
Niv Dayan

Transactions & Concurrency Control
CSC443H1 Database System Technology

Please do the course evaluation!

A DB has a notion of consistency, defined by the user

A DB has a notion of consistency, defined by the user

Sum of money in a
system should stay

constant

A DB has a notion of consistency, defined by the user

Sum of money in a
system should stay

constant

An account
balance cannot
drop below zero

A DB has a notion of consistency, defined by the user

Sum of money in a
system should stay

constant

An account
balance cannot
drop below zero

A user must
have a valid SIN

Sum of money in a
system should stay

constant

An account
balance cannot
drop below zero

A user must
have a valid SIN

sum(balance) = X balance ≥ 0 SIN ≠ null

These can be set as integrity constraints

A DB has a notion of consistency, defined by the user

To maintain consistency, database APIs expose the concept of a transaction

Series of
operations on DB

TransactionConsistent state Consistent state

TransactionConsistent state Consistent state

Example: Bank transfer
A = A - 100
B = B + 100

TransactionConsistent state Consistent state

Example: Bank transfer
A = A - 100
B = B + 100

Both operations must succeed
or fail for the system to remain
in a consistent state

Transaction

Consistent state Consistent state

Transactions do not interact with each other (i.e., by exchanging
messages). A transaction is oblivious to all other ongoing transactions.

Transaction

Transaction API

Begin
Transaction

Some commands
(e.g., in SQL) Commit or Abort

Begin Transaction

b = Select balance from accounts where id = x

Commit

If b ≤ 100

Abort

Else

Update accounts set balance = b - 100 where id = x

Example: Money withdrawal

ACID semantics for Transactions

Atomicity Consistency Isolation Durability

ACID

Atomicity Consistency Isolation Durability

All or
nothing

Atomicity Consistency Isolation Durability

All or
nothing

Transition across
consistent states

ACID

Atomicity Consistency Isolation Durability

All or
nothing

Transition across
consistent states

Not corrupted by
concurrency

ACID

Atomicity Consistency Isolation Durability

All or
nothing

Transition across
consistent states

Not corrupted by
concurrency

Recover from
failure

ACID

Who is responsible for what?

Atomicity Consistency Isolation Durability

DB User DB DB

What Endangers Consistency?

System Failure Concurrency

System Failure

Power failure Hardware failure Data center failure

System Failure

Example: Bank transfer

A = A - 100
Power fails
B = B + 100

Power failure

System Failure

Example: Bank transfer

A = A - 100
Power fails
B = B + 100

Power failure

Power fails before
transaction finishes,
leaving the system in an
inconsistent state

System Failure Concurrency

Concurrency

Concurrent transactions can result in an inconsistent state

Concurrency

Concurrent transactions can result in an inconsistent state

Can you think of examples?

Concurrency

Example 1
Interest & Payments

Concurrent transactions can result in an inconsistent state

Example 2
Updates & statistics

Example 1

T1: Interest payment T2: Payments

A = A · 1.05
B = B · 1.05

A = A - 100
B = B + 100

Example 1

A = A - 100

B = B + 100

A = A · 1.05

B = B · 1.05Time

T2T1

Commit

Commit

Example 1

A = 950, B = 1150

A=1000, B=1000

Valid Outcome 1:

Initialization:

A = A - 100

B = B + 100

A = A · 1.05

B = B · 1.05Time

T2T1

Commit

Commit

Example 1

A = 945, B = 1155

A=1000, B=1000Initialization:

A = A - 100

B = B + 100

A = A · 1.05

B = B · 1.05

Time

Valid Outcome 2:
A = 950, B = 1150Valid Outcome 1:

Commit

Commit

T2T1

Example 1

A=1000, B=1000Initialization:

A = A - 100

A = A · 1.05

Time
B = B + 100

B = B · 1.05

A = 950, B = 1155Invalid Outcome:
A = 945, B = 1155Valid Outcome 2:
A = 950, B = 1150Valid Outcome 1:

