
140

InfiniFilter: Expanding Filters to Infinity and Beyond

NIV DAYAN, University of Toronto, Canada
IOANA BERCEA, BARC, IT University of Copenhagen, Denmark
PEDRO REVIRIEGO, Universidad Politécnica de Madrid, Spain
RASMUS PAGH, BARC, University of Copenhagen, Denmark

Filter data structures have been used ubiquitously since the 1970s to answer approximate set-membership
queries in various areas of computer science including architecture, networks, operating systems, and databases.
Such filters need to be allocated with a given capacity in advance to provide a guarantee over the false positive
rate. In many applications, however, the data size is not known in advance, requiring filters to dynamically
expand. This paper shows that existing methods for expanding filters exhibit at least one of the following
flaws: (1) they entail an expensive scan over the whole data set, (2) they require a lavish memory footprint, (3)
their query, delete and/or insertion performance plummets, (4) their false positive rate skyrockets, and/or
(5) they cannot expand indefinitely.

We introduce InfiniFilter, a new method for expanding filters that addresses these shortcomings. InfiniFilter
is a hash table that stores a fingerprint for each entry. It doubles in size when it reaches capacity, and it
sacrifices one bit from each fingerprint to map it to the expanded hash table. The core novelty is a new and
flexible hash slot format that sets longer fingerprints to newer entries. This keeps the average fingerprint length
long and thus the false positive rate stable. At the same time, InfiniFilter provides stable insertion/query/delete
performance as it is comprised of a unified hash table. We implement InfiniFilter on top of Quotient Filter,
and we demonstrate theoretically and empirically that it offers superior cost properties compared to existing
methods: it better scales performance, the false positive rate, and the memory footprint, all at the same time.

CCS Concepts: • Information systems→ Data structures; • Theory of computation→ Data structures
design and analysis.

Additional Key Words and Phrases: Probabalistic data structures, approximate set membership, Bloom filter,
quotient filter, expandability, data growth, scalability.

ACM Reference Format:
Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh. 2023. InfiniFilter: Expanding Filters to Infinity
and Beyond . Proc. ACM Manag. Data 1, 2, Article 140 (June 2023), 27 pages. https://doi.org/10.1145/3589285

1 INTRODUCTION

What is a Filter? A filter is a compact probabilistic data structure that represents keys in a set.
As it is smaller than the keys that it represents, it can be stored at a higher level of the memory
hierarchy (e.g., DRAM or SRAM), even if the keys themselves reside over a network or on a disk
drive due to their larger size. Filters answer queries for whether a given key exists in a set, and
some can also store and retrieve a payload for each key. A filter cannot return false negatives, but
does return false positives with a probability that depends on the amount of memory assigned to it.

Authors’ addresses: Niv Dayan, University of Toronto, Canada; Ioana Bercea, BARC, IT University of Copenhagen, Denmark;
Pedro Reviriego, Universidad Politécnica de Madrid, Spain; Rasmus Pagh, BARC, University of Copenhagen, Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/6-ART140 $15.00
https://doi.org/10.1145/3589285

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

https://doi.org/10.1145/3589285
https://doi.org/10.1145/3589285

140:2 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

a
v

g
.
q

u
er

y
la

te
n

cy
(n

s)

(A)

fa
ls

e
p

o
si

ti
v
e

ra
te

(B)

Fig. 1. Existing methods for expanding filters do not support a stable query cost, a stable false positive rate,
and indefinite expansion, all at the same time.

Thus, a filter can quickly rule out the existence of a key without searching the full data set. This
boosts query performance by eliminating hops across a network and/or expensive storage accesses.
Filters are Ubiquitous. Since the invention of the original Bloom filter [9] in the early 1970s,
filters have been ubiquitously used in various areas of computer science. Database management
systems (e.g., Cassandra [57], HBase [46]) and key-value stores (e.g., Speedb [83], RocksDB [67],
LevelDB [40]) use filters to avoid searching for a particular data item in storage [20–26, 80]. Hash
join algorithms employ filters to rule out non-matching entries for a given key [6]. Filters are used
in network applications to prevent redundant communication [12], in security to eliminate denial
of service attacks or detect malicious URLs [38], and in search engines [39] to rule out documents
that do not match a given search term.
The Need for Filter Expandability.Many modern applications manage dynamic data that grows
over time. Such applications need to expand their filter/s as the size of the data that they represent
grows. In the architecture community, the 2020 ASPLOS best paper replaces the traditional multi-
level translation lookaside buffer (TLB) with a Cuckoo filter for virtual memory translation and
identifies expansion as a pivotal challenge [82]. In the networks community, efficient filter expansion
was recently identified as a central problem for supporting black lists, MAC address lookups, multi-
cast routing, and longest prefix matching [89]. In the operating systems and databases communities,
modern storage engines update data out-of-place and employ a filter to map the location of every
data entry in storage [2, 16, 24, 25, 27, 76, 84]. As the data grows, they must expand this filter
as more data is inserted. Such storage engines include web caches, key-value stores, relational
databases, and file systems, and they are used across numerous applications including gaming and
deduplication [27], real-time monitoring and analytics [16], data-series discovery [53–55], social
networks [66], internet advertising [84], etc. While the problem of filter expansion is prevalent
across myriad applications and communities, existing solutions, which we describe next, are lacking.
Existing Expansion Methods are Insufficient. The difficulty common to all filters with respect
to expansion is that they store a hashed representation of each key rather than the original key itself.
Hence, the original keys cannot be rehashed when expanding, as done with a regular hash table. The
obvious workaround is to scan the original data and construct a filter with greater capacity from
scratch. However, the cost of traversing the whole data set can be prohibitive. Another possibility
is to pre-allocate a very large filter in advance, but this wastes a lot of memory from the get-go and
restricts the ultimate set size the filter can represent. Yet another option is to create a chain (i.e., a
linked list) of filters with geometrically increasing capacities, and to add new filters to this chain
as the data grows. We refer to this as Geometric Chaining. However, this method increases query
costs as all filters along the chain potentially need to be searched.

Over the past decade, a new family of filters emerged, including Quotient filter [7, 32], Cuckoo
filter [36], and others [35, 87]. These filters store a fingerprint (i.e., a hash digest) for each key

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:3

within a compact hash table. We refer to such filters collectively as tabular filters. Tabular filters
provide limited support for expansion: it is possible to double their capacity and sacrifice one bit
from each fingerprint to map it to the expanded hash table. We coin this the Fingerprint Sacrifice
method. The problem is that the fingerprints shrink as the data grows, and this increases the false
positive rate. Furthermore, the fingerprint bits eventually run out, at which point the filter becomes
useless: it returns a positive for every query, and it cannot continue expanding. While it is possible
to delay this problem by initializing longer fingerprints from the onset, this does not fundamentally
solve the problem and costs additional memory.

Figure 1 illustrates how query latency and the false positive rate scale as we increase the data size
with Geometric Chaining and Fingerprint Sacrifice, both implemented on top of a Quotient filter [7].
The full experiment is described in Section 5. Geometric Chaining exhibits rapidly increasing query
costs as there are more filters to search. In contrast, Fingerprint Sacrifice exhibits a catapulting
false positive rate and cannot expand indefinitely as eventually, all fingerprints run out of bits.
Research Challenge. We identify the following research problem: is it possible to expand a filter
indefinitely without rereading the original data and while maintaining (1) fast queries, insertions,
and deletes, (2) a stable false positive rate, and (3) a stable memory footprint? What are the best
possible cost trade-offs among these metrics that we can achieve?
Insight: Variable-Length Fingerprints. Our insight is that tabular filters can be adapted to
store fingerprints of different lengths for different entries. This insight can be utilized to efficiently
expand tabular filters. During expansion, even though we must sacrifice a bit from each fingerprint
to map it to the expanded hash table, new entries inserted after the expansion can still be assigned
longer fingerprints. This approach promises to keep the average fingerprint length longer and thus
the weighted false positive rate more stable. Moreover, since this approach keeps all entries within
a unified hash table, it promises to maintain high performance.
Our Solution. We introduce InfiniFilter, a novel method for expanding filters. InfiniFilter is a
tabular filter that stores a fingerprint along with a unary encoded age counter for each entry within
a compact hash table. The age counter counts how many expansions ago a given entry was inserted.
During expansion, one bit from each fingerprint is sacrificed to map the fingerprint to an expanded
hash table with double the capacity. At the same time, the unary counter is incremented. Hence, all
entries remain uniformly sized and perfectly aligned within the hash table’s slots.
Since InfiniFilter doubles in capacity during each expansion, half the entries in the filter are

new, another quarter are slightly less recent, and so on. In particular, the fingerprint lengths follow
a geometric distribution, meaning that most fingerprints are long and exponentially fewer are
shorter. This keeps the average fingerprint length long and thus the weighted false positive rate
stable. Moreover, queries, deletes, and insertions are fast as entries from across different expansions
co-exist within a unified hash table. Due to this novel design, InfiniFilter provides a stable false
positive rate, modest memory footprint, and high performance, all at the same time.
Contributions. In summary, our contributions are to:
(1) Show how to assign longer fingerprints for newer entries within the same tabular filter using

unary encoded age counters, which serve as parsable self-delimiting padding.
(2) Show that variable-length fingerprints complicate deletes, yet deletes can still be performed

correctly and efficiently by targeting the longest matching fingerprint within a hash slot.
(3) Show that the basic version of InfiniFilter can only be expanded a finite number of times

as eventually the oldest fingerprints run out of bits and cannot be remapped to a larger
filter. However, InfiniFilter can be combined with chaining to expand indefinitely while only
slightly degrading query and delete cost, both of which become𝑂 (log(𝑁)/𝐹), where 𝐹 is the
initial fingerprint length.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:4 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

Query X

Insert X Insert Y

Query Z

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

Query Q

true

positive

Negative false

positive

Fig. 2. A Bloom filter hashes each key to 𝑘 bits, setting them from 0s to 1s or keeping them set to 1s. It returns
a positive for a query if all bits for the key in question are 1s or a negative otherwise.

(4) Show that with a fixed number of bits per entry, InfiniFilter supports a worst-case 𝑂 (log𝑁)
false positive rate. However, by slightly increasing the fingerprint length assigned to newer
entries at a rate of 𝑂 (log log𝑁), the false positive rate stays 𝑂 (1).

(5) Show that queries to existing keys can rejuvenate (i.e., lengthen) the fingerprints of older
entries. This eliminates the cost contention between the false positive rate and the number
of bits per entry, allowing to keep both of these cost metrics constant as the data grows.

(6) Implement InfiniFilter and other State of the Art expansion methods on top of Quotient Filter
and open-source the code1.

(7) Empirically and theoretically evaluate InfiniFilter against other expansion methods to show
that it achieves superior cost properties.

2 BACKGROUND
We now provide background on Bloom and Quotient filters.
Bloom Filters. Bloom filter [9] is the most traditional, common, and easy-to-implement kind of
filter. It consists of a bitmap initially set to all zeros. A key is inserted by hashing it using 𝑘 hash
functions to 𝑘 random positions in the bitmap and setting all bits in these positions to ones. A
lookup involves hashing the key in question to its 𝑘 positions. If at least one of the bits in these
positions is set to zero, the key could not have been inserted and so the filter returns a negative
answer. Otherwise, the filter returns a positive answer. Since the bits in question could have been
coincidentally set to 1s by other keys, however, there is a chance of a false positive. The probability 𝜃
of a false positive is approximated by Equation 1, where 𝑏 is the number of bits in the filter, 𝑖 is the
number of inserted keys, and 𝑘 is the number of hash functions. Figure 2 illustrates a Bloom filter
with sixteen bits and two hash functions.

