Storage

-

Database System Technology

The memory Hierarchy

+ [B

CPU caches memory SSD disk

Expensive & fast Slow & cheap

Volatility - Does data stay when power is off? +

4 o S .

CPU caches memory SSD disk

Data Data
disappears persists

CPU caches memory SSD disk

Data is brought

: Data resides here
here for processing

Access granularity

CPU caches memory SSD disk

Byte-addressable Block-addressable

64-128 B D 4-16 KB E

disk

||

Rarely used In laptops or
PCs these days

disk

Rarely used In laptops or

PCs these days Used Iin data centers

disk

Platter

disk

Spindle

disk

Track

Sector

"

(512 B)

Platter

disk

Spindle
(O 7
Disk head (y Track
A Sector
i » (512 B)

%

< / Platter

Arm movement /
Arm assembly

disk: access times

) Spindle
seek time - Move arms to position head on Disk head (y/\ Track
track (1-10 ms) —
gy Sector
rotational delay - wait for sector to rotate under /‘ _ (912 B)
head (0-5 ms) l,,

transfer time - moving data to/from disk

surface ; >

> (0.01 ms

() Arm movement Platter
seek/rotational delays dominate /

A u)
Arm assembly

disk access principles

Sequential access?
Random access?

Spindle
(=P
Disk head (

/—\

y Track
X Sector

U (512 B)

¢)
Arm movement

g

Platter

Arm assembly

u>/

disk access principles

Disk head
(1) Small random reads/writes are slow
7
(2) Large sequential reads/writes of l,,

adjacent sectors and tracks are fast

Spindle
() SR

y Track
X Sector

. (512 B)

<

%

Arm movement

-

Arm assembly

Platter

u>/

Block device interface

512 B
512 B
5128
512 B ./t
512 B

512 B

512 B

512 B

512 B »
512 B

Sector addresses

O 00O N O 01 A W N = O

v

Block device interface

512 B
512 B
512 B
512 B
512 B
512 B
512 B
512 B

512 B @u
512 B

Operating
System

I

/(‘G !

O 00O N O 01 A W N = O

v

Block device interface

512 B
512 B -
512 B

512 B Disk driver C)

v

512 B

Operating

512 B
512 B
512 B
512 B

System

I

/(‘G !

O 00O N O 01 A W N = O

.
v

512 B

Problem
Physically split file

A file system or database may not

initially find space to store data that'’s /
usually accessed together at the same l

place. (&

Solution?

Defragmentation

A file system or database may not
initially find space to store data that'’s
usually accessed together at the same
place.

Defragmentation fixes this by reorganizing
disk so data belonging to the same file is

close. This leads to fewer random accesses. >
] \J)

Databases do this too, as we’ll see.

Disk Failure

Heat
Power surges

-
@

Dust afiite.

Time
Humidity

Disk Fallure

Heat Power surges

o
-, >
Dust o~ A

Humidity

Time

~19%0 of a collection of disks will fail per year

disk SSD

Traditional storage medium Became mainstream in the
for decades 2000s

SSD

SSD

_

a Flash chip 1 Flash chip N\
Erase Unit
(mB-1GB) LL | |
Page
(4-16 KB)

A page is the minimum read/write unit Flash chip

Erase Unit h

(1MB-1GB) |

/ N\
Page
(4-16 KB)

A page is the minimum read/write unit Flash chip

Pages must be written sequentially in an erase unit

Erase Unit h
(1I\/IB-1GB)/
/ AN
Page

(4-16 KB)

A page is the minimum read/write unit Flash chip

Pages must be written sequentially in an erase unit

All data in an erase unit is erased at the same time

&

' 4

Erase Unit h

(1MB-1GB) |

/ N\
Page
(4-16 KB)

A page is the minimum read/write unit Flash chip

Pages must be written sequentially in an erase unit

All data in an erase unit is erased at the same time

Each erase unit has a lifetime (1-10K erases) m
AN
Erase Unit
(1MB-1GB) |
/ N\
Page

(4-16 KB)

A page is the minimum read/write unit Flash chip

Pages must be written sequentially in an erase unit

All data in an erase unit is erased at the same time

Each erase unit has a lifetime (1-10K erases)

Reading a page takes approx 50 us Erase Unit

(1MB-1GB) |
Writing a page takes approx 100-200 us 7N\

Page

WJJ + |4 (16 KB

Updating a Page in-Place

What's the simplest way to update a page? Flash chip

Erase Unit h

(1MB-1GB) |

Page
(4-16 KB)

Updating a Page in-Place

What's the simplest way to update a page? Flash chip

Read & rewrite the entire erase block

Why is this bad?

Erase Unit h

(1MB-1GB) |

Page
(4-16 KB)

Updating a Page in-Place

What's the simplest way to update a page? Flash chip

Read & rewrite the entire erase block

Why is this bad?

Suppose the purple page is repeatedly updated,

while other data in the erase unit stays static.

