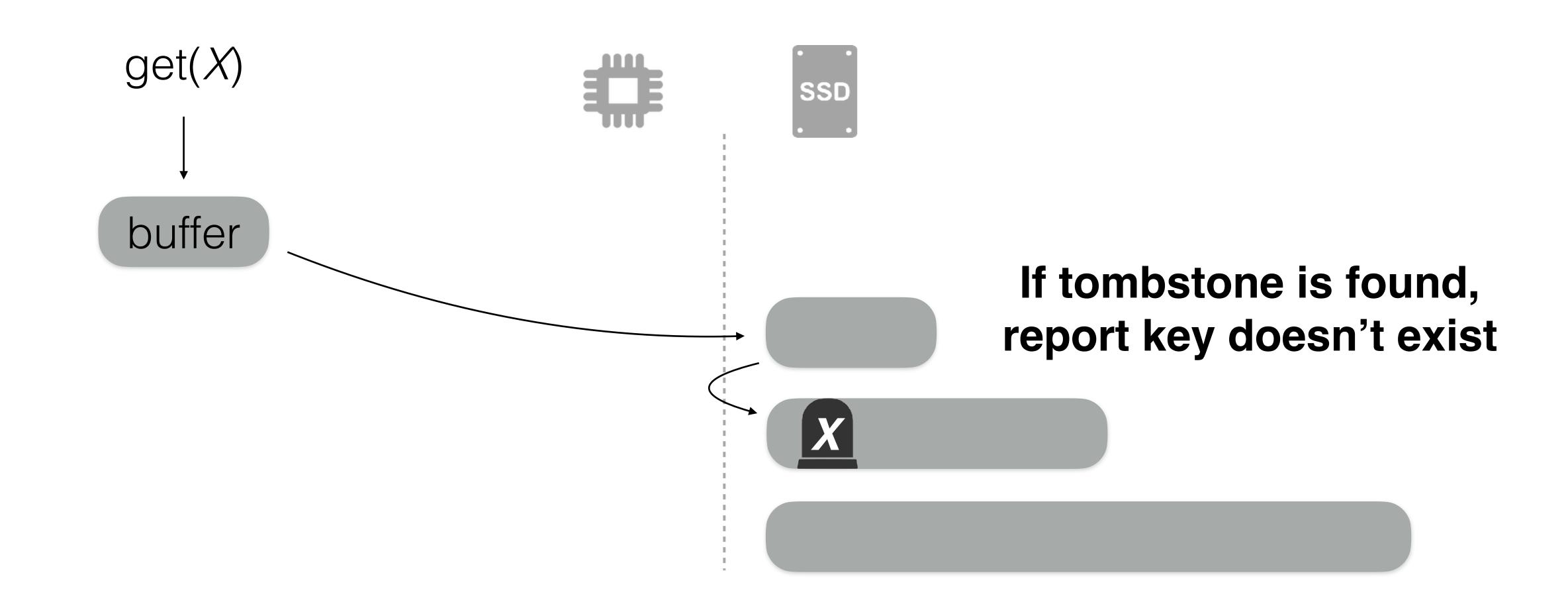
exponentially increasing capacities

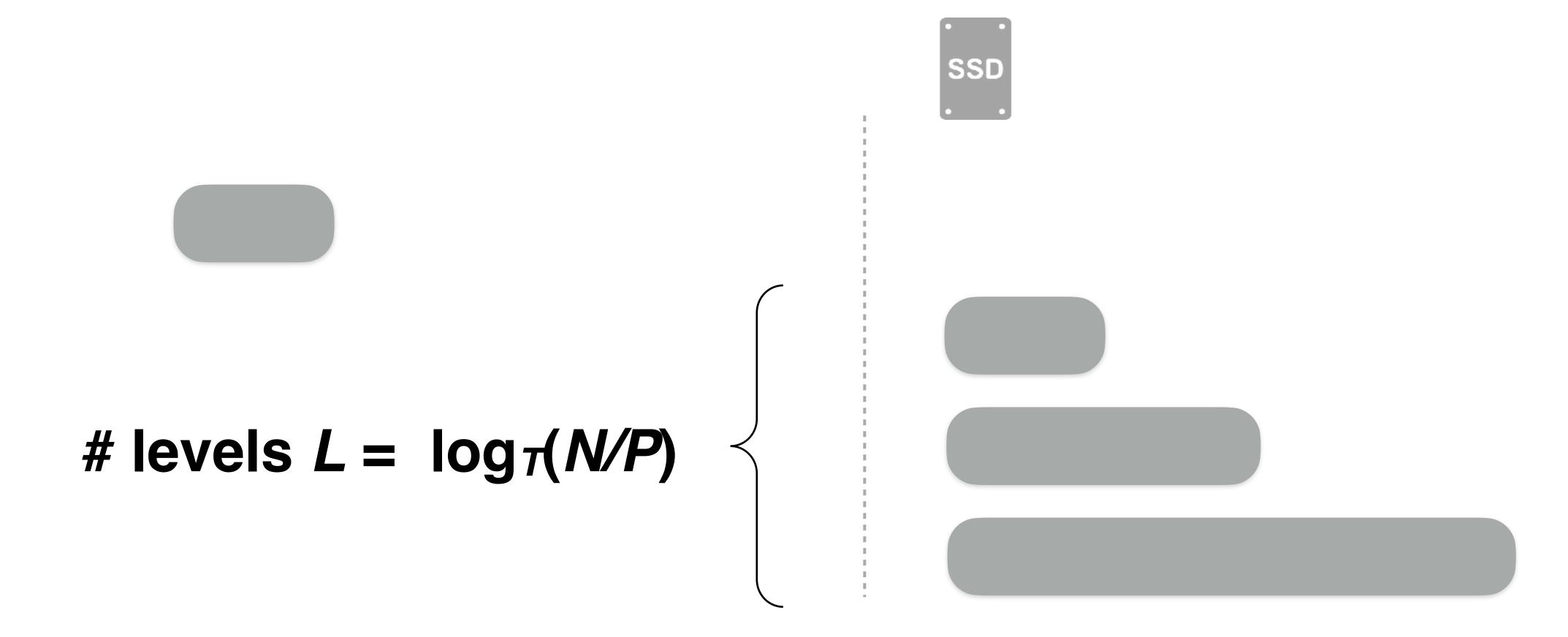
level 1

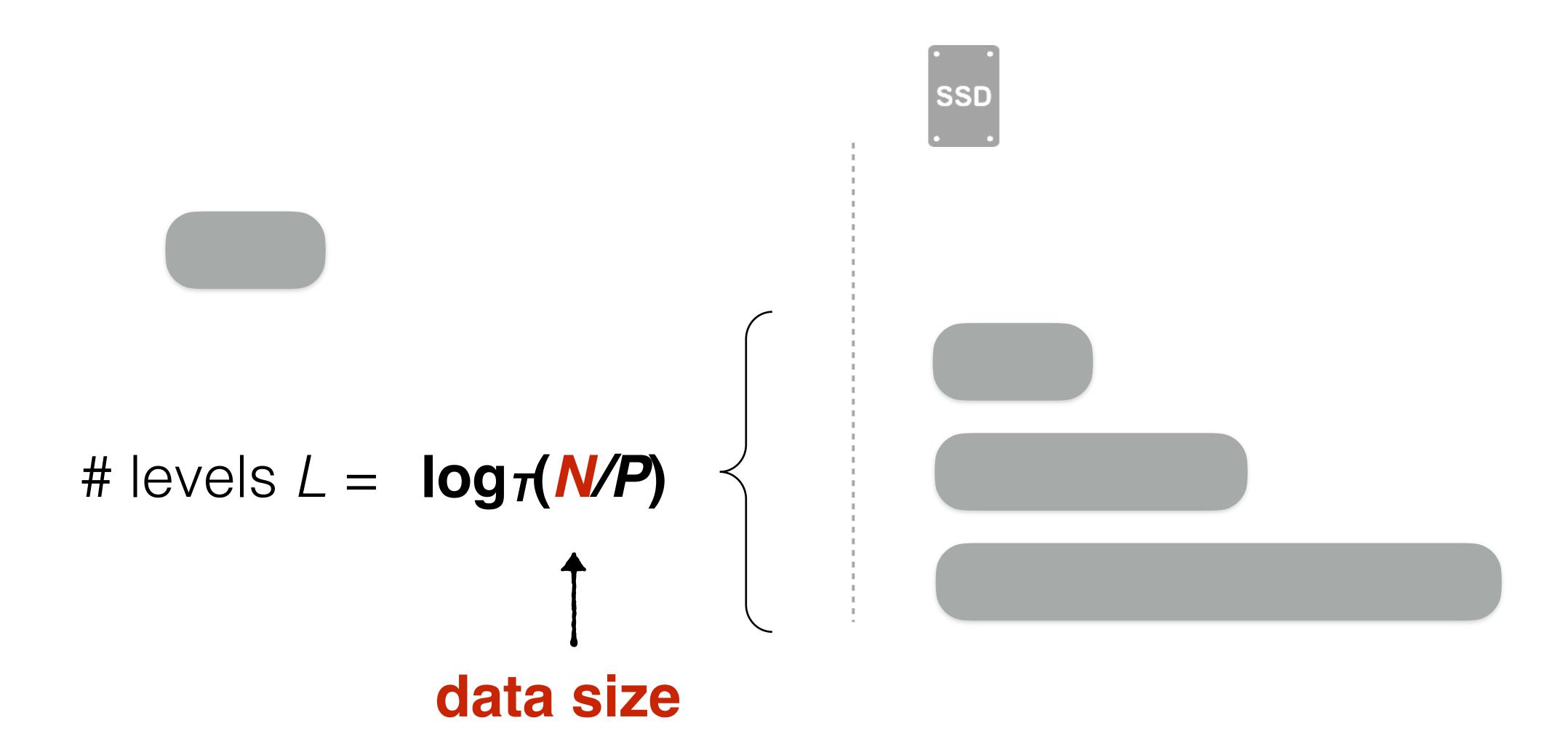
level 2 -

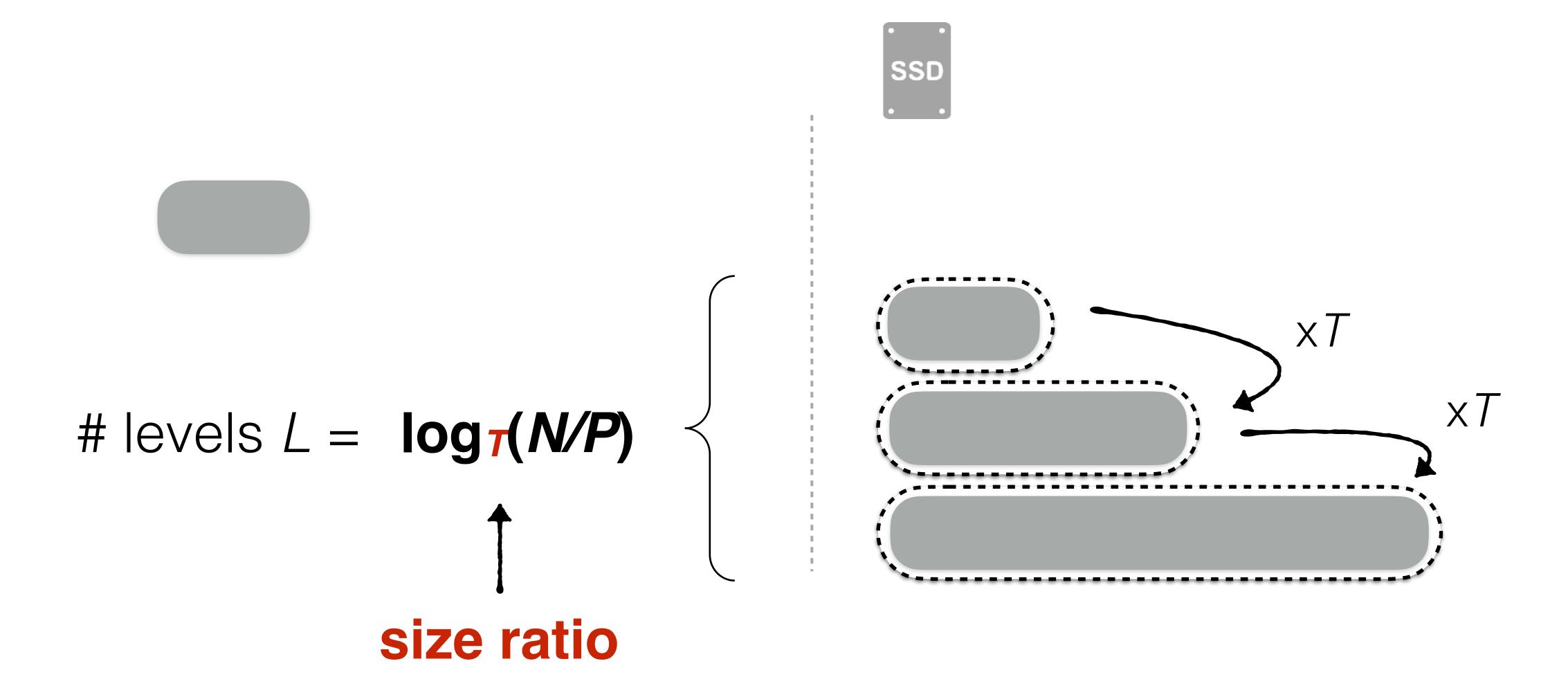
level 3 →

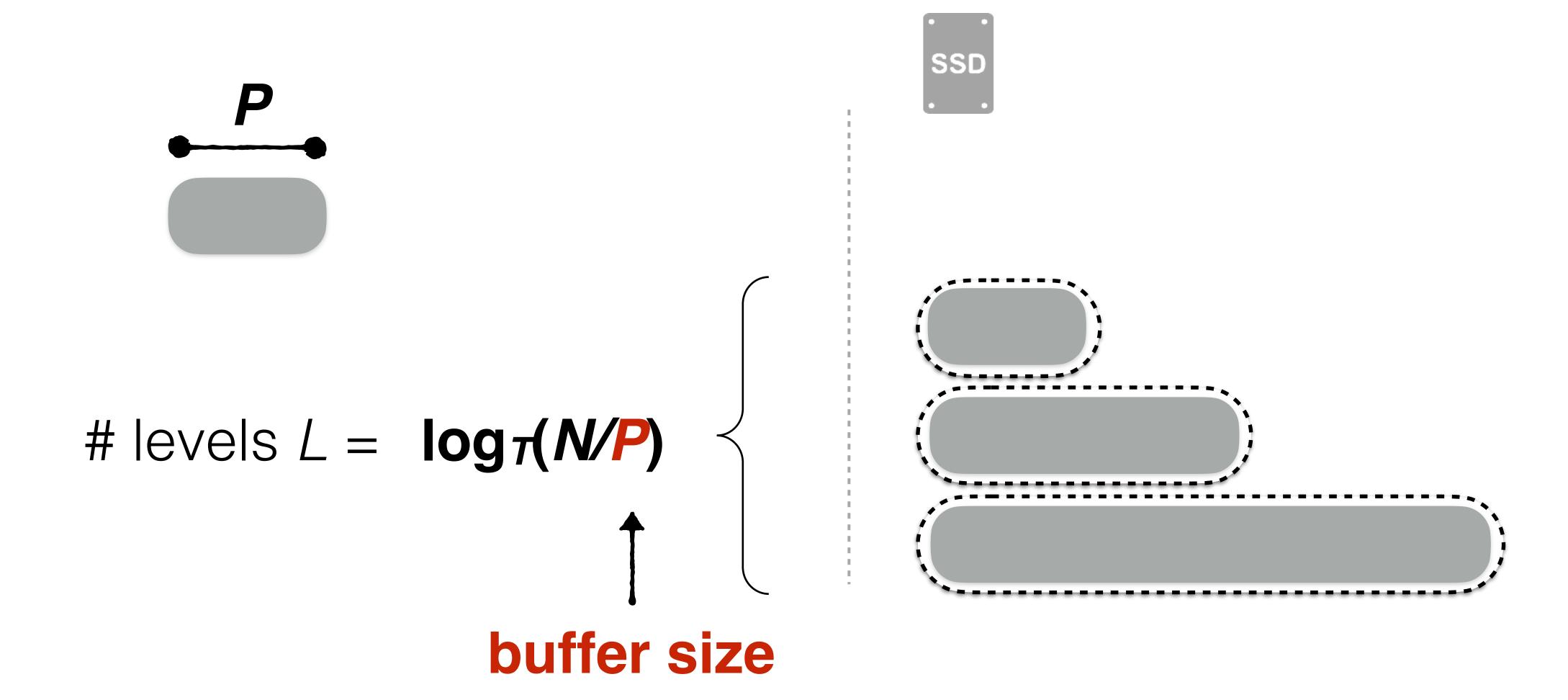


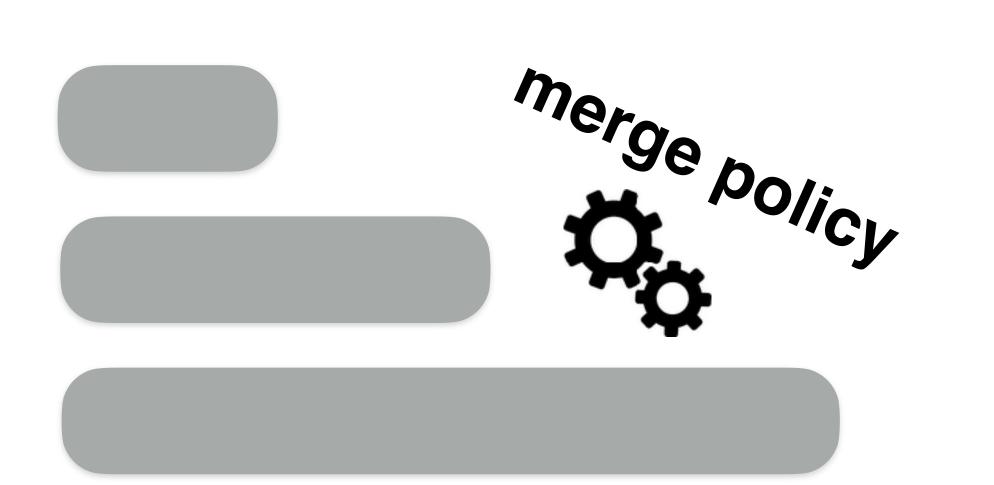






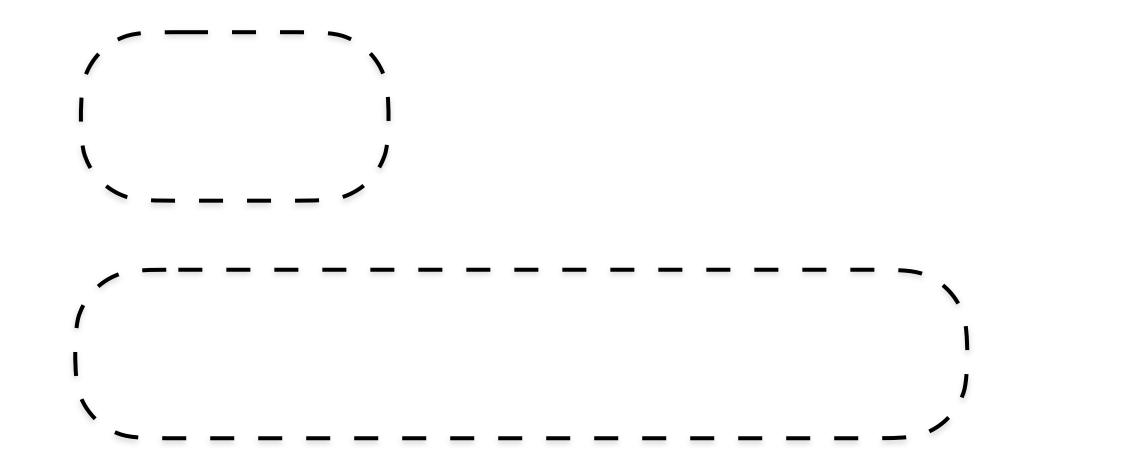


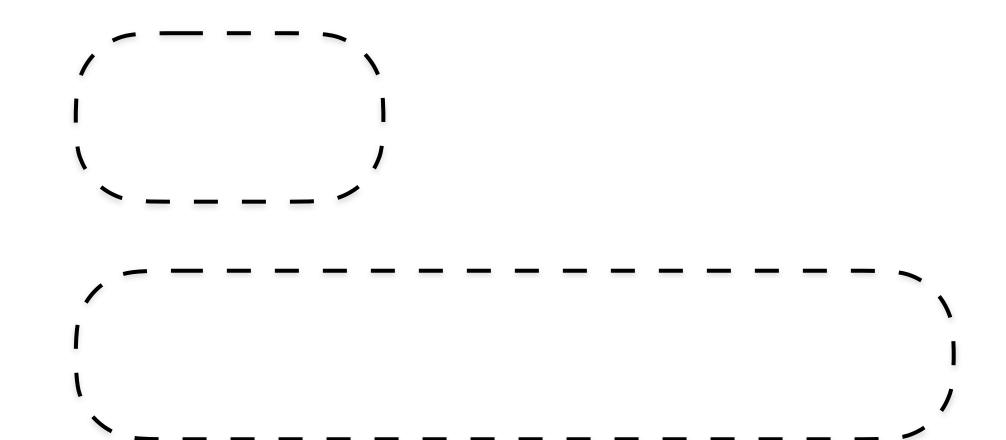


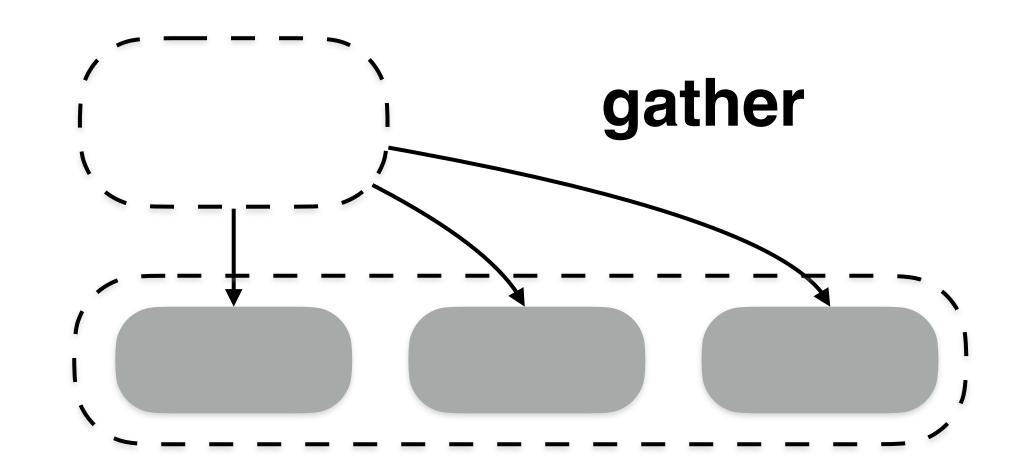


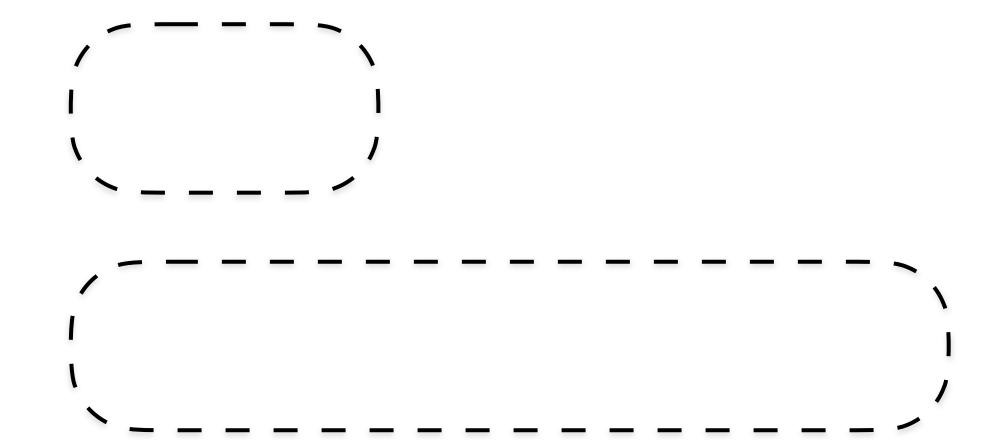
two merge policies

Leveling

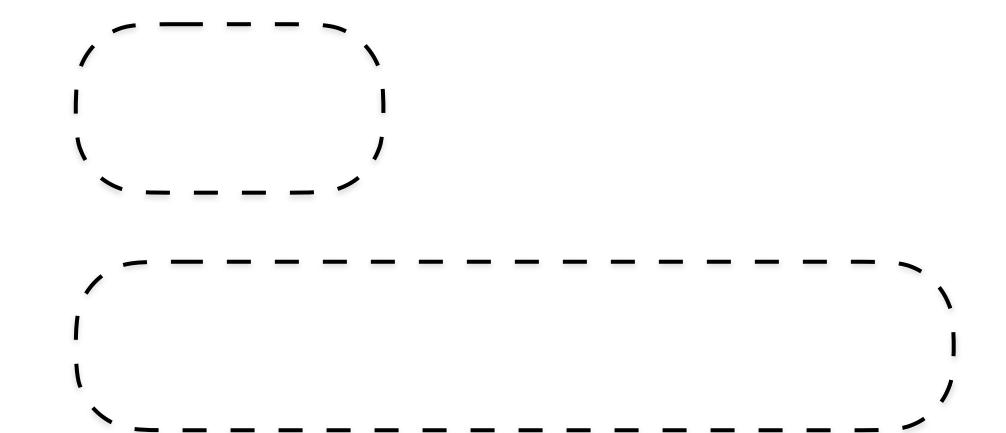




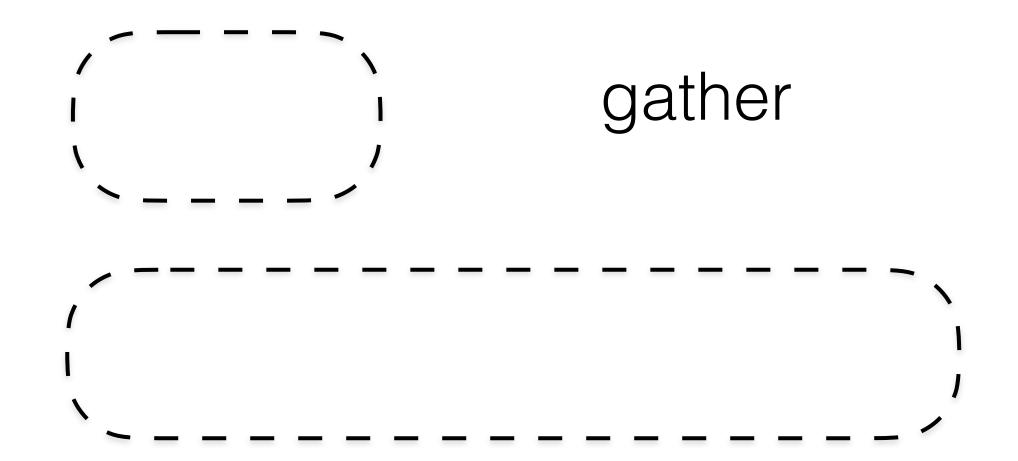


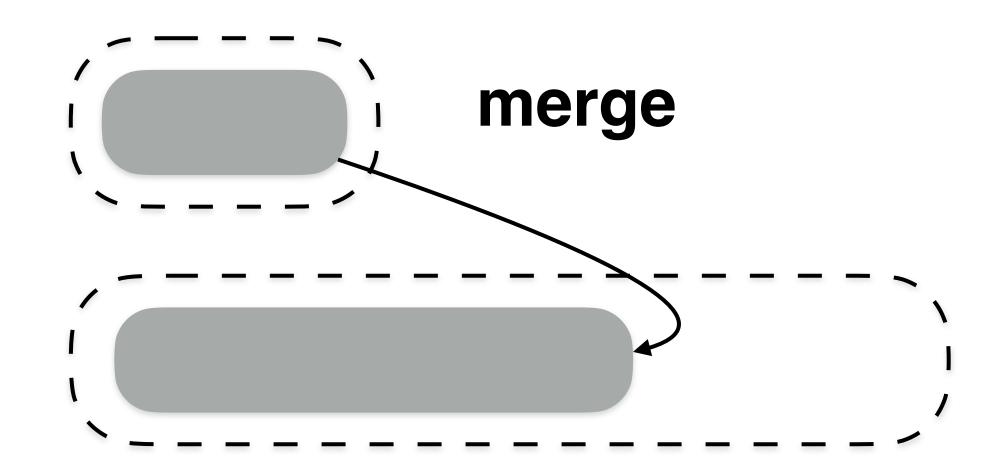


	gather	
merge & flush		



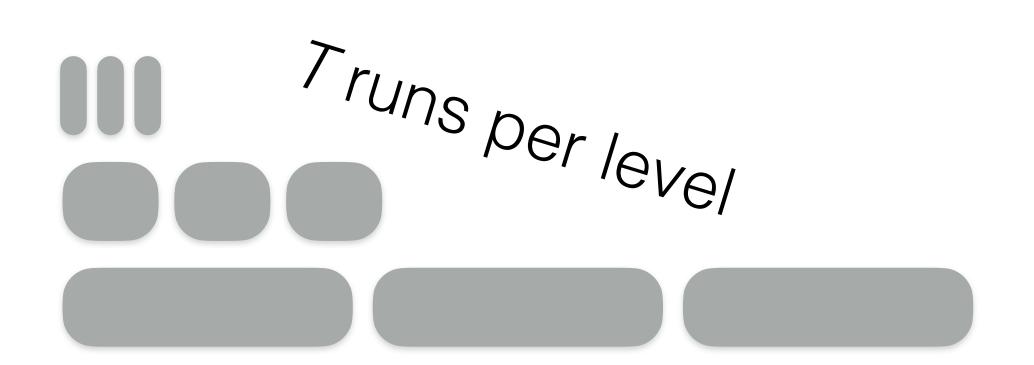
gather	





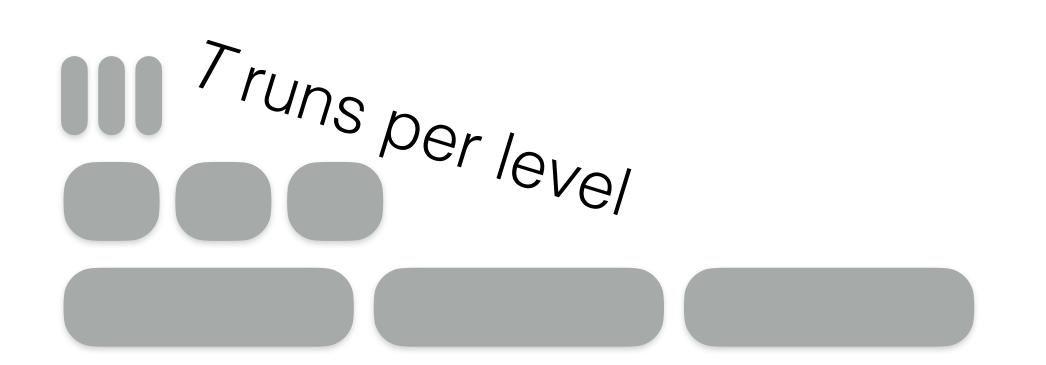
gather	,

gather	merge



size ratio T