T2T1

Commit Commit

Example 1

A=1000, B=1000Initialization:

Dirty read: T2 reads a modified but
uncommitted data item from T1A = A - 100

A = A · 1.05

Time

B = B + 100
B = B · 1.05

A = 950, B = 1155Invalid Outcome:
A = 945, B = 1155Valid Outcome 2:
A = 950, B = 1150Valid Outcome 1:

T2T1

Commit Commit

Concurrency

Example 1
Payments & Interest

Concurrent transactions can result in an inconsistent state

Updates & Statistics
Example 2

T2: Statistics ReportingT1: Account Updates

count(# accounts)Balance += X

avg(account balances)
sum(account balances)

Example 2

count(# accounts) where user = “bob”bob_checking += X

avg(account balances) where user = “bob”
sum(account balances) where user = “bob”

Example 2

T2: Statistics ReportingT1: Account Updates

count(# accounts) where user = “bob”bob_checking += X

avg(account balances) where user = “bob”
sum(account balances) where user = “bob”

Example 2

T2: Statistics ReportingT1: Account Updates

What can go wrong?

T2T1

Time count(# accounts)

avg(account balances)
sum(account balances)

checking += X

Example 2

Time

checking += X

T2T1

count(# accounts)

avg(account balances)
sum(account balances)

Example 2

Time
count(# accounts)

avg(account balances)

sum(account balances)

Problem?

T2T1

checking += X

Example 2

Time

Problem? Inconsistent reporting: avg ≠ sum / count

T2T1

count(# accounts)

avg(account balances)

sum(account balances)
checking += X

Example 2

Time

T2T1

count(# accounts)

avg(account balances)

sum(account balances)

More broadly, this is an unrepeatable read anomaly: subsequent reads of
the same data are inconsistent as the data was changed in-between

checking += X

Example 2

Concurrency

Example 1
Payments & Interest

Concurrent transactions can result in an inconsistent state

Updates & Statistics
Example 2

Problem: Dirty reads Unrepeatable reads

Problems?

Simplest solution: lock whole DB for any modification

Simplest solution: lock whole DB for any modification

Problems: terrible for performance

While one transaction waits
for a storage I/O, another

should be able to use the CPU

Simplest solution: lock whole DB for any modification

Problems: terrible for performance

While one transaction waits
for a storage I/O, another

should be able to use the CPU

A short transaction should not
have to wait until a long
transaction completes

Simplest solution: lock whole DB for any modification

Problems: terrible for performance

A good compromise: Serializability

A good compromise: Serializability

Transactions can be concurrent but must result in a consistent state

Consistent
state

Consistent
state

Transaction 1

Transaction 2

Transaction 3

A good compromise: Serializability

Transactions can be concurrent but must result in a consistent state

Consistent
state

Consistent
state

Any given state once a transaction commits should have been achievable
through a serial execution of all committed transactions thus far

Transaction 1 Transaction 2 Transaction 3

A good compromise: Serializability

Transactions can be concurrent but must result in a consistent state

Equivalence to any serial execution is considered correct

Transaction 2 Transaction 3 Transaction 1

Consistent
state

Consistent
stateTransaction 1 Transaction 2 Transaction 3

Transaction 3 Transaction 1 Transaction 2

How to achieve concurrency & serializability?

How to achieve concurrency & serializability? Strict Two-Phase Locking

How to achieve concurrency & serializability? Strict Two-Phase Locking

Phase 1 Phase 2

A transaction is divided into two phases

How to achieve concurrency & serializability? Strict Two-Phase Locking

Phase 1 Phase 2

A transaction is divided into two phases

Lock a data item (e.g., row) when
it is accessed for the first time

How to achieve concurrency & serializability? Strict Two-Phase Locking

Lock a data item (e.g., row) when
it is accessed for the first time

Reads take
shared locks

Writes take
exclusive locks

Phase 1 Phase 2

A transaction is divided into two phases

Release all locks
during commit

Phase 1 Phase 2

A transaction is divided into two phases

How to achieve concurrency & serializability? Strict Two-Phase Locking

Lock a data item (e.g., row) when
it is accessed for the first time

Reads take
shared locks

Writes take
exclusive locks

Release all locks
during commit

Phase 1 Phase 2

A transaction is divided into two phases

How to achieve concurrency & serializability? Strict Two-Phase Locking

Lock a data item (e.g., row) when
it is accessed for the first time

Invariant: a data item that has been accessed by this transaction cannot be
modified by another transaction until this transaction commits

