
Niv Dayan

Recovery
CSC443H1 Database System Technology

Last stretch for the project!

Last lecture today

Last lecture today

One hour lecture followed by tutorial questions

Please do the course evaluation!

Atomicity Consistency Isolation Durability

All or
nothing

Transition across
consistent states

Not corrupted by
concurrency

Recover from
failure

ACID Transactions

What Endangers the ACID properties?

System Failure Concurrency

What Endangers the ACID properties?

System Failure Concurrency

Last weekToday

System Failure

Power failure Media failure Data center failure

System Failure

Power failure Media failure Data center failure

RAID (covered)

System Failure

Power failure Media failure Data center failure

RAID (covered) Logging

System Failure

Power failure Media failure Data center failure

RAID (covered) Logging Replication

Example:

Bank transfer

A = A - 100

B = B + 100

A = A - 100

Power fails

B = B + 100

Example:

Bank transfer

A = A - 100

Power fails

B = B + 100

Example:

Bank transfer

If the update to account A is saved to disk,
money disappears from the system

A = A - 100

Power fails

B = B + 100

Example:

Bank transfer

If the update to account A is saved to disk,
money disappears from the system

What’s a high level solution?

Start transaction
A = A - 100

B = B + 100

End transaction

Solution outline: (1) wrap this up as a transaction

(2) write changes to by each transaction in a log

Start transaction

A = A - 100

B = B + 100

End transaction

log: an append-only file in storage

Solution outline: (1) wrap this up as a transaction

(2) write changes to by each transaction in a log

Start transaction

A = A - 100

B = B + 100

End transaction

(3) after power fails, scan log and cancel effects of
uncommitted transactions

log

Solution outline: (1) wrap this up as a transaction

(2) write changes to by each transaction in a log

Start transaction

A = A - 100

(3) after power fails, scan log and cancel effects of
uncommitted transactions

log

A = 0

Database

Solution outline: (1) wrap this up as a transaction

(2) write changes to by each transaction in a log

Start transaction

A = A - 100

(3) after power fails, scan log and cancel effects of
uncommitted transactions

log

A = 0 + 100

Database

Solution outline: (1) wrap this up as a transaction

(2) write changes to by each transaction in a log

Start transaction

A = A - 100

(3) after power fails, scan log and cancel effects of
uncommitted transactions

log

A = 100

Database

Solution outline: (1) wrap this up as a transaction

Three Types of logging with different trade-offs

Undo Redo Redo/Redo

Undo logging:

Cf

logDatabase

Buffer pool Log buffer

Undo logging:

Cf

logDatabase

Buffer pool Log buffer

Assume relational database

Reads/
Writes

Undo logging: Transaction T1
A = A - 100
B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 100
B = 100

Log buffer

Undo logging: Transaction T1

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 100
B = 100

Log buffer

<T1, start>

Undo logging:

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 200

Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Write older values to log

Transaction T1

A = A - 100

B = B + 100

Undo logging:

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 200

Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

We now want to commit. First, flush the log.

Flush

Transaction T1

A = A - 100

B = B + 100

Undo logging:

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 200

Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Now force
Storage
update

Transaction T1

A = A - 100

B = B + 100

Undo logging:

Cf

logDatabase

A = 0
B = 200

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Set commit record

<T1, commit>

Flush

Transaction T1

A = A - 100

B = B + 100

Undo logging:

Cf

logDatabase

A = 0
B = 200

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>
<T1, commit>

Transaction T1

A = A - 100

B = B + 100

Undo logging:

(1) write before-image for any changed value to log buffer

(3) force the changed data into storage
(2) flush log

(4) add commit record to log buffer & flush

Recovery Undo logging:

Cf

logDatabase

A = 100
B = 200

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

A = 0
B = 200

Suppose power fails after we save the value of B to
storage but before we save the value of A

Cf

logDatabase

A = 100
B = 200

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

We lose all contents in memory

Recovery Undo logging:

Cf

logDatabase

A = 100
B = 200

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

We lose all contents in memory

Recovery Undo logging:

How do we recover?

