Recovery lutorial
CSC443H1 Database System Technology

Niv Dayan



Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<T1 start>
<T1, A, 1, 2>
<T1 commit>
<ckpt>

Power falls



Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<T1 start> _
<T1, A, 1, 2> NOthlng to undo

<T1 commit>

<ckpt> Redo T2 and T3
since checkpoint

Power falls



Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<T1 start>
<T1. A 1, 25 Undo T3

<T1 commit>

<ckpt>

Redo T2

Power fails




Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<T1 start>
<T1, A, 1, 2>
<T1 commit>
<ckpt>

Power falls




Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<T1 start>
<T1. A 1, 25 Undo T3

<T1 commit>

<ckpt>

Undo T2

Power falls




Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<T1 start>
<T1, A, 1, 2>
<T1 commit>
<ckpt>

Power fails




Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<T1 start>
<T1, A, 1, 2>
<T1 commit>
<ckpt>

Undo T2

Power fails




Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<11 start>
<T1, A, 1, 2>

<T1 commit> Power fails
<ckpt>




Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<11 start>
<T1, A, 1, 2>

<T1 commit> Power fails
<ckpt>

Redo T1




Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<11 start>

<I1, A1, 2> Power fails
<1 commit>

<ckpt>




Question 1
Consider the following log, and note how records for different transactions
are interleaved. Suppose power fails at different points. What would you
need undo or redo?

<11 start>

<I1, A1, 2> Power fails
<1 commit>

<ckpt>

Undo T1




Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Buffer pool

Many commits
<ckpt>

Resume

Database



Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Add all ongoing transaction
names in checkpoint start record

Buffer pool

<start ckpt, Tx ... Ty>

Database



Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

X Y Flush all dirty
pages to disk

Buffer pool

<start ckpt, Tx ... Ty>

Database



Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

Flush end checkpoint record

Buffer pool

<start ckpt, Tx ... Ty>

X Y <end ckpt>

Database



Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

<11 start>
<T1, A, 1, 2>

how to recover? <T1 commit>

<ckpt start T2>

<ckpt end>




Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

<[1 start>
<11, A1, 2>

<1 commit>

<ckpt start T2>

Find checkpoint start &
identify committed &
<ckpt end> uncommitted
transactions




Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

<11 start>
<T1, A, 1, 2>

<1 commit>

<ckpt start 12>

redo committed

<ckpt end>




Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does

not require all existing transactions to finish?

<11 start>
<T1, A, 1, 2>

<1 commit>
redo committed

<ckpt start 12>

Go from back to front so
we keep latest copy of
<ckpt end> each value




Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

<11 start>
<T1, A, 1, 2>

<1 commit>

<ckpt start 12>

undo uncommitted

<ckpt end>




Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

<11 start>
<T1, A, 1, 2>

<1 commit>

<ckpt start 12>

undo uncommitted
e.g. iIf T3 didn’t commit

<ckpt end>




Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

<11 start>
<T1, A, 1, 2>

<1 commit>

<ckpt start 12>

undo uncommitted
e.g. If T3 didn’t commit
Add rollback

<ckpt end>




Question 2

The checkpointing mechanism we have seen requires all current
transactions to commit, but this could lead to rejecting user transactions
for a long while. How would you design a checkpoint mechanism that does
not require all existing transactions to finish?

<11 start>
<T1, A, 1, 2>

<I'1 commit> May need to go beyond
checkpoint start to undo

<ckpt start T2> all relevant transactions

<ckpt end>




Question 3

Flushing the log before evicting dirty data can be a random 1I/O bottleneck.
What can we do to address this?



Question 3

Flushing the log before evicting dirty data can be a random 1I/O bottleneck.
What can we do to address this?

Put log on a @
separate disk
. = .

It only entalls sequential
access so this is ideal.
Can also use SSD.



Question 3

Flushing the log before evicting dirty data can be a random 1I/O bottleneck.
What can we do to address this?

Put log on a N\ ° y Put DB on one or
separate disk SSD more SSDs or disks,
. —3 . @

. maybe using RAID

It only entalls sequential
access so this is ideal.
Can also use SSD.



