
Database System Technology - Niv Dayan

Tutorial
Table & Buffer management



If you don’t have a group

Each group should have 3 members



Question 1 

Consider a table allocated as a linked list of database pages.

How can we better structure this table to improve throughput? 

What scan throughout (in MB/s) would you expect on disk? How about an SSD?



Consider a table allocated as a linked list of database pages.

What scan throughout (in MB/s) would you expect on disk? How about an SSD?

How can we better structure this table to improve throughput? 

A disk I/O takes 10ms to read 4KB pages. Throughput: 0.4 MB/s. 

An SSD I/O takes 100us to read 4KB pages. Throughput: 40 MB/s. 

Question 1 



Question 1

Consider a table allocated as a linked list of database pages.

What scan throughout (in MB/s) would you expect on disk? How about an SSD?

How can we better structure this table to improve throughput? 

A disk I/O takes 10ms to read 4KB pages. Throughput: 0.4 MB/s. 

An SSD I/O takes 100us to read 4KB pages. Throughput: 40 MB/s. 

Using a directory 

of extents



Question 2 

Would you also use this strategy if the reads are heavily skewed? Why or why not? 


Consider a database that’s subject to uniformly random reads. 


What’s the best buffer management strategy for this case and why?



Question 2 

Consider a database that’s subject to uniformly random reads. 


What’s the best buffer management strategy for this case and why?

New page

Evict

Random eviction.

(1) Allows 100% hash table utilization. 

(2) Fastest since hitting reads incur no collisions 

(3) There is no metadata so we 

can set the hash table to be slightly larger. 

Would you also use this strategy if the reads are heavily skewed? Why or why not? 




Question 2 

Consider a database that’s subject to uniformly random reads. 


What’s the best buffer management strategy for this case and why?

New page

Evict

Random eviction.

(1) Allows 100% hash table utilization. 

(2) Fastest since hitting reads incur no collisions 

(3) There is no metadata so we 

can set the hash table to be slightly larger. 

Would you also use this strategy if the reads are heavily skewed? Why or why not? 


No because it might evict hot pages. Clock or LRU are better for this. 




Question 3 

Give pros and cons for managing buffer pool at the unit of entries rather than pages. 

Pros:

Cons:



Question 3 

Give pros and cons for managing buffer pool at the unit of entries rather than pages. 

Pros:

Cons:

(1) Some hot entries may exist on otherwise cold 
pages. Buffering entries allows us to fit more of the 
hot working set into memory. This is great for reads.



Question 3 

Give pros and cons for managing buffer pool at the unit of entries rather than pages. 

Pros:

Cons:

(1) Evicting a dirty entry requires reading its page first and then rewriting it

(2) Heavier metadata overheads (e.g., to track which page each entry 
belongs to, etc)


(3) Inefficient for short scans as we lose locality

(1) Some hot entries may exist on otherwise cold 
pages. Buffering entries allows us to fit more of the 
hot working set into memory. This is great for reads.



Recall how we can buffer insertions in memory until a page fills up and flush

Extent with 

free space 

Storage memory buffer

Inserts Flush

Directory 

Question 4 



Consider a workload with only deletes and insertions. The deletes create “holes”. Whenever 
there are X holes, we compact the whole table to be stored contiguously again. 

Compaction

Question 4 



All data entries in the table are fixed-length. We have on oracle that tells us on which page the 
entry we want to delete is, thus obviating the need to scan the table to find it. (We’ll learn how 
to implement this oracle using an index next week). 

Delete key Z Locate page Read page

Perform 
delete

Write page

Z Z

Consider a workload with only deletes and insertions. The deletes create “holes”. Whenever 
there are X holes, we compact the whole table to be stored contiguously again. 

Question 4 



All data entries in the table are fixed-length. We have on oracle that tells us on which page the 
entry we want to delete is, thus obviating the need to scan the table to find it. (We’ll learn how 
to implement this oracle using an index next week). 

Analyze the amortized worst-case cost of insertions and deletes using big O notations in terms of N, 
B and X. Let N denote the number of valid (non-deleted) entries. Assume X is fixed and that N>X. 

Consider a workload with only deletes and insertions. The deletes create “holes”. Whenever 
there are X holes, we compact the whole table to be stored contiguously again. 

Question 4 



Insertion cost is O(1/B) as each write I/O flushes B entries to storage

Extent with free space 
Inserts

Flush

Question 4 



A delete entails 1 read/write I/O to create a hole in a given page. 


Insertion cost is O(1/B) as each write I/O flushes B entries to storage

Extent with free space 
Inserts

Flush

Z Z

Question 4 



A delete entails 1 read/write I/O to create a hole in a given page. 