Cf

logDatabase

A = 100
B = 200

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

During recovery, we traverse the log backwards

traverse

Recovery Undo logging:

Cf

logDatabase

A = 100
B = 200

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Undo any operation of an uncommitted transaction

Undo

A = 100
B = 200

Recovery Undo logging:

Load

Cf

logDatabase

A = 100
B = 200

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Undo any operation of an uncommitted transaction

Undo

A = 100
B = 100

Recovery Undo logging:

Cf

logDatabase

A = 100
B = 100

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Undo any operation of an uncommitted transaction

Flush

Recovery Undo logging:

Cf

logDatabase

A = 100
B = 100

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Set rollback record

<T1, rollback>

Recovery Undo logging:

Cf

logDatabase

A = 100
B = 100

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>
<T1, rollback>

Flush

Recovery Undo logging:

Why do we need this rollback record?

Cf

logDatabase

A = 100
B = 100

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>
<T1, rollback>

Flush

Recovery Undo logging:

Why do we need this rollback record?
It saves us work if power fails again so we don’t undo B again

Cf

logDatabase

A = 100
B = 100

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>
<T1, rollback>

We are now done. It’s as if the original transaction never executed.

Recovery Undo logging:

Cf

log

How much of the log must we traverse during recovery?

traverse

Cf

log

How much of the log must we traverse during recovery?

traverse

All of it, there may be a transaction from the very beginning that hasn’t
committed.

Cf

log

How much of the log must we traverse during recovery?

traverse

All of it, there may be a transaction from the very beginning that hasn’t
committed.

How can we bound recovery time without having to traverse the whole log?

Checkpointing

Cf

log

Log buffer

Checkpointing

Cf

log

Log buffer

(1) Stop accepting new transactions & wait until all existing ones commit

commits
…

Checkpointing

Cf

log

Log buffer

(1) Stop accepting new transactions & wait until all existing ones commit
(2) flush log to storage

commits
…

Flush

Checkpointing

Cf

log

Log buffer

(1) Stop accepting new transactions & wait until all existing ones commit
(2) flush log to storage
(3) add checkpoint record to log buffer and flush again

commits
…

<checkpoint>

Flush

Checkpointing

Cf

log

Log buffer

(1) Stop accepting new transactions & wait until all existing ones commit
(2) flush log to storage
(3) add checkpoint record to log buffer and flush again

commits
…

<checkpoint>

During next recovery, only traverse log up
to first checkpoint record we encounter

Problems with UNDO Logging?

(1) write before-image for any changed value to log buffer

(3) force the changed data into storage
(4) add commit record to log buffer & flush

(2) flush log

(1) write before-image for any changed value to log buffer
(2) flush log

Many random I/Os

Problems with UNDO Logging?

(4) add commit record to log buffer & flush
(3) force the changed data into storage

random I/Os

Undo Redo Redo/Redo

Redo logging:

(1) write after-image for any changed value to log buffer
(2) keep changed data in buffer pool
(3) add commit record to log buffer & flush
(4) flush changed data to storage at leisure

Transaction
A = A - 100
B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 100
B = 100

Log buffer

Redo logging:

Transaction

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 100
B = 100

Log buffer

<T1, start>

Redo logging:

Transaction

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 200

Log buffer

<T1, start>
<T1, A, 0>

<T1, B, 200>

Write new values to log

Redo logging:

Transaction

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 200

Log buffer

<T1, start>

Write commit record

(diff from undo logging)

Redo logging:

<T1, commit>

<T1, A, 0>
<T1, B, 200>

Transaction

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 200

Log buffer

<T1, start>

Redo logging:

<T1, commit>

<T1, A, 0>
<T1, B, 200>

Not allowed to evict until log buffer flushes

Transaction

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 200

Log buffer

<T1, start>

Flush

Redo logging:

