Tutorial on Concurrency & Consistency
CSC443H1 Database System Technology

Niv Dayan

Question 1 - Chained Hash Table Concurrency

Consider a chained hash table in storage subject to gets, inserts and deletes. Each
node stores B fixed-sized entries, and overflows are handled using chaining. Deletes
traverse a chain, removing the entry when they find it. Insertions traverse the chain,
inserting an entry into a “hole” or add another node if there are no holes. Whenever a
node runs out of entries, it is deleted.

e.d., bucket with 2 nodes

Question 1 - Chained Hash Table Concurrency

Consider a chained hash table in storage subject to gets, inserts and deletes. Each
node stores B fixed-sized entries, and overflows are handled using chaining. Deletes
traverse a chain, removing the entry when they find it. Insertions traverse the chain,
inserting an entry into a “hole” or add another node if there are no holes. Whenever a
node runs out of entries, it is deleted.

e.d., bucket with 2 nodes

(1) Is a chained hash table as susceptible as B-trees to locking contention? Why or
why not? (2) Give an example where exclusively locking a whole bucket at a time for
iInserts/deletes can lead to contention? (3) How could you reduce this contention?

Question 1 - Chained Hash Table Concurrency

(1) Is a chained hash table as susceptible as B-trees to locking contention? Why or
why not?

B-trees exhibit high contention at Hash tables have uniform
root and internal nodes since all contention across buckets, so there
accesses go through them. IS less blocking
¥ N
() s (O
NN W N

B B

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

e.d., we have many insertions and deletions of the same key, so we exclusively lock
the bucket over and over. All queries to other entries in the bucket are blocked.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Get Delete

One
entry left

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(A) To prevent a node being deleted right before we read it, employ lock coupling
with shared locks for inserts, deletes and queries for traversal of a bucket.

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(B) For delete/insert/update, upgrade the lock to exclusive

Delete / Insert

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(C) If we are deleting and next node contains only target key, keep holding lock on
preceding node and upgrade to exclusive

Delete

One entry
left

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(C) If we are deleting and next node contains only target key, keep holding lock on
preceding node and upgrade to exclusive

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(C) If we are deleting and next node contains only target key, keep holding lock on
preceding node and upgrade to exclusive

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(D) If we are inserting a new node at the end, hold exclusive lock on current last
node until we extend chain

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(D) If we are inserting a new node at the end, hold exclusive lock on current last
node until we extend chain

Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(D) If we are inserting a new node at the end, hold exclusive lock on current last
node until we extend chain

Question 2 - Predicate Locking

The locking mechanism we have seen In class lock physical objects: rows,
pages or tables. Instead, it is also possible to lock predicates: “name =

“bob” or “salary > 1000”.
(1) How would you implement a predicate lock manager?

(2) Compare the costs qualitatively to a physical lock manager.

A B C D
Example query:

Select * where (A = “a” and B="b”) or C="c” or D > “d”

Question 2 - Predicate Locking

(1) How would you implement a predicate lock manager?

It seems excessive lock predicate individually: Lock(A=“a)
A B C D / \ Lock(B=“b”)

Select * where (A = “a@” and B=*b”) or C="“c” or D > “d”

Question 2 - Predicate Locking

(1) How would you implement a predicate lock manager?

Seems better to lock conjunction: Lock(A=“a” and B=*b”)

A B C D j \

Select * where (A = “a@” and B=*b”) or C="“c” or D > “d”

Question 2 - Predicate Locking

(1) How would you implement a predicate lock manager?

Can lock each conjunctions Lock(A=“a” and B=*b”)
Lock(C=“c”)
Lock(D > ”d”)

A B C D /l\

Select * where (A = “a” and B="b”) or C=“c” or D > “d”

Question 2 - Predicate Locking

(1) How would you implement a predicate lock manager?

Can lock each conjunctions Lock(A=“a” and B="b”)
Lock(C="c”)
Lock(D > ”d”)

A B C D /l\

Select * where (A = “a” and B="b”) or C="c” or D > “d”

7

Range predicates require a tree for locking
different ranges, so each lock is costlier to acquire

Question 2 - Predicate Locking

(1) How would you implement a predicate lock manager?

Can lock each conjunctions Lock(A="a” and B="b”)
LOCk(k& u)
Lock(D > "d”)

A B C D /l\

Select * where (A = “a” and B="b”) or C="c” or D > “d”

T

Consider sorting by column name to prevent
having to lock each permutation (e.g., so B =
“...7 and A =“...” does not need a different lock)

Question 2 - Predicate Locking

(1) How would you implement a predicate lock manager?

A B C D

Select * where (A = “a” and B="b”) or C="c” or D > “d”

Suppose we now get: “update ... A = “a” and C=“c”?

Question 2 - Predicate Locking

(1) How would you implement a predicate lock manager?

A B C D

Select * where (A = “a” and B="b”) or C="c” or D > “d”

Suppose we now get: “update ... A =“a” and C="c”?

There I1s overlap between the queries, but if we check the
predicate (A = “a” and C=“c”), it is unlocked.

Question 2 - Predicate Locking

(1) How would you implement a predicate lock manager?

A B C D

Select * where (A = “a” and B="b”) or C="“c” or D > “d”

Suppose we now get: “update ... A = “a” and C=“c”?

There is overlap between the queries, but if we check the
predicate (A = “a” and C="c”), it is unlocked.

We could get unrepeatable read and phantoms anomalies

Question 2 - Predicate Locking

(2) Compare the costs qualitatively to a physical lock manager.

Question 2 - Predicate Locking
(2) Compare the costs qualitatively to a physical lock manager.
Pros of predicate locking

for queries returning a lot of objects, locking each predicate

rather than object can be cheaper a

Question 2 - Predicate Locking
(2) Compare the costs qualitatively to a physical lock manager.
Cons of predicate locking

Locking as little as possible while while being able to compare the
locking coverage of different queries is highly non-trivial.

E.g., lock as little as possible with ensuring no overlap between these queries
Select * where (A = “a” and B="b”) or C="c” or D > ”d”

Update/insert ... A = “a” and C="c”

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

ID Salar Salar
Y B—treg

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

Salary
B-tree

. 206000 22000 21000

1

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

Salary
B-tree

. 206000 22000 23100

1

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

Salary
B-tree

. 26000 23100 22000

1

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

Salary
B-tree

. 206000 23100 24200

1

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

Salary
B-tree

. 206000 24200 23100

T

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

Salary
B-tree

. 206000 24200 25410

T

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

Salary
B-tree

. 206000 25410 26620

T

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

Salary
B-tree

26620 26000 25410

All salaries are now > 25000! This was not the intention :) Consistency is violated.

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

Salary
B-tree

26000 22000 21000 Seen
Y X

T

To solve this, keep track of row IDs that had been
modified to ensure they are not modified again

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

Salary
B-tree

26000 22000 23100 Seen

-

To solve this, keep track of row IDs that had been
modified to ensure they are not modified again

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

Salary
B-tree

26000 23100 22000 Seen

<

To solve this, keep track of row IDs that had been
modified to ensure they are not modified again

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

Salary
B-tree

26000 23100 24200 Seen

<

To solve this, keep track of row IDs that had been
modified to ensure they are not modified again

Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

Salary
B-tree

26000 23100 24200
X Y

To solve this, keep track of row IDs that had been
modified to ensure they are not modified again

