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Question 1 - Chained Hash Table Concurrency

Consider a chained hash table in storage subject to gets, inserts and deletes. Each
node stores B fixed-sized entries, and overflows are handled using chaining. Deletes
traverse a chain, removing the entry when they find it. Insertions traverse the chain,
inserting an entry into a “hole” or add another node if there are no holes. Whenever a
node runs out of entries, it is deleted.

e.d., bucket with 2 nodes
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B-trees exhibit high contention at Hash tables have uniform
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accesses go through them. IS less blocking
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Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

e.d., we have many insertions and deletions of the same key, so we exclusively lock
the bucket over and over. All queries to other entries in the bucket are blocked.
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Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(B) For delete/insert/update, upgrade the lock to exclusive
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(2) Give an example where exclusively locking a whole bucket at a time for inserts/
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Question 1 - Chained Hash Table Concurrency

(2) Give an example where exclusively locking a whole bucket at a time for inserts/
deletes can lead to contention?

(3) How could you reduce such bottlenecks?

(D) If we are inserting a new node at the end, hold exclusive lock on current last
node until we extend chain




Question 2 - Predicate Locking

The locking mechanism we have seen In class lock physical objects: rows,
pages or tables. Instead, it is also possible to lock predicates: “name =

“bob” or “salary > 1000”.
(1) How would you implement a predicate lock manager?

(2) Compare the costs qualitatively to a physical lock manager.

A B C D
Example query:

Select * where (A = “a” and B="b”) or C="c” or D > “d”
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(1) How would you implement a predicate lock manager?

It seems excessive lock predicate individually: Lock(A=“a)
A B C D / \ Lock(B=“b”)

Select * where (A = “a@” and B=*b”) or C="“c” or D > “d”
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Range predicates require a tree for locking
different ranges, so each lock is costlier to acquire



Question 2 - Predicate Locking

(1) How would you implement a predicate lock manager?

Can lock each conjunctions Lock(A="a” and B="b”)
LOCk( k& u)
Lock(D > "d”)

A B C D /l\

Select * where (A = “a” and B="b”) or C="c” or D > “d”

T

Consider sorting by column name to prevent
having to lock each permutation (e.g., so B =
“...7 and A =“...” does not need a different lock)
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(1) How would you implement a predicate lock manager?

A B C D

Select * where (A = “a” and B="b”) or C="“c” or D > “d”

Suppose we now get: “update ... A = “a” and C=“c”?

There is overlap between the queries, but if we check the
predicate (A = “a” and C="c”), it is unlocked.

We could get unrepeatable read and phantoms anomalies



Question 2 - Predicate Locking

(2) Compare the costs qualitatively to a physical lock manager.



Question 2 - Predicate Locking
(2) Compare the costs qualitatively to a physical lock manager.
Pros of predicate locking

for queries returning a lot of objects, locking each predicate

rather than object can be cheaper a




Question 2 - Predicate Locking
(2) Compare the costs qualitatively to a physical lock manager.
Cons of predicate locking

Locking as little as possible while while being able to compare the
locking coverage of different queries is highly non-trivial.

E.g., lock as little as possible with ensuring no overlap between these queries
Select * where (A = “a” and B="b”) or C="c” or D > ”d”

Update/insert ... A = “a” and C="c”



Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

ID Salar Salar
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Question 3 - The Halloween Problem

An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

UPDATE employees SET salary = salary * 1.1 WHERE salary < 25000;

Salary
B-tree

26620 26000 25410

All salaries are now > 25000! This was not the intention :) Consistency is violated.
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An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

Salary
B-tree

26000 22000 21000 Seen
Y X

T

To solve this, keep track of row IDs that had been
modified to ensure they are not modified again
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An update is designed to increase the salary of all employees who earn less than
$25000 by 10%. What can go wrong when running this query, and how can we fix it?

Salary
B-tree

26000 23100 24200
X Y

To solve this, keep track of row IDs that had been
modified to ensure they are not modified again



