Tutornal

Table & Buffer management

Database System Technology - Niv Dayan

If you don’t have a group

» PINNED

Search for Teammates! 1/6/23
« 3 Open Teammate Searches =

+ TODAY

Each group should have 3 members

Question 1

Consider a table allocated as a linked list of database pages.
What scan throughout (in MB/s) would you expect on disk? How about an SSD?

How can we better structure this table to improve throughput?

NN\ N

Question 1

Consider a table allocated as a linked list of database pages.
What scan throughout (in MB/s) would you expect on disk? How about an SSD?

A disk I/0 takes 10ms to read 4KB pages. Throughput: 0.4 MB/s.
An SSD 1I/0 takes 100us to read 4KB pages. Throughput: 40 MB/s.

How can we better structure this table to improve throughput?

NN\

Question 1

Consider a table allocated as a linked list of database pages.

What scan throughout (in MB/s) would you expect on disk? How about an SSD?

A disk I/O takes 10ms to read 4KB pages. Throughput: 0.4 MB/s.
An SSD I/0 takes 100us to read 4KB pages. Throughput: 40 MB/s.

How can we better structure this table to improve throughput?

- Using a directory
. / of extents
™~

NN\ N

Question 2

Consider a database that's subject to uniformly random reads.

What's the best buffer management strategy for this case and why?

Would you also use this strategy if the reads are heavily skewed? Why or why not?

Question 2

Consider a database that's subject to uniformly random reads.

What's the best buffer management strategy for this case and why?

Random eviction.

e New page

‘ (1) Allows 100% hash table utilization.

(2) Fastest since hitting reads incur no collisions
\S B Evict (3) There is no metadata so we
can set the hash table to be slightly larger.

Would you also use this strategy if the reads are heavily skewed? Why or why not?

Question 2

Consider a database that's subject to uniformly random reads.

What's the best buffer management strategy for this case and why?

Random eviction.

e New page

‘ (1) Allows 100% hash table utilization.

(2) Fastest since hitting reads incur no collisions
\S B Evict (3) There is no metadata so we
can set the hash table to be slightly larger.

Would you also use this strategy if the reads are heavily skewed? Why or why not?

No because it might evict hot pages. Clock or LRU are better for this.

Question 3

Give pros and cons for managing buffer pool at the unit of entries rather than pages.

Pros:

Cons:

Question 3

Give pros and cons for managing buffer pool at the unit of entries rather than pages.

Pros: (1) Some hot entries may exist on otherwise cold
pages. Buffering entries allows us to fit more of the -
hot working set into memory. This is great for reads.

Cons:

Question 3

Give pros and cons for managing buffer pool at the unit of entries rather than pages.

Pros: (1) Some hot entries may exist on otherwise cold
pages. Buffering entries allows us to fit more of the -
hot working set into memory. This is great for reads.

Cons:

(1) Evicting a dirty entry requires reading its page first and then rewriting it

(2) Heavier metadata overheads (e.g., to track which page each entry
belongs to, etc)

(3) Inefficient for short scans as we lose locality

Question 4

Recall how we can buffer insertions in memory until a page fills up and flush

Inserts Flush

—

Extent with
Dlrectory . | | | free space

-

memory buffer Storage

Question 4

Consider a workload with only deletes and insertions. The deletes create “holes”. Whenever
there are X holes, we compact the whole table to be stored contiguously again.

/' m Compaction
| AL
| |

Question 4

Consider a workload with only deletes and insertions. The deletes create “holes”. Whenever
there are X holes, we compact the whole table to be stored contiguously again.

All data entries in the table are fixed-length. We have on oracle that tells us on which page the
entry we want to delete is, thus obviating the need to scan the table to find it. (We'll learn how
to implement this oracle using an index next week).

e 029° Read page

| oC
Delete key Z \B\\‘/_’\%/ \/—-—5
=S 4 :

—

— ~
2 N

& 6 Perform
delete

Question 4

Consider a workload with only deletes and insertions. The deletes create “holes”. Whenever
there are X holes, we compact the whole table to be stored contiguously again.

All data entries in the table are fixed-length. We have on oracle that tells us on which page the
entry we want to delete is, thus obviating the need to scan the table to find it. (We'll learn how
to implement this oracle using an index next week).

Analyze the amortized worst-case cost of insertions and deletes using big O notations in terms of N,
B and X. Let N denote the number of valid (non-deleted) entries. Assume X is fixed and that N>X.