size ratio T = 2



size ratio T

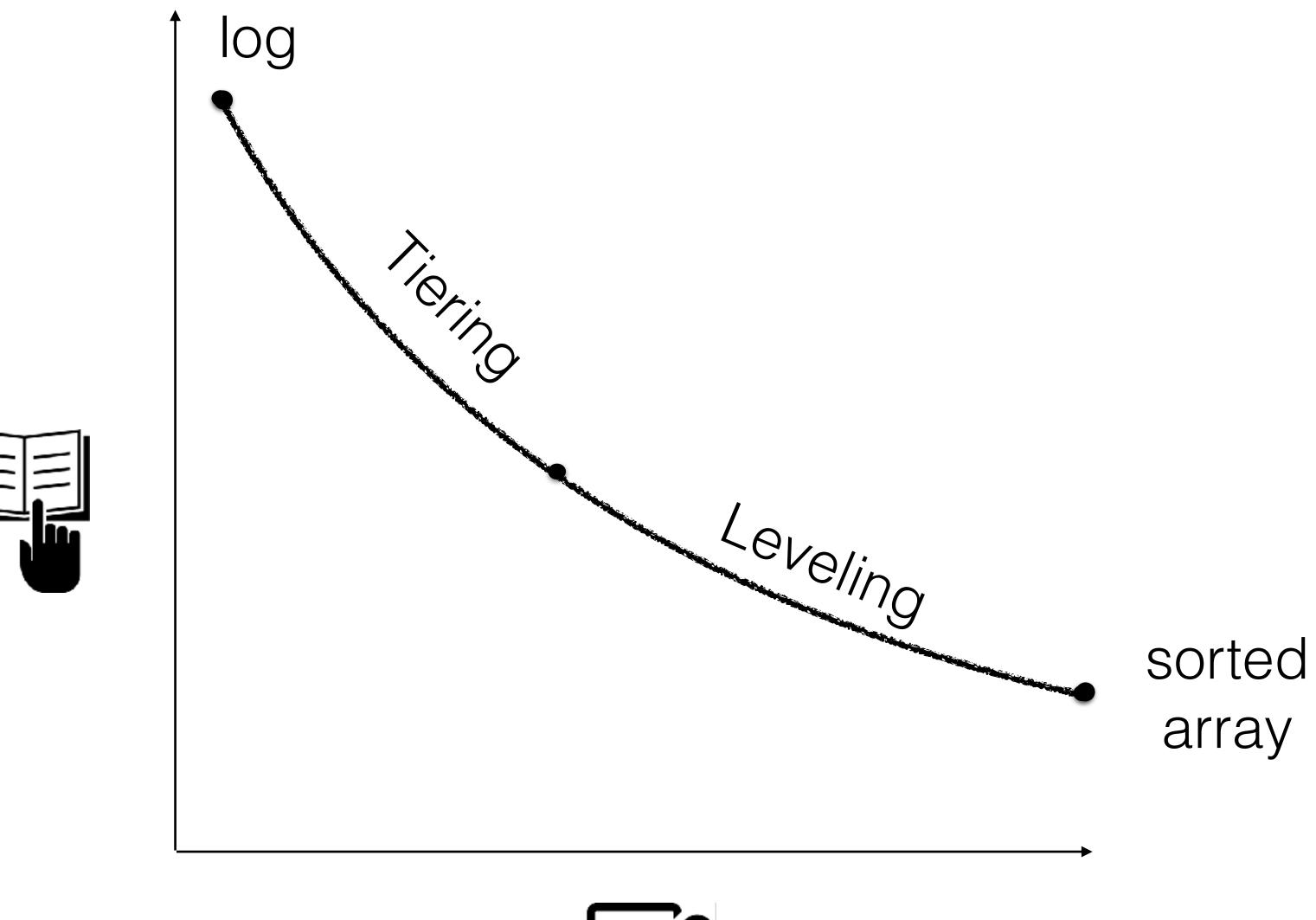
O(N/P) runs per level

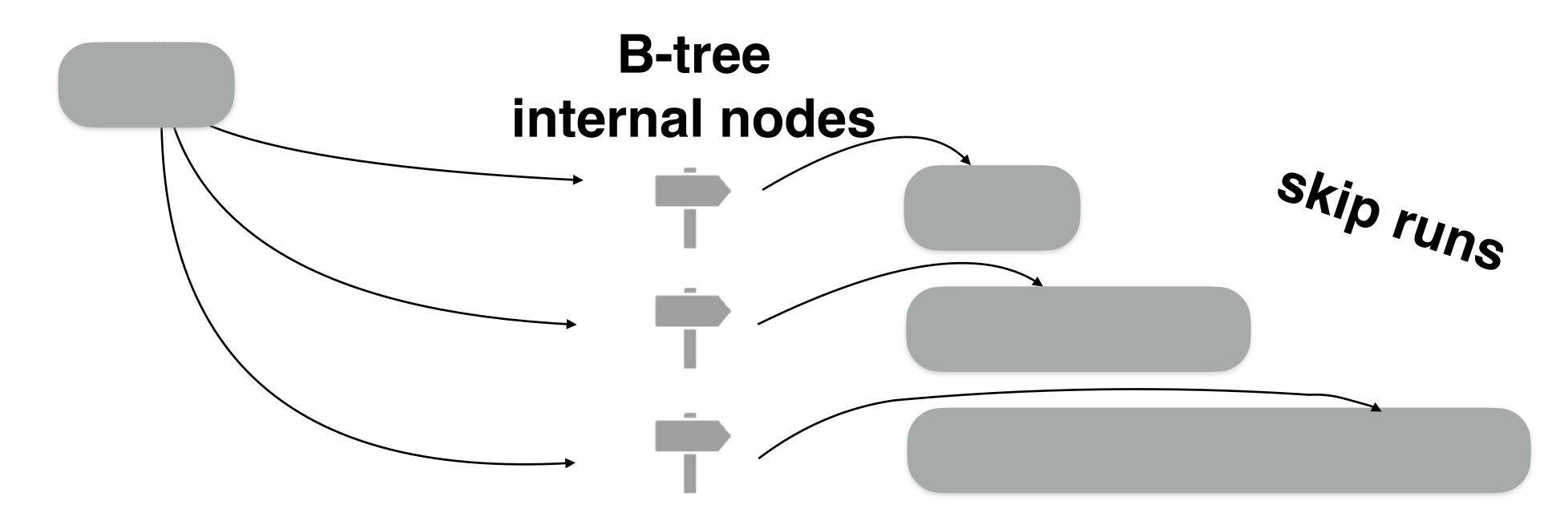
log

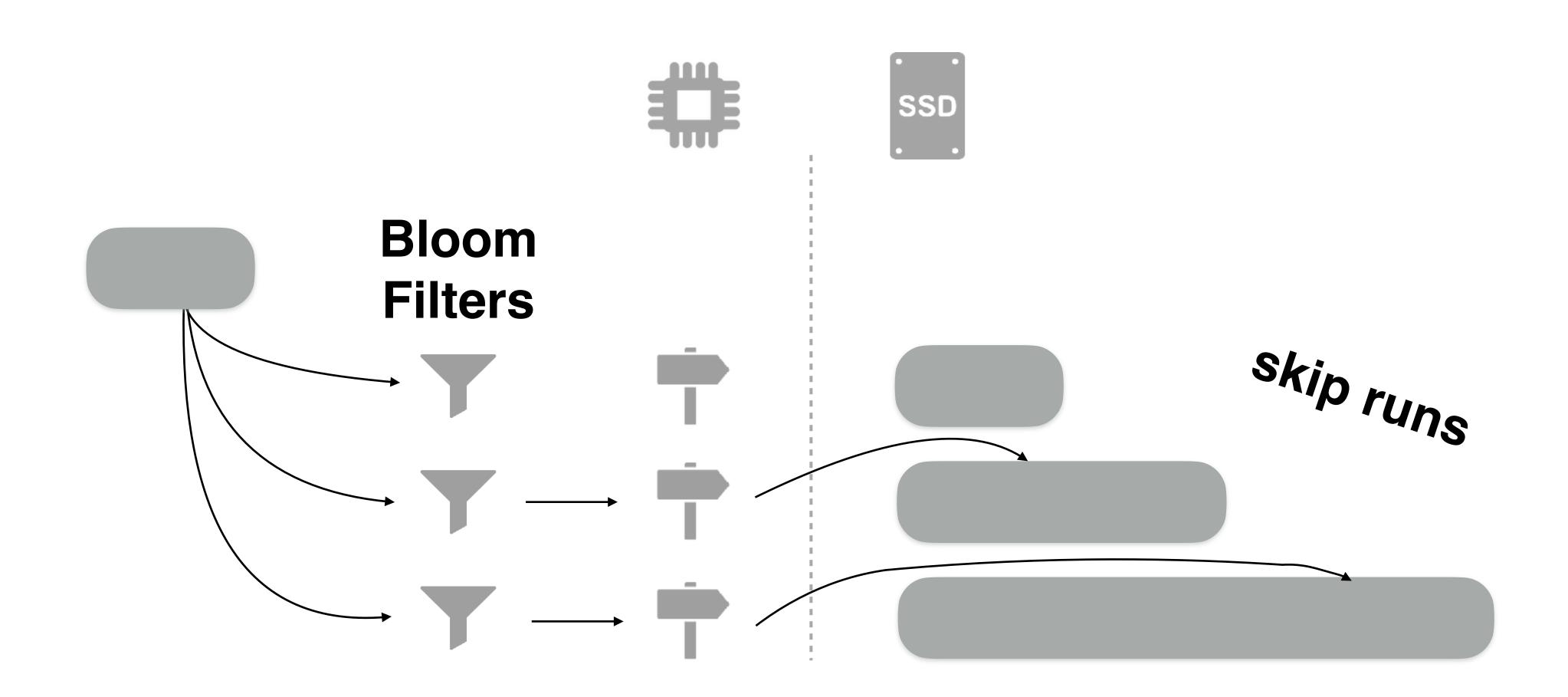
1 run per level

sorted array

size ratio T = N/P



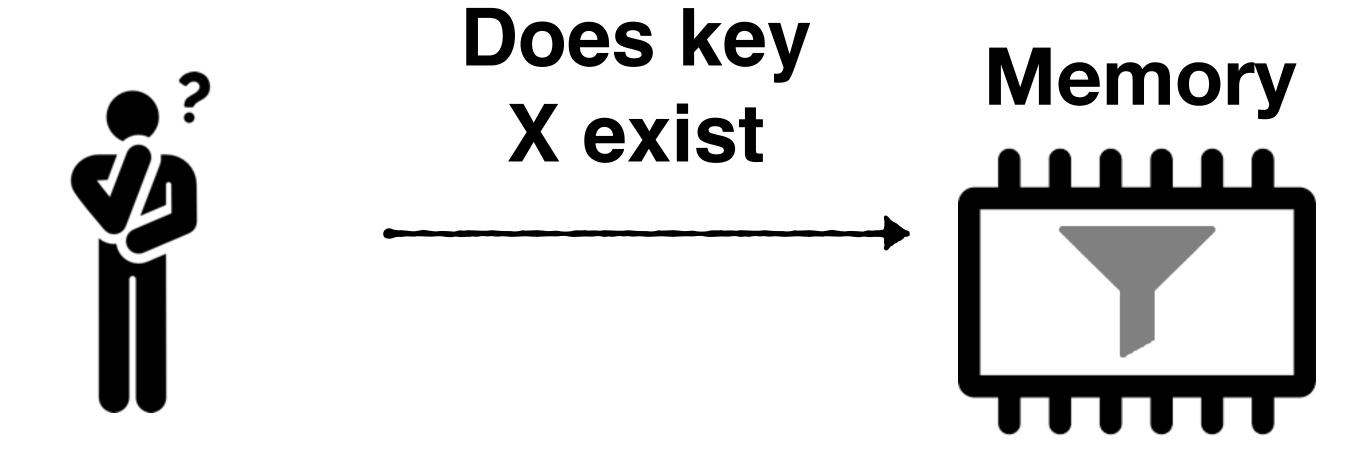




Why use a Filter?

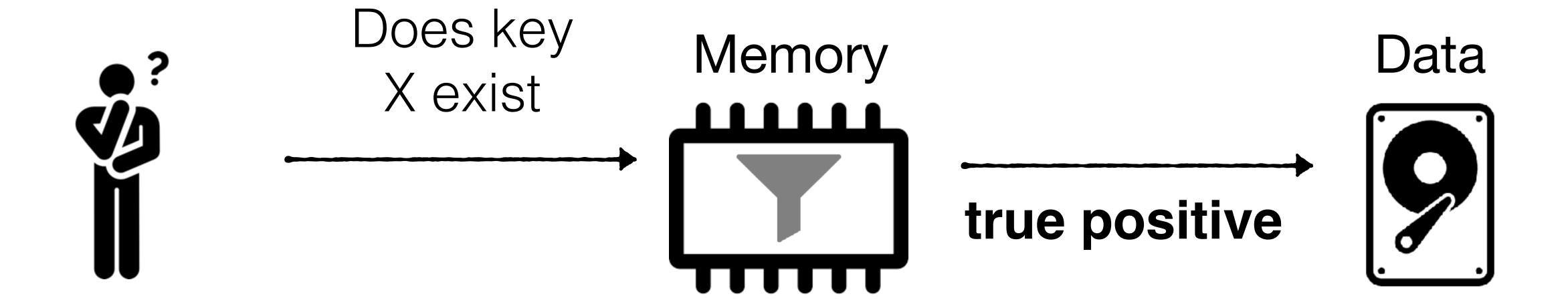
Does key X exist

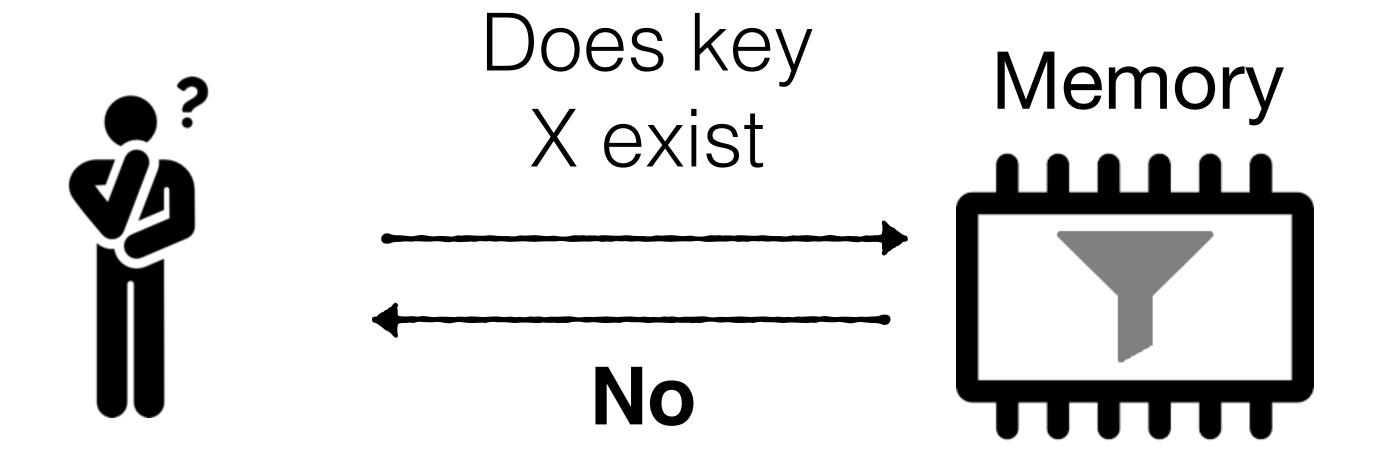
Data

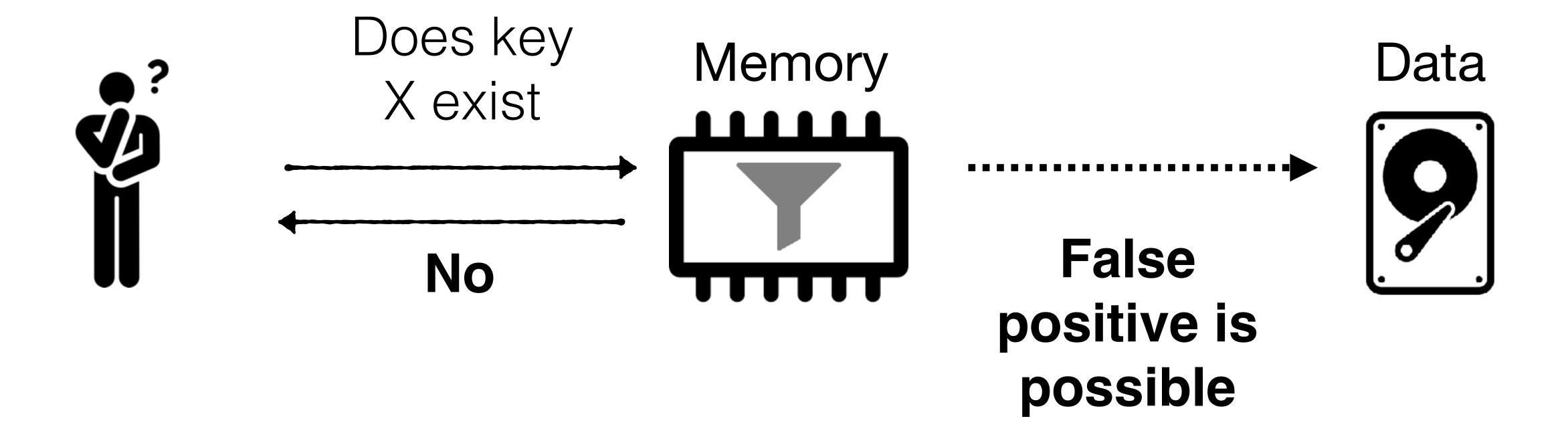


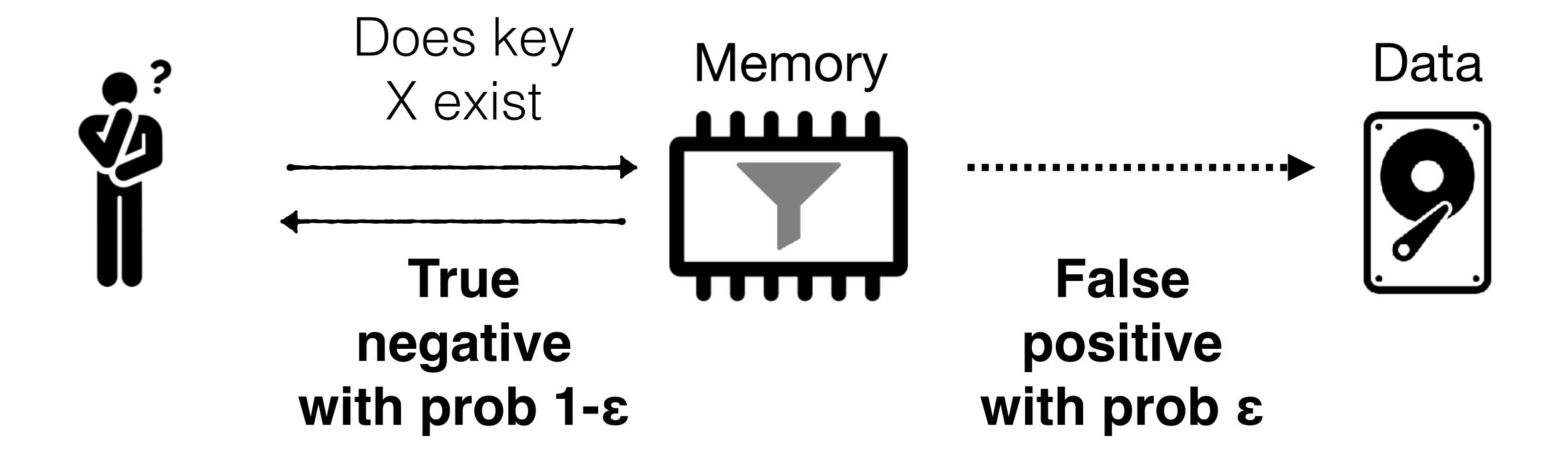
Data

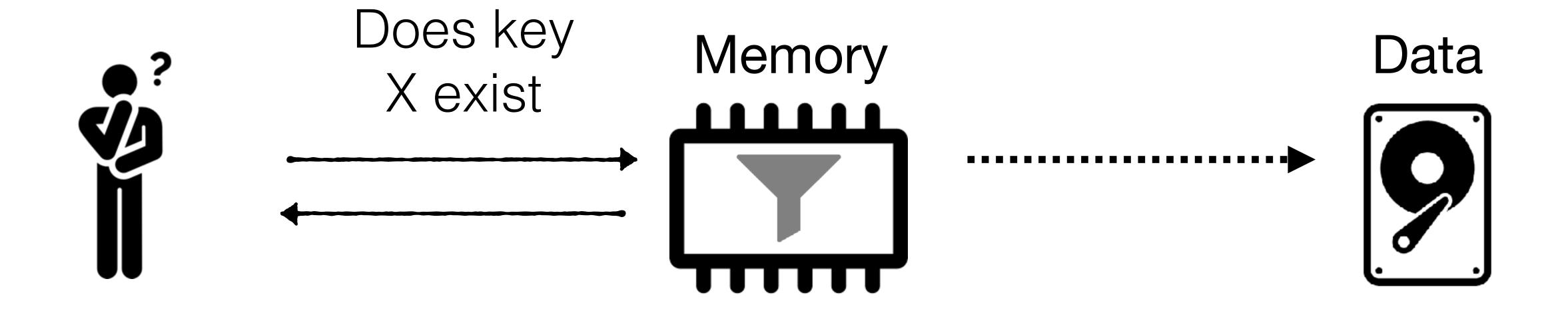
If key X exists











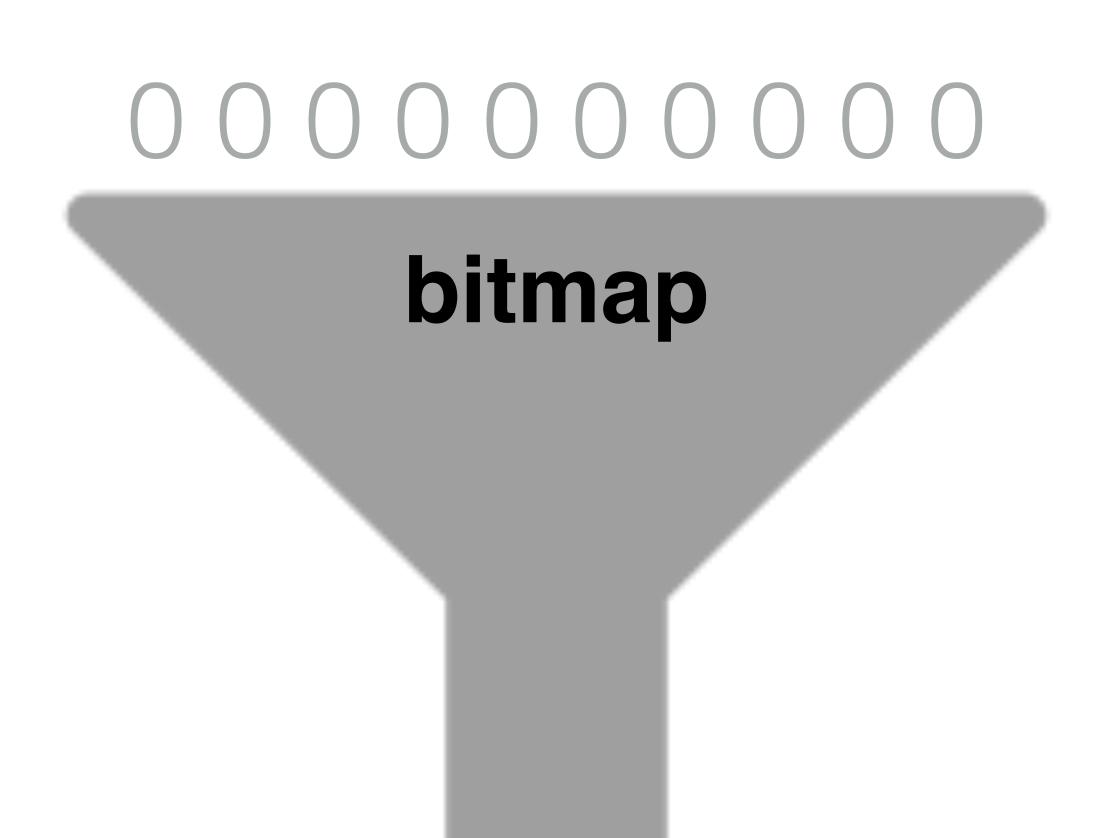
ε - false positive rate - FPR

Bloom Filters

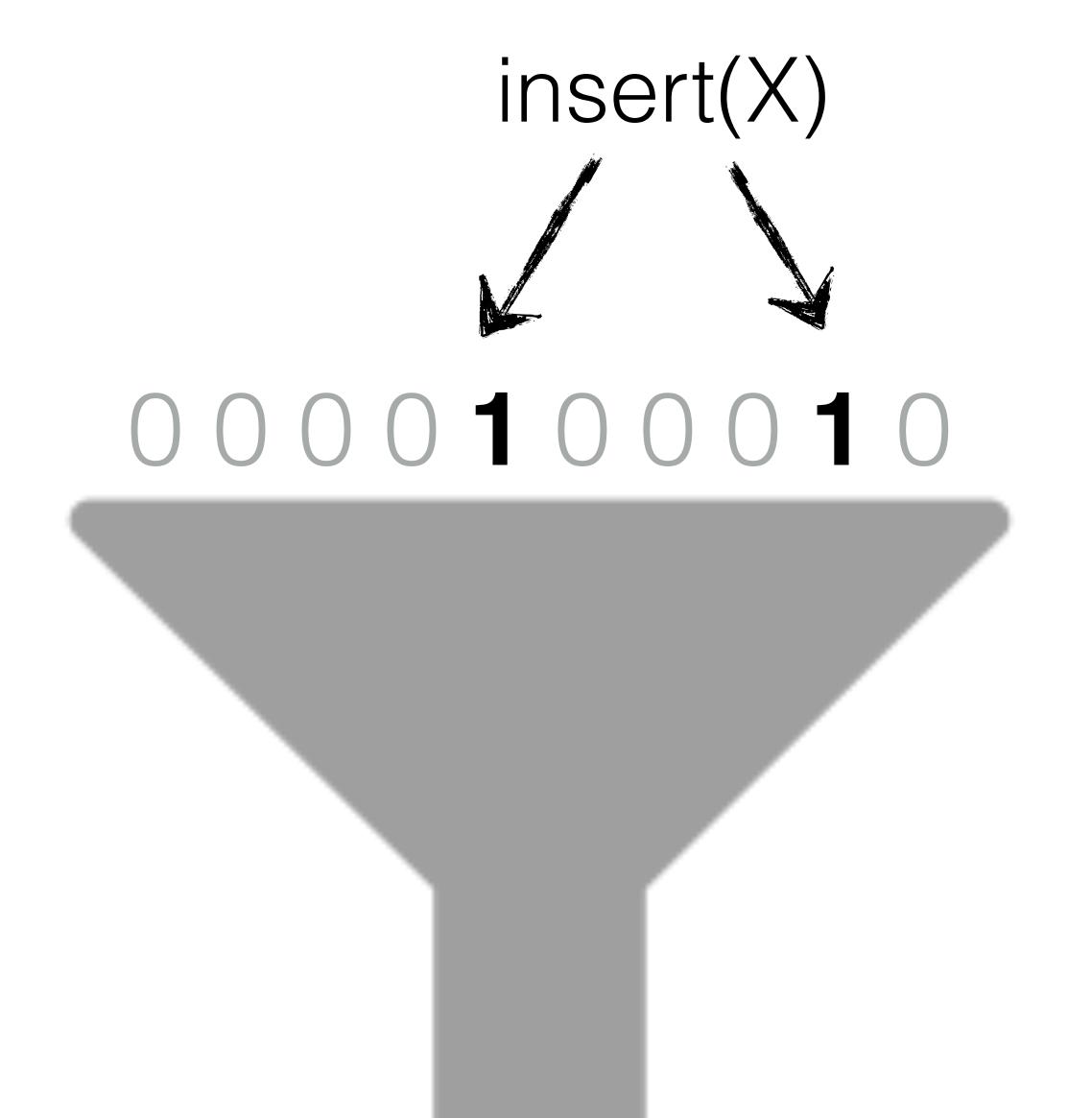
Bloom Filters

Space/time Trade-Offs in Hash Coding with Allowable Errors Burton Howard Bloom. Communications of the ACM, 1970.