Let’s fix our running examples

Example 1
Interest & Payments Updates & Statistics

Example 2

Dirty reads Unrepeatable readsProblems:

Example 1

T1: Interest payment T2: Payments

A = A · 1.05
B = B · 1.05

A = A - 100
B = B + 100

Example 1

A = A - 100
A = A · 1.05

Time
B = B + 100

B = B · 1.05

T2T1

Commit Commit

Example 1

A = A - 100

A = A · 1.05

Time

B = B + 100

B = B · 1.05

T2T1

Commit

Commit

Exclusive locks
ensure T2 cannot
modify A until T1

commits

ex_lock(A)

ex_lock(B)

ex_lock(A)

ex_lock(B)

Let’s fix our running examples

Example 1
Interest & Payments Updates & Statistics

Example 2

Dirty reads Unrepeatable readsProblems:

Fixing

Time
count(# accounts)

avg(account balances)

sum(account balances)

T2T1

checking += X

Example 2

Time
count(# accounts)

avg(account balances)

sum(account balances)

T2T1

checking += X

Take shared locks
on each row it reads

Fixing Example 2

Time
count(# accounts)

avg(account balances)

sum(account balances)

T2T1

checking += X

T1 has to waitRequest ex_lock(X)

Commit

Fixing Example 2

Time
count(# accounts)

avg(account balances)

sum(account balances)

T2T1

checking += X
T2 releases locks

Request ex_lock(X)

Commit

Fixing Example 2

Time
count(# accounts)

avg(account balances)

sum(account balances)

T2T1

checking += X
T1 gains lock

Request ex_lock(X)

Commit

Commit

gain ex_lock(X)

Fixing Example 2

Time
count(# accounts)

avg(account balances)

sum(account balances)

T2T1

checking += X

These reads are
now repeatable

thanks to shared
read locks

Request ex_lock(X)

Commit

Commit

gain ex_lock(X)

Fixing Example 2

Both examples now work correctly

Example 1
Interest & Payments Updates & Statistics

Example 2

Dirty reads Unrepeatable readsProblems:

Solution: Exclusive write locks Shared read locks

How are locks implemented?

Lock Manager - a hash table

Object ID

Lock Manager - a hash table

Object ID (type, lock count, queue of waiting requests)

Lock Manager - a hash table

Object ID (type, lock count, queue of waiting requests)

Shared/exclusive

Lock Manager - a hash table

Object ID (type, lock count, queue of waiting requests)

In case of shared lock

Lock Manager - a hash table

Object ID (type, lock count, queue of waiting requests)

What to invoke next when this lock is released

Lock Manager - a hash table

Object ID (type, lock count, queue of waiting requests)

e.g., Row, Page, Table

Lock Manager - a hash table

Object ID (type, lock count, queue of waiting requests)

We lock an object the
first time it is accessed

by a transaction

Lock Manager - a hash table

Object ID (type, lock count, queue of waiting requests)

We lock an object the
first time it is accessed

by a transaction

Locking table implemented
via OS locking primitives

(e.g., mutexes)

An important distinction

Locks Latches

An important distinction

Locks

Separate: Transactions

Latches

Threads

An important distinction

Locks

Separate: Transactions

Protect: DB content

Latches

Threads

In-memory data structures (LRU queue)

An important distinction

Locks

Separate: Transactions

Protect: DB content

Duration: Transaction

Latches

Threads

In-memory data structures (LRU queue)