𝜃 ≈
(
1 − 𝑒−𝑘 ·

𝑖
𝑏

)𝑘
(1)

As more keys are inserted into a Bloom filter, the false positive rate in Equation 1 increases as
more of the bits in the filter get set to 1s. If too many keys are inserted, the Bloom filter becomes
useless: it reports a positive for any query, regardless of whether a key has been inserted or not.
Hence, a Bloom filter requires knowing the data set size in advance when it is allocated to guarantee
a given false positive rate to the user.
Bloom filters do not support deletes. To see why, observe that resetting bits from 1s to 0s to

reflect a deletion of some key 𝑋 could affect a bit that also belongs to some other existing key 𝑌 .
This would lead to future false negatives when querying for key 𝑌 . False negatives violate the
semantic guarantees of a filter and cannot be tolerated by most applications that filters are used for.

1The code is available at https://github.com/nivdayan/FilterLibrary.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

https://github.com/nivdayan/FilterLibrary

InfiniFilter: Expanding Filters to Infinity and Beyond 140:5

term definition
𝑛 number of slots currently in the filter
𝑆 initial number of slots in the filter
𝑁 current capacity divided by initial capacity (i.e., 𝑁 = 𝑛/𝑆)
𝑋 number of expansions since the start (i.e., 𝑋 = ⌈log2 (𝑁)⌉)
𝑀 total memory used for the filter (bits / entry)
𝐹 initial fingerprint size when the filter is first allocated
h(...) hash function
𝑐 number of Basic InfiniFilters in the Chained InfiniFilter
𝜃 false positive rate
𝛼 space utilization expansion threshold (0 < 𝛼 < 1)
Table 1. Terms used throughout the paper to describeQuotient Filter and InfiniFilter.

For similar reasons, Bloom filters cannot be efficiently expanded. A Bloom filter does not retain
information about which keys had set off which bits. Hence, there is no way of remapping the bits
belonging to each key to a Bloom filter with greater capacity without rereading the original data.
Tabular Filters. Since the early 2010s, a new family of filters emerged as an alternative to Bloom
filters. These structures store a fingerprint (i.e., a hash digest) for every key within a compact hash
table [14], and they typically differ in their collision resolution strategy. Examples include Quotient
Filter [7, 32], Cuckoo Filter [36], and others [11, 35, 73, 87]. These new tabular filters offer more
promise concerning expandability. We focus on the Quotient filter because, as we will show, its
collision resolution strategy is particularly well-suited for InfiniFilter. We also discuss and evaluate
other types of filters in Sections 5 and 6.
Quotient Filter. Table 1 lists terms used to describe Quotient filter (QF) and InfiniFilter henceforth
in the paper. A QF [7, 32] is a hash table with 2𝑥 slots. Each slot can store one fingerprint, and
collisions are handled via Robin Hood hashing [15]. The QF version employed in this paper maps a
given key 𝑦 to a canonical slot using the least significant 𝑥 bits of its hash ℎ(𝑦), and it derives a
fingerprint for the key based on the next 𝐹 bits of the key’s hash. If the canonical slot is empty, the
key’s fingerprint is stored there. If it is non-empty, however, the fingerprint will be stored in some
slot to the right. Fingerprints belonging to the same canonical slot are stored along contiguous
slots in a so-called run. A cluster is a group of contiguous runs of which the first run begins at its
canonical slot and the subsequent runs have been shifted to the right.
Figure 3 Part (A) illustrates a QF with eight slots and three keys mapped to different canonical

slots based on the least significant three bits of their hashes (slot numbers are expressed in binary
throughout the paper). The rest of their hashes, marked in red, are stored as fingerprints. Part (B)
of Figure 3 shows how the filter’s state changes after two more insertions into canonical Slot 011,
leading to hash collisions. The result is a cluster comprising two runs between Slots 011 and 110.
Note that in this paper, all binary notations assume that more significant bits are to the left.
QF Metadata Flags. To mark the start and end of runs and clusters, each slot includes three
metadata flags. The is_occupied flag indicates whether a given slot is a canonical slot for at least
one existing key. The is_shifted flag is set for a slot that contains a fingerprint that had been shifted
to the right from its canonical slot. The is_continuation flag indicates whether the slot contains a
continuation of a run that started to the left.
In Figure 3 Part (B), for example, Slot 011 only has the is_occupied flag set to true because

it stores a fingerprint for which Slot 011 is the canonical slot. Slots 100 and 101 both have the
is_continuation and is_shifted flags set to true because they are part of a run that starts to the left

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:6 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

000

0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0

001 010 011 100 101 110 111
010

Insert X, Y, Z where:

111 100

run runrun

100111 101 111010

run runrun

cluster

Insert V, W where

Part A:

is_occupied

is_shifted
is_continuation

h(X) = 010001, h(Y) = 111011, h(Z) = 100100

h(V) = 101011, h(W) = 111011
Part B:

0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0
100101 111010

run runrun

cluster

Delete W where Part C:
h(W) = 111011

0 0 0

000 000 000 000 000

000 000 000

000000000000

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Fig. 3. A Quotient filter stores a fingerprint for each key in a hash table and resolves collisions by organizing
fingerprints into runs and clusters, which are demarcated using three metadata bits per slot. Fingerprints in
the figure are illustrated in red.

(at Slot 011) but the fingerprints they contain are shifted to the right due to collisions. Slot 100 also
has the is_occupied flag set to true because it is the canonical slot for a key that is shifted to the
right (to Slot 110). Slot 110 has the is_shifted flag set to true because it belongs to a cluster starting
to the left, yet its is_continuation flag is false to mark the start of a new run within this cluster.
QF Queries. A query begins at a given key’s canonical slot and moves leftwards until finding the
start of a cluster (i.e., a slot with only the is_occupied flag set to true). It then scans the cluster
rightwards, keeping a running counter of the number of subsequent runs we must skip. Each
slot to the left of the canonical slot with the is_occupied flags set to true indicates one additional
run to be skipped. This increments our running counter. On the other hand, each slot with the
is_continuation flag set to false indicates the start of a new run. This decrements the running
counter. When the running counter’s value is zero, we have reached the target run. The query then
scans the run’s fingerprints and returns a positive if there is at least one exact match.
QF Inserts. An insertion commences similarly to a query by first finding the run to which the
fingerprint should be inserted. The fingerprint is added to this run by shifting all subsequent keys
in the cluster one slot to the right and potentially adding new runs to the cluster by pushing them
to the right from their canonical slots.
QF Deletes. Unlike a Bloom filter, a QF supports deletes to keys we know had previously been
inserted. It executes a delete by identifying a key’s run and removing from it a matching fingerprint.
It then shifts any subsequent key in the cluster one slot to the left, potentially also splitting clusters
by shifting some runs back to their canonical slots. Figure 3 Part (C) illustrates a delete operation
to fingerprint 111 at canonical slot 011. There are two matching fingerprints, so the first one that is
encountered is removed, and all subsequent entries in the cluster are pushed leftwards.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:7

filter 1 filter 2 filter 3 …(A) Linear Chaining:

(B) Geometric Chaining: filter 1 filter 2 …filter 3

(i) uniform FPRs

(ii) decreasing FPRs

2−F ⋅ α 2−F ⋅ α 2−F ⋅ α

2−F ⋅ α
22

2−F ⋅ α
32

2−F ⋅ α
12

…

…

Fig. 4. Linear Chaining allocates linearly more filters as the data size grows. Geometric Chaining allocates
exponentially larger ones. Geometric Chaining further supports setting slightly smaller false positive rates to
larger filters to cause the overall false positive rate to converge to a constant.

QF Iteration. A QF supports iteration over its fingerprints using a linear left-to-right scan. For
each fingerprint encountered along the way, it is possible to infer and report its canonical slot using
the metadata flags.
QF Allocation. If too many keys are inserted into a quotient filter and utilization increases beyond
≈ 90%, the average cluster length starts growing rapidly until eventually, the performance of queries
becomes impractical. Hence, similarly to Bloom filters, a quotient filter has to be allocated with a
maximum capacity in mind. Throughout the paper, we let the parameter 𝛼 denote the fraction at
which point a Quotient filter becomes full.
Analysis. For a query to a non-existing key, the false positive rate for a Quotient filter is known to
be ≲ 2−𝐹 · 𝛼 . The reason is that each canonical slot is associated with a run containing on average
𝛼 fingerprints, each of which matches the search key with probability 2−𝐹 . The overall memory
footprint is𝑀 = 𝐹+3

𝛼
bits per entry. This accounts for one fingerprint and three metadata bits per

slot, and the fact that a fraction 𝛼 of the slots are non-empty.

3 PROBLEM ANALYSIS
This section describes existing techniques for filter expansion and analyzes them as they would
apply to a Quotient Filter.
1. Full Reconstruction. The simplest method of expanding a filter is by scanning the full data set,
rebuilding a filter with greater capacity from scratch, and disposing of the original filter [24, 89]. The
problem is that the original data often resides on a slower storage medium (e.g., disk or SSD) and/or
over a network. It can therefore be expensive to fully scan. In some applications, data is regularly
scanned in the background (e.g., compaction operations in LSM-trees [3, 67, 70]). This provides
an opportunity for full filter reconstruction without additional I/O overheads [20]. However, for
applications where data is not regularly scanned, full reconstruction is disruptive. Hence, this paper
focuses on expansion methods that do not require re-scanning the data at all.
2. Pre-Allocation. A common approach for circumventing the challenge of filter expansion is
to pre-allocate a large static filter in advance. For example, the Pliops data processor allocates a
large static filter occupying ≈100GB when the system is deployed to map from data entries to their
location in storage [25]. However, this method requires a lot of memory from the system’s get-go,
even while the data set is still small. Moreover, this method restricts the maximum number of
entries that can ultimately be inserted into the data set. In this paper, we rather focus on methods
that enable gradual expansion and do not restrict the maximum data size.
3. Linear Chaining. Several papers propose to accommodate data growth by creating a chain of
similarly-sized filters, each with the same false positive rate [17, 44, 45]. New insertions are made
to the last filter in the chain, and a new filter is allocated when the last filter reaches capacity. In

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:8 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

query/
delete

insert false positive
rate

fingerprint
bits / key

max.
expansions

Linear Chaining [17, 44, 45] 𝑂 (𝑁) 𝑂 (1) 𝑂 (2−𝐹 · 𝑁) 𝐹 ∞
Geom. Chaining [1, 88, 90] 𝑂 (lg𝑁) 𝑂 (1) 𝑂 (2−𝐹 · lg𝑁) 𝐹 ∞
Geom. Chaining & Growing Mem. [71] 𝑂 (lg𝑁) 𝑂 (1) 𝑂 (2−𝐹) 𝐹+𝑂 (lg lg𝑁) ∞
Fingerprint Sacrifice [7, 92] 𝑂 (1) 𝑂 (1) 𝑂 (2−𝐹 · 𝑁) 𝐹 −𝑂 (lg𝑁) 𝐹

Table 2. A comparison of different techniques for expanding a Filter. No existing method is scalable in terms
of the costs of queries/deletes, the false positive rate, the memory footprint, and the maximum number of
expansions, all at the same time.

practice, this is the method used in the FIFO compaction policy within RocksDB [67]. We illustrate
this method in Figure 4 Part (A). The downsides are that the costs of queries and deletes increase
linearly with data size as possibly all filters must be searched for a matching fingerprint. Moreover,
as there are 𝑁 filters along the chain, each with a false positive rate of 2−𝐹 · 𝛼 , the overall false
positive rate is 𝜃 ≲ 2−𝐹 · 𝑁 · 𝛼 . The memory footprint is𝑀 = 𝐹+3

𝛼
bits per entry as with a regular

quotient filter. We summarize these properties in Row 1 of Table 2.
4. Geometric Chaining. Other papers propose creating a chain of geometrically larger filters
as the data expands [1, 71, 88, 90]. New insertions are made to the largest filter, and a new filter
with doubled capacity is appended to the chain when the last filter is at capacity. We illustrate
this approach in Figure 4 Part (B). This approach entails logarithmic query/delete overheads as
the number of filters in the chain is logarithmic with data size. Moreover, the false positive rate is
𝜃 ≲ 2−𝐹 · 𝛼 · (log2 (𝑁) + 1), and the memory footprint is 𝑀 = 𝐹+3

𝛼
bits per entry. We summarize

these properties in Row 2 of Table 2. Note that Geometric Chaining dominates Linear Chaining
across all the different cost metrics.