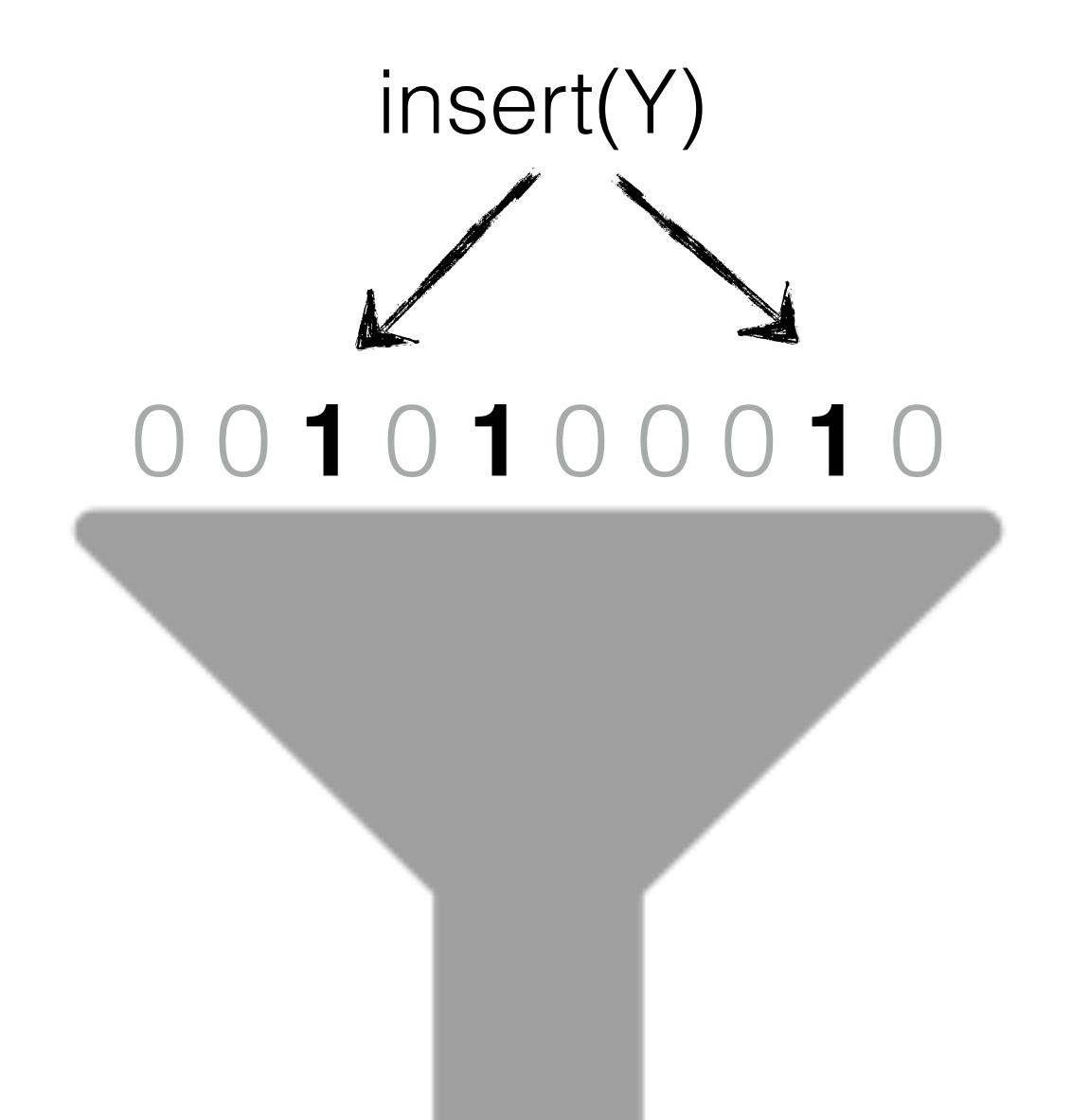
k hash functions

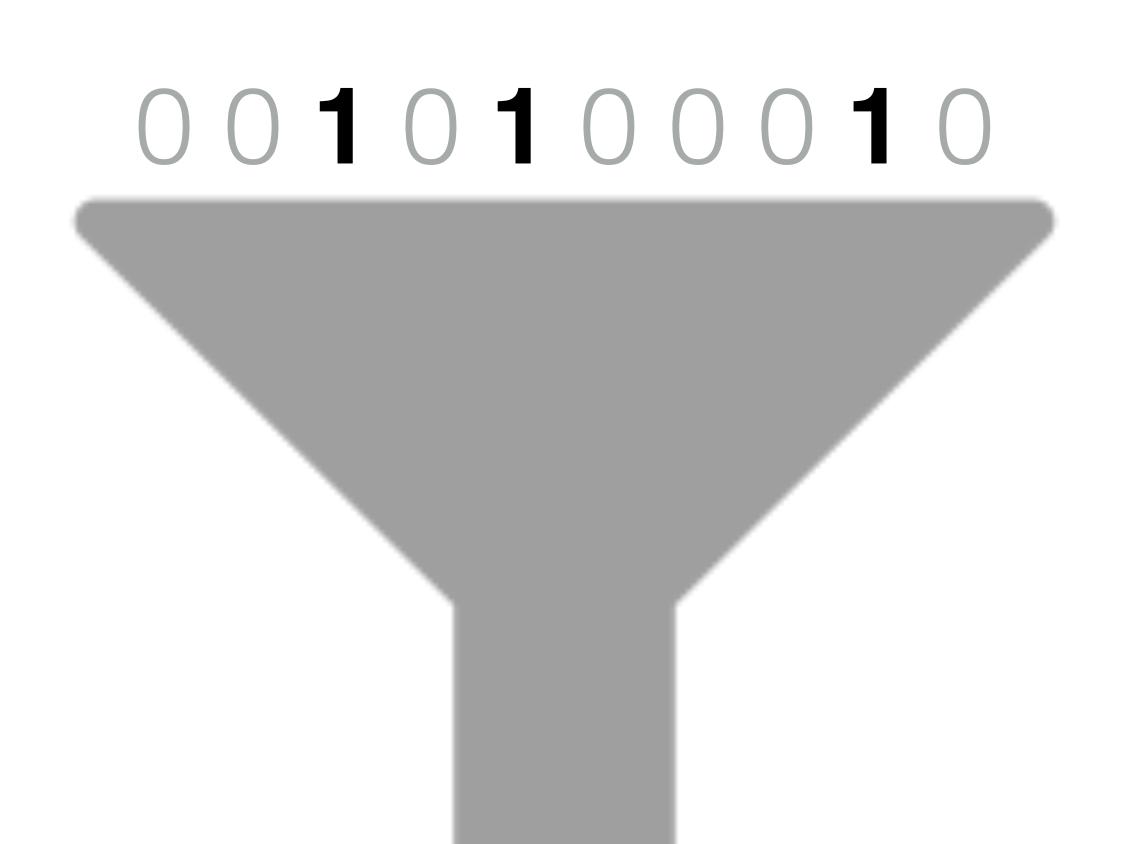


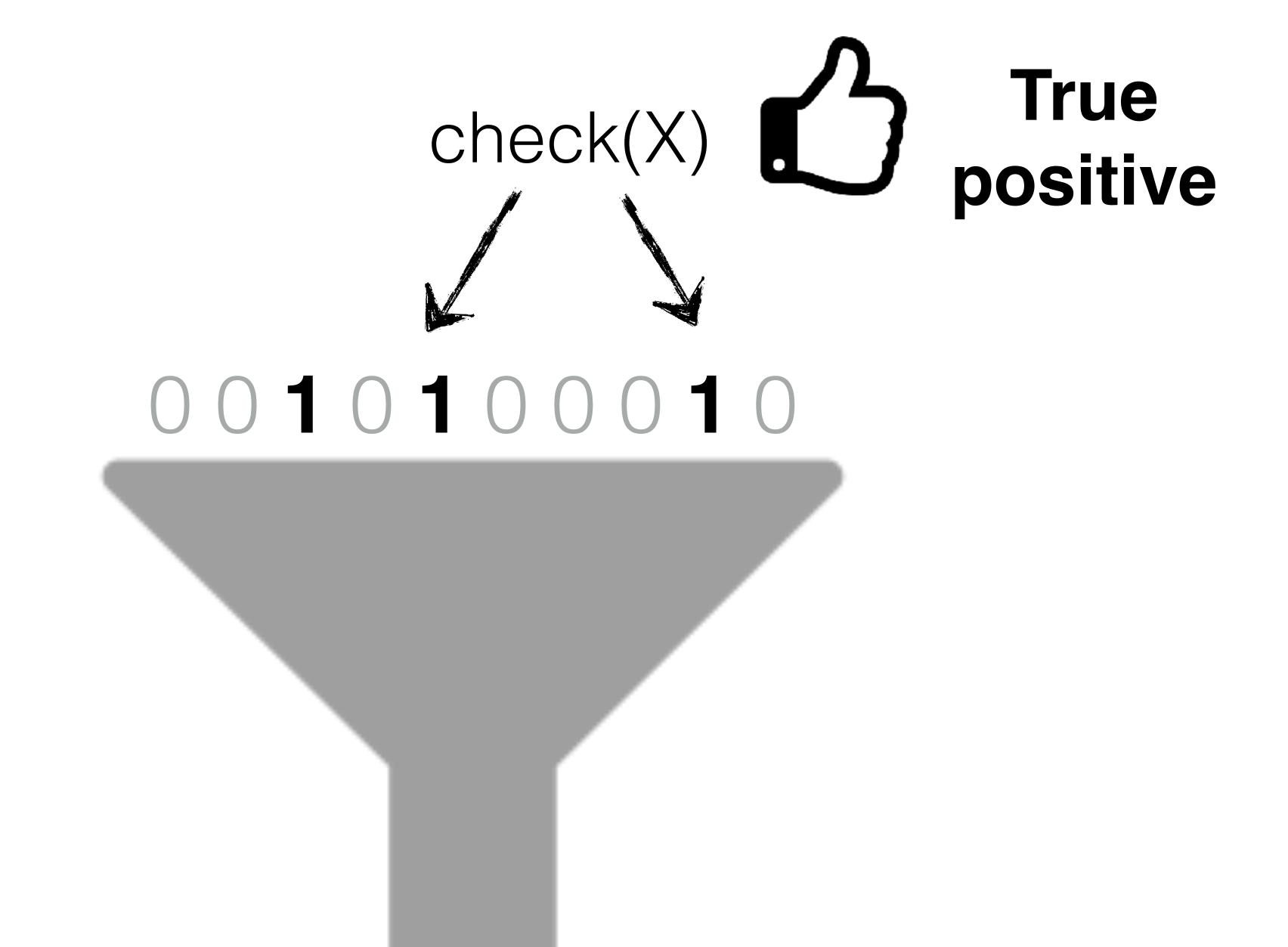
insert: Set from 0 to 1 or keep 1

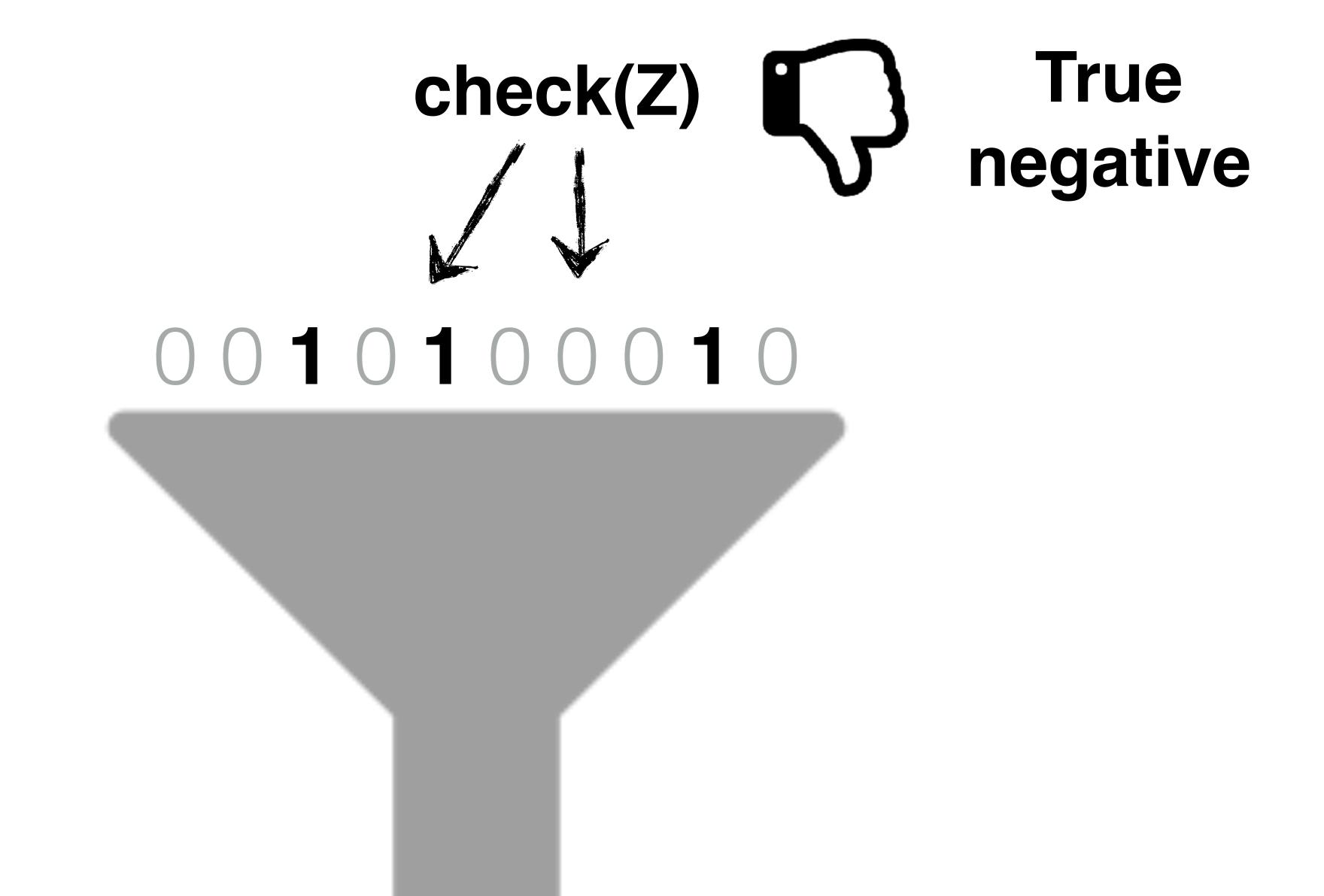


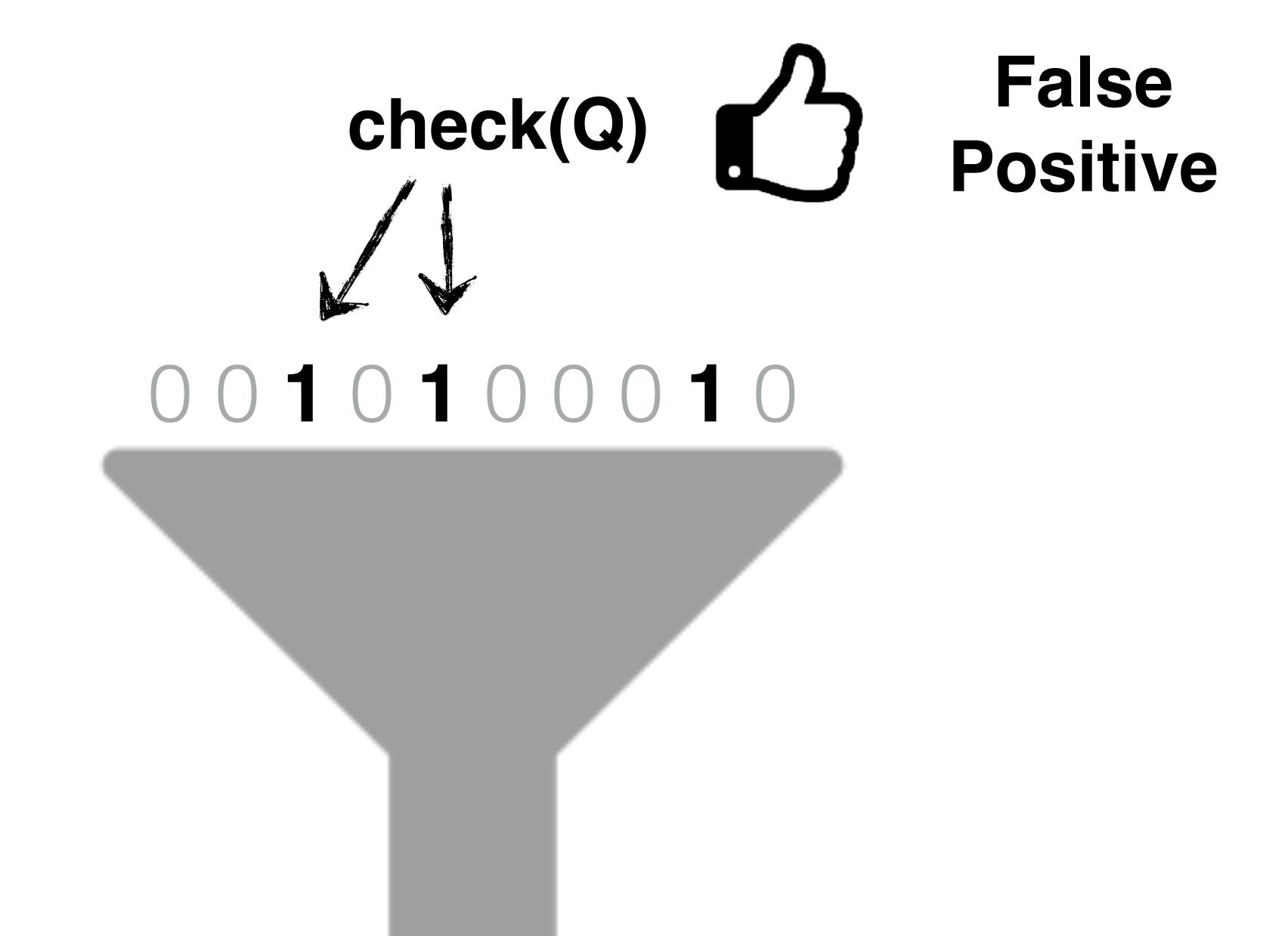
insert: Set from 0 to 1 or keep 1

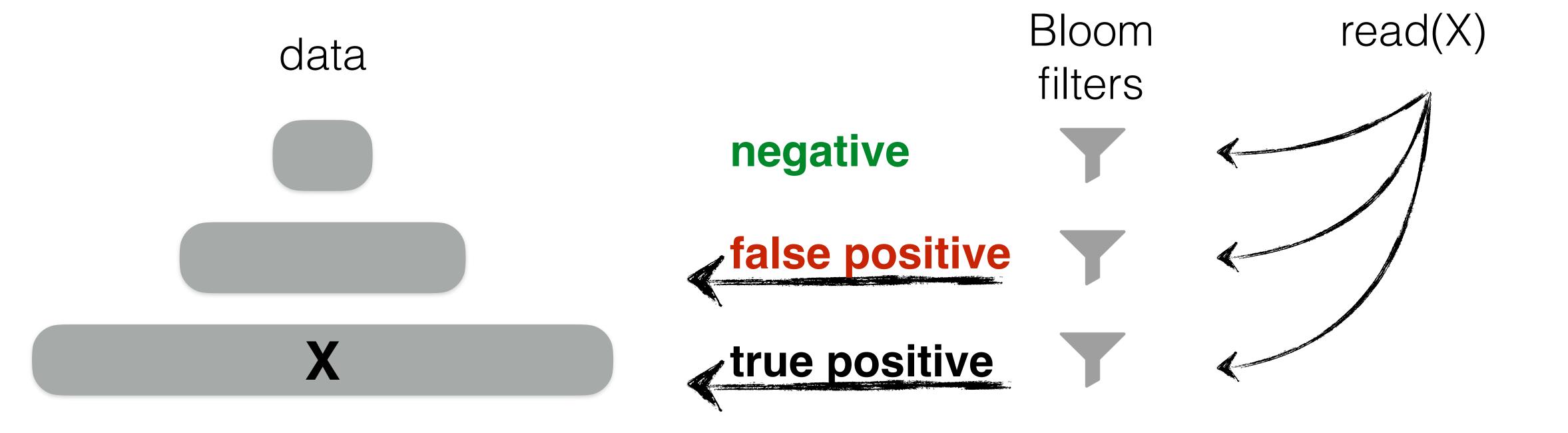




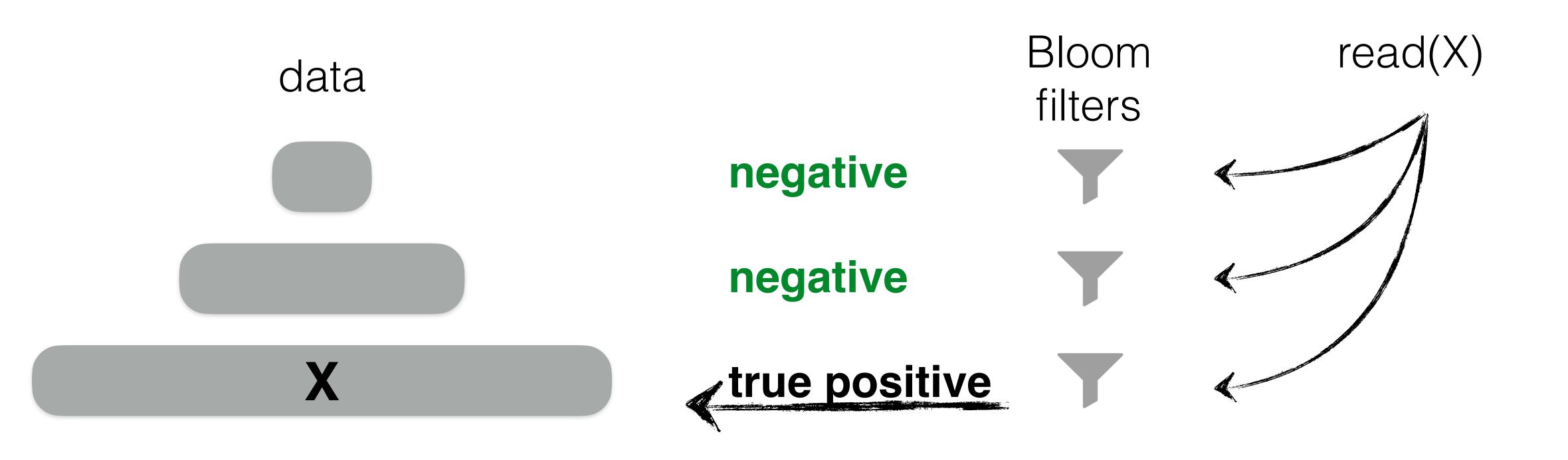


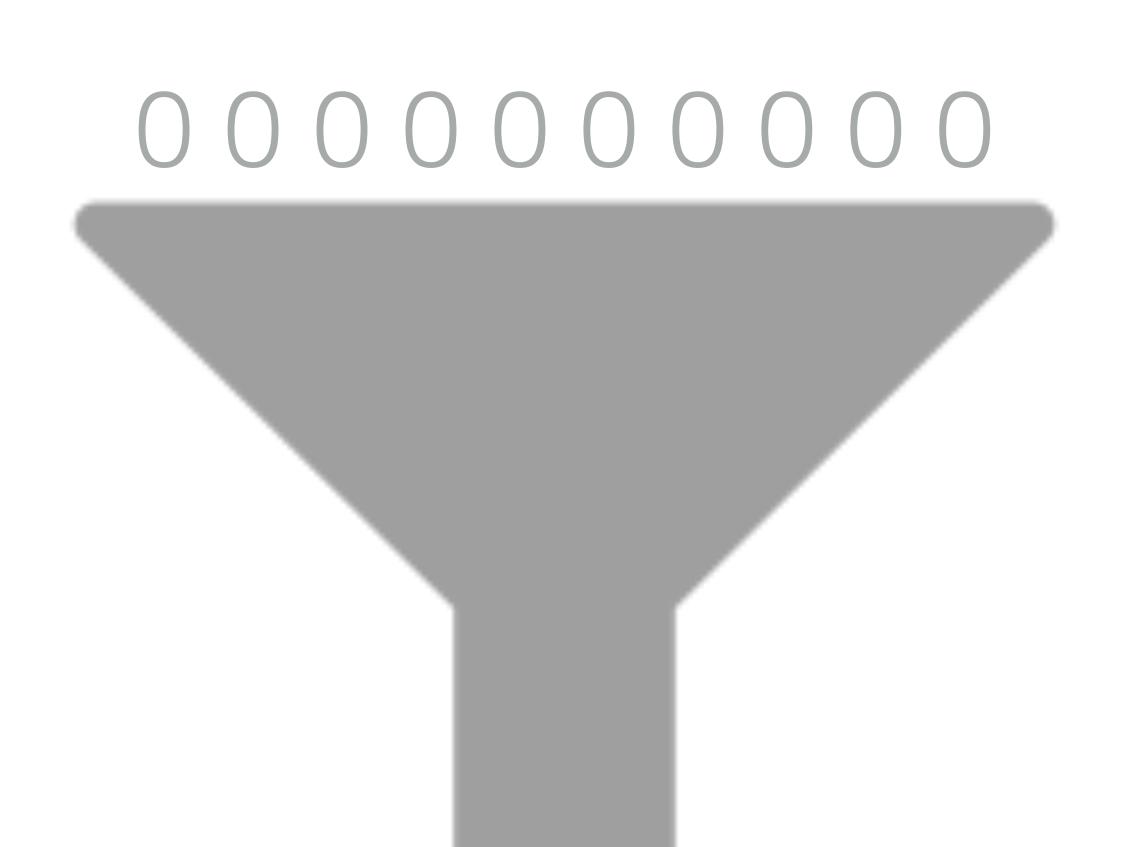


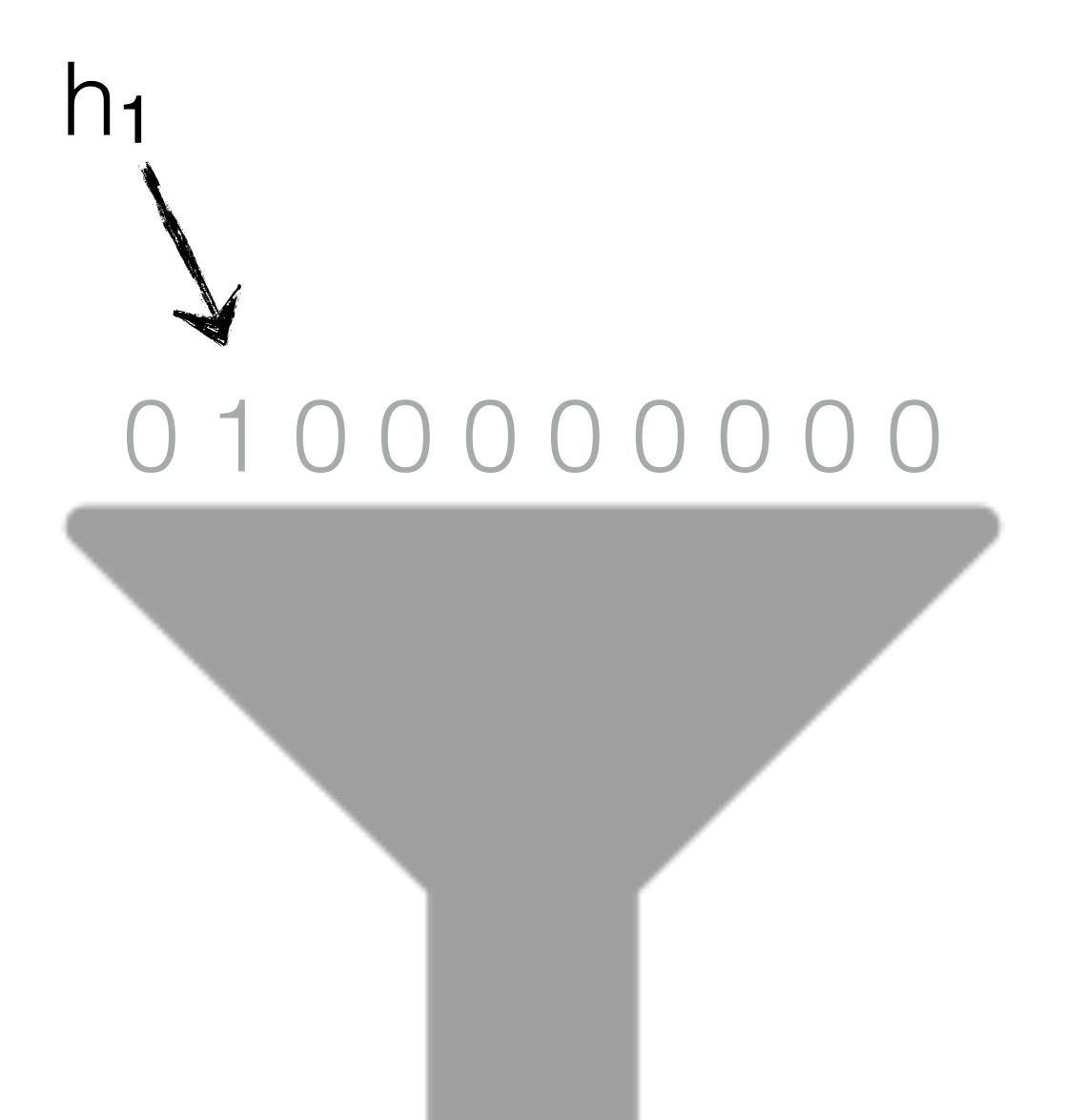




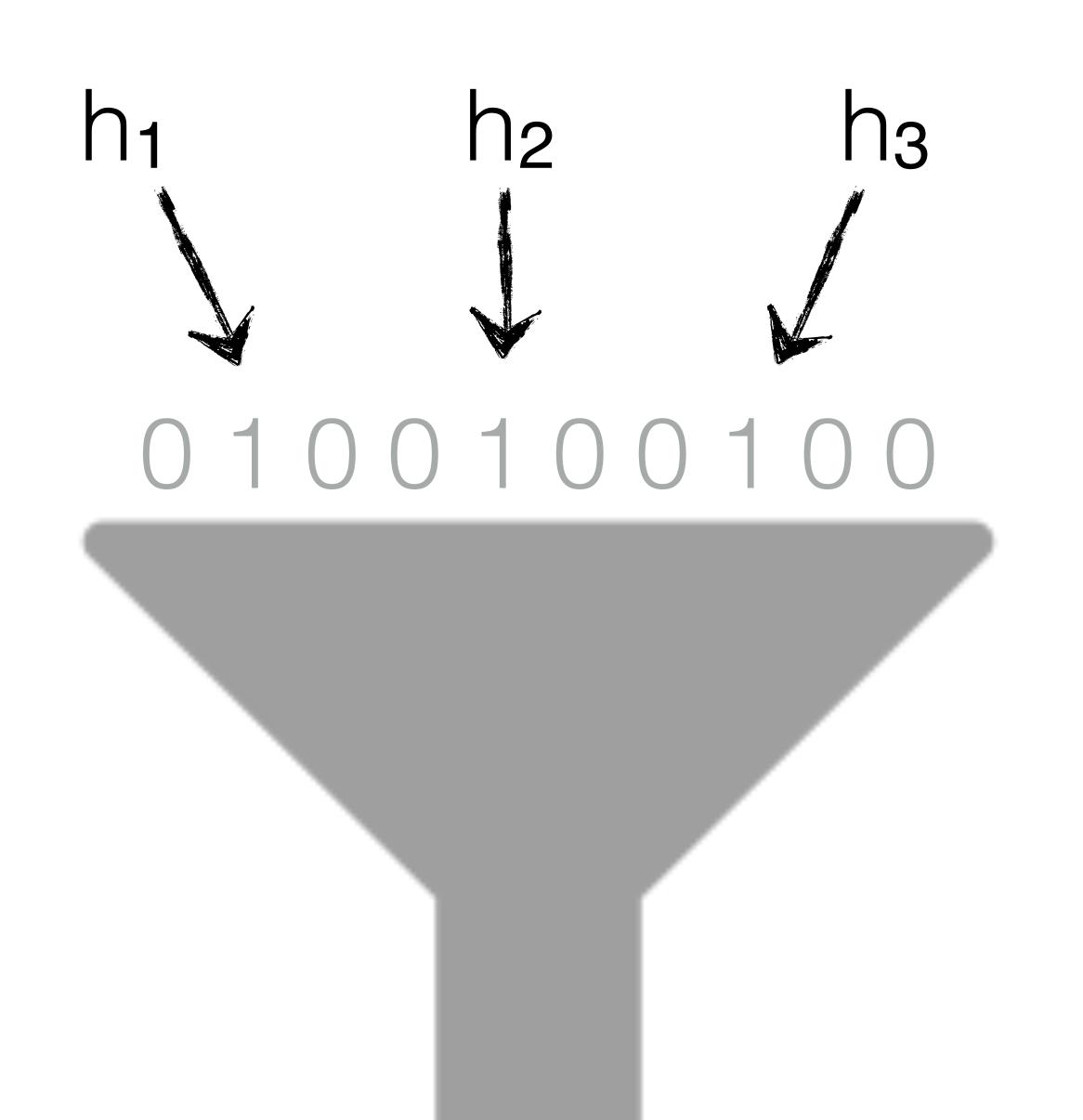
more memory — fewer false positives





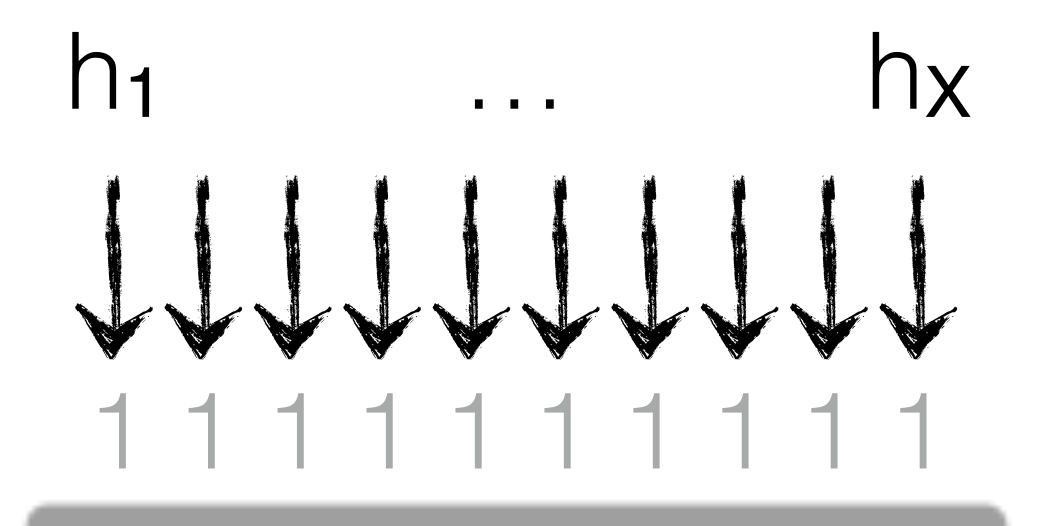


One is too few: false positive occurs whenever we hit a 1



One is too few: false positive occurs whenever we hit a 1

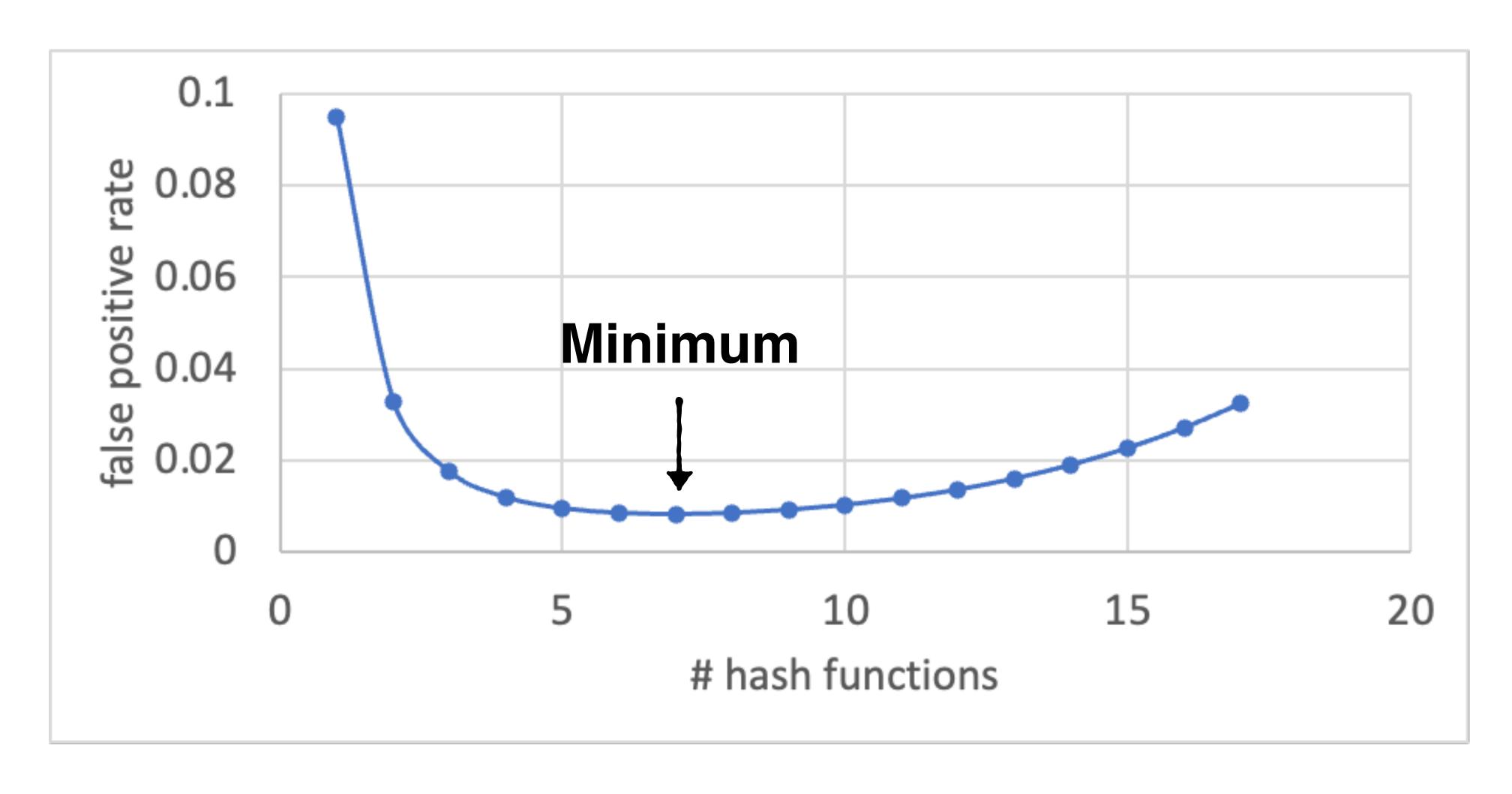
By adding hash functions, we initially decrease the false positive rate (FPR).



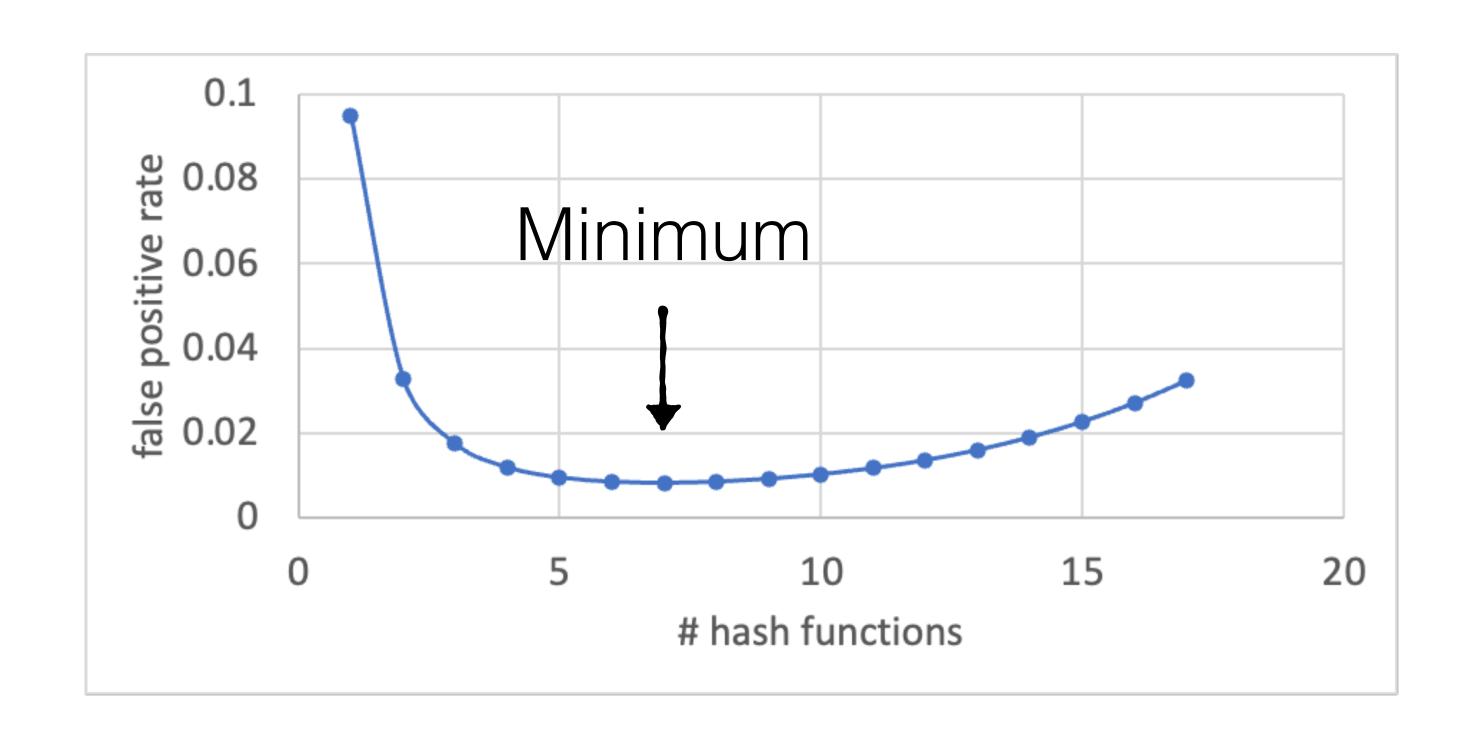
One is too few: false positive occurs whenever we hit a 1

By adding hash functions, we initially decrease the false positive rate (FPR).

But too many hash functions wind up increasing the FPR.



(Drawn for a filter using 10 bits per entry)

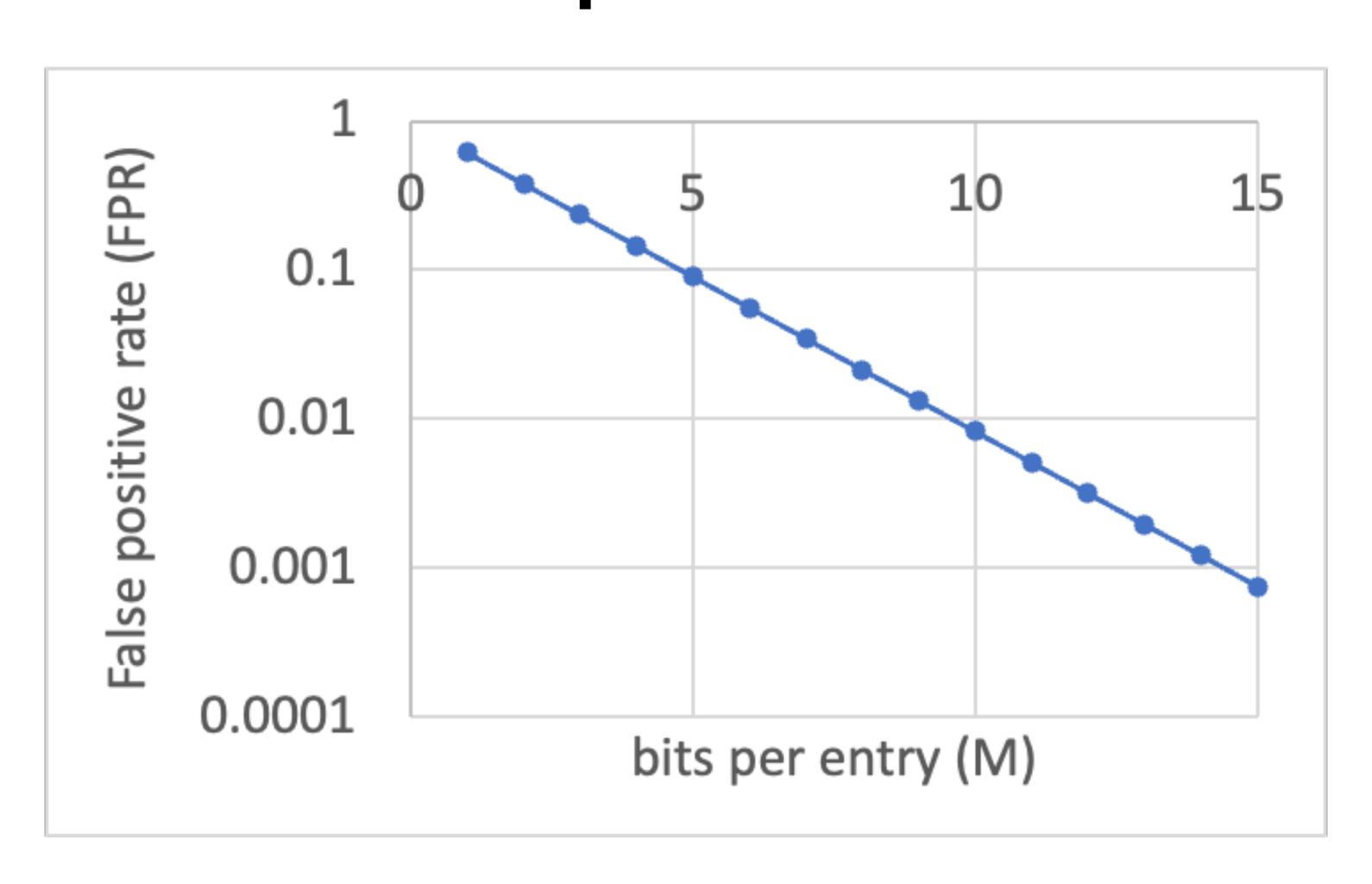


Optimal # hash functions = $ln(2) \cdot M$

(M is the number of bits per entry)

assuming the optimal # hash functions,

false positive rate = $2^{-M \cdot \ln(2)}$



Operation Costs (in memory accesses)

Insertion =

Positive Query =

Avg. Negative Query =

Insertion = $M \cdot In(2)$ (# hash functions)

Positive Query =

Avg. Negative Query =

Insertion = $M \cdot ln(2)$

Positive Query = $M \cdot ln(2)$ (# hash functions)

Avg. Negative Query =

Insertion = $M \cdot ln(2)$

Positive Query = $M \cdot ln(2)$

Avg. Negative Query =

(fraction of ones in filter is 0.5 with optimal number of hash functions)

Insertion = $M \cdot ln(2)$

Positive Query = $M \cdot ln(2)$

Avg. Negative Query = $1 + 1/2 (1 + 1/2 \cdot (...))$