<T1, commit>

<T1, A, 0>
<T1, B, 200>

Transaction

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 200

Log buffer

<T1, start>
<T1, A, 0>

<T1, B, 200>

Flush

Redo logging:

<T1, commit>

Transaction

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 200

Log buffer

<T1, start>
<T1, A, 0>

<T1, B, 200>

Transaction is now committed

Redo logging:

<T1, commit>

Transaction

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 200

Log buffer

Now allowed to evict at leisure

Redo logging:

evict

<T1, start>
<T1, A, 0>

<T1, B, 200>
<T1, commit>

Transaction

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 200

Buffer pool Log buffer

Redo logging:

<T1, start>
<T1, A, 0>

<T1, B, 200>
<T1, commit>

A = 0

Note that we don’t have to force all changes to storage at once
(A stays in memory in this example)

Transaction

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 200

Buffer pool Log buffer

Redo logging:

<T1, start>
<T1, A, 0>

<T1, B, 200>
<T1, commit>

A = 0

The buffer pool can evict autonomously based on clock or LRU :)

Cf

logDatabase

Buffer pool Log buffer

To recover, traverse log forward, replying effects of all
committed transactions

Recovery with Redo logging:

reply
A = 100
B = 200

A = 0

Cf

logDatabase

Buffer pool Log buffer

Recovery with Redo logging:

Suppose the transaction was not committed and power failed

<T1, start>
<T1, A, 0>

<T1, B, 200>
A = 100
B = 100

A = 0

Cf

logDatabase

Buffer pool Log buffer

Recovery with Redo logging:

Suppose the transaction was not committed and power failed

<T1, start>
<T1, A, 0>

<T1, B, 200>
A = 100
B = 100

If there is no commit, nothing to do as we know modified
versions didn’t reach storage

Cf

logDatabase

Buffer pool Log buffer

Recovery with Redo logging:

<T1, start>
<T1, A, 0>

<T1, B, 200>
A = 100
B = 100

Just add rollback record

<T1, rollback>

Cf

logDatabase

Buffer pool Log buffer

Recovery with Redo logging:

Now, suppose the transaction committed but power
failed before all changes reached storage

<T1, start>
<T1, A, 0>

<T1, B, 200>
<T1, commit>

A = 100
B = 200

A = 0

Cf

logDatabase

Buffer pool Log buffer

Recovery with Redo logging:

Now, suppose the transaction committed but power
failed before all changes reached storage

<T1, start>
<T1, A, 0>

<T1, B, 200>
<T1, commit>

A = 100
B = 200

How to recover?

Cf

logDatabase

Buffer pool Log buffer

Recovery with Redo logging:

<T1, start>
<T1, A, 0>

<T1, B, 200>
A = 100

<T1, commit>
B = 200

Replay
Load

A = 100
B = 200

Now, suppose the transaction committed but power
failed before all changes reached storage

Cf

logDatabase

Buffer pool Log buffer

Recovery with Redo logging:

<T1, start>
<T1, A, 0>

<T1, B, 200>
A = 100

<T1, commit>
B = 200

A = 0
B = 200

Now, suppose the transaction committed but power
failed before all changes reached storage

Eventually
evicted

Cf

logDatabase

Buffer pool Log buffer

Recovery with Redo logging:

<T1, start>
<T1, A, 0>

<T1, B, 200>
A = 0

<T1, commit>
B = 200

Now, suppose the transaction committed but power
failed before all changes reached storage

Any problems with Redo logging?

(1) write after-image for any changed value to log buffer
(2) keep changed data in buffer pool
(3) add commit record to log buffer & flush
(4) flush changed data to storage at leisure

Any problems with Redo logging?

(1) write after-image for any changed value to log buffer
(2) keep changed data in buffer pool
(3) add commit record to log buffer & flush
(4) flush changed data to storage at leisure

Holds up memory

random I/Os

Undo Redo Undo/Redo

holds memory

random I/Os

Undo Redo Redo/Redo

holds memory Addresses both
problems!