To fully stabilize the overall false positive rate, it is possible to assign lower false positive rates to
larger filters along the chain [1, 71, 88]. The best-known method is using the reciprocals of squares:
the false positive rate assigned to the 𝑖th filter along the chain is smaller by a factor of 𝑖−2 than the
false positive rate assigned to the (𝑖 − 1)th filter [71]. This causes the sum of false positive rates
across all filters to converge to 𝜃 ≲ 2−𝐹 · 𝛼 · 𝜋2

6 (as per the famous Basel Problem solved by Euler).
The cost of this method is a higher memory footprint: 𝑀 ≲ 1

𝛼
· (𝐹 + 3 + 2 · log2 (log2 (𝑁) + 1))

bits per fingerprint. Part (B) (ii) of Figure 4 illustrates the false positive rates assigned to filters
along the chain using this method with respect to the initial fingerprint length 𝐹 and the capacity
threshold 𝛼 . We summarize this method’s properties in Row 3 of Table 2
5. Fingerprint Sacrifice. Unlike Bloom filters, tabular filters such as Quotient Filters lend them-
selves to yet another form of expansion that we coin Fingerprint Sacrifice. The idea is to derive the
original hash of every entry by concatenating its slot offset with its fingerprint. We can then employ
this full hash to reinsert the key into a new tabular filter with doubled capacity [7]. Specifically, an
entry belonging to slot 𝑥 in the older filter is placed in the new filter’s slot 𝑥 if its least significant
fingerprint bit is zero. Otherwise, it is placed at slot 𝑥 +𝑞/2 of the new filter, where 𝑞 is the number of
slots in the new filter. Figure 5 shows an example of an expansion from four to eight slots. Note that
in the older filter, there is a collision at Slot 1 leading to a run occupying two slots. This collision
is resolved after expansion as the least significant bits of the fingerprints of these two entries are
different. These entries are therefore mapped to different slots in the expanded filter.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:9

0 0 1 0 0 0 1 1 1 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0

110 011 100

000 001 010 011 100 101 110 111

000

11 10 0100 00 00 01 00

Insert Y after expansion

h(Y)=01110
00 01 10 11

Insert X before expansion

h(X)=11000

expansion

1

1

Fig. 5. Quotient Filter can be expanded by sacrificing one bit from each fingerprint to map it to an expanded
hash table. We use black and red in the figure to illustrate slot addresses and fingerprints, respectively.

The problem with this approach is that it transfers one bit from each entry’s fingerprint to
become a part of its slot address during an expansion. Hence, this method does not support infinite
expansions: the fingerprints run out of bits after 𝐹 expansions, where 𝐹 is the initial fingerprint
size. Furthermore, sacrificing one bit from each fingerprint during each expansion causes the false
positive rate to double every time the data size doubles. Hence, the false positive rate is ≲ 2−𝐹 ·𝛼 ·𝑁 ,
while the memory requirement is𝑀 = 1

𝛼
· (𝐹 − ⌈log2 (𝑁)⌉) bits per entry. As this method reinserts

all existing entries to a new filter whenever the data size doubles, the amortized insertion cost is
≈ 2 ∈ 𝑂 (1). Hence, it exhibits approximately half of the maximum throughput of the Pre-Allocation
or Chaining methods. We summarize these properties in Row 4 of Table 2.
Summary.Geometric Chaining offers indefinite expansion and a superior false positive rate relative
to the Fingerprint Sacrifice method. On the other hand, the fingerprint sacrifice method offers
faster query/delete operations. The next section introduces InfiniFilter to combine the best of both
worlds. Section 6 includes further details on lower bounds and theoretical algorithms for the filter
expansion problem from the theory community.

4 INFINIFILTER
InfiniFilter is a new method for expanding set-membership filters. Similarly to the Bit Sacrifice
method, InfiniFilter doubles in size when it reaches a configurable capacity threshold, and it
sacrifices a bit from each fingerprint to map it to the expanded version. The core innovation is a
new entry format that allows setting longer fingerprints to newer entries. This allows InfiniFilter
to expand while maintaining stable operation costs, memory footprint, and false positive rate.

Section 4.1 describes the Basic InfiniFilter, which supports a finite number of efficient expansions.
Section 4.2 shows how to support infinite expansions by chaining multiple basic InfiniFilters
together. Section 4.3 shows how to trade slightly more memory to fully stabilize the false positive
rate in the worst case.
We build InfiniFilter on top of Quotient Filter. We chose Quotient filter because it resolves

collisions without relying on entries’ fingerprints (i.e., in contrast to, say, Cuckoo or Morton filters
[11, 36]). Hence, it is straightforward to extract the hash associated with an entry and use it to
remap the entry to an expanded version of the filter.

4.1 The Basic InfiniFilter
The Basic InfiniFilter is initialized as a quotient filter with 𝑆 slots (𝑆 is a power of 2) and a fingerprint
size of 𝐹 bits. Figure 6 illustrates a basic InfiniFilter with four slots. The first three bits in each slot
are the usual is_occupied, is_shifted, and is_continuation flags of a quotient filter used to resolve
hash collisions. The remaining bits are divided into two fields. The first is a unary age counter,
which counts how many expansions ago the given entry was inserted. The second is the fingerprint.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:10 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

counter fingerprint

010110 110001 101001
1 0 0 1 0 0 0 1 1

011011
1 0 0

00 01 10 11

h(Z)=0000101 h(Y)=1100101h(Q)=1011000

run

h(V)=1101111

Fig. 6. An example of an InfiniFilter with four slots. For each data entry, there is a fixed-length entry that
consists of a unary age counter and a fingerprint.

Together, the counter and fingerprint occupy 𝐹 + 1 bits. The longer the unary counter of a given
entry is, the shorter the fingerprint is.
Figure 6 shows an example of an InfiniFilter with 4 slots and an initial fingerprint length of 5

bits. There are four entries across four slots. The full hashes for the original keys, Q, Z, Y, and V are
given above the cell that contains a fingerprint for that key. As shown, the four entries at Slots 00
to 11 were inserted zero, two, one, and zero expansions ago, respectively, as indicated by their age
counters (i.e., 0, 110, 10, and 0, respectively).
Insertion.Anew entry is insertedwith a fingerprint comprising 𝐹 bits and an age counter initialized
to 0 to indicate that no expansions have taken place since the entry was inserted. The rest of the
insertion procedure is identical to that of a regular quotient filter.
Queries. A query commences as with a regular quotient filter by first finding the run belonging to
the target slot. For each entry in this run, the query parses the self-delimiting unary counter to infer
how long the fingerprint is. It then checks whether this fingerprint matches the least significant
bits of the fingerprint of the key in question. It returns a positive if so, and it continues scanning
the run otherwise. If it finishes scanning the run without a match, it returns a negative.
In Figure 6, for example, consider a query to key 𝑌 , which maps to a run comprising Slots 01

and 10. While the fingerprints at these slots have different lengths, they both match the fingerprint
of key 𝑌 causing the filter to return a positive.
Deletes. Similarly to a regular Quotient Filter, InfiniFilter supports deletes, though it requires being
more careful to maintain correct semantics. The reason is that fingerprints within a run can have
different lengths, and removing a shorter (lower-resolution) fingerprint associated with the wrong
key could lead to false negatives later on.
For instance, suppose the user deletes key 𝑌 in Figure 6. The hash of key 𝑌 matches both

fingerprints at this run, so there is a question of which to remove. If we delete the shorter one (i.e.,
001), we would get a false negative later when querying for key 𝑍 .

To prevent false negatives, InfiniFilter always deletes the longest matching fingerprint (i.e., 1001
in the above example). This guarantees that queries to other keys will not result in false negatives
as they will always still match the shorter remaining fingerprint.
Expansion.When the fraction of occupied slots in the filter reaches a threshold of 𝛼 , an expansion
begins. This process first allocates a new InfiniFilter with double the capacity of the existing one.
It then iterates over the smaller InfiniFilter from left to right. For each entry, it concatenates its
slot address with its fingerprint to derive its original hash, and it uses this hash to reinsert the
entry into the new InfiniFilter. Specifically, an entry from Slot 𝑖 in the former InfiniFilter is placed
either at Slot 𝑖 or at Slot 𝑖 + 𝑞/2 of the newer InfiniFilter depending on whether its least significant
fingerprint bit is 0 or 1, where 𝑞 is the number of slots in the new InfiniFilter. The new fingerprint
for each entry does not include the former least significant bit as the information contained in this
bit is now implicit in the entry’s new slot address. Finally, the former InfiniFilter is de-allocated.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:11

0 0 1 0 0 0 1 1 1 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0110 1101 1000

000 001 010 011 100 101 110 111

0000

1011 1100 11100000 1000 0000 0001 0000

Insert Y after expansion

h(Y)=...001110
00 01 10 11

Insert Z before expansion

h(Z)=...11000

expansion

1

1

Fig. 7. InfiniFilter doubles in capacity by incrementing every entry’s age counter and transferring the least
significant bit of its fingerprint to become the most significant bit of its slot address. The figure uses black,
blue, and red to illustrate slot addresses, unary age counters, and fingerprints, respectively.

Figure 7 depicts the expansion example from Figure 5 reapplied to an InfiniFilter. For each entry,
the age counter is incremented while the least significant bit of its fingerprint becomes the most
significant bit of its slot address. Hence, every entry still occupies the same number of bits after
expansion. Crucially, even though entries from before the expansion now have shorter fingerprints,
newer entries inserted after the expansion are still assigned 𝐹 bits, the maximum fingerprint length.
Expansion Threshold. The expansion threshold 𝛼 controls a trade-off. The higher it is, the better
the filter’s memory utilization is as more of the filter is full. On the other hand, queries and inserts
become slower as clusters become longer on average. Our design employs a threshold of 80% by
default to strike a reasonable balance.
Insertion Cost. Half of all the entries in InfiniFilter are new and will not have participated in any
expansion. A quarter will have participated in one expansion, an eighth in two expansions, and so
on. Hence, the amortized insertion cost follows a geometric sum that converges to ≈ 2 ∈ 𝑂 (1).
Expansion Limit. After 𝐹 expansions, the oldest entries in the filter, which were inserted before
the first expansion took place, run out of fingerprint bits. At this point, we can no longer employ
parts of their fingerprint to map them to a larger filter with greater capacity, so the filter cannot
continue expanding. Hence, the basic InfiniFilter accommodates at most 𝐹 expansions, leading to a
maximum data size of 𝑆 · 2𝐹 entries. Section 4.2 shows how to overcome this limitation to continue
expanding indefinitely.
AgeDistribution. Since InfiniFilter doubles in size when it expands, the distribution of age counters
is geometric: there are generally half as many entries with age 𝑖 + 1 as there are of age 𝑖 . Equation 2
approximates the fraction of entries in the filter with age 𝑖 after 𝑋 expansions (i.e., 0 ≤ 𝑖 ≤ 𝑋).

𝑓 (𝑖) ≲ 2−𝑖−1 0 ≤ 𝑖 ≤ 𝑋 (2)

False Positive Rate. Entries of age 𝑖 have a fingerprint size of 𝐹 − 𝑖 bits and thus a false positive
probability of 2−𝐹+𝑖 · 𝛼 . Equation 3 derives the weighted average false positive rate by multiplying
this expression with the age distribution in Equation 2.