Critical section

An important distinction

Locks Latches

Separate: Transactions Threads

Protect: DB content In-memory data structures (LRU queue)

Duration: Transaction Critical section

Implementation: Lock manager Spin-locks

A B C

Index o
n A Index on C

The DB modifies relevant indexes as a part of a transaction

e.g., update table set C = ‘…’ where A ‘…’

A B C

Index o
n A Index on C

The DB modifies relevant indexes as a part of a transaction

e.g., update table set C = ‘…’ where A ‘…’

(1) Begin transaction
(2) Search index A
(3) Access row and update C
(4) Update entry in C’s index
(5) Commit

Schedule

Anything to make you uneasy about two-phase locking so far?

Deadlocks: transactions waiting on each other’s locks forever

Anything to make you uneasy about two-phase locking so far?

Deadlock example: concurrent payments

T2: B to AT1: A to B

A = A - 100
B = B + 100

B = B - 100
A = A + 100

Time
B = B + 100

T2T1

Commit

This is ok

ex_lock(A)

ex_lock(B)
A = A - 100

Deadlock example: concurrent payments

A = A + 100
Commit

ex_lock(B)

ex_lock(A)
B = B - 100

Time

B = B + 100

T2T1

Commit

ex_lock(A)

ex_lock(B)

A = A - 100

Deadlock example: concurrent payments

A = A + 100
Commit

ex_lock(B)

ex_lock(A)
B = B - 100

Deadlock

Time

B = B + 100

T2T1

Commit

ex_lock(A)

ex_lock(B)

A = A - 100

Deadlock example: concurrent payments

A = A + 100
Commit

ex_lock(B)

ex_lock(A)
B = B - 100

Deadlock

What should to do when we detect a deadlock?

What should to do when we detect a deadlock?

Abort transaction & undo all its changes

Time

B = B + 100

T2T1

Commit

ex_lock(A)

ex_lock(B)

A = A - 100

A = A + 100
Commit

ex_lock(B)

ex_lock(A)
B = B - 100

Deadlock

Abort transaction & undo all its changes

B = B + 100

T2Abort T1

Commit

ex_lock(A)

ex_lock(B)

A = A - 100

A = A + 100
Commit

ex_lock(B)

ex_lock(A)
B = B - 100

Deadlock

How to undo?

Abort transaction & undo all its changes

How to undo?

How to undo?

record before-image for all
changes to the DB in a

sequential log.

Time

B = B + 100
Commit

ex_lock(A)

ex_lock(B)
A = A - 100 record before-image for all

changes to the DB in a
sequential log.

T1: Payment from A to B
Assume A = 1000, B=2000

Time

B = B + 100
Commit

ex_lock(A)

ex_lock(B)
A = A - 100

T1: Payment from A to B
Assume A = 1000, B=2000

T1 starting
A: 1000 -> 900
B: 1000 -> 1100
T1 commit

sequential log

Time

B = B + 100
Abort

ex_lock(A)

ex_lock(B)
A = A - 100

T1: Payment from A to B
Assume A = 1000, B=2000

sequential log

T1 starting
A: 1000 -> 900
B: 1000 -> 1100
T1 abort

If transaction aborts before completing, we undo its changes via its
before-images in the log

Time

B = B + 100
Abort

ex_lock(A)

ex_lock(B)
A = A - 100

T1: Payment from A to B
Assume A = 1000, B=2000

T1 starting
A: 1000 -> 900
B: 1000 -> 1100
T1 abort

If transaction aborts before completing, we undo its changes via its
before-images in the log

Write (B)
Write (A)

Release locks

sequential log

How can we detect & prevent deadlocks?

How can we detect & prevent deadlocks?

Cycle
Detection

Abort on
wait

Conservative Two
Phase Locking

Timeouts

Timeouts

Abort a transaction after waiting a certain time for a lock

Pros?

Cons?

Timeouts

Abort a transaction after waiting a certain time for a lock

Pros?

