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56 groups - 
mostly of threes

157 / 169 students 
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Feedback week 
next week - will 
announce when.
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Oct 14 in class Open book
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random writes to small entries: a bad idea



mechanical 
latency

random writes to small entries: a bad idea
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The Log-Structured Merge-Tree
1996 - Patrick O’Neil



LSM-Tree

Google's BigTable

Amazon’s DynamoDB
Facebook’s RocksDB


…

Apache Cassandra
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If tombstone is found, 
report key doesn’t exist 
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LevelingTiering

two merge policies
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1 run per level

log sorted 
array

O(lN/Pl) runs per level

size ratio T

LevelingTiering

= N/P
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Why use a Filter?
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positive is 
possible



False 
positive  

with prob ε

True 
negative  

with prob 1-ε

DataDoes key 
X exist

Memory

If key X does not exist



ε - false positive rate - FPR

DataDoes key 
X exist

Memory

If key X does not exist



Bloom Filters



Bloom Filters

Space/time Trade-Offs in Hash Coding with Allowable Errors
Burton Howard Bloom. Communications of the ACM, 1970. 
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k hash functions a

0 0 0 0 0 0 0 0 0 0



insert(X)

0 0 0 0 1 0 0 0 1 0

insert: Set from 0 to 1 or keep 1



insert(Y)
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insert: Set from 0 to 1 or keep 1
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0 0 1 0 1 0 0 0 1 0



Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

check(X) True 
positive



Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

check(Z) True 
negative



Queries: return positive if all hashed bits are 1s

0 0 1 0 1 0 0 0 1 0

check(Q) False 
Positive
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occurs whenever we hit a 1  
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h1 h2 h3 One is too few: false positive 
occurs whenever we hit a 1  

By adding hash functions, we 
initially decrease the false 

positive rate (FPR). 
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How many hash functions should we use?

h1 hX…

But too many hash functions 
wind up increasing the FPR.

By adding hash functions, we 
initially decrease the false 

positive rate (FPR). 

One is too few: false positive 
occurs whenever we hit a 1  



How many hash functions should we use?

(Drawn for a filter using 10 bits per entry)

Minimum



How many hash functions should we use?

Optimal # hash functions = ln(2) · M
(M is the number of bits per entry) 

Minimum



assuming the optimal # hash functions,
2−M⋅ln(2)false positive rate =
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M · ln(2)

1 + 1/2 + 1/4 + … =
(fraction of ones in filter is 0.5 with 
optimal number of hash functions) 

Operation Costs (in memory accesses)

2



Positive Query =  

Insertion = 

Avg. Negative Query =

M · ln(2)

M · ln(2)
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Worst-case: Avg. worst-case: 

L levels
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Let’s analyze overall filter access 
cost for basic LSM-tree
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L levels

true positive
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X M · ln(2)

get(X)

Positive Query =  
Avg. Negative Query =

M · ln(2)
2

Let’s analyze overall filter access 
cost for basic LSM-tree

Worst-case: Avg. worst-case: O(M·L)

2L levels

O(M+L)
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 N - # entries to insert
 ε - desired FPR

Construction contract

Allocate filter with: N · ln(2) · log2(1/ε) bits 

Guarantee FPR of ε

Know specs in advance:

Insert N elements using -ln(ε)/ln(2) hash functions 



Research Question 



Can LSM-tree handle exponential data growth?

data size

time



logarithmic scaling

L = O( log N )



logarithmic scaling

L = O( log N ) O( 2 time )

exponential growth

N ∈



O( time )

linear scaling



Can we do better? 



insert I/O

cost 

get I/O 

cost

O( ?  )

O(?)

(Costs assuming leveling) 

O((T · L)/B)

O(2-M · L )   

L = logT N/P 



Monkey: Optimal Navigable Key-Value Store SIGMOD17
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positive rate

Bloom

filters

saves at most 1 access!
2-M

2-M

2-M

most 
memory



M - 1

M + 1

M + 2

reallocate

bits / entry



2-(M - 1)

2-(M + 1)

2-(M + 2)

false 

positive rates



false positive rates

relax

0  <   p0   < 1

0  <   p1   < 1

0  <   p2   < 1
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cost false positive rates

relax model
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footprint
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in terms of p0, p1 …
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O(2-M)  I/O    =

geometric
 progression

2-M / T0

2-M / T1

2-M / T2



O(2-M)  I/O    < O(2-M logT-N/P)   

Faster worst case



O(2-M logT-N/P)   

O(2-M)

#entries (log scale)

re
ad

 la
te

nc
y 

(m
s)

RocksDB

Monkey

buffer 2MB

bits/entry: 5 

size ratio: 2

1KB entries

queries to missing keys

hard disk storage

Configuration
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Analyze filter access with Monkey
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Avg. Negative Query = 2

Worst-case: Avg. worst-case: 

# hash 
functions

O(M)

O(M+1)

O(M+2)

Analyze filter access with Monkey
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M · ln(2)
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Analyze filter access with Monkey
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# hash 

functions

O(M)

O(M+1)
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true positive

false positive

false positive

O(M·L+L2)

M · ln(2)
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Positive Query =  
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Analyze filter access with Monkey

Worst-case: Avg. worst-case: 

# hash 

functions

O(M)

O(M+1)

O(M+2)

true positive

O(M·L+L2)

negative

negative

M · ln(2)
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Positive Query =  
Avg. Negative Query = 2

Analyze filter access with Monkey

Worst-case: Avg. worst-case: 

# hash 

functions

O(M)

O(M+1)

O(M+2)

M · ln(2)

O(M·L+L2)

2

2

O(M+L)

M · ln(2)



O( ?  )

O(2-M)

O((T · L)/B)

2x O( ?  )

O(2-M · L )   

(Costs assuming leveling) 

insert I/O

cost 

get I/O 

cost

transient

space-amp  

L = logT N/P 
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Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store



reads & writes cost breakdown
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writes
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writesreads
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O(T/B)                                       

largest level all levels
writesreads

2-M



                                       

excessive

writesreads

O(T/B)

O(T/B)

O(T/B)2-M



                                       

make lazy

writesreads

O(T/B)

O(T/B)

O(T/B)2-M
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greedy

lazy



merge when 

level fills up 

Dostoevsky

                                       



merge when 

new run comes in

Dostoevsky

                                       



reads writes

                                       



false positive rates

2-M

2-M/T2

2-M/T3

reads writes

                                       



O(2-M)
reads writes

                                       



O(1/B)

O(1/B)

O(T/B)

O(2-M)
writesreads

                                       



O((T + L)/B)

O(2-M)
writesreads

                                       

O(1/B)

O(1/B)

O(T/B)



O((T + L)/B)O(2-M)
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O((T + L)/B)O(2-M)
writesreads

                                       

What would our read cost have been if we 
employed uniform FPRs at all levels?
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O(2-M · T · L )

uniform

                                       

What would our read cost have been if we 
employed uniform FPRs at all levels?

reads
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data size

1 GB 64 GB

buffer 2MB

size ratio: 5

1KB entries

SSD storage

Configuration

O((T+L)/B)

O((T · L)/B)

Dostoevsky

RocksDB
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O(2-M)

O((T+L)/B)insert I/O

cost 

get I/O 

cost

O((T · L)/B)

O(2-M · L)   

(Costs assuming leveling) 
L = logT N/P 



Better scalability with data growth
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optimal

Reads

Writes



Reads

Writes

Memory



Reads

WritesMemory

Range Scans



Reads

WritesMemory

ScansStorage
Space



WritesMemory

ScansStorage

Reads

Amorphous 
data structures
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