𝜃 =

𝑋∑︁
𝑖=0

𝑓 (𝑖) · 2−𝐹+𝑖 · 𝛼 ≲ (𝑋 + 2) · 2−𝐹−1 · 𝛼
≤ (𝐹 + 2) · 2−𝐹−1 · 𝛼 (3)

As shown in Equation 3, the false positive rate increases linearly with the number of expan-
sions 𝑋 (and hence logarithmically with the data size). The intuition is that even though there
are exponentially fewer older entries in the filter, these entries exhibit exponentially higher false
positive rates due to their shorter fingerprints. Hence, each generation of entries contributes equally

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:12 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

1101
1 0 0 0 1 1

1011
Before: After:

Query for key Y, h(Y)=…01100

rejuvenate

1010
0 1 1 1 0 0 0 1 1 0 1 1

1101 00111010

shortest

matching

fingerprint

longest

matching

fingerprint

non-

matching

fingerprint

00 01 10 00 01 10

Fig. 8. After a query to an existing key, it is possible to rejuvenate the longest matching fingerprint in the
target run to lower the false positive rate.

to the false positive rate. Since the basic InfiniFilter supports up to 𝐹 expansions, the false positive
rate reaches a maximum after 𝐹 expansions.
Memory. Each slot comprises 𝐹 + 1 bits for the unary counter and fingerprint plus the three usual
metadata bits of a standard quotient filter. We divide this by the expansion threshold 𝛼 in Equation 4
to derive𝑀 as the number of bits per entry at the moment before expansion takes place.

𝑀 = (𝐹+4)/𝛼 (4)

Rejuvenation. The analysis above indicates that the false positive rate of InfiniFilter so far increases
logarithmically as the data grows. To slow down and even halt the rate at which the false positive
rate increases, InfiniFilter leverages queries to opportunistically rejuvenate (i.e., lengthen) the
fingerprints of older entries. The insight is that a query to the filter that returns a positive is
typically followed by a lookup to storage to retrieve the original key-value pair. If the key is found,
we can rehash it to lengthen its fingerprint. Similarly to deletes, however, rejuvenation carries a
risk with respect to correctness. If there are multiple matching fingerprints of different lengths
in the run and we lengthen a shorter matching fingerprint, false negatives can occur later on if
the fingerprint we lengthened corresponds to a different key. To prevent false negatives, we must
lengthen the longest matching fingerprint within the run. Queries to the other keys will still match
the shorter remaining fingerprints, thus eliminating the possibility of false negatives.
Figure 8 illustrates a query to key 𝑌 , for which the fingerprint resides in a run consisting of

three slots. The fingerprints at slots 01 and 10 match key 𝑌 ’s fingerprint, so the filter returns a
positive. We assume the original key 𝑌 is then retrieved from storage. This allows us to rehash it
and lengthen the longest matching fingerprint (at Slot 10) to 𝐹 bits. Future queries arriving at this
run will now, on average, exhibit fewer false positives.
Batch Rejuvenation. In many storage applications, data is occasionally read and reorganized in
large batches. This includes garbage-collection in log-structured file systems [77], compaction in
log-structured merge-trees [70], and defragmentation in B-trees [42]. Such processes also serve
as opportunities to rejuvenate the fingerprints of older entries. For each entry read from storage
during such an operation, we can derive its original hash and rejuvenate the longest matching
fingerprint within the corresponding run.
Contraction. If many deletes occur and utilization significantly decreases, InfiniFilter contracts.
The contraction threshold is 𝛼/4 to ensure that the first delete operation after expansion would
not lead to an immediate subsequent contraction. When utilization drops to 𝛼/4, we allocate a new
InfiniFilter with half as many slots and iterate over the existing InfiniFilter’s entries. An entry
from Slot 𝑖 or Slot 𝑖 + 𝑞/2 of the larger InfiniFilter is placed at Slot 𝑖 of the smaller one, and the
most significant bit of its slot address is appended as the least significant bit of its fingerprint. To
maintain the same slot width, every entry whose age counter is greater than zero is decremented.
Otherwise, the most significant bit of its fingerprint is truncated. Figure 9 depicts an example where
a delete operation triggers a contraction from eight to four slots.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:13

0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0000 1101 0000

000 001 010 011 100 101 110 111

0110

0000 1000 11100000 0011 0000 0000 0000

00 01 10 11

Contraction

0

0

Delete Y where

h(Y)=…00001

Fig. 9. InfiniFilter contracts by halving the number of slots and transferring the most significant bit of each
entry’s canonical slot address to become the least significant bit of the entry’s fingerprint.

InfiniFilter (IF) type query/
delete

insert false positive
rate

fingerprint bits /
entry

max. ex-
pansions

Basic IF 𝑂 (1) 𝑂 (1) 𝑂 (2−𝐹 · lg𝑁) 𝐹 𝐹

Chained IF 𝑂 (lg𝑁
𝐹

) 𝑂 (1) 𝑂 (2−𝐹 · lg𝑁) 𝐹 ∞
Chained IF & Growing Mem. 𝑂 (lg𝑁

𝐹+lg lg𝑁) 𝑂 (1) 𝑂 (2−𝐹) 𝐹 +𝑂 (lg lg𝑁) ∞
Table 3. The different variants of InfiniFilter offer new and superior cost properties for filter expansion.

Summary. We summarize the properties of the basic InfiniFilter in Row 1 of Table 3. As shown, it
matches the Fingerprint Sacrifice method in Table 2 in terms of the maximum number of supported
expansions and in terms of the performance of queries/inserts/deletes. At the same time, it scales
the false positive rate logarithmically rather than linearly, a tremendous improvement. In the next
two sections, we introduce two more variants of InfiniFilter that support infinite expansions and
better scale the false positive rate in the worst case.

4.2 Infinite Expansions via Chaining
The basic InfiniFilter from the previous section supports a finite number of expansions. The reason
is that, eventually, the oldest entries in the filter run out of fingerprint bits. We refer to such entries
as void entries. The problem with void entries is that they have no more spare fingerprint bits that
can be sacrificed to map them to an expanded filter. We now show how to overcome this limitation
by organizing void entries along a chain of InfiniFilters.
The Active InfiniFilter. Figure 10 illustrates the chaining architecture, which consists of multiple
basic InfiniFilters as building blocks. While these InfiniFilters have different numbers of slots, they
each have the same slot width. Insertions are made into the so-called Active InfiniFilter. Once the
Active InfiniFilter reaches the expansion threshold 𝛼 , it expands using the process as described in
Section 4.1. As we iterate over the Active InfiniFilter during this expansion, we migrate every void
entry that we encounter into a so-called Secondary InfiniFilter.
The Secondary InfiniFilter. The Secondary InfiniFilter is smaller than the Active InfiniFilter by a
multiplicative factor of 2𝐹+1 slots. For every void entry migrated from the Active InfiniFilter into
the Secondary InfiniFilter, we employ the most significant 𝐹 bits of its canonical slot address in
the Active InfiniFilter as an 𝐹 bit fingerprint to be inserted into the Secondary InfiniFilter. The
remaining lesser significant bits of the entry’s canonical slot address in the Active InfiniFilter are
assigned as the entry’s canonical slot address in the Secondary Infinifilter.
The Chain. Just before the Active InfiniFilter expands, we expand the Secondary InfiniFilter (also
using the expansion algorithm from Section 4.1). Eventually, the oldest entries in the Secondary

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:14 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

Active InfiniFilter Secondary InfiniFilter

Void entries

Chain

Inserts

Expand Expand

Append

Fig. 10. The Chained InfiniFilter supports indefinite expansion using a short chain of basic InfiniFilters. New
insertions go into the Active InfiniFilter. When entries become void, they are transferred into the Secondary
InfiniFilter, which is, in turn, appended to the chain of static, older InfiniFilters when it fills up.

10 0 0 1 1 1 0 0 0 1 1

0 0 0 1 1 1 0 0

000 010 101

000 001

110

100 101 110

00 01 10 11

1

1 1 0 0
010

Active InfiniFilter Secondary InfiniFilter

… 1 0 0
011
0

0 1 1
101

…

1

110

00 0 1 0 0

0000 1000
110 110

1

0 0 0 1 1 1 0 0 0 1 1
000 010 101 110

1

00 01 10 11

-

000 001 010 011

…

step

2

1

3

4

…

…
create new
Secondary
InfiniFilter

expand

add to

chain

…

…
create new
Secondary
InfiniFilter

runrun

Fig. 11. An example illustrating the migration of entries from the Active InfiniFilter into the Secondary
InfiniFilter and finally into the chain across several expansions.

InfiniFilter become void. At this point, the Secondary InfiniFilter becomes static and appended to a
chain of static InfiniFilters. A new empty Secondary InfiniFilter is then allocated.
Example. Figure 11 illustrates an example of four expansions. The example commences with an
Active InfiniFilter consisting of four slots and 2-bit fingerprints. There is a void entry at Slot 11
that belongs to a run starting at Canonical Slot 10. As the first expansion begins, a new Secondary
InfiniFilter is allocated with one slot. We migrate the void entry to the Secondary InfiniFilter during
the expansion and employ its former canonical slot address as its fingerprint.
In Step 2, just before the Active Infinifilter expands, we first expand the Secondary InfiniFilter

and map its only entry to Canonical Slot 0 based on the most significant bit of its fingerprint. Then,
as we expand the Active InfiniFilter, we encounter a void entry in Slot 110. Based on this slot
address, we migrate it with fingerprint 11 to Slot 0 of the Secondary InfiniFilter. There are now two
entries in the Secondary InfiniFilter mapped to canonical slot 0. The mechanics of the underlying
quotient filter resolve this hash collision by storing these entries as a run starting at Slot 0 and
comprising two slots.
In Step 3, as in Step 2, we first expand the Secondary InfiniFilter. We then expand the Active

InfiniFilters while migrating all void entries into the Secondary InfiniFilter. At this point, the oldest
entries in the Secondary InfiniFilter become void, so we seal the Secondary InfiniFilter and append
it to the chain. We then allocate a new empty Secondary InfiniFilter as shown in Step 4.
Number of InfiniFilters. After the initial 𝐹 expansions, the Active InfiniFilter and any InfiniFil-
ter along the chain contains entries spanning 𝐹 + 1 consecutive generations. The number of
generations 𝑋 since initialization is ⌈log2 (𝑁) + 1⌉. The total number of InfiniFilters is therefore
𝑐 = ⌈(log2 (𝑁)+1)/(𝐹+1)⌉.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:15

Queries. A query first searches the Active InfiniFilter, then the Secondary InfiniFilter, and then the
chain from younger to older InfiniFilters. When it finds a matching fingerprint, it terminates and
returns a positive to the user. If it finishes traversing all InfiniFilters with no match, it returns a
negative. The worst-case query cost is 𝑂 (lg(𝑁)/𝐹) memory accesses. However, as most entries are
in the Active InfiniFilter, most positive queries finish after just one access to the Active InfiniFilter.

Note that most often, with an initial fingerprint size of, say, 𝐹 = 10 bits per entry, the Active and
Secondary InfiniFilter will support 20 expansions before the chain becomes non-empty. This implies
increasing the initial data size by a vast factor of ≈ 220. Hence, while the chain is a construction
used to guarantee indefinite expansion, it will typically be empty and not influence performance.
So in most cases, the chained InfiniFilter only requires one or two cache misses per query, one to
the Active InfiniFilter and one to the Secondary InfiniFilter.
Deletes. In Section 4.1, we saw that a delete operation has to remove the entry with the longest
matching fingerprint from a run to prevent future false negatives. This principle also holds for the
chained InfiniFilter. If we delete a matching entry 𝑌 in an older InfiniFilter while there is an entry 𝑍
with a matching fingerprint in a newer InfiniFilter, this could result in future false negatives. This
could happen if the entry 𝑌 corresponds to a different entry for which the hash is different from
entry 𝑍 ’s hash only along more significant bits that are not stored as a part of entry 𝑌 ’s fingerprint.