(fraction of ones in filter is 0.5 with optimal number of hash functions)

Insertion = $M \cdot ln(2)$

Positive Query = $M \cdot ln(2)$

Avg. Negative Query = 1 + 1/2 + 1/4 + ... = 2

(fraction of ones in filter is 0.5 with optimal number of hash functions)

Insertion = $M \cdot ln(2)$

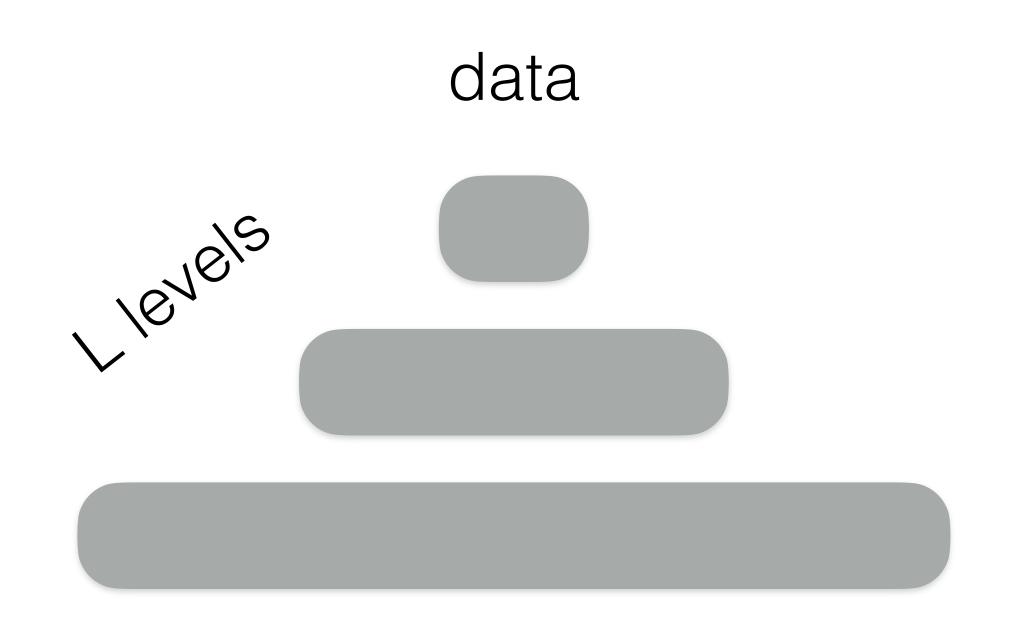
Positive Query = $M \cdot \ln(2)$

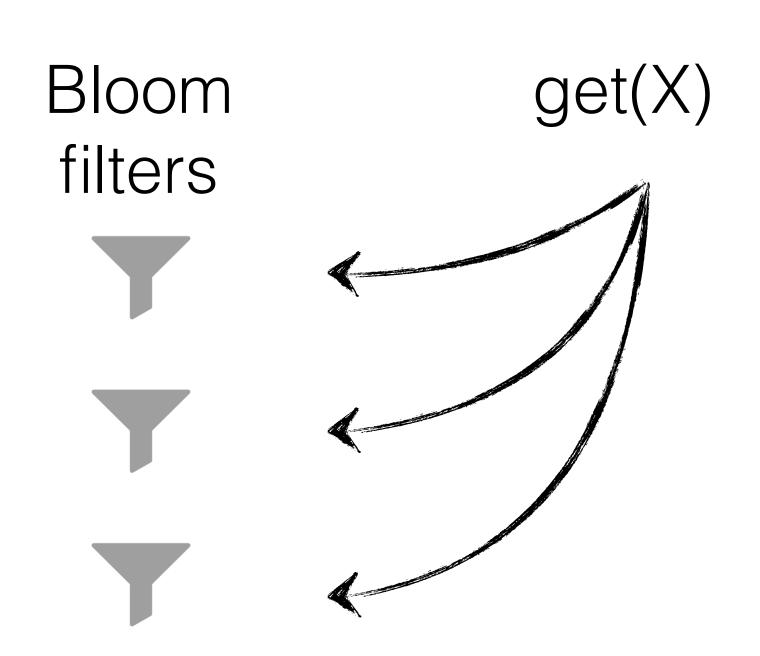
Avg. Negative Query = 2

false positive rate = $2^{-M \cdot \ln(2)}$

Positive Query = $M \cdot ln(2)$

Avg. Negative Query = 2





Worst-case:

Positive Query = $M \cdot \ln(2)$ Avg. Negative Query = 2

data

Bloom get(X)
filters

false positive

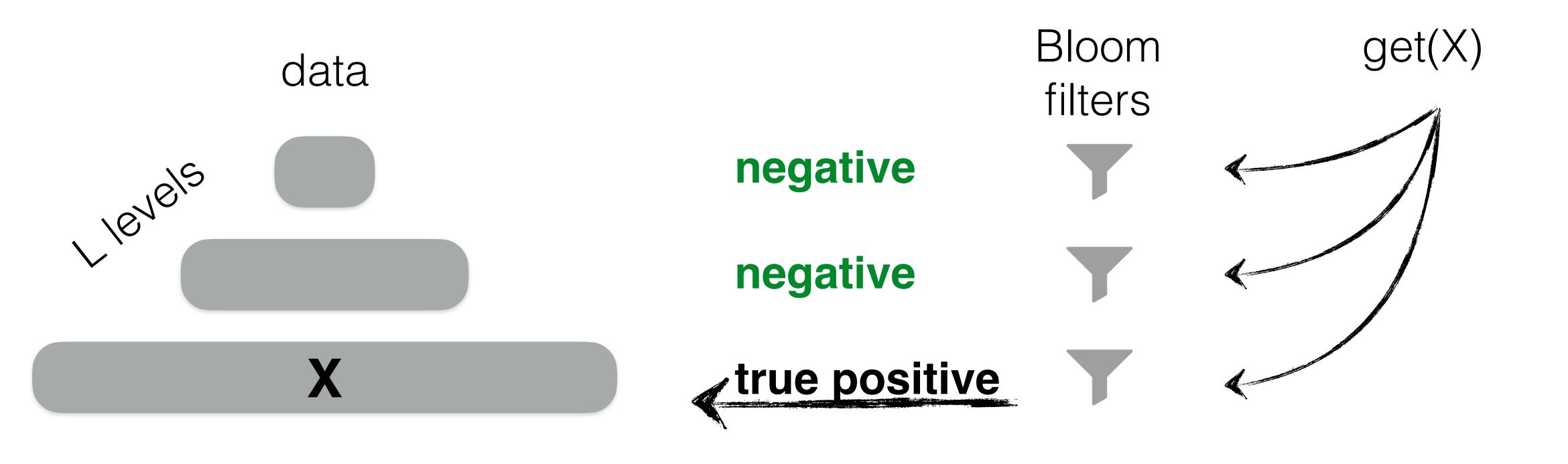
false positive

true positive

Worst-case: O(M·L)

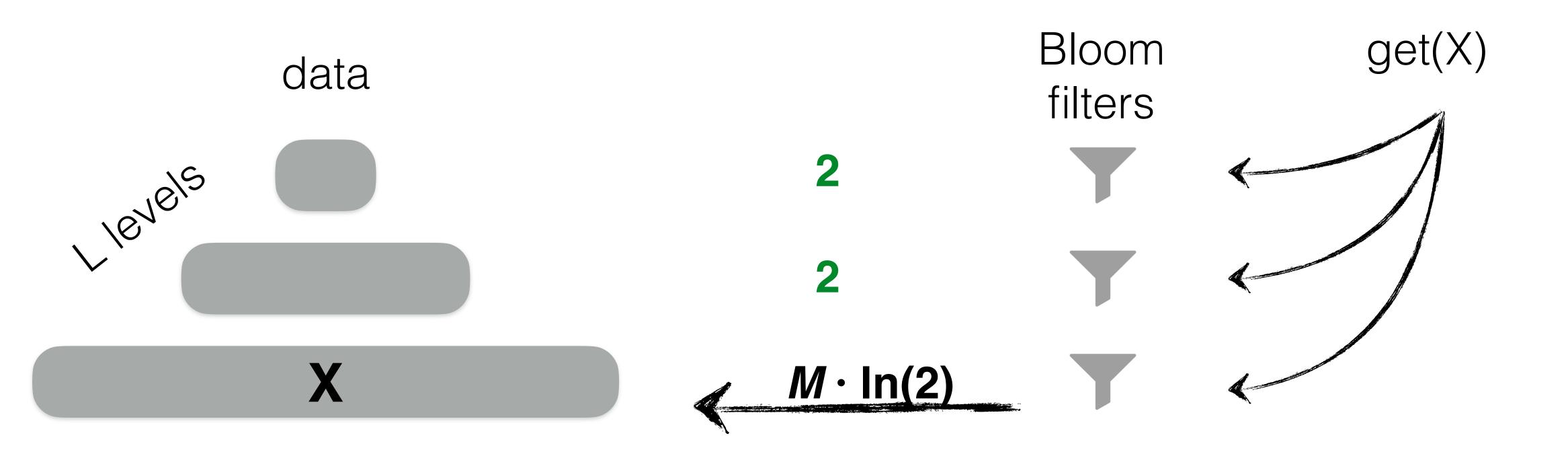
Positive Query = $M \cdot ln(2)$

Avg. Negative Query = 2



Worst-case: O(M·L)

Positive Query = $M \cdot \ln(2)$ Avg. Negative Query = 2



Worst-case: O(M·L)

Positive Query = $M \cdot \ln(2)$ Avg. Negative Query = 2



Worst-case: O(M·L)

Avg. worst-case: O(M+L)

Know specs in advance:

- N # entries to insert
- ε desired FPR

Know specs in advance:

N - # entries to insert

ε - desired FPR

Allocate filter with: $N \cdot ln(2) \cdot log_2(1/\epsilon)$ bits

Know specs in advance:

N - # entries to insert

ε - desired FPR

Allocate filter with: $N \cdot ln(2) \cdot log_2(1/\epsilon)$ bits

Insert N elements using -ln(ε)/ln(2) hash functions

Know specs in advance:

N - # entries to insert

ε - desired FPR

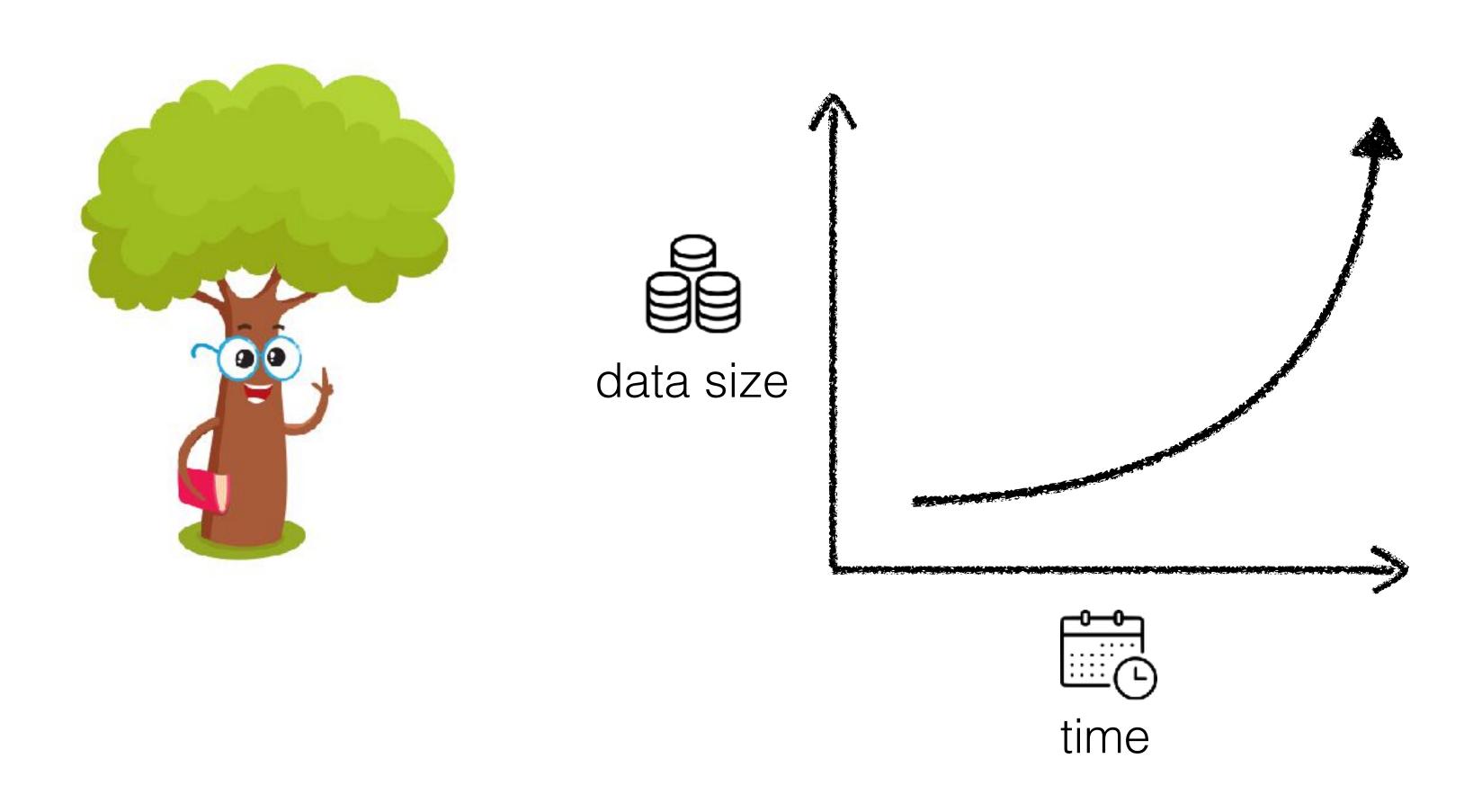
Allocate filter with: $N \cdot ln(2) \cdot log_2(1/\epsilon)$ bits

Insert N elements using $-\ln(\epsilon)/\ln(2)$ hash functions

Guarantee FPR of ϵ

Research Question

Can LSM-tree handle exponential data growth?



logarithmic scaling

$$L = O(log N)$$

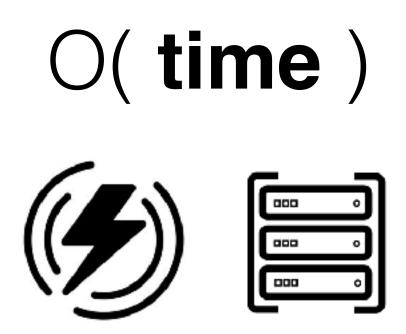
logarithmic scaling

L = O(log N)

exponential growth

 $N \in O(2 \text{ time})$

linear scaling



Can we do better?