Question 4

Insertion cost is O(1/B) as each write I/O flushes B entries to storage

Inser

(S

——

Flush

—

Extent with free space

Question 4

Insertion cost is O(1/B) as each write I/O flushes B entries to storage

Inserts —, ___— — |
Flush Extent with free space

A delete entails 1 read/write I/O to create a hole in a given page. — ="

Question 4

Insertion cost is O(1/B) as each write I/O flushes B entries to storage

Inserts —, ___— —

Flush l Extent with free space

A delete entails 1 read/write I/O to create a hole in a given page.

For every X deletes, we must read & write =(N+X)/B pages. This costs O((N+X)/(B*X)) I/Os per delete.

1
3 —— I

Question 4

Insertion cost is O(1/B) as each write I/O flushes B entries to storage

Inserts —, ___— — |
Flush Extent with free space

A delete entails 1 read/write I/O to create a hole in a given page.

)
For every X deletes, we must read & write =(N+X)/B pages. This costs O((N+X)/(B*X)) I/Os per delete.

7 ‘
It |
Total delete cost is O(1+(N+X)/(B*X)), or more simply O(1+N/(B*X)) assuming N>X

—— —

Question 4

Insertion cost is O(1/B) as each write I/O flushes B entries to storage

Inserts —, ___— — |
Flush Extent with free space

A delete entails 1 read/write I/O to create a hole in a given page.

)
For every X deletes, we must read & write =(N+X)/B pages. This costs O((N+X)/(B*X)) I/Os per delete.

7 ‘
It |
Total delete cost is O(1+(N+X)/(B*X)), or more simply O(1+N/(B*X)) assuming N>X

—— —

Side note: without the oracle, we would need to scan the table to locate the entry to be
deleted at a cost of O(N/B) per delete.

Question 5

What happens to LRU or Clock in the presence of a sequential read that’s larger than
the buffer size? How can we address this problem?

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool

handle

!
Clock bitmap 0000O0GO

Buffer pool

Datainstorage [1[(2(3(4|5]|6]/

SCal

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool

handle

'
Clock bitmap 111111

Buffer pool 112(3|4|5|6

Datainstorage [1[(2(3(4|5|6]/

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool

handle
'
Note the Simplification. Clock bitmap 111111
Elements would really be
randomly mapped In the Buffer pool 112|3|4|5|6

buffer pool due to hashing.

Datainstorage [1[(2(3(4|5|6]/

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool

handle

!
Clock bitmap 0000O0GO

Buffer pool 112(3|4|5|6

Datainstorage [1[(2(3(4|5|6] 7

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool

handle

!
Clock bitmap 1 00 0O00O0

Buffer pool /121314|5]|6

Datainstorage [1[(2(3(4|5|6]/

!

SCal

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool

handle

!
Clock bitmap 110000

Buffer pool /1113[4|5]|6

Datainstorage |[112|3|4|5|6] 7

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool

handle

'
Clock bitmap 111000

Buffer pool /7111214 |5]|6

Datainstorage [1[(2(3(4|5|6] 7

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool

handle

!
Clock bitmap 111100

Buffer pool /71112(3|5]|6

Datainstorage [112|3|4|5|6] 7

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool

handle

!
Clock bitmap 111110

Buffer pool /11123 4|6

Datainstorage |[1|2|3(4(5|6]7

SCal

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool

Clock constantly evicts the page we need to read next!

handle

!
Clock bitmap 111111

Buffer pool /711123 4|5

Datainstorage 112131456/

SCal

Question 5 - Sequential Flooding of Clock

Suppose the DB is repeatedly scanning data larger than the buffer pool
Clock constantly evicts the page we need to read next!

Also a problem for LRU from before. handle

!
Clock bitmap 111111

Solution?

Buffer pool /711123 4|5

Datainstorage 112131456/

SCal

Question 5 - Sequential Flooding of Clock

Using a most recently used (MRU) policy? :)

handle

!
Clock bitmap 111111

Buffer pool /711123 4|5

Datainstorage 112131456/

SCal

Question 5 - Sequential Flooding of Clock

Using a most recently used (MRU) policy? :) No.

We can avoid putting sequentially scanned data in the buffer pool

handle

!
Clock bitmap 111111

Buffer pool /711123 4|5

Datainstorage 112131456/

SCal

And now: office hours. Next week, we're starting indexing.