To prevent false negatives, we traverse the different InfiniFilters from largest to smallest. For each
InfiniFilters along this traversal, we attempt we apply the delete procedure described in Section 4.1.
If we successfully find and remove a matching fingerprint, the procedure terminates. Otherwise,
we continue to the next smaller InfiniFilter. This approach removes the entry with the longest
matching hash across all InfiniFilters.
The worst-case delete cost is 𝑂 (lg(𝑁)/𝐹) memory accesses as we must potentially traverse all

InfiniFilters. Since most of the entries are in the Active InfiniFilter, however, a delete is likely to
find and remove the target in constant time after just searching the Active InfiniFilter. If a filter in
the Chain runs out of entries due to deletes, it is de-allocated.
False Positive Rate. When querying for a non-existing entry, a false positive can occur along any
of the InfiniFilters in the chain. To derive the overall false positive rate, one can multiply the number
of InfiniFilters 𝑐 by the false positive rate of an individual InfiniFilter. We provide Equation 5 as a
smooth function that approximates the false positive rate as the data size grows. As shown, the
false positive rate increases logarithmically. Later in Section 5, we verify this model empirically
and show that it is very accurate in practice.

𝜃 ≲ (log2 (𝑁) + 2) · 2−𝐹−1 · 𝛼 (5)

Rejuvenation Operations. The Chained InfiniFilter also supports rejuvenation operations to
lengthen the fingerprints of older entries after a query to an existing entry. If the true positive for
this entry occurs in the Active InfiniFilter, the rejuvenation process is identical to the one described
in Section 4.1. However, the true positive could also occur in the Secondary InfiniFilter or one of the
InfiniFilters along the chain. In this case, after we retrieve the target key from storage, we rehash
the key, delete the longest matching fingerprint from the filter where the true positive occurred,
and reinsert the lengthened fingerprint into the Active infiniFilter. If a filter in the Chain empties
due to rejuvenation operations, it is de-allocated.
Summary. The Chained InfiniFilter supports a logarithmic false positive rate and infinite expan-
sions. Hence, it dominates the Fingerprint Sacrifice method, which supports only 𝐹 expansions and
has a linear false positive rate.
Moreover, the Chained InfiniFilter improves query/delete costs relative to Geometric Chaining

by a significant factor of 𝐹 (i.e., 𝑂 (lg𝑁/𝐹) vs. 𝑂 (lg𝑁)). The trade-off is that InfiniFilter’s periodic
expansions can slow down insertion throughput by a factor of up to ≈ 2 relative to Geometric

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:16 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

1 0 0 1 0 0 0 1 1 0 0 0
0110 1101 1000

000 001 010 011 100 101 110 111

0000

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
11011 11100 1111000000 00000 00000 00011 00000

Insert Y where h(Y) = 0011110

slotFP
00 01 10 11

Fig. 12. InfiniFilter can stabilize the false positive rate by increasing fingerprint sizes for newer entries while
providing the necessary padding for older entries by lengthening their unary counters.

Chaining. Nevertheless, assuming a typical assignment of, say, 10 to 𝐹 , an x10 improvement in
query/delete throughput is worth an x2 slowdown in insertion throughput for a wide spectrum of
applications. In terms of overall system throughput, this trade-off is beneficial whenever queries
constitute between 10% to 100% of the workload relative to insertions. Such workloads characterize
all the default workloads in YCSB [19] and many applications in practice (e.g., HTAP [62, 81] and
Social Graphs [5, 33]). Moreover, in many applications (e.g., storage engines such as HBase [46],
Cassandra [3], RocksDB [67], etc.) filters are queried on the critical path of performance and directly
impact the latency experienced by users. In contrast, new data is first buffered and inserted into a
filter in the background, possibly during idle time, so insertion performance can be less critical to
optimize for users’ experience.

4.3 Stabilizing the False Positive Rate
The Chained InfiniFilter so far offers a logarithmic false positive rate, and rejuvenation operations
can be employed to opportunistically decrease the false positive rate when users query for existing
keys. However, the effectiveness of rejuvenation operations depends on the query workload. If
only a small fraction of the existing keys are queried for, most fingerprints will not be touched
by queries and thereby not get rejuvenated. With a vision towards navigable systems that can
span and adapt across a wide spectrum of trade-offs to optimize diverse workloads [47–50], this
section shows how to obtain better worst-case guarantees for the false positive rate in exchange
for slightly more memory, regardless of the query workload.
The technique we employ is to increase the slot width of the Active InfiniFilter as the data

grows to allow storing even longer fingerprints for newer entries. By gradually increasing the
average fingerprint length as a function of the data size, the longer fingerprints of newer entries
counterbalance the effect of the shortening fingerprints of older entries and guarantee a lower and
more stable false positive rate overall.
Fingerprint Growth. Our goal is to assign longer fingerprints to newer entries such that the false
positive rate across the filter as a whole converges to a constant with respect to the number of
expansions that have taken place. At the same time, we would like to grow the fingerprints at a
slow rate to prevent the memory footprint from significantly increasing over time. Inspired by [71],
we strike this balance using the reciprocal of square numbers, which produce a convergent series
(
∑∞

𝑖=0 𝑖
−2 = 𝜋2/6). We use this series to decrease the target false positive rate by a factor of (𝑋 + 1)−2

for entries inserted after the 𝑋 th expansion (belonging to Generation 𝑋). To do so, Equation 6 gives
the fingerprint length assigned to entries inserted after the 𝑋 th expansion.

ℓ (𝑋) = 𝐹 + ⌈2 · log2 (𝑋 + 1)⌉ (6)

As this approach increases the slot width, we increase the unary code of older entries to provide
the necessary padding in each slot, as shown in Figure 12.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:17

Memory Footprint. The requisite number of bits per entry is given in Equation 7. It is derived by
considering that the number of expansions 𝑋 is log2 (𝑁). Furthermore, one bit is needed as a unary
counter, three bits are needed for a quotient filter to resolve collisions, and only a fraction of up to
𝛼 of the filter’s slots are used when at full capacity.

𝑀 =
4 + 𝐹 + ⌈2 · log2 (log2 (𝑁) + 1)⌉

𝛼
(7)

Fingerprint Size Distribution. We now turn to derive the false positive rate. To do so, we
first reason about the lengths of different fingerprints within an individual InfiniFilter along the
chain. Let us consider a filter whose oldest fingerprints were created in generation 𝑡 (after the 𝑡 th
expansion). Such a filter stores entries inserted from across ℓ (𝑡) consecutive generations of entries,
as after ℓ (𝑡) expansions the oldest entries become void. For such an InfiniFilter, entries inserted at
generation 𝑡 + 𝑖 will have had a fingerprint of length ℓ (𝑡 + 𝑖) when they were first inserted. However,
by the time this InfiniFilter is appended to the chain, ℓ (𝑡) − 𝑖 additional expansions must have taken
place, and so entries of this generation must have lost ℓ (𝑡) − 𝑖 bits of their original fingerprints.
Hence, Equation 8 derives the fingerprint lengths of entries belonging to Generation 𝑡 + 𝑖 for an
InfiniFilter created at Generation 𝑡 .

𝐹𝑃𝑡 (𝑖) = ℓ (𝑡 + 𝑖) − (ℓ (𝑡) − 𝑖) = 𝐹 + 2 · log2 (𝑡 + 𝑖 + 1) − ℓ (𝑡) + 𝑖 (8)

For an InfiniFilter created at Generation 𝑡 , Equation 9 denotes 𝜃𝑡 as the overall false positive rate.
It is derived by weighting the false positive rates for entries with a given age using Equation 8 by
the distribution of different ages in a filter from Equation 2.

𝜃𝑡 =

ℓ (𝑡)∑︁
𝑖=0

𝑓 (ℓ (𝑡) − 𝑖) · 2−𝐹𝑃𝑡 (𝑖) · 𝛼 ≲ 2−𝐹−1 · 𝛼
ℓ (𝑡)+1∑︁
𝑖=1

1
(𝑡 + 𝑖)2 (9)

Constant False Positive Rate. To obtain the overall false positive rate, the left-hand side of
Equation 10 sums up the false positive rate for every existing InfiniFilters in the system. The
subsequent derivation in Equation 10 shows that the overall false positive rate converges to a
constant with respect to the number of expansions that have taken place. The reason is that newer
InfiniFilters have longer fingerprints on average and thus a lower false positive rate.

𝜃 ≤ 2−𝐹−1 · 𝛼 ·
𝑋+1∑︁
𝑖=1

1
𝑖2
≲ 2−𝐹−1 · 𝛼 ·

∞∑︁
𝑖=0

1
𝑖2

= 2−𝐹−1 · 𝛼 · (𝜋2/6) ≲ 2−𝐹 · 𝛼 (10)

Faster Queries and Deletes. While we have already achieved our goal of stabilizing the false
positive rate with respect to the data size, the approach introduced in this section also asymptotically
improves the performance of queries and deletes. The reason is that newer InfiniFilters store entries
from across a greater number of consecutive generations as they are assigned longer fingerprints
to begin with. This restricts the number of InfiniFilters 𝑐 to be at most 𝑂 (log2 𝑁/(𝐹+log2 log2 𝑁)). This
is a lower expression for query and delete cost than what we were able to obtain for the Chained
InfiniFilter in Section 4.2. To prove this formally, one can show by induction that a chain of 𝑐
InfiniFilters stores entries from at least 𝑐 · (𝐹 + log2 𝑐) consecutive generations.
Summary. We summarize the properties of the Chained InfiniFilter with Growing Fingerprints in
Row 3 of Table 3. In contrast to the Chained InfiniFilter in Row 2, it offers a constant rather than a
logarithmic false positive rate and faster queries/deletes in exchange for a slightly higher memory
footprint. Hence, it offers a new attractive design choice for applications that require even stabler
performance guarantees as the data grows.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:18 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

5 EVALUATION
We now turn to evaluate InfiniFilter against several baselines2.
Platform. Our machine has two Intel Xeon E5-2690v4 (2.6 GHz, 14 cores) with a total of 28 cores
and 56 hyper-threads. There are 512GB of RAM, 35MB of L3 cache, 256KB of L2 cache, and 32KB of
L1 cache. There are two 960GB SSDs and four 1.8TB HDDs, though we do not use these drives in
the experiments. An Ubuntu 18.04.5 LTS operating system is installed.
Baselines. We first compare the Chained InfiniFilter against the Bit Sacrifice and Geometric
Chaining methods from Section 3. We do not compare against Linear Chaining as it is dominated
by the Geometric Chaining and is therefore non-competitive.
We implemented InfiniFilter and all the other baselines in Java. We chose Java to make our

filter implementations compatible with popular key-value stores that heavily use filters, including
HBase [4] and Cassandra [3], both of which are written in Java.

Our implementation consists of a Quotient Filter class, which is inherited by each of the baselines
as a separate class to provide a means of expansion. Since all baselines share the same Quotient Filter
implementation, any differences in their performance arise purely from the expansion strategy
rather than implementation idiosyncrasies. We use version 11.0.16 of the Java compiler. We employ
xxhash [18] as the hash function for all the baselines.