Cons?

Simple

Speculative - wastes work aborting on non-deadlocks

How can we detect & prevent deadlocks?

Cycle
Detection

Abort on
wait

Conservative Two
Phase Locking

Timeouts

Release all locks
during commit

Phase 2

A transaction is divided into two phases

Conservative Two Phase Locking

Phase 1
Take all locks the transaction

could possibly need

Release all locks
during commit

Phase 2

A transaction is divided into two phases

Pros: no deadlocks

Con:

Conservative Two Phase Locking

Phase 1
Take all locks the transaction

could possibly need

Release all locks
during commit

Phase 2

A transaction is divided into two phases

Pros: no deadlocks

Con: takes more locks and holds them for longer

Conservative Two Phase Locking

Phase 1
Take all locks the transaction

could possibly need

How can we detect & prevent deadlocks?

Cycle
Detection

Abort on
Wait

Conservative Two
Phase Locking

Timeouts

Abort on Wait

When a transaction is blocked, abort it or the transaction holding the lock.

T1 holds lockT2 is blocked

Abort one

Abort on Wait

When a transaction is blocked, abort it or the transaction holding the lock.

T1 holds lockT2 is blocked

Abort one

Pros: no deadlocks
Con: defeatist (wastes work, or aborts many
transactions)

How can we detect & prevent deadlocks?

Cycle
Detection

Abort on
wait

Conservative Two
Phase Locking

Timeouts

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

Cycle Detection

T1 T2 T3 T4

Sc
he

du
le

G
ra

ph

T1 T2

T3T4

The DB can maintain graph of transactions waiting on each other.

Cycle Detection

T1 T2 T3 T4
T1 T2

T3T4

G
ra

ph

Sc
he

du
le

S(A)
X(B)

S(B)

The DB can maintain graph of transactions waiting on each other.

Cycle Detection

T1 T2 T3 T4
T1 T2

T3T4

G
ra

ph

Sc
he

du
le

S(A)
X(B)

S(B)
S(C)

X(C)

The DB can maintain graph of transactions waiting on each other.

Cycle Detection

T1 T2 T3 T4
T1 T2

T3T4

G
ra

ph

Sc
he

du
le

S(A)
X(B)

S(B)
S(C)

X(C)

X(B)

The DB can maintain graph of transactions waiting on each other.

Cycle Detection

T1 T2 T3 T4
T1 T2

T3T4

G
ra

ph

Sc
he

du
le

S(A)
X(B)

S(B)
S(C)

X(C)

X(B)
X(A)

The DB can maintain graph of transactions waiting on each other.

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

T1 T2

T3

Other approaches are speculative

Here we detect a deadlock for sure

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

T1 T2

T3

Should we abort T1, T2 or T3?

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

T1 T2

T3

Abort the transaction that:

(1) has done the least work

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

T1 T2

T3

Abort the transaction that:

(1) has done the least work

(2) Farthest from completion

Cycle Detection

The DB can maintain graph of transactions waiting on each other.

T1 T2

T3

Abort the transaction that:

(1) has done the least work

(2) Farthest from completion

(3) Been aborted the least times

Cycle
Detection

Abort on
wait

Conservative Two
Phase Locking

Timeouts

There is still a problem

Let’s return to our running examples

Problems:

Solution:

Example 1
Interest & Payments

Dirty reads

Exclusive write locks

Updates & Statistics
Example 2

Unrepeatable reads

Shared read locks

Let’s return to our running examples

Example 1
Interest & Payments

Dirty reads

Exclusive write locks

Updates & Statistics
Example 2

Unrepeatable reads

Shared read locks

Inserts & Statistics
Example 3

?

?

Example 3

T2: statistics reportingT1: insert account

count(# accounts)Insert A = 0

avg(account balances)
sum(account balances)

T2T1

Time count(# accounts)

avg(account balances)
sum(account balances)

Insert A = 0
Commit

Example 3

Time

T2T1

count(# accounts)

avg(account balances)
sum(account balances)

Insert A = 0
Commit

Time
count(# accounts)

avg(account balances)

sum(account balances)

Problem?