 $O(2^{-M} \cdot L)$

0(?)

insert I/O cost

 $O((T \cdot L)/B)$

O(?)

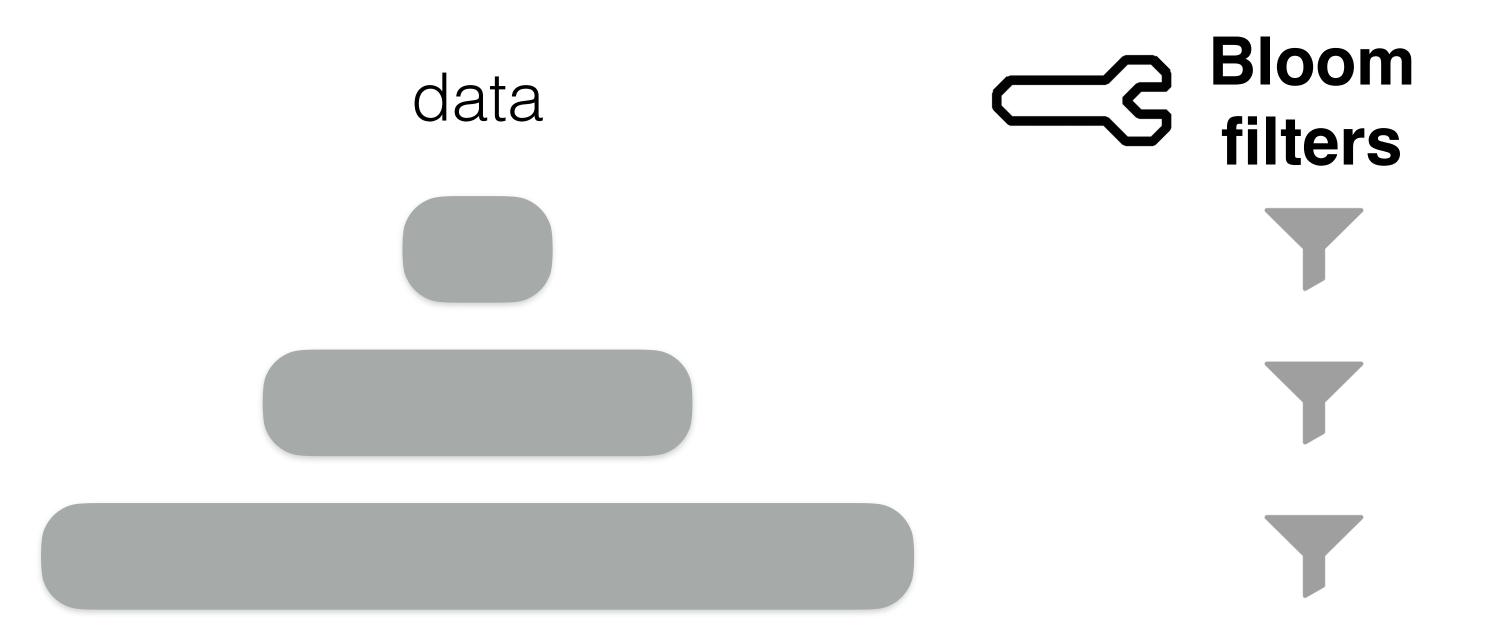
 $L = log_T N/P$ (Costs assuming leveling)

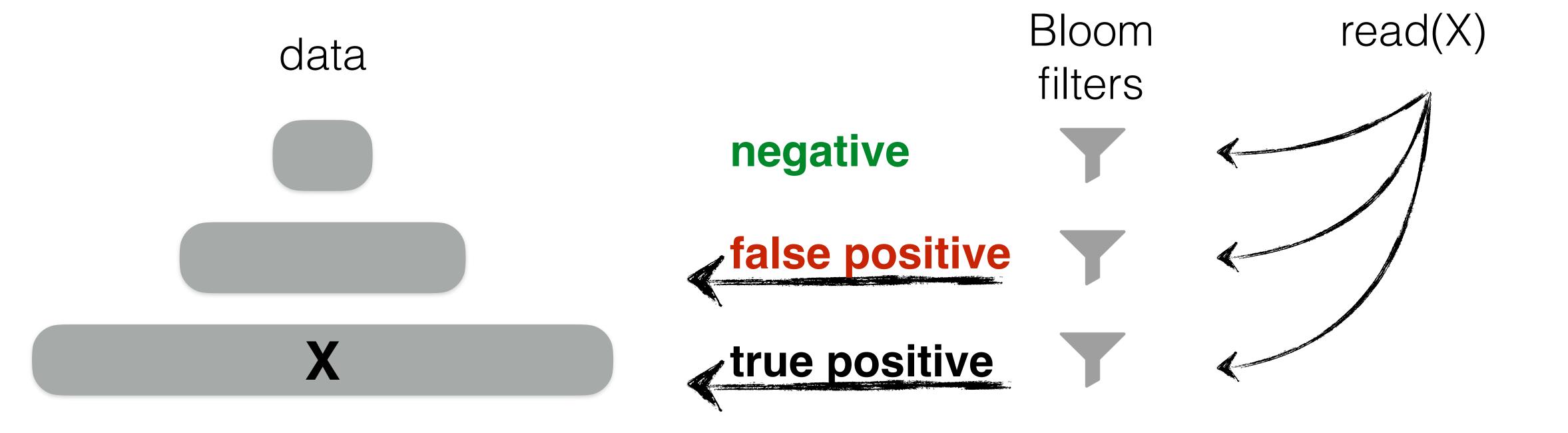
Monkey: Optimal Navigable Key-Value Store

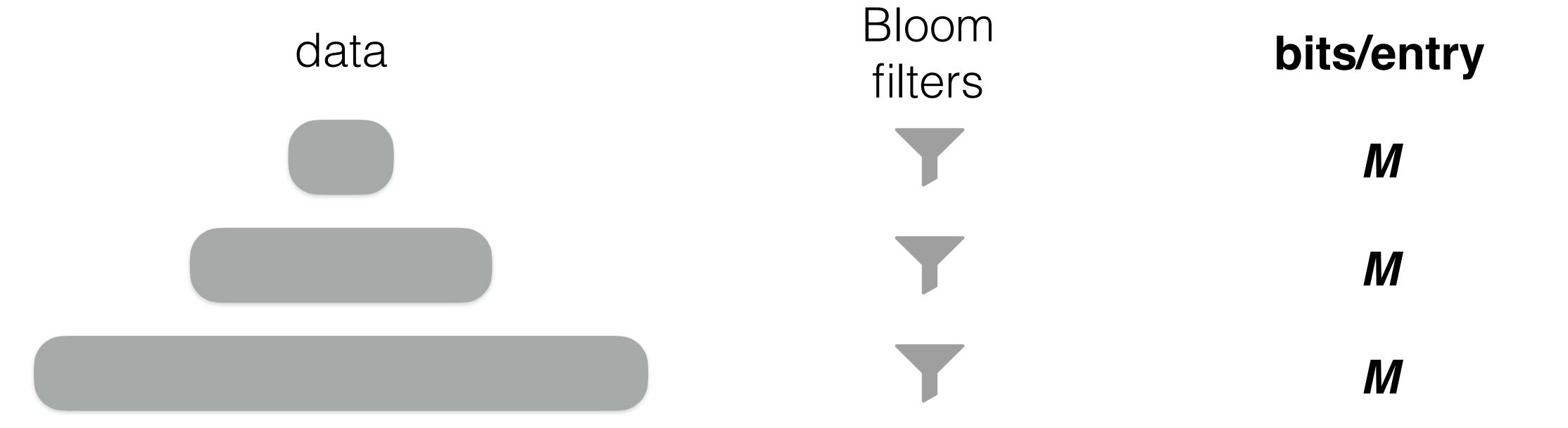
SIGMOD17

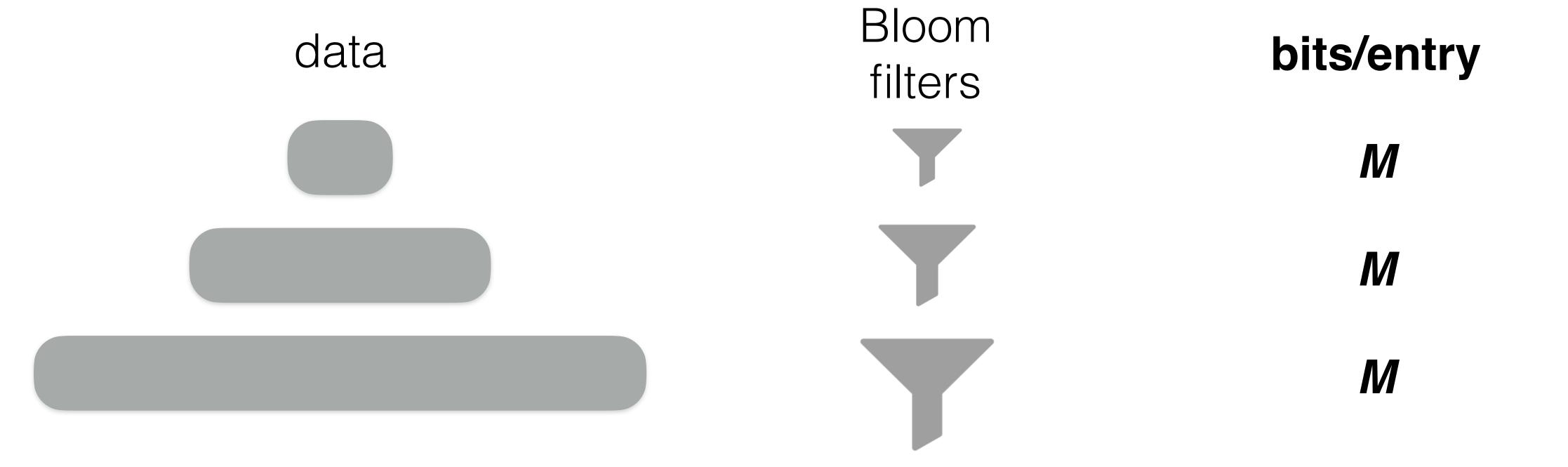
Monkey: Optimal Navigable Key-Value Store