All baselines are initialized with the same slot widths. Three bits of each slot are employed by
the quotient filter as metadata bits to resolve hash collisions. With the Geometric Chaining method
and Bit Sacrifice methods, this leaves the remaining bits to be used as fingerprints. For Infinifilter,
one additional bit is used as a unary age counter, meaning its fingerprints are initialized with one
bit less than the other baselines.
Setup. All experiments involve inserting or querying uniformly randomly distributed eight-byte
integer keys generated using the java.util.Random class. We set the capacity threshold at which
each of the baselines expands to 80%.
All of the evaluation figures show how different cost metrics evolve as we insert more data

into the filter. Between every two adjacent points in any curve in each figure, one expansion
occurs, meaning the data size doubles. We consider this as a phase. Each phase commences with
an expansion and proceeds to fill up the filter to 80% capacity. We measure the average insertion
latency for each phase by dividing the duration of the phase by the number of insertions that took
place. Hence, our measurements for average insertion latency account for the cost of expansion.
To focus on the worst-case, we measure performance for queries to non-existing keys (i.e.,

negative queries). Such queries traverse the entire chain of InfiniFilters and thus highlight its worst-
case behavior. Moreover, we measure query latency and the false positive rate at the end of each
phase, right before the next expansion. At this point, queries and insertions need to traverse the
longest possible clusters on average. Furthermore, there are more opportunities for false positives
to occur as runs are longer.
At the end of each phase, we also measure memory footprint as the total filter size divided by

the number of entries that have been inserted. Hence, our memory measurements account for all
memory overheads including the 20% spare capacity in each filter at the end of each phase.
InfiniFilter Offers Superior Cost Balances. Figure 13 Parts (A) to (D) compare the different
baselines with an initialization of 16-bit slots. The Bit Sacrifice method only supports 13 expansions
until its fingerprints run out of bits. The other baselines can expand indefinitely. This experiment
focuses on the Chained InfiniFilter from Section 4.2 with fixed slot widths.
Part (A) focuses on query cost. The Geometric Chaining method exhibits the fastest-growing

query costs since a new filter is added to the chain in each expansion, and the entire chain is
2The code of InfiniFilter and all baselines is available at https://github.com/nivdayan/FilterLibrary.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

https://github.com/nivdayan/FilterLibrary

InfiniFilter: Expanding Filters to Infinity and Beyond 140:19

a
v

g
.

q
u

er
y

la
te

n
cy

(
s)

(A)

fa
ls

e
p

o
si

ti
v
e

ra
te

(B)

b
it

s
/

en
tr

y

(C)

a
v

g
.
in

se
rt

la
te

n
cy

(
s)

(D)

a
v

g
.

q
u

er
y

la
te

n
cy

(
s)

(E)

fa
ls

e
p

o
si

ti
v
e

ra
te

(F)

b
it

s
/

en
tr

y

(G)

a
v

g
.

in
se

rt
la

te
n

cy
(

s)

(H)

Fig. 13. As the data size grows, Geometric Chaining exhibits a rapidly deteriorating query cost, while the
Fingerprint Sacrifice method exhibits a rapidly increasing false positive rate and cannot expand indefinitely.
In contrast, InfiniFilter maintains a stabler query cost, false positive rate, memory footprint and insertion
cost as the data size grows, all while being able to expand indefinitely.

traversed in each query. The Bit Sacrifice method exhibits stable performance but cannot expand
indefinitely. The Chained InfiniFilter maintains modest query overheads that increase slightly
towards the end of the experiment as a Secondary Infinifilter is allocated, meaning that two filters
are accessed in each query.

Part (B) measures the false positive rate. The Bit Sacrifice method exhibits the fasting increasing
false positive rate as one bit from each fingerprint is sacrificed in each expansion. Therefore, the
false positive rate doubles in each phase of the experiment. InfiniFilter and Geometric Chaining
exhibit logarithmic false positive rates as the data size grows. The dotted lines with matching
colors for each of the baselines reflect the analytical cost models (from Equation 5 for the Chained
InfiniFilter and from Section 3 for the other two baselines). The model error is proportional to the
actual false positive rate, meaning that as the false positive rate grows, the error becomes more
noticeable in the figure.

Part (C) measures the memory footprint. The Bit Sacrifice method exhibits decreasing memory
overheads as all fingerprints shrink by one bit after each expansion. In contrast, InfiniFilter and the
Geometric Chaining method exhibit a stable memory footprint since their slot widths stay fixed as
the data grows.

Part (D) focuses on insertion overheads. The Bit Sacrifice method and InfiniFilter exhibit a higher
insertion cost by a modest constant factor of ≈ 2 relative to Geometric Chaining. The reason is that
unlike the Geometric Chaining method, which simply allocates a new empty filter to expand, the
other two methods must also migrate all existing entries into a new filter during expansion. This is
also what allows them to support faster queries.
Overall, InfiniFilter dominates the Bit Sacrifice method by better scaling the false positive rate

and supporting infinite expansions. Compared to Geometric Chaining, InfiniFilter supports >10x
faster queries in exchange for ≈ 2x slower insertions.
To show these results hold in general, Figure 13 Parts (E) to (H) repeat the experiment with

initialization of 8-bit rather than 16-bit slots. The Bit Sacrifice method in this case runs out of finger-
print bits after five expansions, while the other two methods can continue expanding indefinitely.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:20 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

a
v
g
.
q

u
er

y
la

te
n

cy
(

s)

(B)

fa
ls

e
p

o
si

ti
v
e

ra
te

(A)

a
v
g
.
q

u
er

y
la

te
n

cy
(

s)

(D)

fa
ls

e
p

o
si

ti
v
e

ra
te

(C)

Fig. 14. The more positive queries take place relative to insertions, the more InfiniFilter is able to keep the
false positive rate and query costs stable by rejuvenating older fingerprints.

InfiniFilter has a slightly higher false positive rate than Geometric Chaining because it employs
some of its memory for unary counters, though it continues to significantly improve on Geometric
Chaining in terms of query cost.
Rejuvenation Operations. Figure 14 showcases InfiniFilter’s rejuvenation operations. The ex-
periment interleaves uniformly random queries to existing entries (i.e., positive queries) along
with insertions of new entries. Each query rejuvenates the longest matching fingerprint in the
target run, as described in Sections 4.1 and 4.2. The experiment illustrates four curves, each with a
different ratio between the number of queries to the number of insertions. A ratio of zero means
there are no queries, 0.2 means we issue one query for every five writes, etc. At the end of each
phase, we issue queries to non-existing entries to measure the false positive rate. Parts (A) and (B)
of the figure focus on an initialization with 16-bit slots while Parts (C) and (D) employ 8-bit slots.
As this experiment only affects query costs and the false positive rate, we do not illustrate memory
or insertion overheads as they are the same as in Figure 13.
Parts (A) and (C) of Figure 14 show that with a higher proportion of positive queries in the

workload, the false positive rate stays lower and more stable. The reason is that the positive queries
rejuvenate fingerprints and keep them longer on average. Meanwhile, Parts (B) and (D) of Figure 14
show that a higher proportion of positive queries also keeps query costs lower and more stable.
The reason is that rejuvenation operations migrate older entries from the secondary InfiniFilter
or from the chain into the Active InfiniFilter. This reduces the cluster lengths that queries must
traverse in InfiniFilters containing older entries. Overall, these experiments establish that even a
small proportion of positive queries in an application workload can effectively prevent the false
positive rate and query costs from deteriorating as the data grows.
Growing Fingerprints. Rejuvenation operations only help stabilize the false positive rate if queries
to existing entries are evenly distributed in the data set. To stabilize the false positive rate as the
data grows regardless of the query distribution, Section 4.3 proposes to increase the lengths of
fingerprints of newer entries as a function of the data size. Figure 15 showcases this technique using
the curves labeled Growing Mem. and compares it to the version of InfiniFilter from Section 4.2 with
fixed slot widths. As a baseline, we also add Geometric Chaining with Growing Memory (GCGM)
from [71], whose properties are summarized in Row 3 of Table 2. In this experiment, there are no
positive queries and thus no rejuvenation operations. All baselines are initialized with 8-bit slots.

Part (A) of Figure 15 shows that InfiniFilter with growing fingerprints completely stabilizes the
false positive rate. The price is a slowly increasing memory footprint, as shown in Part (B). The
dotted lines with matching colors in Part (A) for each of the baselines reflect the analytical cost
models from Equations 5 and 10 for InfiniFilter and from Section 3 for GCGM. While GCGM offers
a similar false positive rate and memory footprint to Infinifilter with growing fingerprints, it is
non-competitive in terms of its query cost, as shown in Part (C). Part (C) also demonstrates that

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:21

fa
ls

e
p

o
si

ti
v
e

ra
te

(A)

b
it

s
/

en
tr

y

(B)

a
v

g
.
q

u
er

y
la

te
n

cy
(

s)

(C)

a
v

g
.
in

se
rt

la
te

n
cy

(
s)

(D)

Fig. 15. Increasing the fingerprint lengths of newer entries inserted into the filter allows to stabilize the false
positive rate even in the absence of many positive queries and rejuvenation operations.

query overheads stay more modest with InfiniFilter with growing fingerprints as this technique
slows down the rate at which the chain of infiniFilter grows. This improves query costs toward the
end of the experiment. Part (D) demonstrates that growing fingerprint lengths does not significantly
impact insertion performance in the context of InfiniFilter.
Comparison to Static Baselines. We now compare InfiniFilter to three static filters with a fixed
capacity pre-allocated in advance: a regular Quotient filter [7], a Bloom filter [9], and a Cuckoo
filter [36]. This goal is to compare InfiniFilter to different instances employing the Pre-Allocation
method from Section 3. Moreover, these experiments illuminate the effects of choosing a Quotient
filter as the base method for InfiniFilter rather than other filter designs. Each of the baselines is
initialized with 16 bits per entry, and we use the Chained InfiniFilter variant from Section 4.3 with
growing fingerprints. The Cuckoo filter has four slots per bucket. The Bloom filter employs 11
hash functions, which is the optimal number given 16 bits per entry. This experiment measures
performance in a finer resolution than before to show how InfiniFilter behaves across the board
rather than only when it is just about to expand.
Figure 16 Part (A) compares the overall memory footprint across the baselines as we insert 109

data entries from scratch. The static filters exhibit a high memory footprint from the onset as
they are pre-allocated to accommodate the maximum data size. Furthermore, they are unable
to accommodate data growth beyond their pre-allocated capacity (≈ 108 entries). In contrast,
InfiniFilter scales the memory footprint in proportion to the data size by expanding gradually.
Hence, it requires less memory upfront and supports indefinite growth.

Figure 16 Part (B) measures latency for negative queries. InfiniFilter is initially the fastest baseline
as it is smaller than the others and so it fully fits into the L3 cache. As the data grows, however, it
outgrows the cache, and a secondary InfiniFilter is created. This results in a slowdown. The static
quotient filter is initially the second fastest baseline as most slots are empty, so it only checks on
average one “is_occupied” flag per query before encountering a zero and terminating. As it fills
up, however, cluster lengths grow and query performance deteriorates. Bloom filter is initially
the third slowest baseline. It also initially checks one bit on average before encountering a zero
and terminating. As it fills up, however, the percentage of ones in the filter grows to ≈ 50%, and
so on average, two bits are checked before encountering a zero and terminating. Hence, latency
approximately doubles as the data size grows. The reason the Bloom filter is initially slower than
the quotient filter is due to modulo operations to obtain the target bit from a hash value. We employ
modulo operations since a Bloom filter’s size is not generally a power of 2. The static Cuckoo
filter exhibits stable performance across the experiment as it always searches eight fingerprint
slots across two random bucket locations, resulting in two cache misses. Overall, InfiniFilter offers
similar, if not better, query performance relative to its static counterparts, while also supporting
gradual expansion and indefinite growth.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:22 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

to
ta

l
m

em
o

ry
(M

B
)

(A)

a
v

g
.
q

u
er

y
la

te
n

cy
(

s)

(B)

fa
ls

e
p

o
si

ti
v
e

ra
te

(C)

a
v

g
.
in

se
rt

la
te

n
cy

(
s)

(D)

Fig. 16. Unlike static filters, InfiniFilter supports indefinite growth while (A) requiring less memory upfront,
(B) having a competitive query cost, (C) preserving a stable false positive rate, and (D) paying a moderate toll
in terms of insertion cost.