T2T1

Insert A = 0
Commit

Time
count(# accounts)

avg(account balances)

sum(account balances)

Problem?

T2T1

Insert A = 0
Commit

Only locks
existing rows

Time
count(# accounts)

avg(account balances)

sum(account balances)

Problem?

T2T1

Insert A = 0
Commit

New row is
unaffected by

T2’s locks

Time
count(# accounts)

avg(account balances)

sum(account balances)

Problem?

T2T1

Insert A = 0
Commit lock on new row

is released

Time
count(# accounts)

avg(account balances)

sum(account balances)

T2T1

Insert A = 0
Commit

Wrong result

Problem? Inconsistent reporting: avg ≠ sum / count

Time
count(# accounts)

avg(account balances)

sum(account balances)

T2T1

Insert A = 0
Commit

More broadly, this is a phantom read: a transaction accesses a set
of rows twice, and qualifying rows are added in-between

Time
count(# accounts)

avg(account balances)

sum(account balances)

T2T1

Insert A = 0
Commit

How can we prevent phantom reads?

More broadly, this is a phantom read: a transaction accesses a set
of rows twice, and qualifying rows are added in-between

How can we prevent phantom reads?

lock table

Aggressive

How can we prevent phantom reads?

lock table Predicate
locking

Aggressive Complex &
expensive

How can we prevent phantom reads?

lock table Predicate
locking

Aggressive Complex &
expensive

Select * from table
where ID=x

Lock “id=x”

How can we prevent phantom reads?

lock table Predicate
locking

Index
locking

Aggressive Complex &

expensive

Good but
requires an index

Index Locking

Example:

A,B C,D E,F G,H

Lock B-tree leaf storing relevant range

Select * from accounts
where ID=“Cindy”

Index Locking

Example:

A,B C,D E,F G,H

Lock B-tree leaf storing relevant range

Select * from accounts
where ID=“Cindy”

So we do not have to lock the whole
table as long as we have an index :)

Example 1
Interest & Payments

Dirty reads

Updates & Statistics
Example 2

Unrepeatable reads

Inserts & Statistics
Example 3

Phantom Read

Exclusive write locks Shared read locks Range locks

More correct but slower

Inserts & Statistics
Example 3

Phantom Read

Example 1
Interest & Payments

Dirty reads

Updates & Statistics
Example 2

Unrepeatable reads

Exclusive write locks Shared read locks Range locks

Inserts & Statistics
Example 3

Compromising correctness is fine for some applications

Example 1
Interest & Payments

Dirty reads

Updates & Statistics
Example 2

Unrepeatable reads

Exclusive write locks Shared read locks Range locks

Phantom Read

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Dirty read Unrepeatable read Phantom reads

Read uncommitted

Read committed

Repeatable reads

Serializable

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Dirty read Unrepeatable read Phantom reads

Read uncommitted

Read committed

Repeatable reads

Serializable

Possible Possible Possible

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Dirty read Unrepeatable read Phantom reads

Read uncommitted

Read committed

Repeatable reads

Serializable

Possible Possible Possible

Not Possible Possible Possible

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Dirty read Unrepeatable read Phantom reads

Read uncommitted

Read committed

Repeatable reads

Serializable

Possible Possible Possible

Not Possible Possible Possible

Not Possible Not Possible Possible

Dirty read Unrepeatable read Phantom reads

Read uncommitted

Read committed

Repeatable reads

Serializable

Possible Possible Possible

Not Possible Possible Possible

Not Possible Not Possible Possible

Not Possible Not Possible Not Possible

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Read uncommitted

Read committed

Repeatable reads

Serializable

Exclusive write locks not held until a transaction ends

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Read uncommitted

Read committed

Repeatable reads

Serializable

Shared read locks not held until a transaction ends

Exclusive write locks not held until a transaction ends

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Read uncommitted

Read committed

Repeatable reads

Serializable

Range locks not employed (e.g., no tree/table locking)