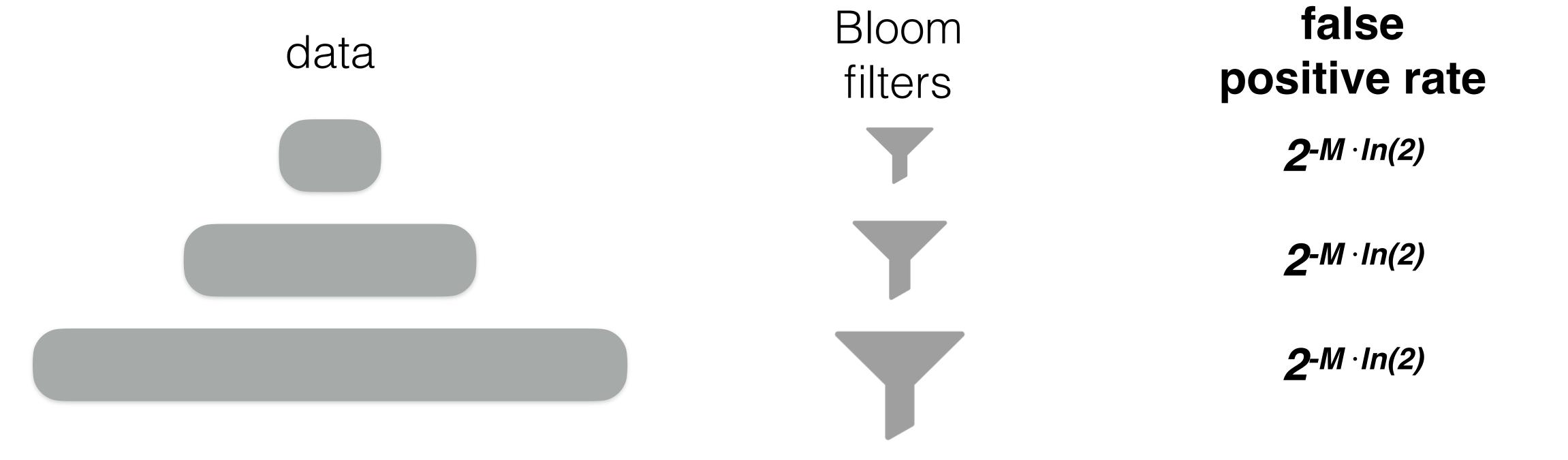
SIGMOD17

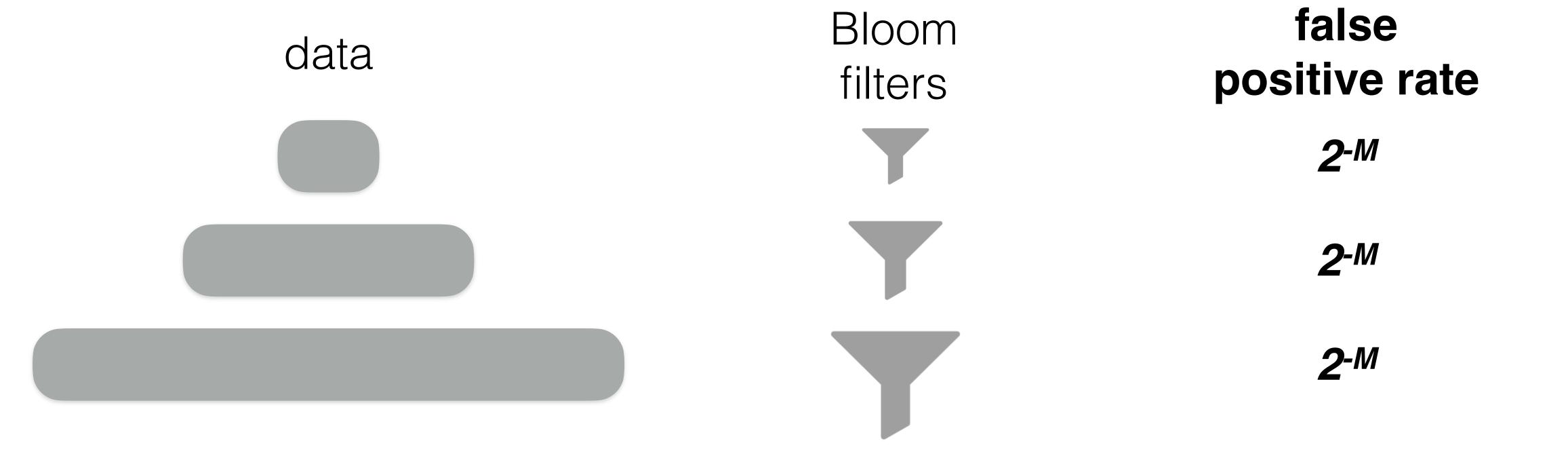












false positive rate

$$= O(2^{-M} \cdot \log_T N/P)$$

false positive rate

$$= O(2^{-M} \cdot \log_{7} N/P)$$

Bloom

most memory filters

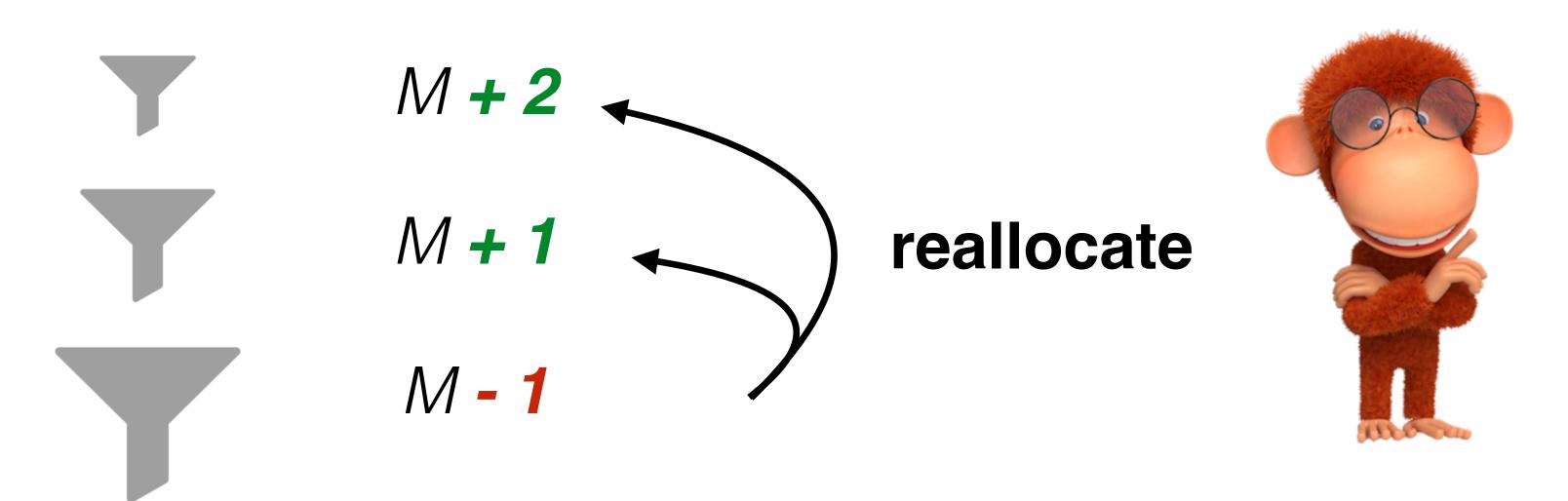


false positive rate

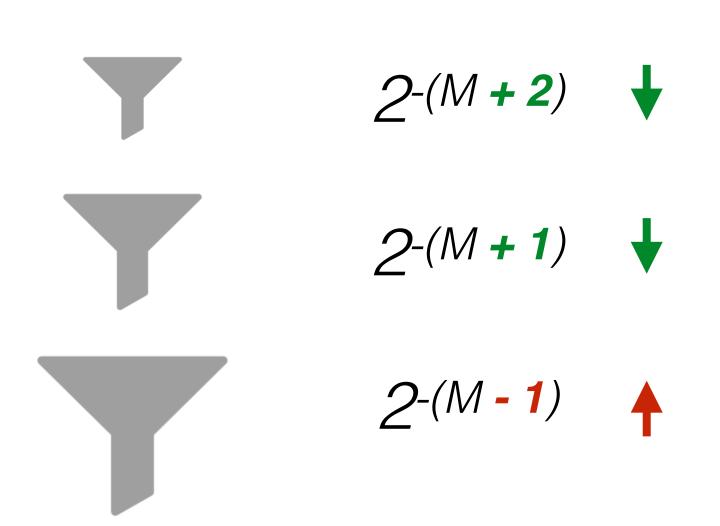
2-M

2-M

2-M



false positive rates



relax

false positive rates

$$0 < p_0 < 1$$

$$0 < p_1 < 1$$

$$0 < p_2 < 1$$

relax

model

false positive rates

$$read \\ cost = \sum_{1}^{L} p_i$$

$$0 < p_0 < 1$$

$$0 < p_1 < 1$$

$$0 < p_2 < 1$$

memory
$$= -\sum_{i}^{L} \frac{N}{T^{L-i}} \cdot \frac{\ln(p_i)}{\ln(2)^2}$$

relax

false positive rates

$$0 < p_0 < 1$$

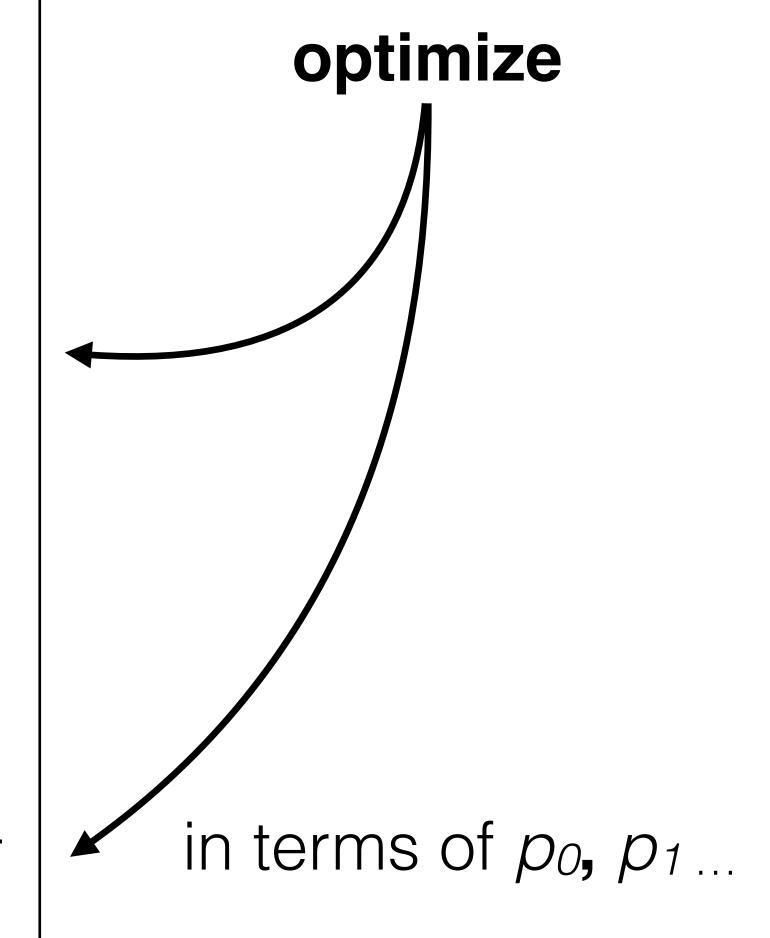
$$0 < p_1 < 1$$

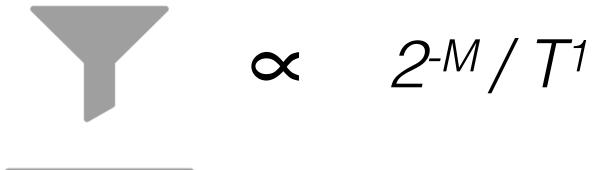
$$0 < p_2 < 1$$

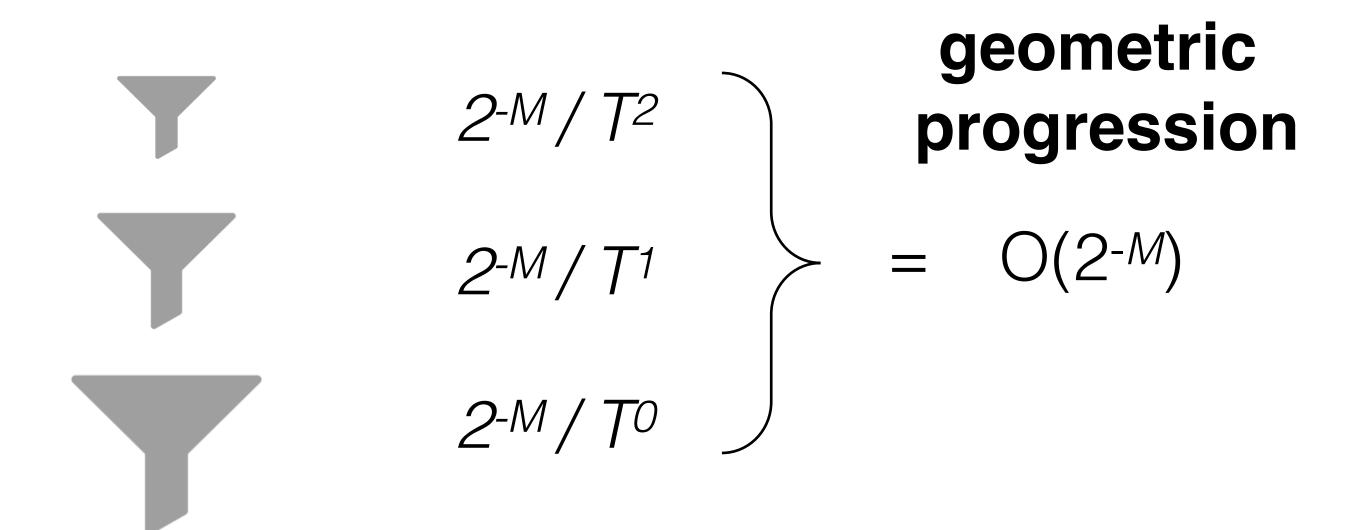
model

$$read \\ cost = \sum_{1}^{L} p_{i}$$

memory
$$= -\sum_{i}^{L} \frac{N}{T^{L-i}} \cdot \frac{\ln(p_i)}{\ln(2)^2}$$







Faster worst case

$$O(2^{-M}) < O(2^{-M} \log_T N/P)$$

Configuration

buffer 2MB

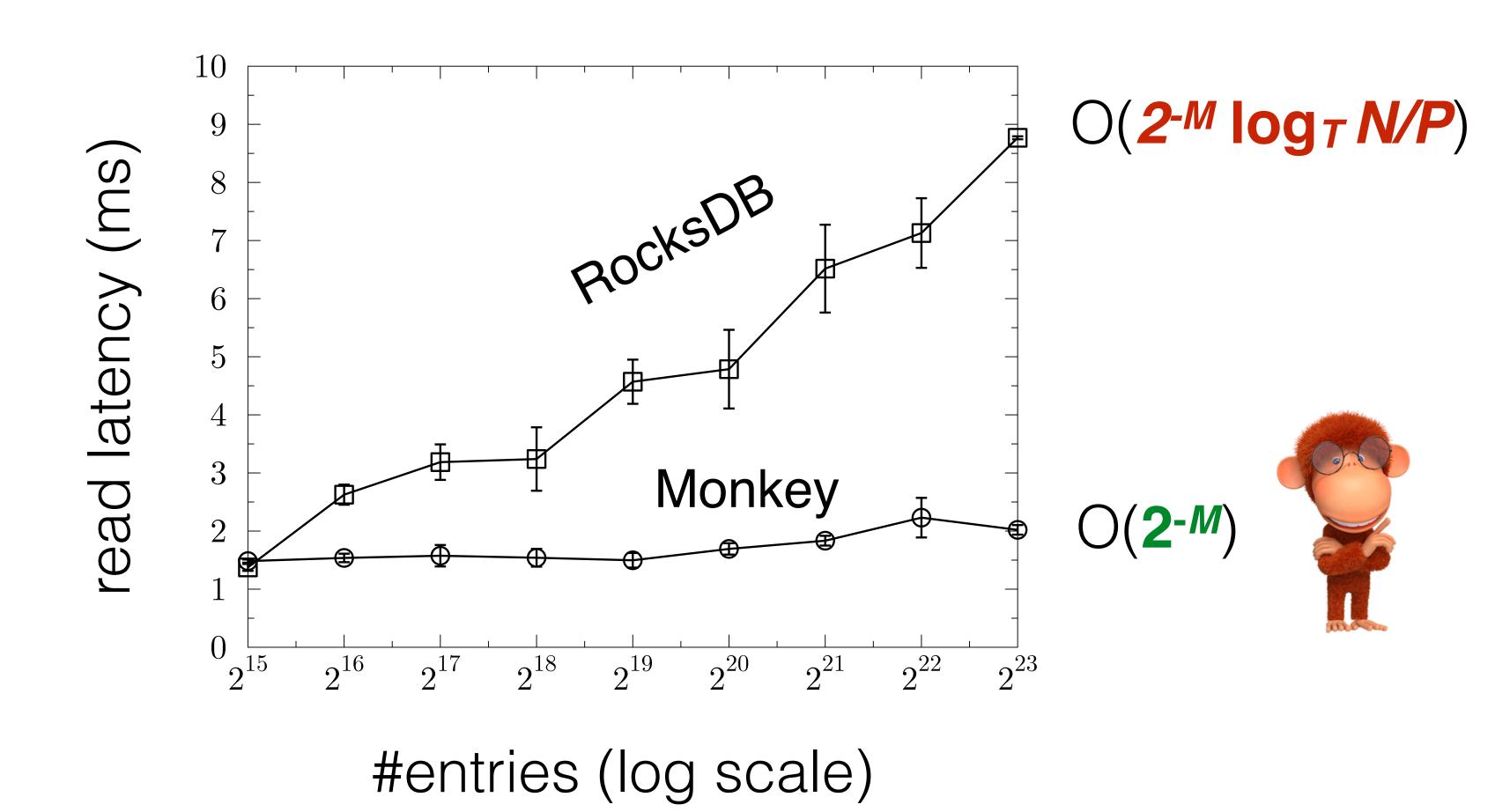
bits/entry: 5

size ratio: 2

1KB entries

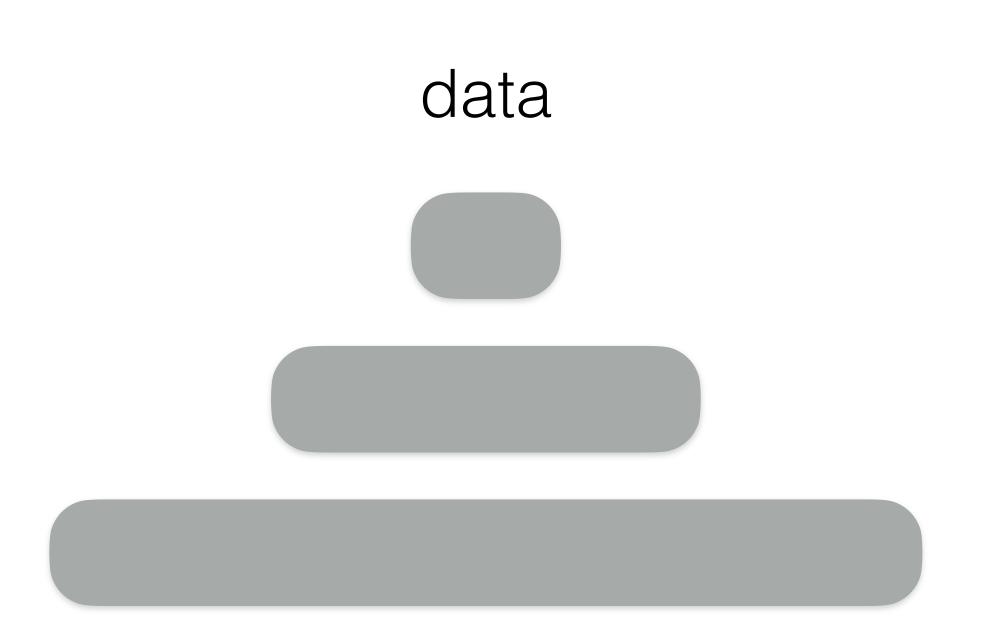
queries to missing keys

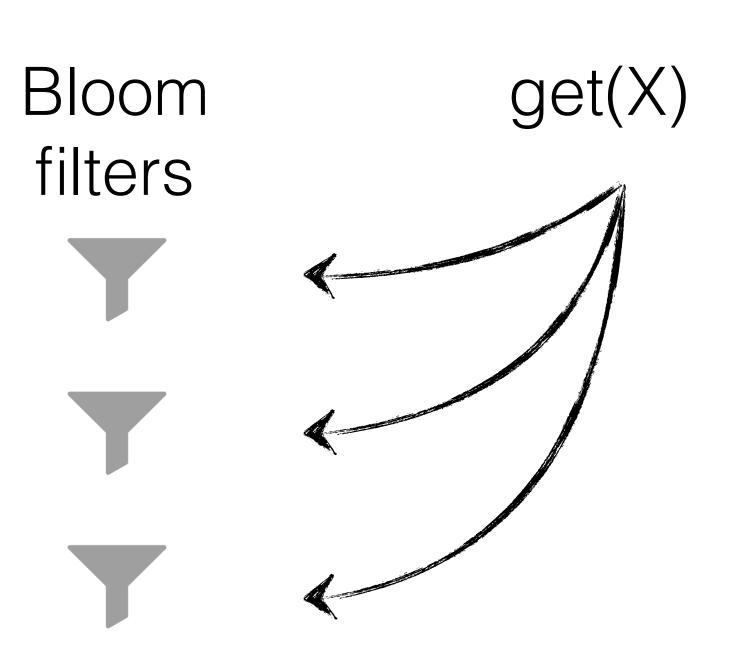
hard disk storage



Positive Query = $M \cdot ln(2)$

Avg. Negative Query = 2

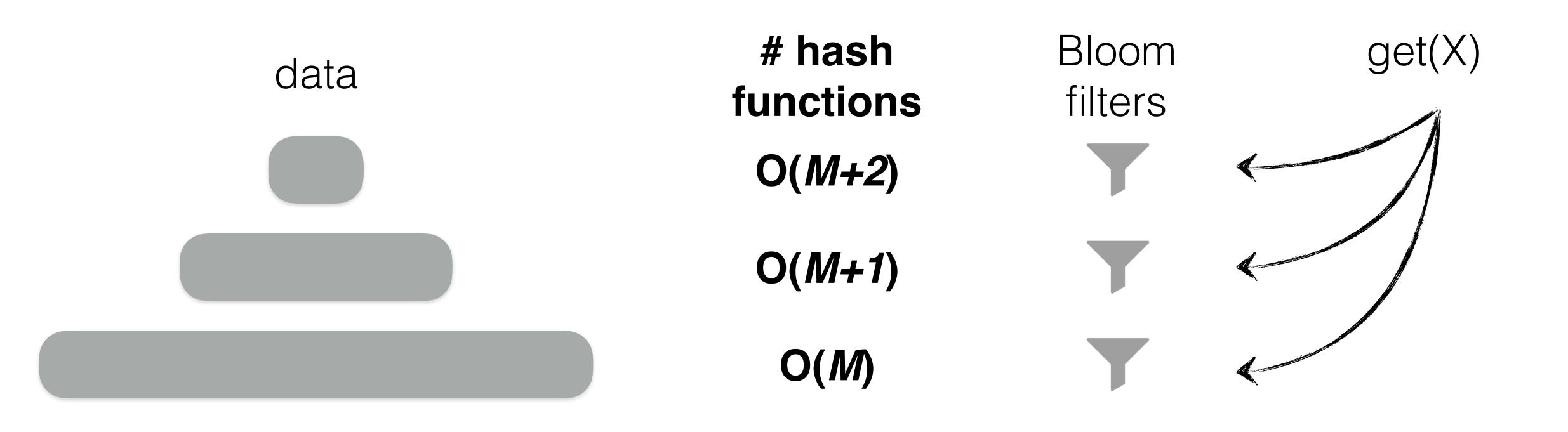




Worst-case:

Positive Query = $M \cdot ln(2)$

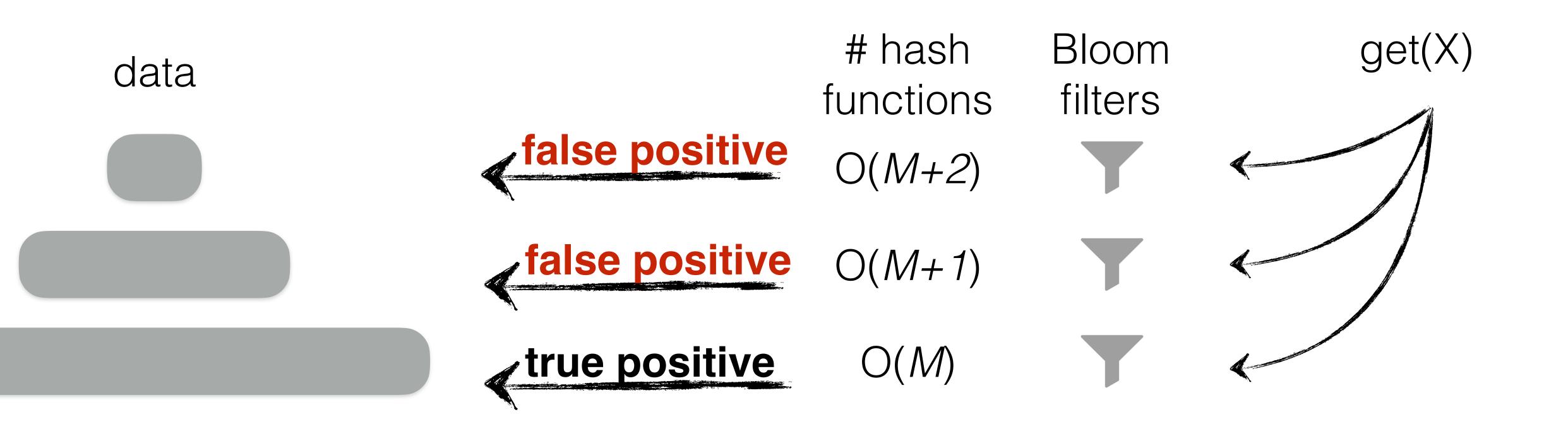
Avg. Negative Query = 2



Worst-case:

Positive Query = $M \cdot ln(2)$

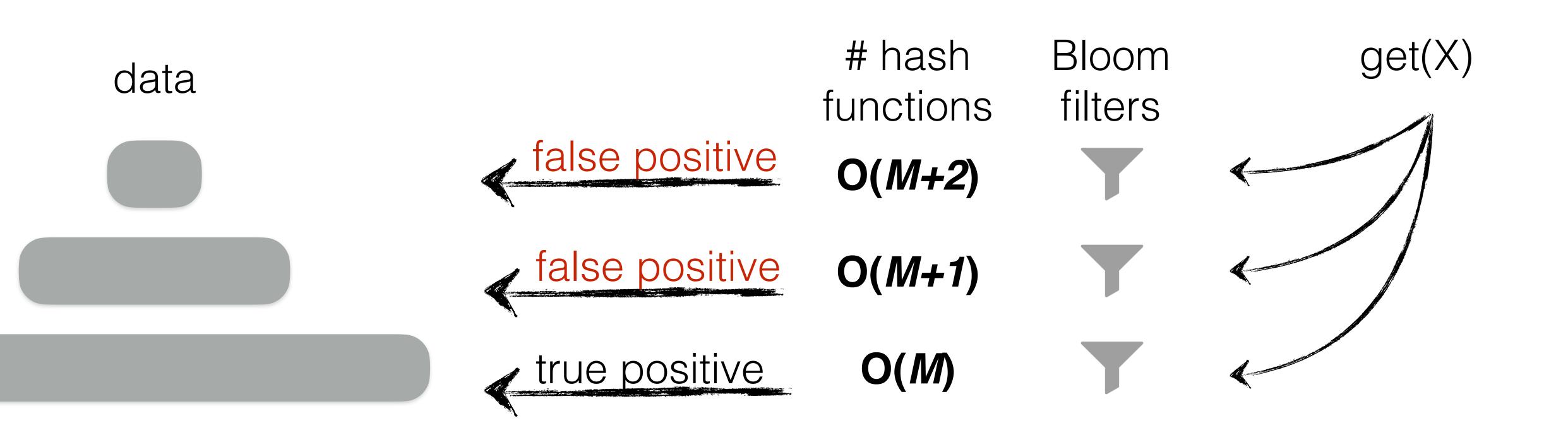
Avg. Negative Query = 2



Worst-case:

Positive Query = $M \cdot ln(2)$

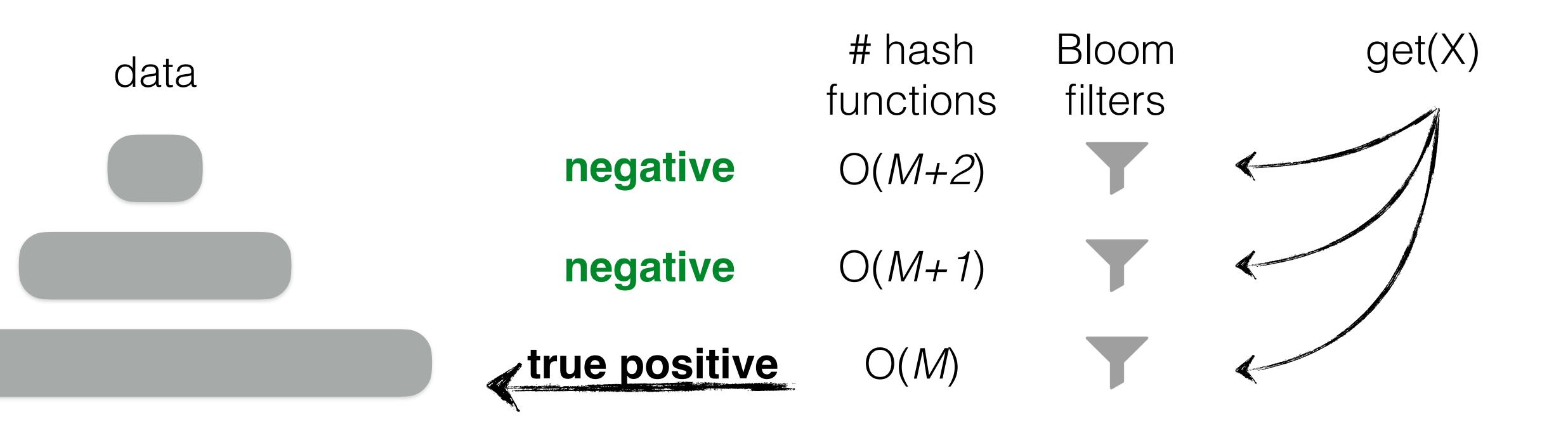
Avg. Negative Query = 2



Worst-case: O(M·L+L²)

Positive Query = $M \cdot ln(2)$

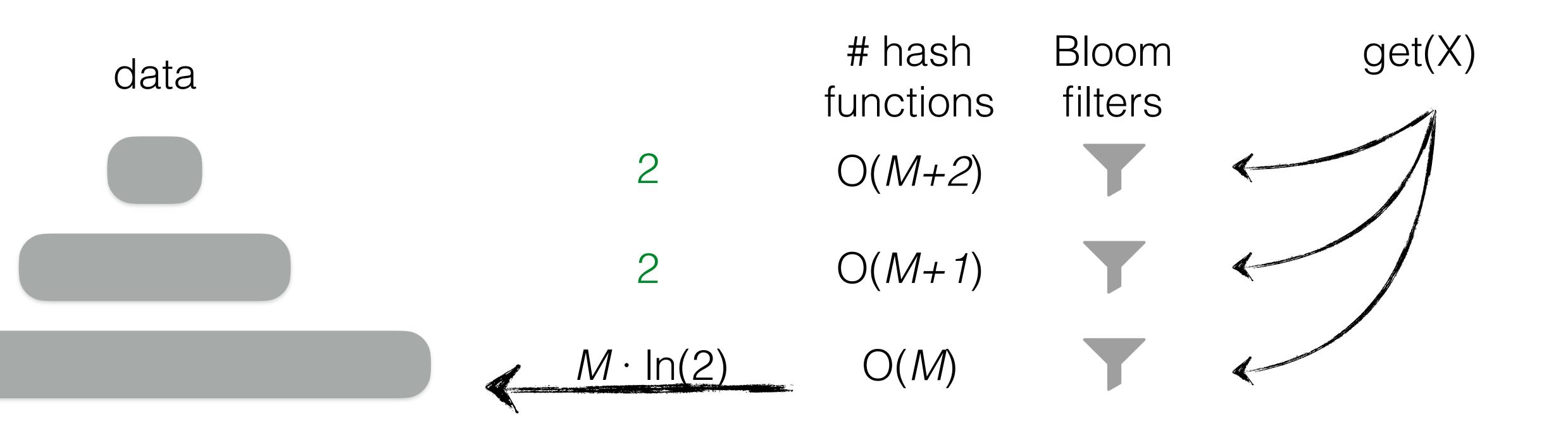
Avg. Negative Query = 2



Worst-case: $O(M \cdot L + L^2)$ Avg. worst-case:

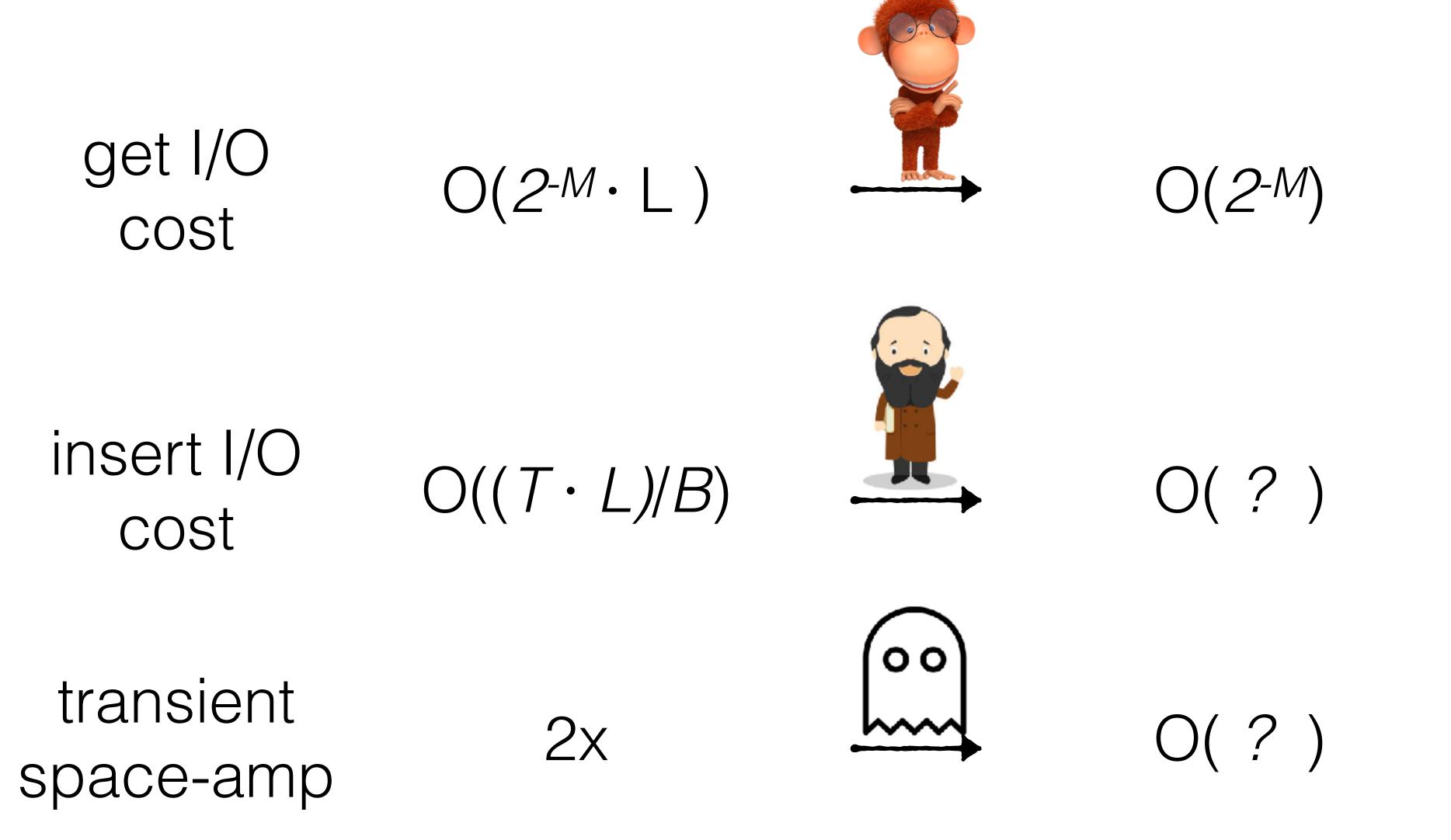
Positive Query = $M \cdot ln(2)$

Avg. Negative Query = 2



Worst-case: O(M·L+L²)

Avg. worst-case: O(M+L)



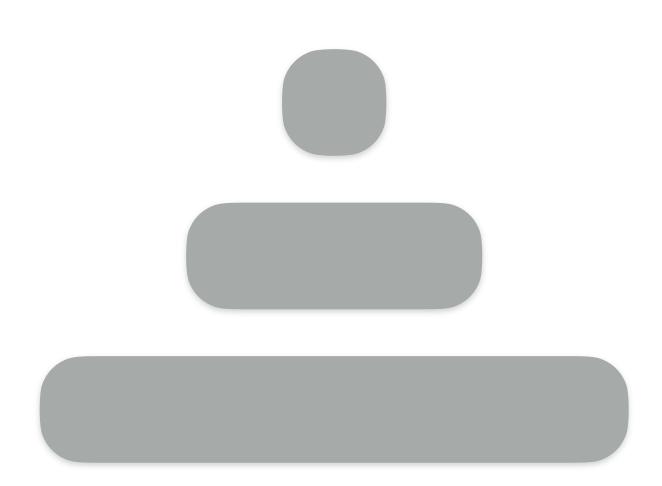
 $L = log_T N/P$ (Costs assuming leveling)