Undo/Redo logging rules

(1) write before and after-image for any changed value to log buffer
(2) before modifying item on disk, must flush log record
(3) when transaction is finished, flush commit record

Undo/Redo logging rules

(1) write before and after-image for any changed value to log buffer
(2) before modifying item on disk, must flush log record
(3) when transaction is finished, flush commit record

Undo/Redo logging rules

(1) write before and after-image for any changed value to log buffer
(2) before modifying item on disk, must flush log record
(3) when transaction is finished, flush commit record

Undo/redo logging: Transaction T1
A = A - 100
B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 100
B = 100

Log buffer

Undo logging: Transaction T1

A = A - 100

B = B + 100

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 100
B = 100

Log buffer

<T1, start>

Undo logging:

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 100

Log buffer

<T1, start>
<T1, A, 100, 0>

Write before & after image to log

Transaction T1

A = A - 100

B = B + 100

Undo logging:

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 100

Log buffer

<T1, start>
<T1, A, 100, 0>

Suppose log flushes due to other transaction

Transaction T1

A = A - 100

B = B + 100

Flush

Undo logging:

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 100

Log buffer

<T1, start>
<T1, A, 100, 0>

We are now allowed to evict A if buffer pool needs to

Transaction T1

A = A - 100

B = B + 100

Evict

Undo logging:

Cf

logDatabase

A = 100
B = 100

Buffer pool

A = 0
B = 100

Log buffer

<T1, start>
<T1, A, 100, 0>

We are now allowed to evict A if buffer pool needs to

Transaction T1

A = A - 100

B = B + 100

Evict

we do not need to keep changed data in memory like undo logging :)

Undo logging:

Cf

logDatabase

A = 0
B = 100

Buffer pool

B = 100

Log buffer

<T1, start>
<T1, A, 100, 0>

If power fails at this point, we could undo change to A using log

Transaction T1

A = A - 100

B = B + 100

Undo logging:

Cf

logDatabase

A = 0
B = 100

Buffer pool

B = 200

Log buffer

<T1, start>
<T1, A, 100, 0>

Transaction T1

A = A - 100

B = B + 100

Otherwise, continue with the transaction

<T1, B, 100, 200>
<T1, commit>

Undo logging:

Cf

logDatabase

A = 0
B = 100

Buffer pool

B = 200

Log buffer

<T1, start>
<T1, A, 100, 0>

Transaction T1

A = A - 100

B = B + 100

Flush

<T1, B, 100, 200>
<T1, commit>

Undo logging:

Cf

logDatabase

A = 0
B = 100

Buffer pool

B = 200

Log buffer

<T1, start>
<T1, A, 100, 0>

Transaction T1

A = A - 100

B = B + 100

Flush

<T1, B, 100, 200>
<T1, commit>

Do do not now need to force changed data into storage like undo logging :)

Undo logging:

Cf

logDatabase

A = 0
B = 100

Buffer pool

B = 200

Log buffer

<T1, start>
<T1, A, 100, 0>

Transaction T1

A = A - 100

B = B + 100

<T1, B, 100, 200>
<T1, commit>

Suppose power now fails before we save B to storage

Undo logging:

Cf

logDatabase

A = 0
B = 100

Buffer pool Log buffer

<T1, start>
<T1, A, 100, 0>

Transaction T1

A = A - 100

B = B + 100

<T1, B, 100, 200>
<T1, commit>

Suppose power now fails before we save B to storage
How to recover B?

Undo logging:

Cf

logDatabase

A = 0
B = 100

Buffer pool Log buffer

<T1, start>
<T1, A, 100, 0>

Transaction T1

A = A - 100

B = B + 100

<T1, B, 100, 200>
<T1, commit>

Suppose power now fails before we save B to storage
How to recover B?

Replay
Load

random I/Os

Undo Redo Redo/Redo

holds memory Address both
problems!

random I/Os

Undo Redo Redo/Redo

holds memory Address both
problems!

Tutorial on Recovery
beings now :)