Exclusive write locks not held until a transaction ends

Shared read locks not held until a transaction ends

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Read uncommitted

Read committed

Repeatable reads

Serializable Everything is fully correct

Range locks not employed (e.g., no tree/table locking)

Exclusive write locks not held until a transaction ends

Shared read locks not held until a transaction ends

ANSI/ISO Transaction Isolation Levels - part of the SQL standard

Repeatable reads Range locks not employed (e.g., no tree/table locking)

The default in many relational DB systems

What do you think this curve should look like?

Throughput
(Transactions / sec)

concurrent transactions

?

What do you think this curve should look like?

Throughput

(Transactions / sec)

concurrent transactions

Thrashing due to
locks

What do you think this curve should look like?

Throughput

(Transactions / sec)

concurrent transactions

How can we address this?
(1)
(2)

What do you think this curve should look like?

Throughput

(Transactions / sec)

concurrent transactions

How can we address this?
(1)
(2)

Design the application such that transactions are short

What do you think this curve should look like?

Throughput

(Transactions / sec)

concurrent transactions

How can we address this?
(1)
(2)

Design the application such that transactions are short
Restrict the maximum number of concurrent transactions

With Strict Two-Phase Locking, a transaction
locks all objects on its path until it commits

Why is this a problem for B-tree update?

With Strict Two-Phase Locking, a transaction
locks all objects on its path until it commits

Why is this a problem for B-tree update?

Lots of locking contention at root and
upper levels

With Strict Two-Phase Locking, a transaction
locks all objects on its path until it commits

Why is this a problem for B-tree update?

Lots of locking contention at root and
upper levels

Any solutions?

What must we lock at minimum to ensure correctness?

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

get(x)

x

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

get(x)

x

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

get(x)

x

Split

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

get(x)

x

Split

doesn’t find x

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

Double shared locks
solve the problem

S

S

What must we lock at minimum to ensure correctness?

(1) We must maintain lock on parent as we acquire lock on child.
Otherwise, another transaction may split child before we get to it

S

Once we hold lock on child,
release lock on parent

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

What must we lock at minimum to ensure correctness?

Not full

Full

put(x)

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Target
Not full

What must we lock at minimum to ensure correctness?

Not full

Full

put(x)

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

S

Target

S

Not full

What must we lock at minimum to ensure correctness?

Not full

Fullput(x)

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Target

S

Not full

What must we lock at minimum to ensure correctness?

Fullput(x)

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Target

S

X
Not full

Not full

What must we lock at minimum to ensure correctness?

Not full

Full

put(x)

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Target
Not full

X

What must we lock at minimum to ensure correctness?

Full

Not Full

put(x)

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Target
Full

What must we lock at minimum to ensure correctness?

put(x)

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

S

S
Full

Not Full

Target
Full

What must we lock at minimum to ensure correctness?

put(x)

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

S

S
Full

Not Full

Target
Full

What must we lock at minimum to ensure correctness?

put(x)

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

S

S

X

Full

Not Full

Target
Full

What must we lock at minimum to ensure correctness?

put(x)

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

S

S
Full

Not Full

Target
Full

X

What must we lock at minimum to ensure correctness?

Split

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

S

S
Full

Not Full

Target
Full

X X

What must we lock at minimum to ensure correctness?

Upgrade lock

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

S

X

X

Full

Not Full

TargetX

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

X

X

X

Not Full

TargetX

X

Upgrade lock

What must we lock at minimum to ensure correctness?

(2) Once we reach child, we only need to hold a lock on a
parent if the child is full, as a split would propagate upwards

Target

X

X

X X

X

Protocol known as Lock-Coupling, or Crabbing

Protocol known as Lock-Coupling, or Crabbing

Shows that while strict two-phase locking is correct, it
can sometimes be relaxed while maintaining correctness

And now, office hours