Dostoevsky

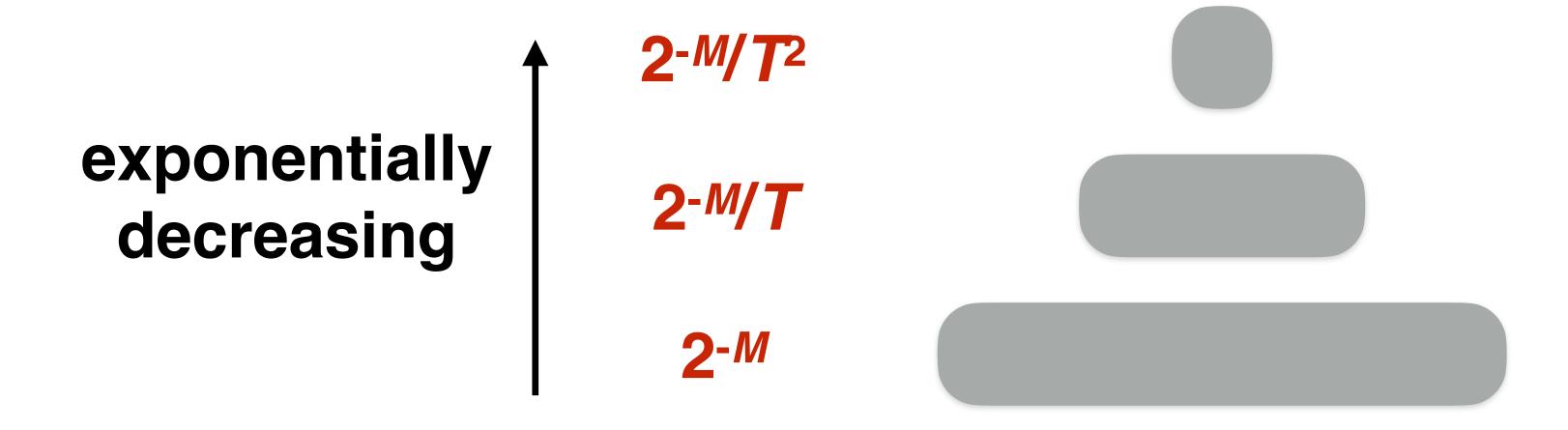
SIGMOD18

Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store

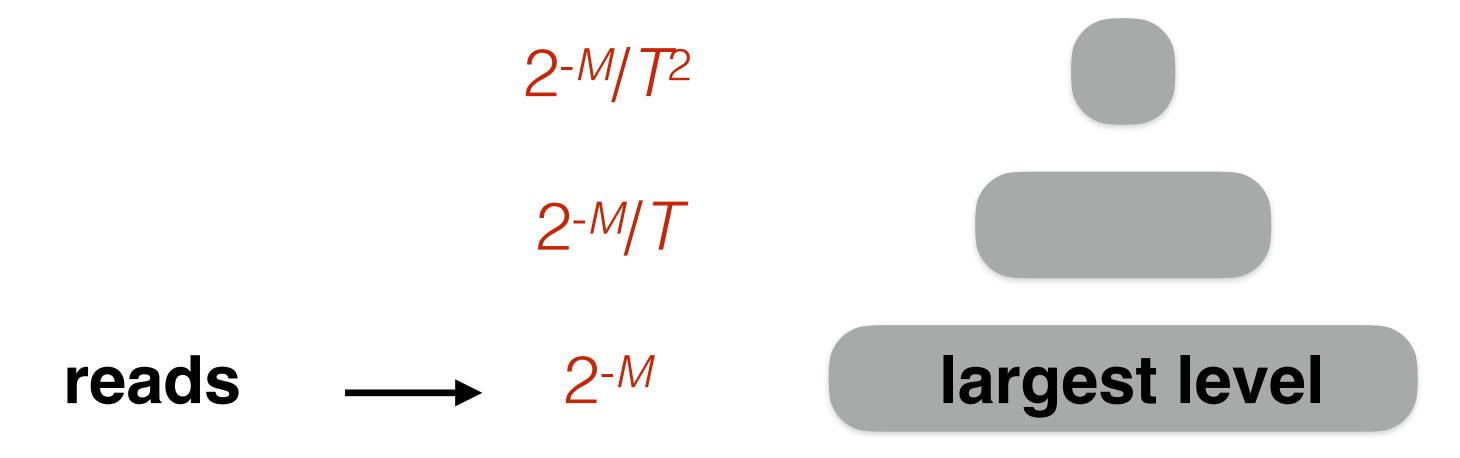
reads & writes cost breakdown



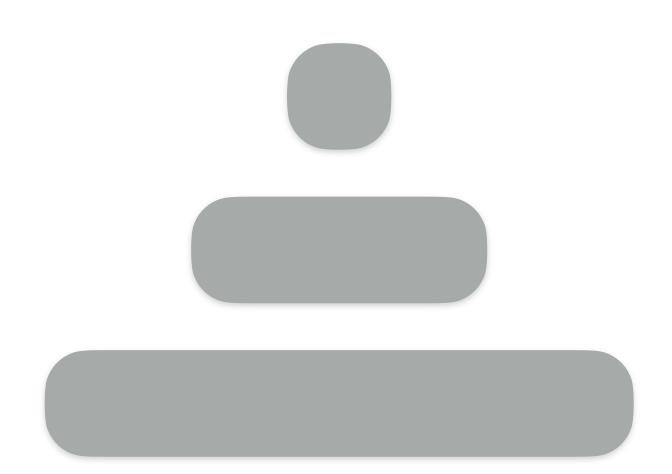
false positive rates

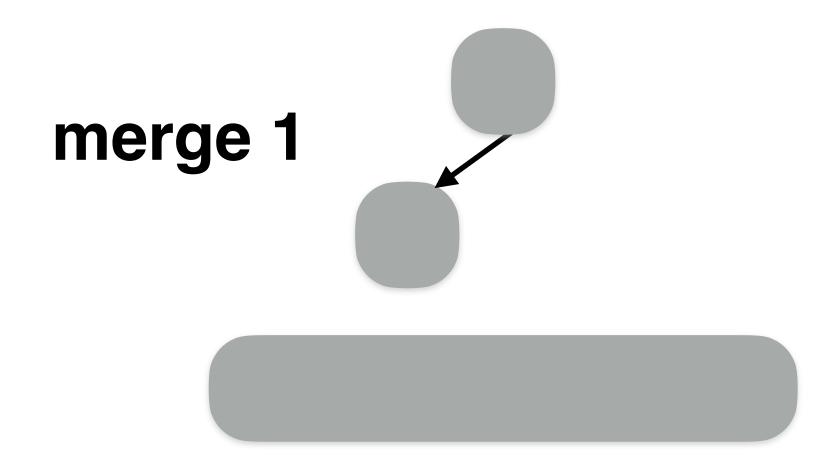


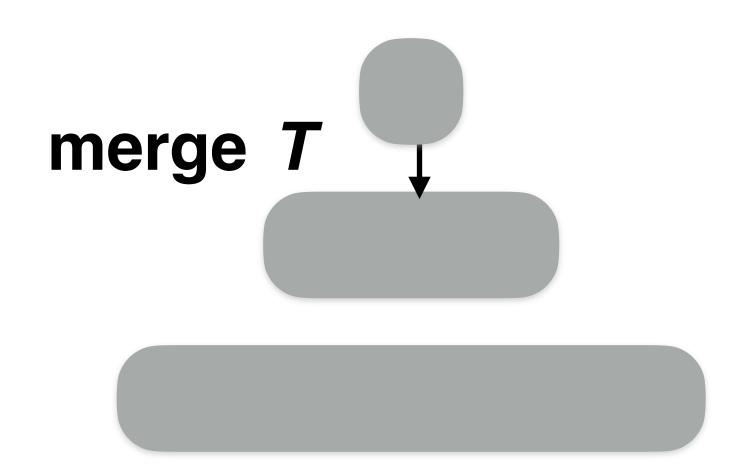
false positive rates

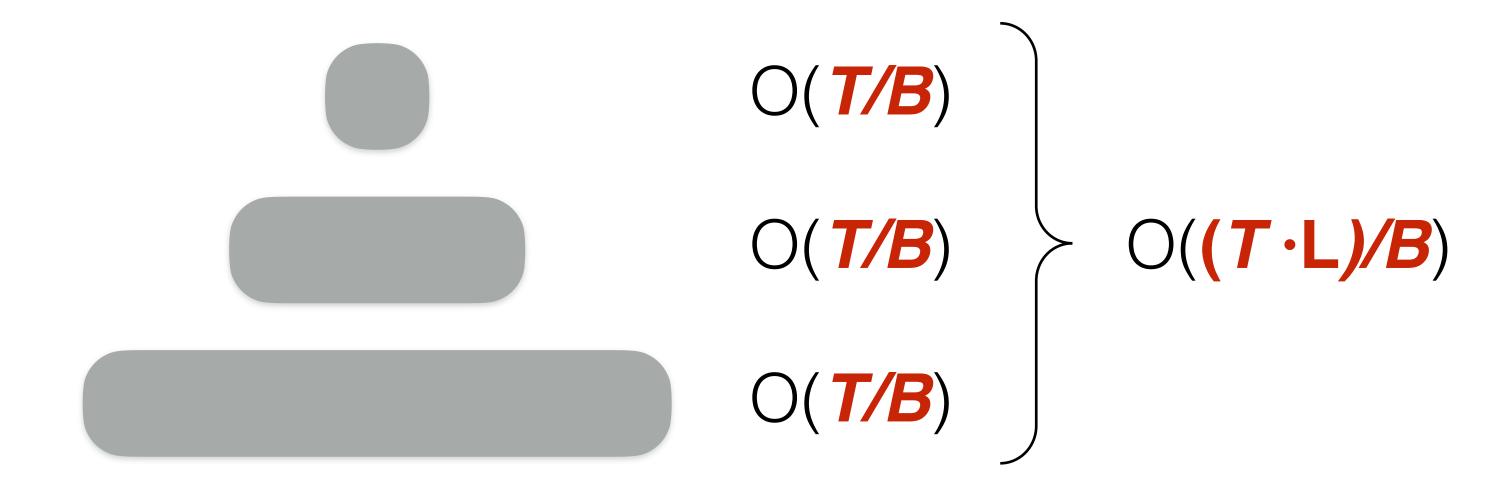


reads O(2-M) writes





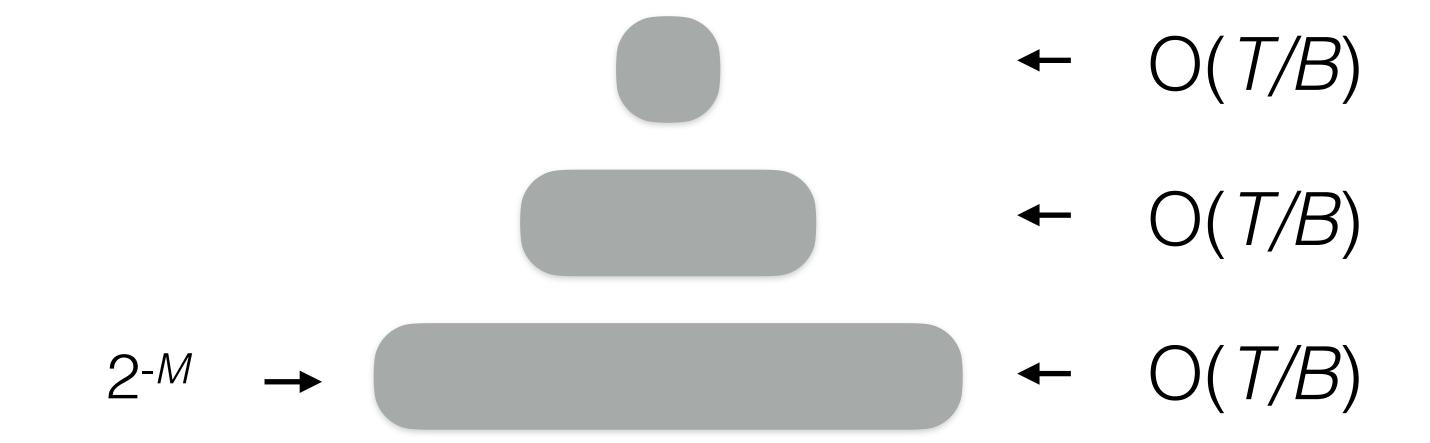


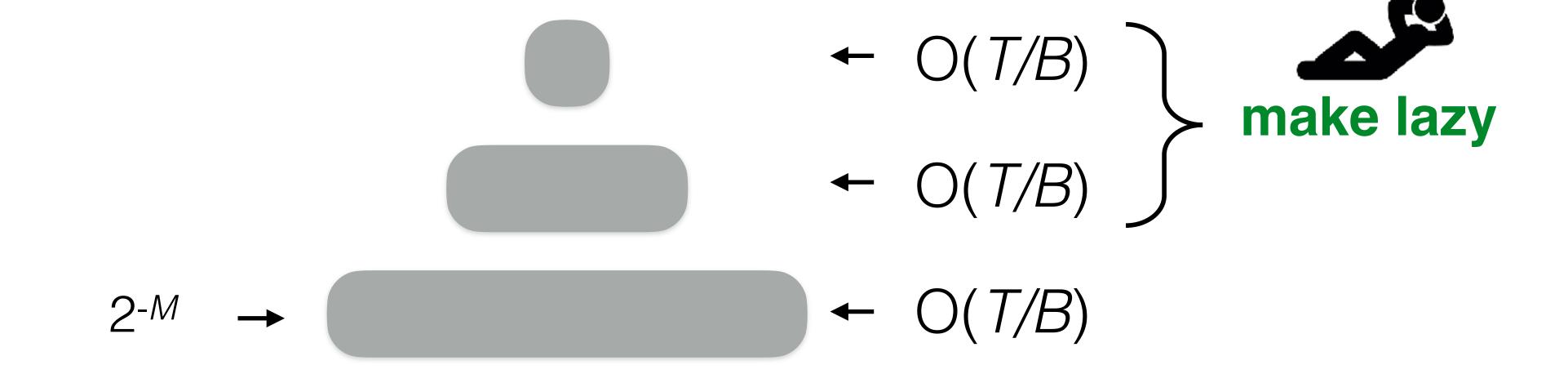


$$O(2^{-M})$$
 $O((T \cdot L)/B)$
=
=
 $2^{-M}/T^2$ $O(T/B)$
+
 $2^{-M}/T$ $O(T/B)$
+
 $O(T/B)$

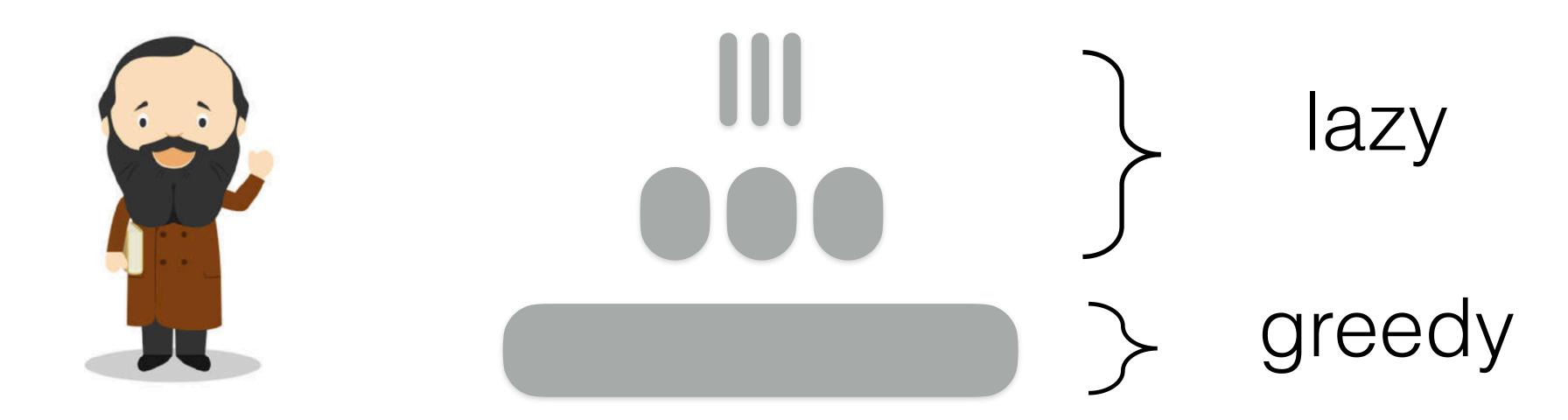
reads
largest level

writes
all levels

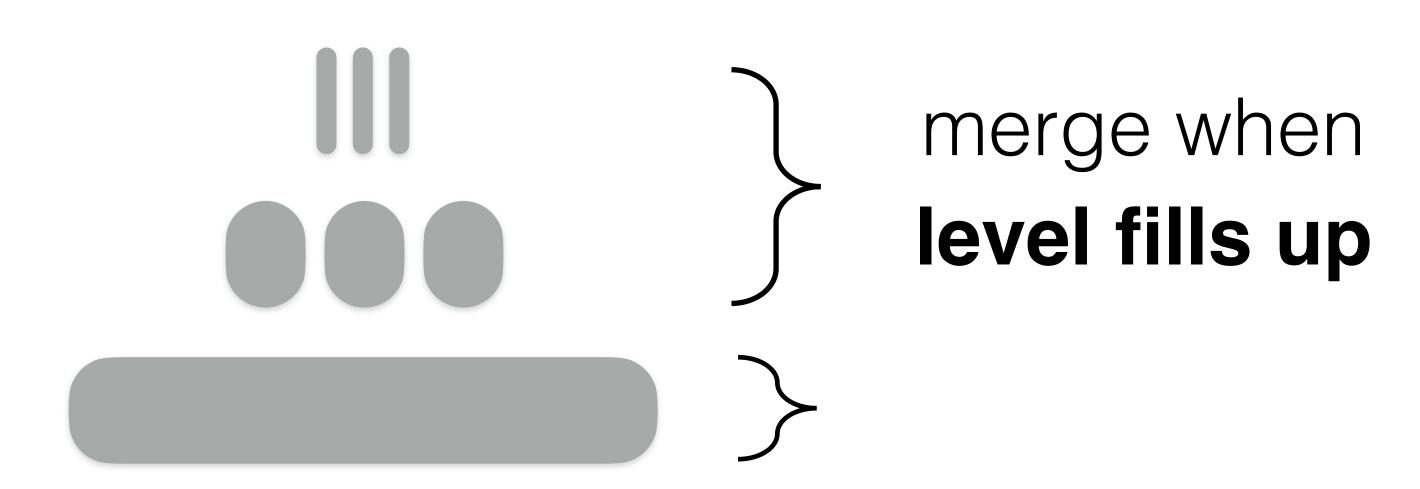




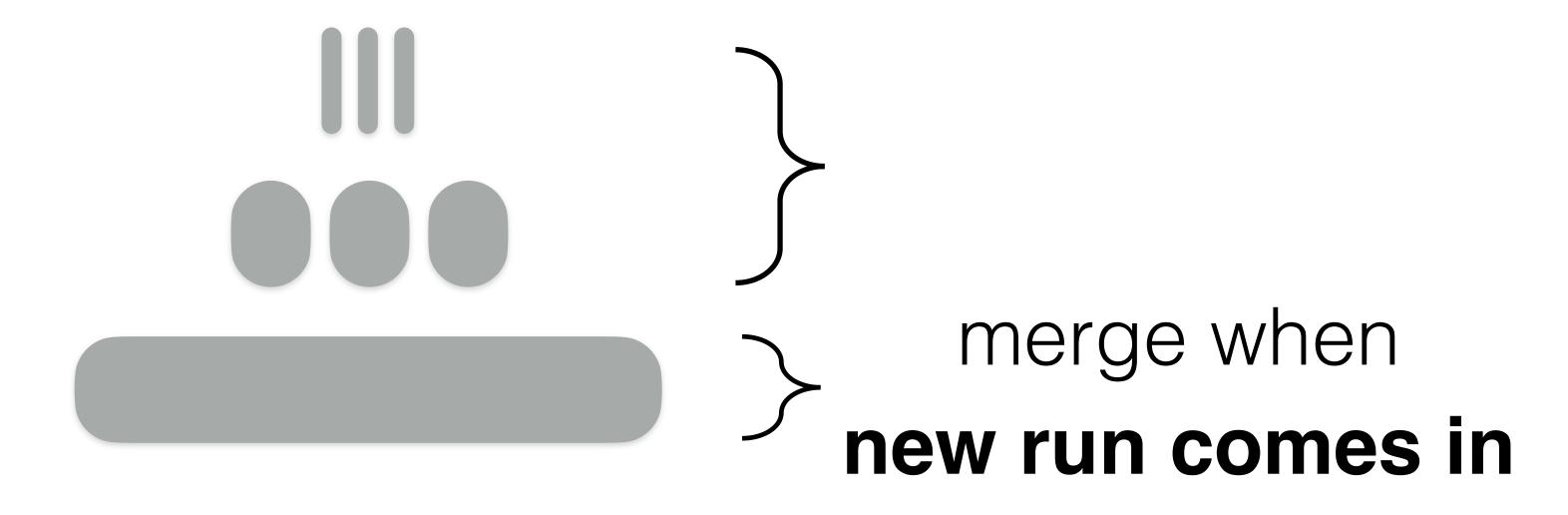
Dostoevsky

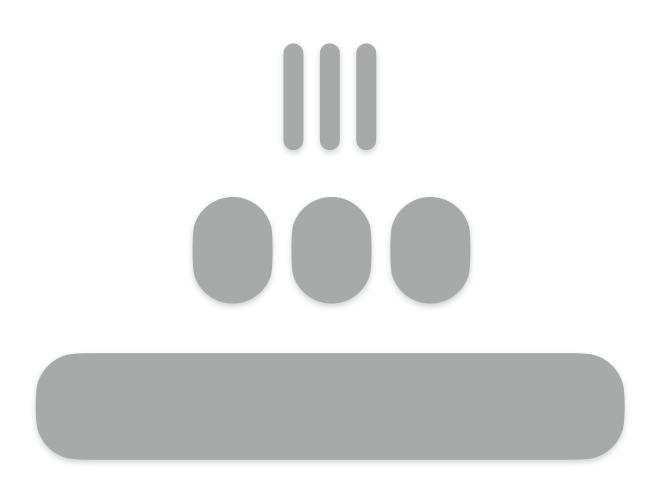


Dostoevsky

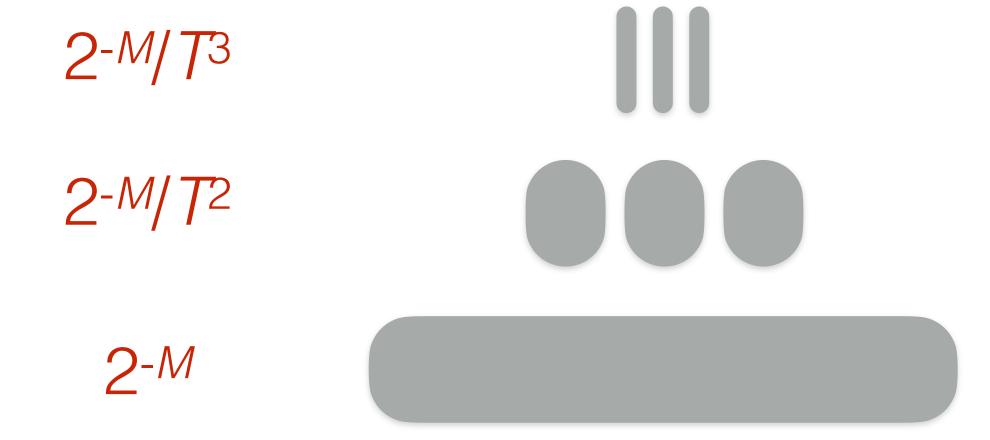


Dostoevsky

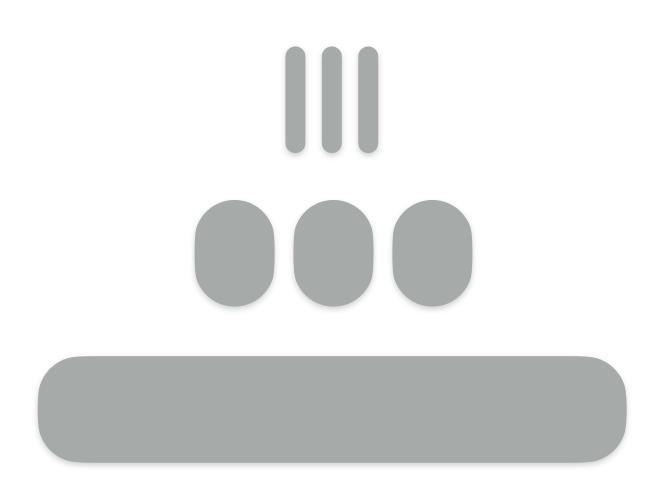




false positive rates



 $O(2^{-M})$



 $O(2^{-M})$

writes

O(1/B)

O(1/B)

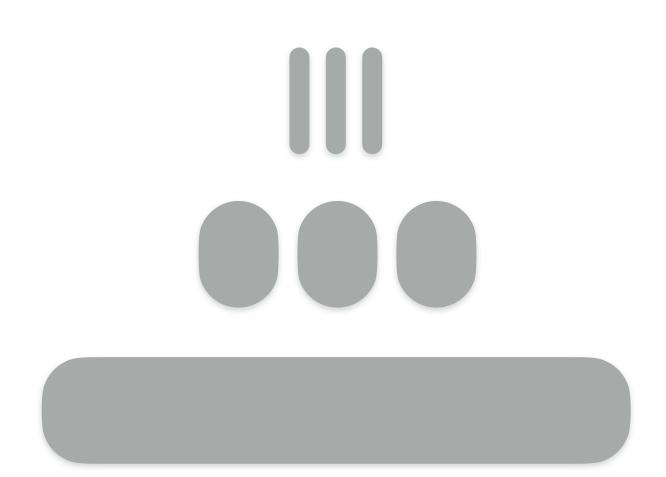
O(*T/B*)

 $O(2^{-M})$

 $O(2^{-M})$

writes

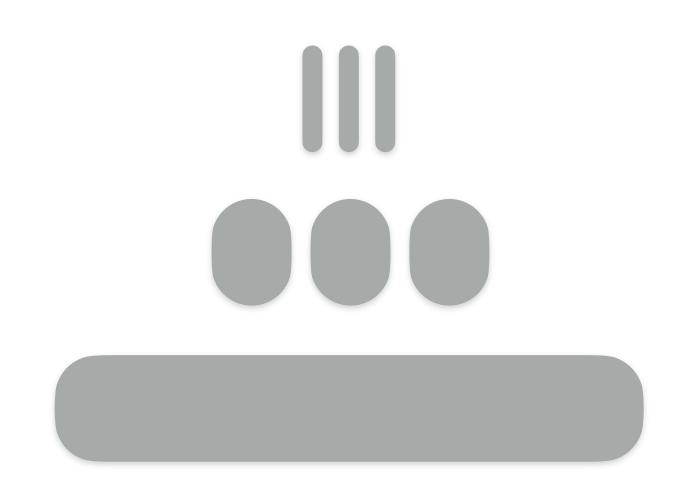
O((T + L)/B)



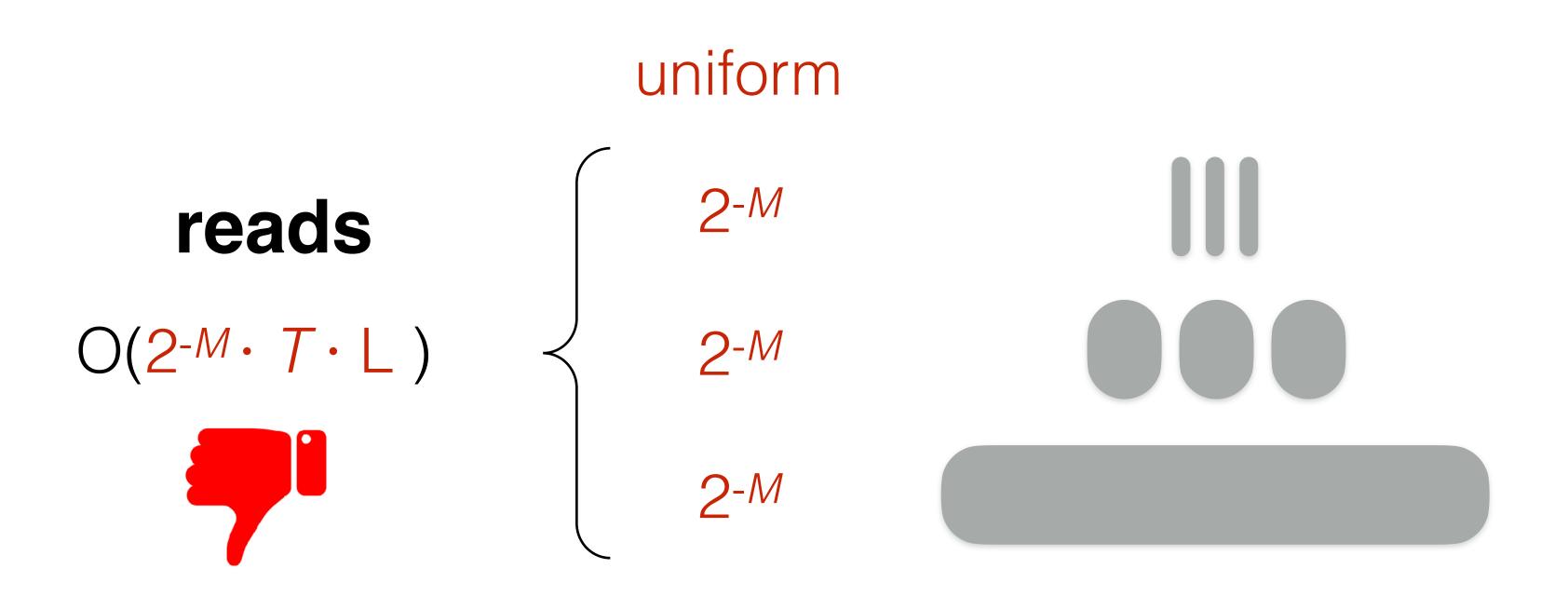
What would our read cost have been if we employed uniform FPRs at all levels?

reads writes

 $O(2^{-M})$ O((T + L)/B)

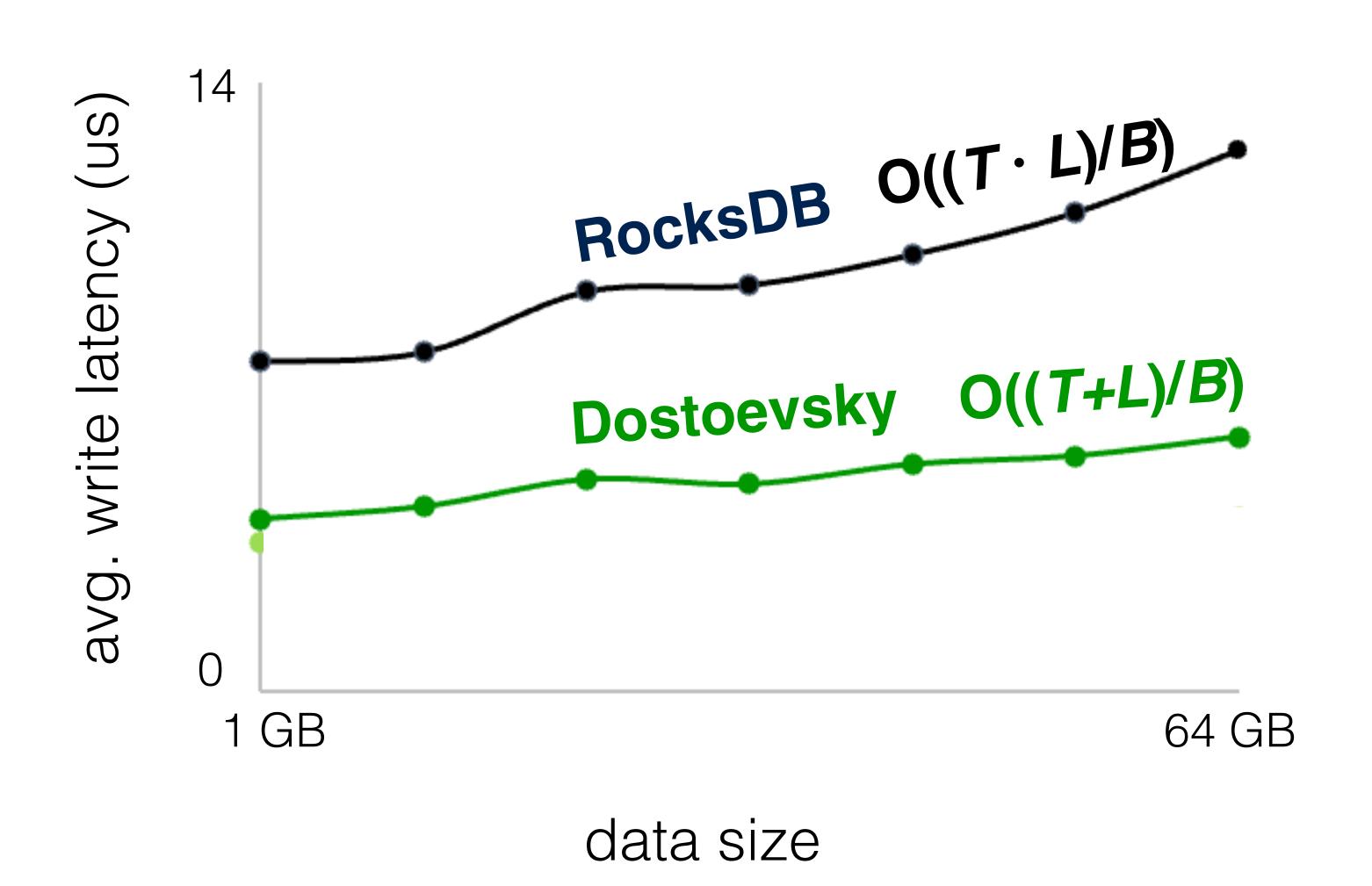


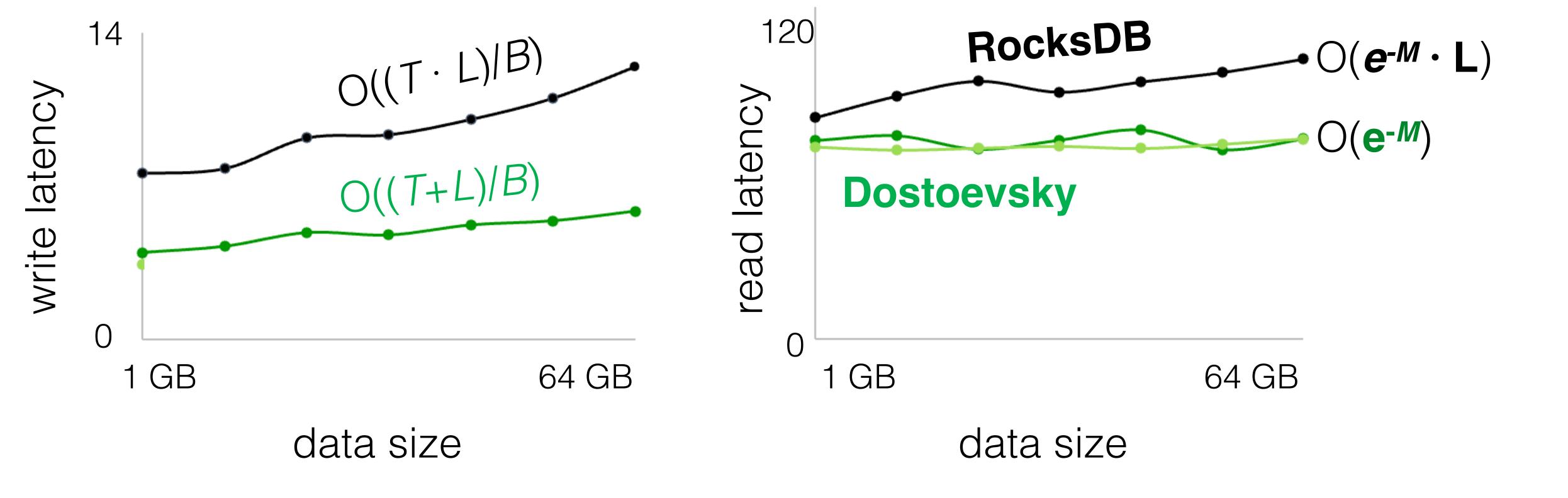
What would our read cost have been if we employed uniform FPRs at all levels?