Figure 16 Part (C) shows that the false positive rate with a Bloom filter is initially lowest as the
probability of all hash functions hitting ones is infinitesimal when the Bloom filter is nearly empty.
As more data is inserted, however, its false positive rate exceeds all other baselines as predicted by
Equation 1. The false positive rate for the static Cuckoo and Quotient filters grows in proportion to
the number of entries until they fill up and can no longer expand. In contrast, InfiniFilter provides
and preserves a stable and predictable false positive rate that is on par with the other baselines’
ultimate false positive rate.
Figure 16 Part (D) shows that the Bloom filter exhibits the slowest insertion speed as each

insertion entails one cache miss for each of the 11 hash functions. The cuckoo and Quotient filters
exhibit similar performance across the board as each insertion usually only entails one cache miss.
However, their performance deteriorates as the data grows and larger clusters need to be accessed
in the Quotient filter and more swapping happens across the cuckoo filters’ buckets. InfiniFilter, in
contrast, exhibits fluctuating insertion performance due to its expansion operations. This is the
core trade-off of InfiniFilter relative to the pre-allocation method. In summary, compared to the
pre-allocated baselines, InfiniFilter exhibits slightly slower insertion throughout. In exchange, it
requires less memory upfront and supports indefinite data growth while maintaining similar query
performance and false positive rate.

6 RELATEDWORK
Bloom Filters. Numerous Bloom filter variants have been proposed and surveyed [12, 63, 85].
They support counting [10, 37, 79], vectorization [61, 74], deletes [78], more efficient hashing
[31, 51], and better cache locality [13, 28, 58, 60, 75]. While Bloom filters have not been shown
to support efficient expansion, it is possible to accommodate dynamic data sets with them using
Linear Chaining [44, 45], Geometric Chaining [1, 90], or by retrieving a fingerprint for each entry
from storage [89]. Section 3 discusses these different options.
Another option is to compress a Bloom filter to allow its physical size to grow along with the

data size. However, this would require compressing and decompressing parts of the filter for each
query and insertion, leading to higher computational overheads. Existing work on compressed
Bloom filters [68] rather aims to reduce network traffic when transmitting bloom filters across a
network rather than to support expansions.
Filters as Hash Tables of Fingerprints. While we implement InfiniFilter on top of Quotient
Filter [7], there exist various other filters that store a fingerprint for each entry within a compact
hash table. The Vector and Counting Quotient Filters employ nested buckets and traverse them
quickly using SIMD operations [72, 73]. Cuckoo filter resolves hash collisions using partial-key
cuckoo hashing [36]. Morton Filter is a Cuckoo filter variant that biases insertions to one bucket to
improve query cost [11]. Vacuum Filter is another Cuckoo filter variant that maps both candidate

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:23

buckets for each entry into the same chunk and therefore supports better cache locality and more
flexible sizing (the number of buckets need not be a power of two) [87]. Other approaches [64, 91]
form a conceptual hash ring of buckets and thus supports elastic expansion, though query, delete
and insertion costs all become 𝑂 (log2 𝑁) as a search tree has to be searched to find a given entry’s
bucket. The Crate Filter employs larger hash buckets and evicts overflowing entries to a smaller
spare hash table [8]. Prefix Filter is a variant of the Crate Filter that evicts the largest fingerprint
to help queries avoid searching the spare hash table [35]. TinySet adapts the bucket encoding
based on the load targeting the bucket [34]. The Xor and Ribbon filters improve memory utilization
in exchange for a higher construction cost [30, 43]. Across many of these filters, it is possible to
employ the Fingerprint Sacrifice method, discussed in Section 3, to expand. However, this causes
the false positive rate to rapidly increase. Integrating InfiniFilter with these filters to combine their
nuanced properties with efficient expandability can make for intriguing future work.
Theoretical Algorithms and Bounds. Pagh, Segev, and Wieder prove the following lower bound:
If we initialize a filter to constant capacity and expand it to contain 𝑁 keys, the filter must at some
point use at least log(log(𝑁)) bits per key in addition to what is required for a filter with a fixed
capacity of 𝑁 keys [71].
Pagh, Segev, and Wieder also describe two expandable filters [71]: The first uses Geometric

Chaining (see Section 3) with polynomially decreasing false positive rates assigned to larger filters
along the chain as described in Section 3. This asymptotically improves the approach of [1] which
uses geometrically decreasing false positive rates. This structure’s space overhead matches the
lower bound up to a constant factor, but queries must search log(𝑁) filters.
The second data structure is a hash table of fingerprints that duplicates void entries across

both candidate buckets in each expansion. This construction exhibits constant time queries and
constant amortized insertions. However, it assumes an upper bound of𝑈 on the number of keys to
achieve an overhead of roughly 𝑂 (log log𝑈) bits per key. This is close to the lower bound when
log log𝑈 is close to log log𝑁 , which may be reasonable in some settings (e.g. when keys come from
a finite set of size 𝑈 and the set 𝑁 is not too small). To support deletes, this structure encodes a
binary age counter and a deletion flag for every fingerprint, and it employs an auxiliary dictionary
to disambiguate entries with matching fingerprints. These components inflate space costs by a
significant constant factor. Also, having to search both the filter and dictionary doubles query cost.
An asymptotically better filter was later presented by Liu, Yin, and Yu [59]. If 𝑁 and 𝑈 are

polynomially related, this data structure achieves constant time per operation with high probability
and a more modest space overhead of log log𝑁 +𝑂 (log log log𝑁) bits per key, which matches the
leading term of the lower bound. However, this structure has not been shown to support deletes.

The constructions of [59, 71] have to our knowledge never been implemented, but it is of course
interesting to compare their theoretical properties to those of InfiniFilter. First, these structures
either require a hard limit 𝑈 on the number of keys or use Ω(log𝑁) time to answer queries.
Analyzing these constant time filters for 𝑁 > 𝑈 , we find that either the space complexity or the
false positive rate increases significantly, so the bound on 𝑁 is necessary.

In contrast, the chained InfiniFilter from Section 4.3 meets the space lower bound of [71] even if𝑁
is unbounded while supporting a constant false positive rate, queries and deletes in 𝑂 (log𝑁

𝐹+log log𝑁)
time, and insertions in constant amortized time. Furthermore, InfiniFilter’s novel deletion algorithm,
which removes the longest matching fingerprint within a bucket, removes the need for additional
machinery to support deletes.
Range Filters. Recently, several range filters have been proposed to allow filtering range queries
[41, 52, 65, 86, 93]. Applying design elements from InfiniFilter to allow to efficiently expand range
filters is an intriguing future direction of work.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:24 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

Learning from Negative Queries. Recent approaches have been devised to learn from commonly
issued negative queries (to non-existing keys) to reduce the false positive rate [29, 56, 69]. Integrating
such techniques with InfiniFilter is an intriguing direction.

7 CONCLUSION
This paper introduces InfiniFilter, a novel method for expanding set-membership filters as the size
of the data that they represent grows. InfiniFilter is a hash table of fingerprints that expands by
doubling in size and sacrificing a fingerprint from each entry to map it to the expanded capacity. It
employs a novel entry format that allows setting longer fingerprints to newer entries to stabilize the
false positive rate, and it supports fast insertions/deletes/queries by virtue of using a unified hash
table. It employs chaining as a technique to guarantee indefinite expansion without significantly
increasing the cost of queries or deletes. It also employs a novel deletion algorithm that targets
the longest matching fingerprint within a target slot to prevent false negatives. InfiniFilter can
rejuvenate the fingerprints of older entries opportunistically during queries to existing entries, or it
can assign increasing fingerprint sizes to newer entries to stabilize the false positive rate regardless
of the query distribution. Overall, InfiniFilter scales the cost per operation, the false positive rate,
and the memory footprint better than any existing method while supporting expansion up to an
unbounded universe size.

ACKNOWLEDGEMENT
Ioana Bercea and Rasmus Pagh are part of BARC, supported by the VILLUM Foundation grant
16582. Pedro Reviriego is supported by the ACHILLES project PID2019-104207RB-I00 and the
ENTRUDIT project TED2021-130118B-I00 funded by the Spanish Agencia Estatal de Investigación
(AEI) 10.13039/501100011033 and by the Madrid Community research project TAPIR-CM grant
no. P2018/TCS-4496. We thank the Reviewers for their invaluable feedback. We also thank Miguel
González Sáiz for help with the implementation. Lastly, we thank Geffen Huberman for coining
InfiniFilter.

REFERENCES
[1] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison. 2007. Scalable Bloom Filters. Inform.

Process. Lett. (2007).
[2] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan. 2009.

FAWN: A Fast Array of Wimpy Nodes. SOSP (2009).
[3] Apache. 2023. Cassandra. http://cassandra.apache.org (2023).
[4] Apache. 2023. HBase. http://hbase.apache.org/ (2023).
[5] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan. 2013. LinkBench: a Database

Benchmark Based on the Facebook Social Graph. SIGMOD (2013).
[6] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri, N. Chainani, S. Lightstone, and D. Sharpe. 2014.

Memory-Efficient Hash Joins. VLDB (2014).
[7] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo

Montes, Pradeep Shetty, Richard P. Spillane, and Erez Zadok. 2012. Don’t Thrash: How to Cache Your Hash on Flash.
PVLDB (2012).

[8] Ioana O Bercea and Guy Even. 2020. Fully-Dynamic Space-Efficient Dictionaries and Filters with Constant Number of
Memory Accesses. SWAT.

[9] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable Errors. CACM 13, 7 (1970), 422–426.
[10] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Varghese. 2006. An Improved

Construction for Counting Bloom Filters. In ESA.
[11] Alex D Breslow and Nuwan S Jayasena. 2018. Morton Filters: Faster, Space-Efficient Cuckoo Filters via Biasing,

compression, and decoupled logical sparsity. In VLDB.
[12] Andrei Z. Broder and Michael Mitzenmacher. 2002. Network Applications of Bloom Filters: A Survey. Internet

Mathematics 1 (2002), 636–646.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:25

[13] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Kenneth A. Ross, and Christian A. Lang. 2010. SSD
Bufferpool Extensions for Database Systems. PVLDB (2010).

[14] Larry Carter, Robert Floyd, JohnGill, GeorgeMarkowsky, andMarkWegman. 1978. Exact andApproximateMembership
Testers. In STOC.

[15] Pedro Celis, Per-Ake Larson, and J Ian Munro. 1985. Robin Hood Hashing. In FOCS.
[16] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J Levandoski, James Hunter, and Mike Barnett. 2018.

FASTER: A Concurrent Key-Value Store with In-Place Updates. SIGMOD (2018).
[17] Hanhua Chen, Liangyi Liao, Hai Jin, and Jie Wu. 2017. The Dynamic Cuckoo Filter. In ICNP.
[18] Yann Collet. 2023. XXHash. https://github.com/Cyan4973/xxHash (2023).
[19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking Cloud

Serving Systems with YCSB. SoCC (2010).
[20] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. SIGMOD

(2017).
[21] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018. Optimal Bloom Filters and Adaptive Merging for LSM-Trees.

TODS 43, 4 (2018), 16:1–16:48.
[22] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores

via Adaptive Removal of Superfluous Merging. SIGMOD (2018).
[23] Niv Dayan and Stratos Idreos. 2019. The Log-Structured Merge-Bush & the Wacky Continuum. In SIGMOD.
[24] Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for LSM-Tree. In SIGMOD.
[25] Niv Dayan, Moshe Twitto, Yuval Rochman, Uri Beitler, Itai Ben Zion, Edward Bortnikov, Shmuel Dashevsky, Ofer

Frishman, Evgeni Ginzburg, Igal Maly, et al. 2021. The End of Moore’s Law and the Rise of the Data Processor. VLDB
(2021).

[26] Niv Dayan, Tamar Weiss, Shmuel Dashevsky, Michael Pan, Edward Bortnikov, and Moshe Twitto. 2022. Spooky:
granulating LSM-tree compactions correctly. PVLDB (2022).