For every X deletes, we must read & write ≈(N+X)/B pages. This costs O((N+X)/(B*X)) I/Os per delete.


Insertion cost is O(1/B) as each write I/O flushes B entries to storage

Extent with free space 
Inserts

Flush

Z Z

Question 4 



A delete entails 1 read/write I/O to create a hole in a given page. 


For every X deletes, we must read & write ≈(N+X)/B pages. This costs O((N+X)/(B*X)) I/Os per delete.


Total delete cost is O(1+(N+X)/(B*X)), or more simply O(1+N/(B*X)) assuming N>X

Insertion cost is O(1/B) as each write I/O flushes B entries to storage

Extent with free space 
Inserts

Flush

Z Z

Question 4 



A delete entails 1 read/write I/O to create a hole in a given page. 


For every X deletes, we must read & write ≈(N+X)/B pages. This costs O((N+X)/(B*X)) I/Os per delete.


Total delete cost is O(1+(N+X)/(B*X)), or more simply O(1+N/(B*X)) assuming N>X

Insertion cost is O(1/B) as each write I/O flushes B entries to storage

Side note: without the oracle, we would need to scan the table to locate the entry to be 
deleted at a cost of O(N/B) per delete. 

Extent with free space 
Inserts

Flush

Z Z

Question 4 



Question 5 

What happens to LRU or Clock in the presence of a sequential read that’s larger than 
the buffer size? How can we address this problem?



Question 5 - Sequential Flooding of Clock

0 0 0 0 0 0

Suppose the DB is repeatedly scanning data larger than the buffer pool

Data in storage

Buffer pool

Clock bitmap

1 2 3 4 5 6 71 2 3 4 5 6 7

handle

scan



Question 5 - Sequential Flooding of Clock

1 1 1 1 1 1

Suppose the DB is repeatedly scanning data larger than the buffer pool

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

1 2 3 4 5 6

handle

scan



1 1 1 1 1 1

Suppose the DB is repeatedly scanning data larger than the buffer pool

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

1 2 3 4 5 6

handle

scan

Note the Simplification. 
Elements would really be 
randomly mapped in the 
buffer pool due to hashing.

Question 5 - Sequential Flooding of Clock



0 0 0 0 0 0

Suppose the DB is repeatedly scanning data larger than the buffer pool

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

1 2 3 4 5 6

handle

scan

7

Question 5 - Sequential Flooding of Clock



1 0 0 0 0 0

Suppose the DB is repeatedly scanning data larger than the buffer pool

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

2 3 4 5 6

handle

scan

1

7

Question 5 - Sequential Flooding of Clock



1 1 0 0 0 0

Suppose the DB is repeatedly scanning data larger than the buffer pool

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

2

3 4 5 6

handle

scan

17

Question 5 - Sequential Flooding of Clock



1 1 1 0 0 0

Suppose the DB is repeatedly scanning data larger than the buffer pool

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

2

3

4 5 6

handle

scan

17

Question 5 - Sequential Flooding of Clock



1 1 1 1 0 0

Suppose the DB is repeatedly scanning data larger than the buffer pool

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

2 3

4

5 6

handle

scan

17

Question 5 - Sequential Flooding of Clock



1 1 1 1 1 0

Suppose the DB is repeatedly scanning data larger than the buffer pool

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

2 3 4

5

6

handle

scan

17

Question 5 - Sequential Flooding of Clock



1 1 1 1 1 1

Suppose the DB is repeatedly scanning data larger than the buffer pool

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

2 3 4 5

6

handle

scan

17

Clock constantly evicts the page we need to read next! 

Question 5 - Sequential Flooding of Clock



1 1 1 1 1 1

Suppose the DB is repeatedly scanning data larger than the buffer pool

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

2 3 4 5

6

handle

scan

17

Clock constantly evicts the page we need to read next! 

Also a problem for LRU from before.

Solution?

Question 5 - Sequential Flooding of Clock



1 1 1 1 1 1

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

2 3 4 5

6

handle

scan

17

Using a most recently used (MRU) policy? :) 

Question 5 - Sequential Flooding of Clock



1 1 1 1 1 1

1 2 3 4 5 6 7Data in storage

Buffer pool

Clock bitmap

2 3 4 5

6

handle

scan

17

Using a most recently used (MRU) policy? :) No.

We can avoid putting sequentially scanned data in the buffer pool 

Question 5 - Sequential Flooding of Clock



And now: office hours. Next week, we’re starting indexing. 