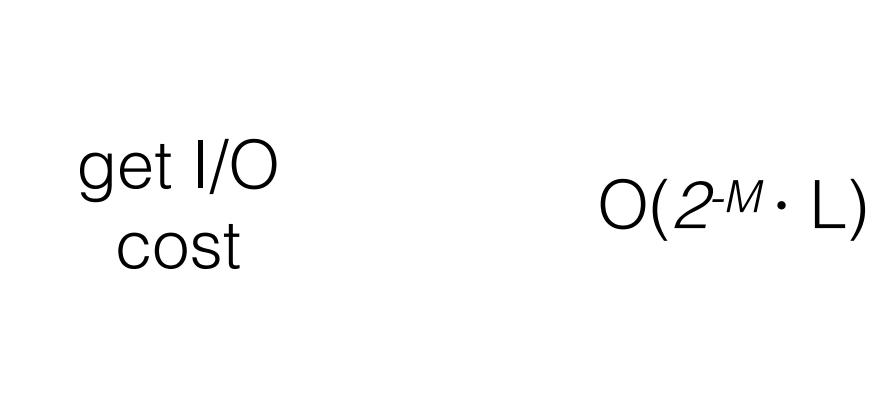


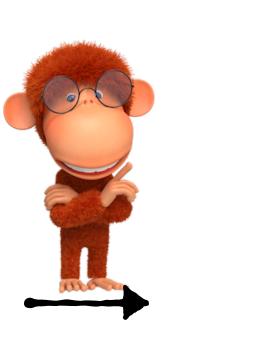
Configuration

buffer 2MBsize ratio: 51KB entriesSSD storage









 $O(2^{-M})$

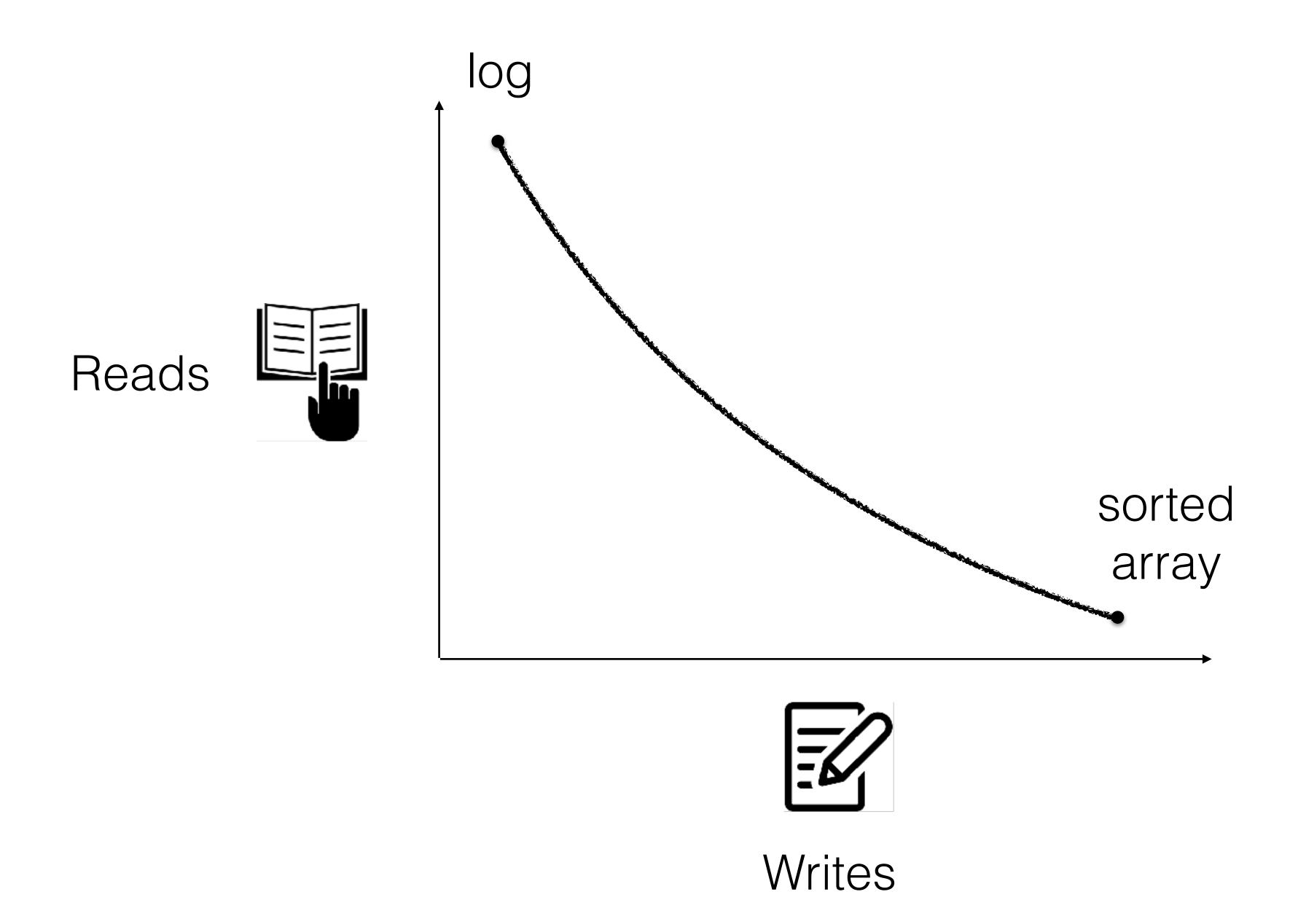
insert I/O cost

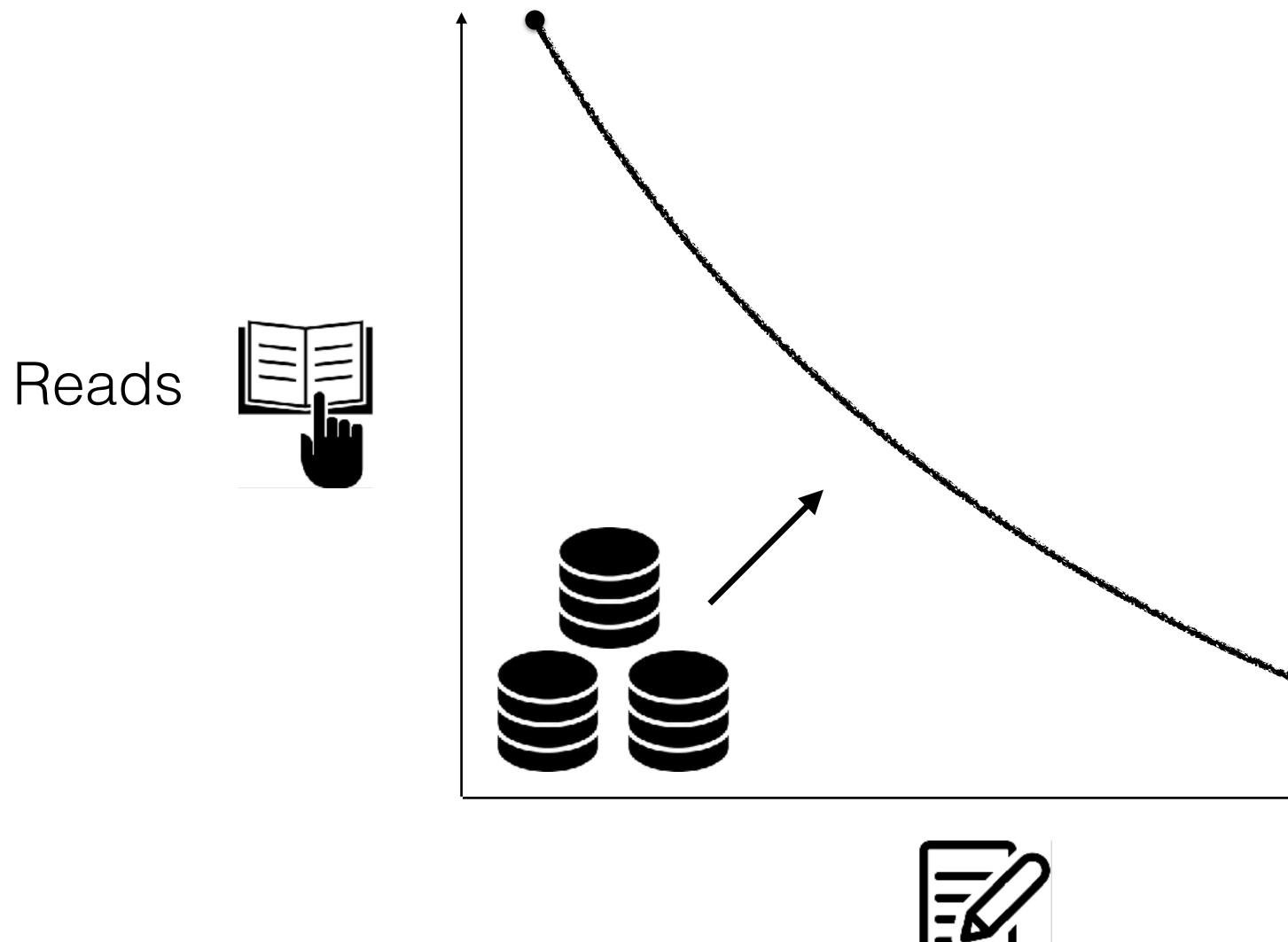
 $O((T \cdot L)/B)$

O((*T*+L)/B)

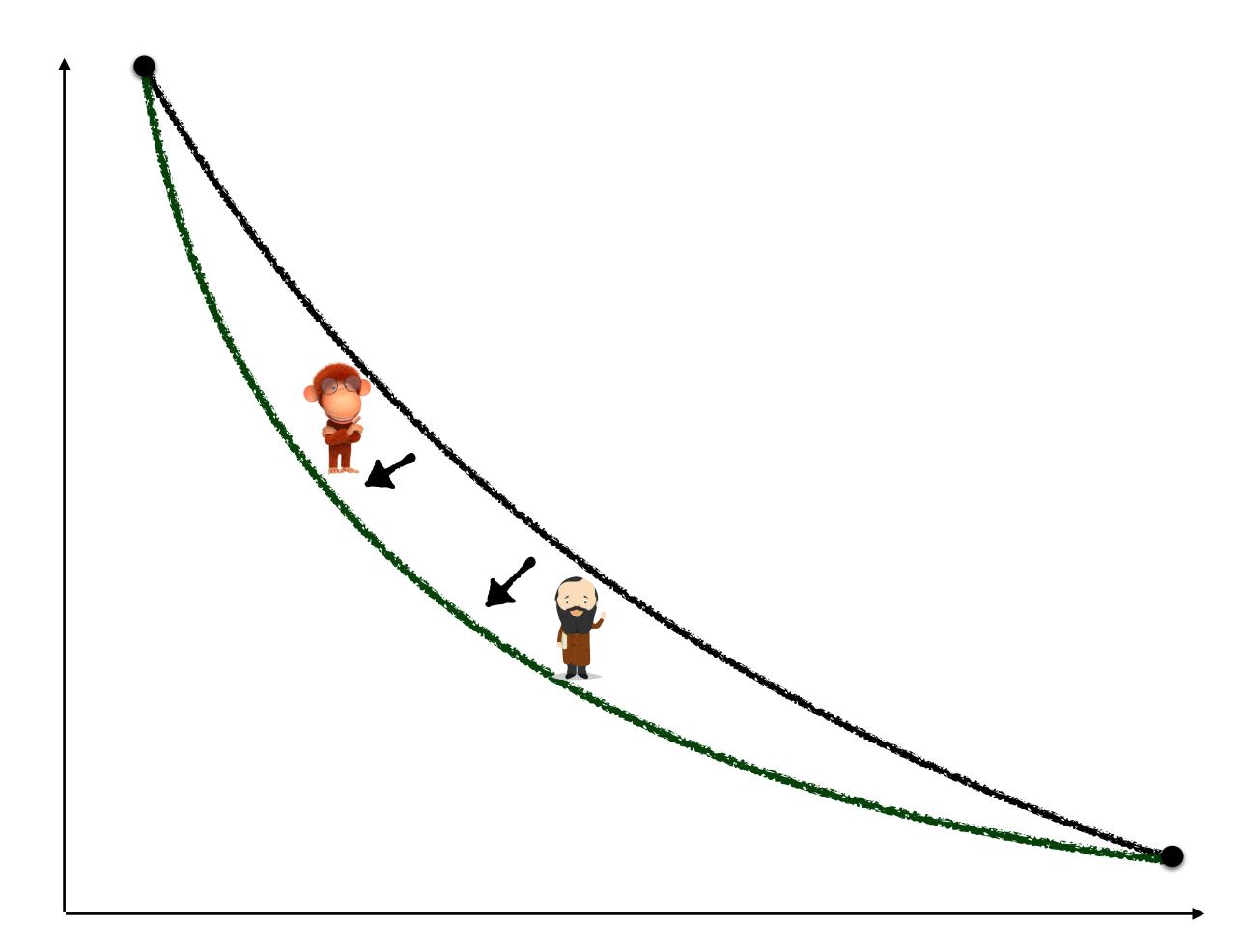
 $L = log_T N/P$ (Costs assuming leveling)

Better scalability with data growth

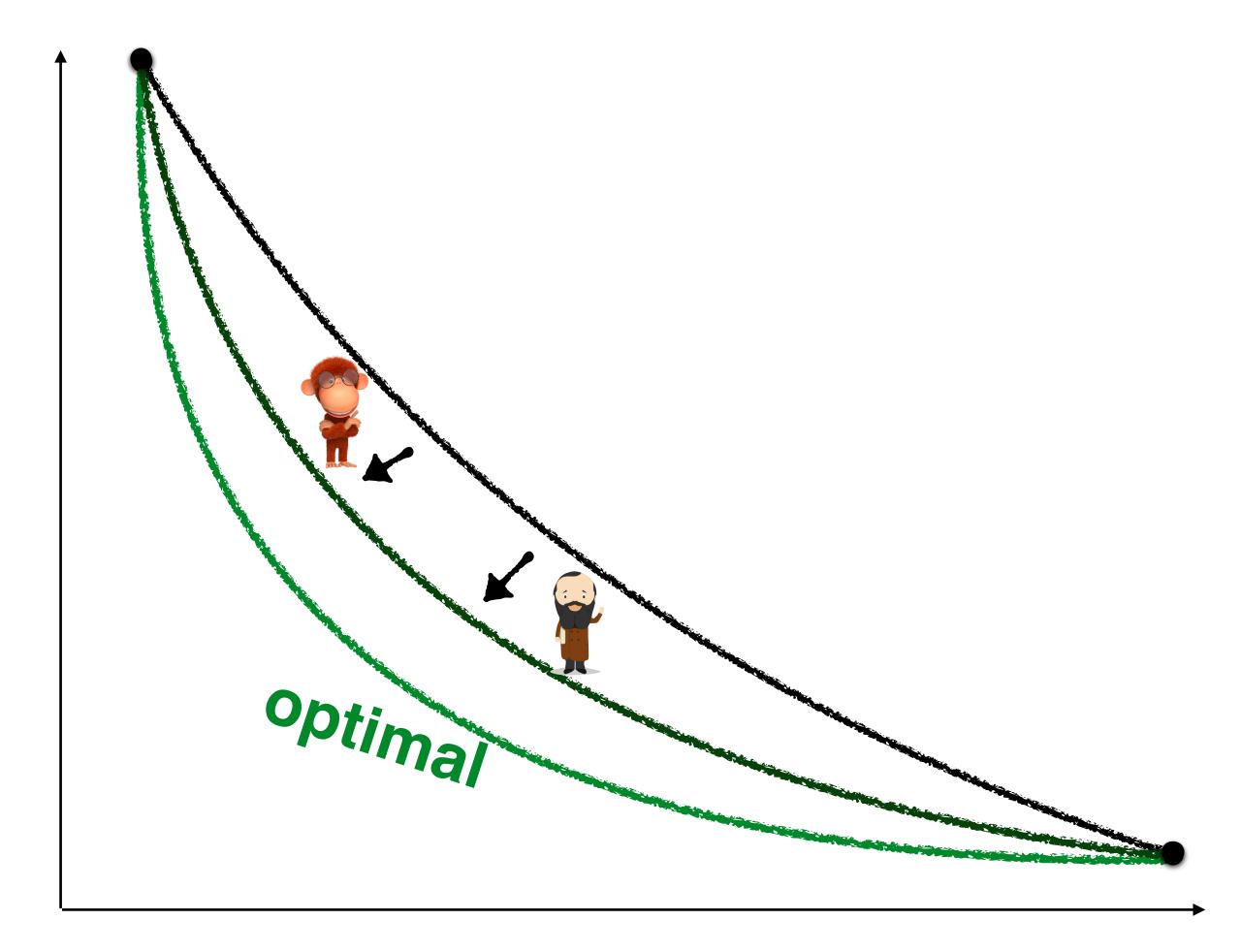




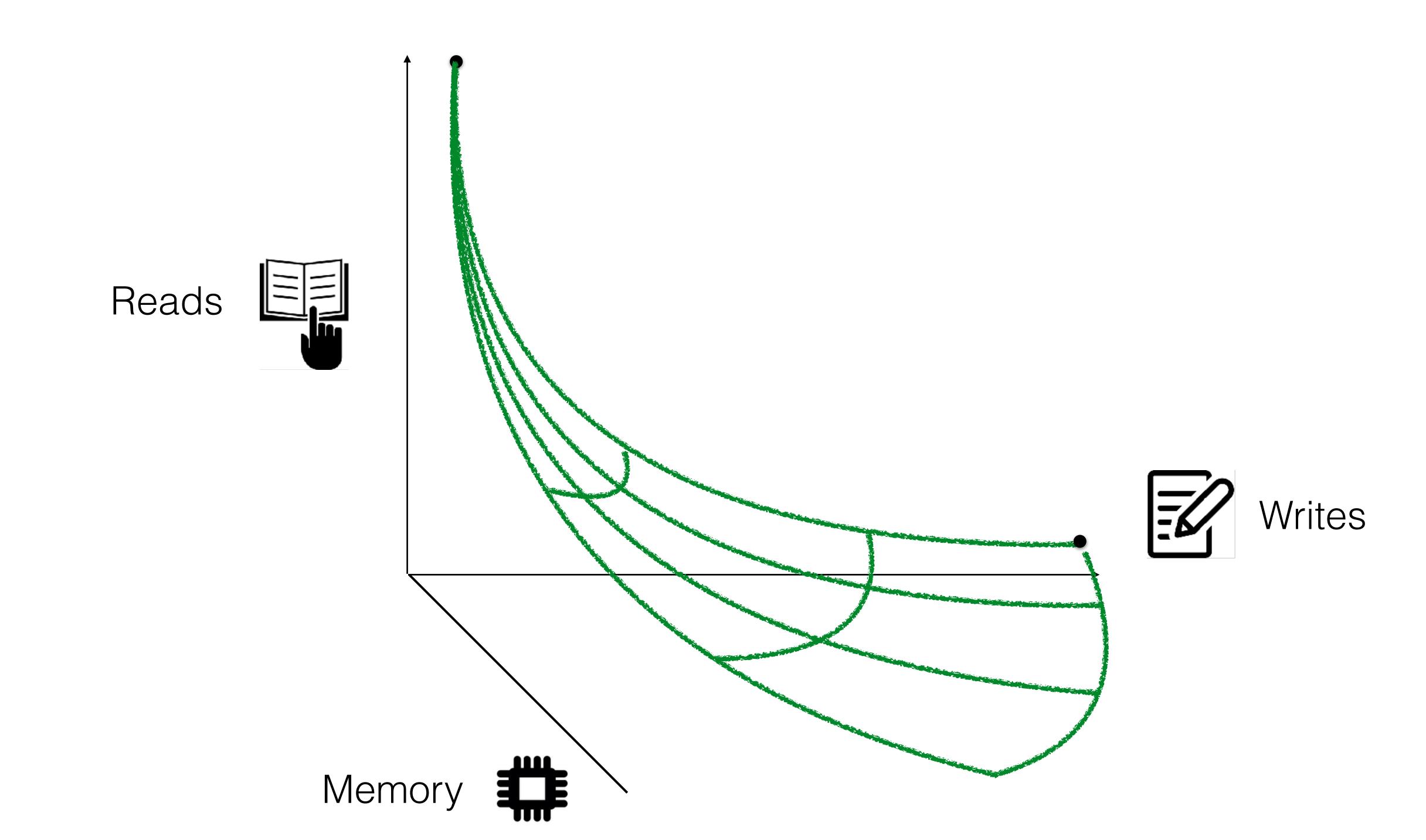
Writes

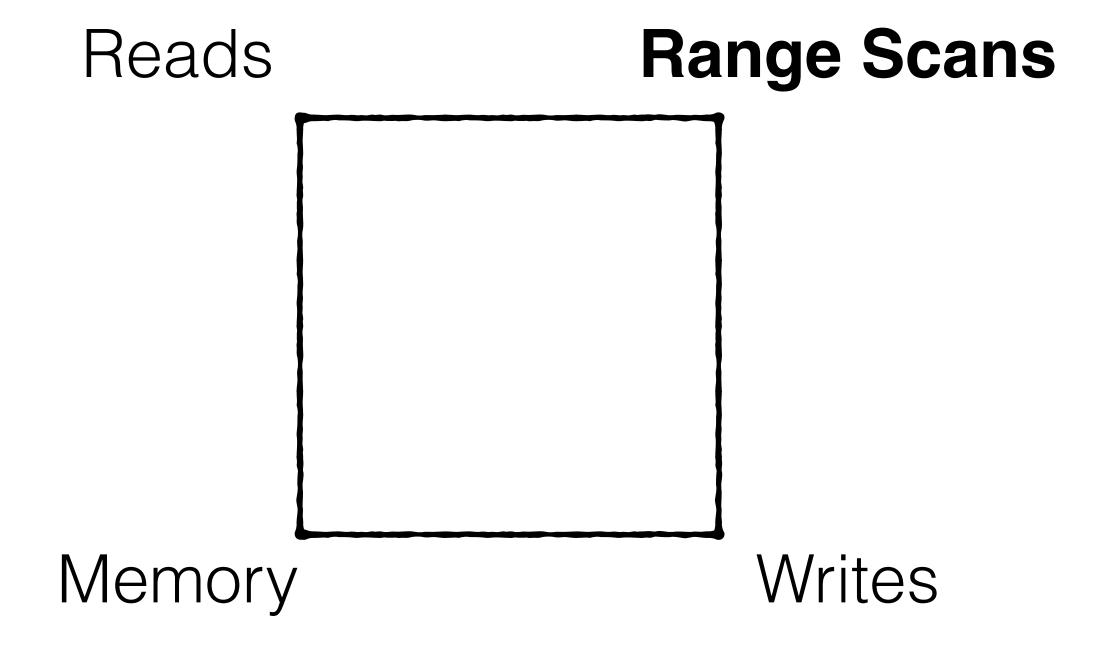


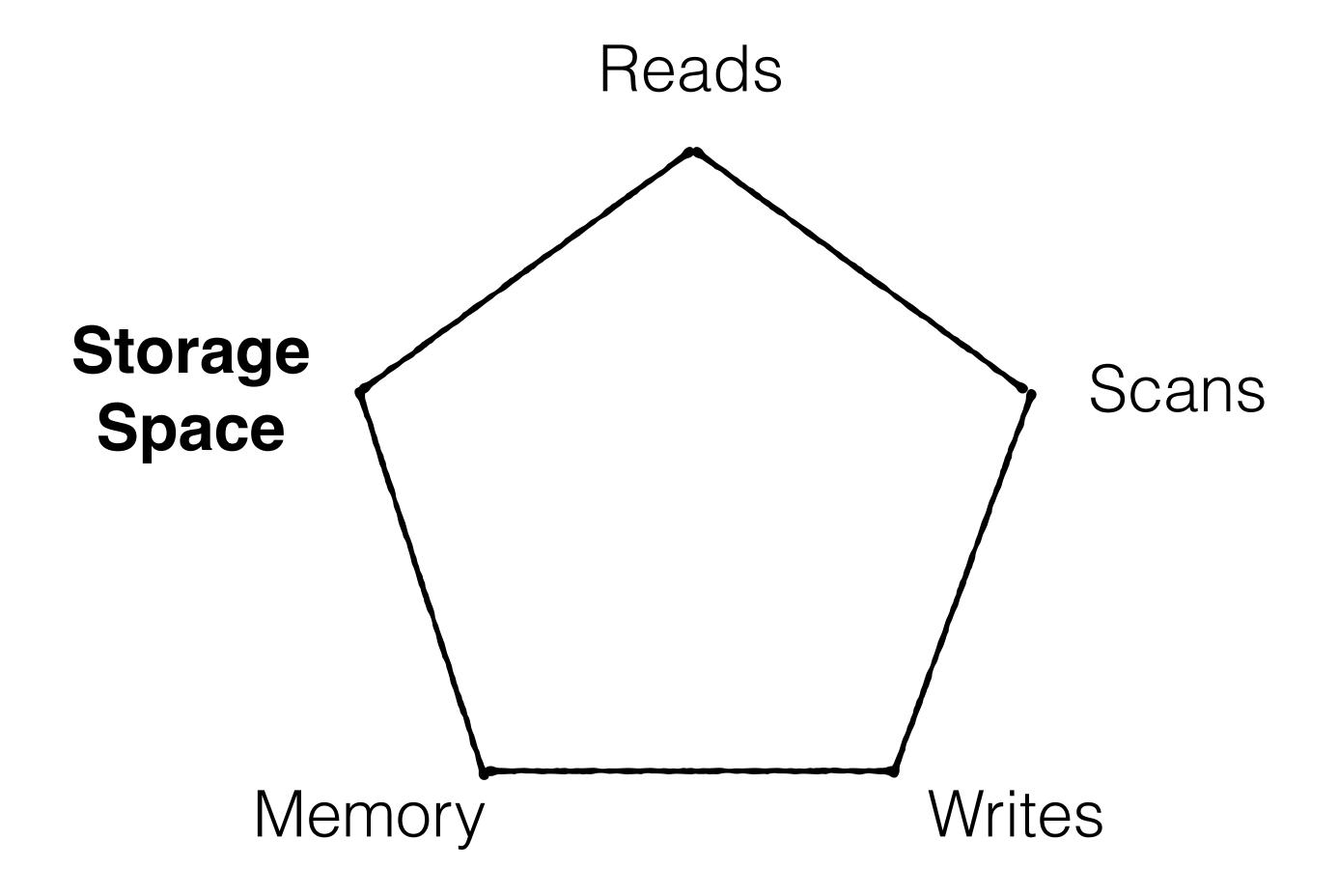
Writes

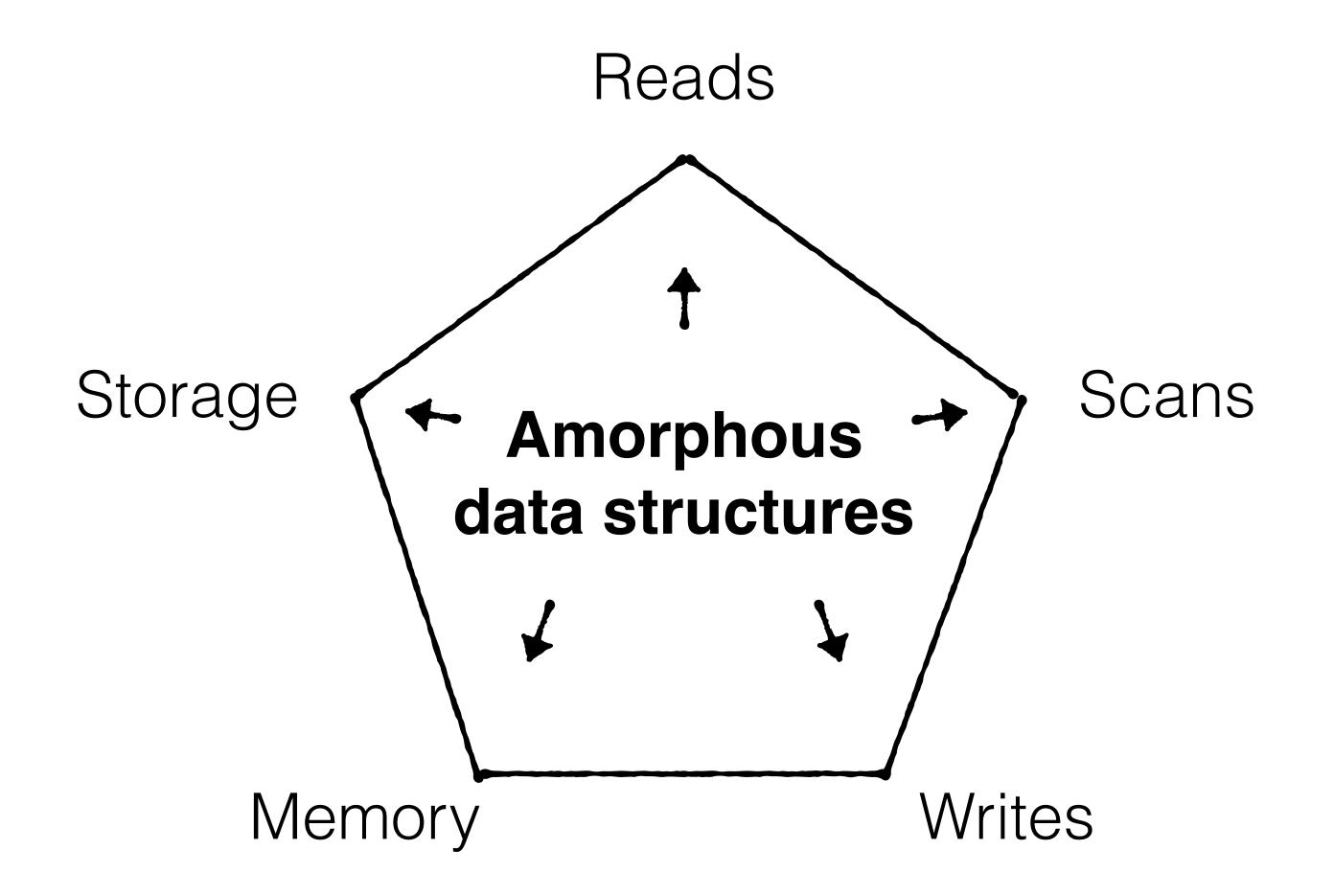


Writes









Thanks