[27] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: High Throughput Persistent Key-Value Store. PVLDB
(2010).

[28] Biplob Debnath, Sudipta Sengupta, Jin Li, David J Lilja, and David HCDu. 2011. BloomFlash: Bloom filter on Flash-Based
Storage. In ICDCS.

[29] Kyle Deeds, Brian Hentschel, and Stratos Idreos. 2020. Stacked filters: learning to filter by structure. PVLDB (2020).
[30] Peter C Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer. 2022. Fast Succinct Retrieval and

Approximate Membership Using Ribbon. SEA (2022).
[31] Peter C. Dillinger and Panagiotis Manolios. 2004. Bloom Filters in Probabilistic Verification. FMCAD (2004).
[32] Peter C. Dillinger and Panagiotis Pete Manolios. 2009. Fast, All-Purpose State Storage. In SPIN.
[33] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor, and Michael Strum. 2017. Optimizing

Space Amplification in RocksDB. CIDR (2017).
[34] Gil Einziger and Roy Friedman. 2017. TinySet—An Access Efficient Self Adjusting Bloom Filter Construction. IEEE

ACM Trans Netw (2017).
[35] Tomer Even, Guy Even, and Adam Morrison. 2022. Prefix Filter: Practically and Theoretically Better Than Bloom. In

VLDB.
[36] Bin Fan, David G. Andersen, Michael Kaminsky, and Michael Mitzenmacher. 2014. Cuckoo Filter: Practically Better

Than Bloom. CoNEXT (2014).
[37] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. 2000. Summary Cache: A Scalable Wide-Area Web Cache

Sharing Protocol. IEEE ACM Trans Netw (2000).
[38] Shahabeddin Geravand and Mahmood Ahmadi. 2013. Bloom filter Applications in Network Security: A State-of-the-Art

Survey. Comput Netw (2013).
[39] Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei, Sameh Elnikety, and Yuxiong He. 2017.

BitFunnel: Revisiting Signatures for Search. In SIGIR.
[40] Google. 2023. LevelDB. https://github.com/google/leveldb/ (2023).
[41] Mayank Goswami, Allan Grønlund, Kasper Green Larsen, and Rasmus Pagh. 2014. Approximate Range Emptiness in

Constant Time and Optimal Space. In SODA.
[42] Goetz Graefe. 2011. Modern B-Tree Techniques. Found. Trends Databases 3, 4 (2011), 203–402.
[43] Thomas Mueller Graf and Daniel Lemire. 2020. Xor Filters: Faster and Smaller Than Bloom and Cuckoo Filters. JEA

(2020).
[44] Deke Guo, Jie Wu, Honghui Chen, and Xueshan Luo. 2006. Theory and Network Applications of Dynamic Bloom

Filters. In INFOCOM.
[45] Deke Guo, Jie Wu, Honghui Chen, Ye Yuan, and Xueshan Luo. 2009. The Dynamic Bloom Filters. IEEE Trans Knowl

Data Eng (2009).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

140:26 Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh

[46] HBase. 2013. Online reference. http://hbase.apache.org/ (2013).
[47] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew Ross, James Lennon, Varun Jain,

Harshita Gupta, David Li, et al. 2019. Learning Key-Value Store Design. arXiv preprint arXiv:1907.05443 (2019).
[48] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew Ross, James Lennon, Varun Jain,

Harshita Gupta, David Li, and Zichen Zhu. 2019. Design Continuums and the Path Toward Self-Designing Key-Value
Stores that Know and Learn. In CIDR.

[49] Stratos Idreos, Kostas Zoumpatianos, Manos Athanassoulis, Niv Dayan, Brian Hentschel, Michael S. Kester, Demi Guo,
Lukas M. Maas, Wilson Qin, Abdul Wasay, and Yiyou Sun. 2018. The Periodic Table of Data Structures. IEEE DEBULL
(2018).

[50] Stratos Idreos, Kostas Zoumpatianos, Subarna Chatterjee, Wilson Qin, Abdul Wasay, Brian Hentschel, Mike Kester,
Niv Dayan, Demi Guo, Minseo Kang, and Yiyou Sun. 2019. Learning Data Structure Alchemy. IEEE DEBULL (2019).

[51] Adam Kirsch and Michael Mitzenmacher. 2008. Less Hashing, Same Performance: Building a Better Bloom Filter.
Random Struct Algorithms (2008).

[52] Eric R Knorr, Baptiste Lemaire, Andrew Lim, Siqiang Luo, Huanchen Zhang, Stratos Idreos, and Michael Mitzenmacher.
2022. Proteus: A Self-Designing Range Filter. In SIGMOD.

[53] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas. 2018. Coconut: A Scalable Bottom-Up
Approach for Building Data Series Indexes. PVLDB (2018).

[54] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas. 2019. Coconut Palm: Static and
Streaming Data Series Exploration Now in your Palm. In SIGMOD.

[55] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas. 2019. Coconut: Sortable Summariza-
tions for Scalable Indexes over Static and Streaming Data Series. VLDBJ (2019).

[56] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures.
SIGMOD (2018).

[57] Avinash Lakshman and Prashant Malik. 2010. Cassandra - A Decentralized Structured Storage System. SIGOPS Op.
Sys. Rev. (2010).

[58] Harald Lang, Thomas Neumann, Alfons Kemper, and Peter Boncz. 2019. Performance-Optimal Filtering: Bloom
Overtakes Cuckoo at High Throughput. In VLDB.

[59] Mingmou Liu, Yitong Yin, and Huacheng Yu. 2020. Succinct Filters for Sets of Unknown Sizes. In ICALP.
[60] Guanlin Lu, Biplob Debnath, and David H. C. Du. 2011. A Forest-Structured Bloom Filter with Flash Memory. MSST

(2011).
[61] Jianyuan Lu, Ying Wan, Yang Li, Chuwen Zhang, Huichen Dai, Yi Wang, Gong Zhang, and Bin Liu. 2018. Ultra-Fast

Bloom Filters Using SIMD Techniques. TPDS (2018).
[62] Chen Luo, Pinar Tözün, Yuanyuan Tian, Ronald Barber, Vijayshankar Raman, and Richard Sidle. 2019. Umzi: Unified

Multi-Zone Indexing for Large-Scale HTAP. In EDBT.
[63] Lailong Luo, Deke Guo, Richard TB Ma, Ori Rottenstreich, and Xueshan Luo. 2018. Optimizing Bloom filter: Challenges,

solutions, and comparisons. IEEE Commun. Surv. Tutor. (2018).
[64] Lailong Luo, Deke Guo, Ori Rottenstreich, Richard TB Ma, Xueshan Luo, and Bangbang Ren. 2019. The Consistent

Cuckoo Filter. In INFOCOM.
[65] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin, and Stratos Idreos. 2020. Rosetta: A

Robust Space-Time Optimized Range Filter for Key-Value Stores. In SIGMOD.
[66] Meta. 2023. MyRocks. http://myrocks.io/ (2023).
[67] Meta. 2023. RocksDB. https://github.com/facebook/rocksdb (2023).
[68] Michael Mitzenmacher. 2002. Compressed Bloom Filters. IEEE ACM Trans Netw (2002).
[69] Michael Mitzenmacher, Salvatore Pontarelli, and Pedro Reviriego. 2018. Adaptive cuckoo filters. In SIAM ALENEX.
[70] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996. The Log-Structured Merge-Tree

(LSM-Tree). Acta Informatica (1996).
[71] Rasmus Pagh, Gil Segev, and Udi Wieder. 2013. How to Approximate a Set Without Knowing its Size in Advance. In

FOCS.
[72] Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. 2017. A General-Purpose Counting Filter: Making

Every Bit Count. In SIGMOD.
[73] Prashant Pandey, Alex Conway, Joe Durie, Michael A Bender, Martin Farach-Colton, and Rob Johnson. 2021. Vector

Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. In SIGMOD.
[74] Orestis Polychroniou and Kenneth A. Ross. 2014. Vectorized Bloom filters for advanced SIMD processors. DAMON

(2014).
[75] Felix Putze, Peter Sanders, and Johannes Singler. 2010. Cache-, Hash-, and Space-Efficient Bloom Filters. JEA (2010).
[76] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A Space-Efficient Key-Value Storage Engine For

Semi-Sorted Data. PVLDB (2017).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

InfiniFilter: Expanding Filters to Infinity and Beyond 140:27

[77] Mendel Rosenblum and John K Ousterhout. 1992. The Design and Implementation of a Log-Structured File System.
TOCS (1992).

[78] Christian Esteve Rothenberg, Carlos Macapuna, Fabio Verdi, and Mauricio Magalhaes. 2010. The Deletable Bloom
Filter: a New Member of the Bloom Family. IEEE Commun. Lett (2010).

[79] Ori Rottenstreich, Yossi Kanizo, and Isaac Keslassy. 2013. The Variable-Increment Counting Bloom Filter. IEEE ACM
Trans Netw (2013).

[80] Subhadeep Sarkar, Niv Dayan, and Manos Athanassoulis. 2023. The LSM Design Space and its Read Optimizations.
ICDE (2023).

[81] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: A General Purpose Log Structured Merge Tree. SIGMOD (2012).
[82] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas. 2020. Elastic Cuckoo Page Tables: Rethinking

Virtual Memory Translation for Parallelism. In ASPLOS.
[83] Speedb. 2023. Speedb. https://github.com/speedb-io/speedb (2023).
[84] V Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, Andrew Gooding, Rajkumar Iyer, Ashish Shinde,

and Thomas Lopatic. 2016. Aerospike: Architecture of a Real-Time Operational DBMS. VLDB (2016).
[85] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. 2012. Theory and Practice of Bloom Filters for

Distributed Systems. IEEE Commun. Surv. Tutor (2012).
[86] Kapil Vaidya, Subarna Chatterjee, Eric Knorr, Michael Mitzenmacher, Stratos Idreos, and Tim Kraska. 2022. SNARF: a

Learning-Enhanced Range Filter. PVLDB (2022).
[87] Minmei Wang, Mingxun Zhou, Shouqian Shi, and Chen Qian. 2019. Vacuum Filters: More Space-Efficient and Faster

Replacement for Bloom and Cuckoo Filters. In VLDB.
[88] Robert Williger and Tobias Maier. 2019. Concurrent Dynamic Quotient Filters: Packing Fingerprints into Atomics. Ph.D.

Dissertation. Karlsruher Institut für Technologie (KIT).
[89] Yuhan Wu, Jintao He, Shen Yan, Jianyu Wu, Tong Yang, Olivier Ruas, Gong Zhang, and Bin Cui. 2021. Elastic Bloom

Filter: Deletable and Expandable Filter Using Elastic Fingerprints. IEEE Trans Comput (2021).
[90] Kun Xie, Yinghua Min, Dafang Zhang, Jigang Wen, and Gaogang Xie. 2007. A Scalable Bloom Filter for Membership

Queries. In GLOBECOM.
[91] Minghao Xie, Quan Chen, Tao Wang, Feng Wang, Yongchao Tao, and Lianglun Cheng. 2022. Towards Capacity-

Adjustable and Scalable Quotient Filter Design for Packet Classification in Software-Defined Networks. IEEE Open
Journal of the Computer Society (2022).

[92] Fan Zhang, Hanhua Chen, Hai Jin, and Pedro Reviriego. 2021. The Logarithmic Dynamic Cuckoo Filter. In ICDE.
[93] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael Kaminsky, Kimberly Keeton, and Andrew

Pavlo. 2018. SuRF: Practical Range Query Filtering with Fast Succinct Tries. SIGMOD (2018).

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 140. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Background
	3 Problem Analysis
	4 InfiniFilter
	4.1 The Basic InfiniFilter
	4.2 Infinite Expansions via Chaining
	4.3 Stabilizing the False Positive Rate

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