Erase Unit h

(1MB-1GB) |

Page
(4-16 KB)

Updating a Page in-Place

What's the simplest way to update a page? Flash chip

Read & rewrite the entire erase block

Why is this bad?

Suppose the purple page is repeatedly updated,

while other data in the erase unit stays static.

Erase Unit h

Physical work done >> work needed (1MB-1GB)
/

Page
(4-16 KB)

Updating a Page in-Place

What's the simplest way to update a page? Flash chip

Read & rewrite the entire erase block

Why is this bad?

Suppose the purple page is repeatedly updated,

while other data in the erase unit stays static.

Erase Unit h

Physical work done >> work needed (1MB-1GB)
/

Erase unit size Page

Write-amplification = .
Page SiZze (4_1 6 KB)

Updating a Page in-Place

Better solution? Flash chip

Erase Unit h

(1MB-1GB) |

Page
(4-16 KB)

Updating a Page Out-of-Place

Better solution? Flash chip

Copy the page to an erase unit with free space

“Copy-on-write” or “out-of-place update”

ah

Erase Unit h .
(1I\/IB-1GB)/
/ AN
Page

(4-16 KB)

Updating a Page Out-of-Place

Better solution? Flash chip

Copy the page to an erase unit with free space

“Copy-on-write” or “out-of-place update”

Mark the original page as invalid (using a bitmap)

Erase Unit h ><

(1MB-1GB) |

|

Invalid

Updating a Page Out-of-Place

Eventually many invalid pages accumulate.

How do we reclaim space to support more writes?

Flash chip

X

XX
X

Garbage-Collection

Find the erase unit with the least live data left.

Flash chip

XX

X

Garbage-Collection

Find the erase unit with the least live data left.

Copy live pages to an erase unit with free space.

Flash chip

XX

X

Garbage-Collection

Find the erase unit with the least live data left.

Copy live pages to an erase unit with free space.

Erase the block

Flash chip

X

XX
X

SSD Wearing Out

Cells become more error-prone as we write to them

SSD Wearing Out

Cells become more error-prone as we write to them

There are error correction codes internally, but
eventually there iIs so much error they cannot
correct it.

SSD Wearing Out

Cells become more error-prone as we write to them

There are error correction codes internally, but
eventually there is so much error they cannot
correct It.

An SSD will report in the specs how many sequential
or random writes it can take before failing

6 Principles for Making the Most of your SSD

&

Principle 1: Avoid Small Updates

Small Updates are terrible - they force
reading a whole page and rewriting it.

Application
Update smaller than page size I

O OO N O U1 A W N = O

=

Principle 1: Avoid Small Updates

Small Updates are terrible - they force
reading a whole page and rewriting it.

Application
Update smaller than page size I

O OO N O U1 A W N = O

Principle 1: Avoid Small Updates

Small Updates are terrible - they force
reading a whole page and rewriting it.

Application
Update smaller than page size I

O OO N O U1 A W N = O

Principle 1: Avoid Small Updates

Small Updates are terrible - they force
reading a whole page and rewriting it.

Page size
Update size

Write-amplification =

O OO N O U1 A W N = O

=

Principle 2: Avoid Random Updates

Avoid random updates, as they lead to
garbage-collection overheads

O OO N O U1 A W N = O

¢

Principle 2: Avoid Random Updates

Avoid random updates, as they lead to
garbage-collection overheads

l—

migrated X

4

GC WA formula = 1 + - 1+ —
freed 1-X

1

-I

l—

-I

X = fraction of pages in erase unit migrated
each garbage-collection operation operation

¢

Principle 2: Avoid Random Updates

Instead write sequentially, and update data 0

written at the same time all at once

Application writes —— \

Principle 2: Avoid Random Updates

Instead write sequentially, and update data 0

written at the same time all at once

Application writes ‘

\
\

Principle 2: Avoid Random Updates

Instead write sequentially, and update data 0

written at the same time all at once

Application writes \ ‘

Principle 2: Avoid Random Updates

Instead write sequentially, and update data 0
written at the same time all at once

Application delete ‘

Principle 2: Avoid Random Updates

Instead write sequentially, and update data 0
written at the same time all at once

Free erase blocks without garbage-collection

Principle 2: Avoid Random Updates

Instead write sequentially, and update data 0
written at the same time all at once

Free erase blocks without garbage-collection

Write-amplification = 1

Principle 2: Avoid Random Updates

However, some write-amplification is 0
inevitable when multiple applications are

running on the same SSD, as their data

becomes physically interspersed.

Application 1 / |

Application2 —

.

Principle 2: Avoid Random Updates

However, some write-amplification is 0
inevitable when multiple applications are

running on the same SSD, as their data

becomes physically interspersed.

No erase unit is empty!
Entails high GC overheads

Principle 3: Prioritize Reads over Writes

Writes take longer to execute than reads and 0
may also entail write-amplification. This
degrades SSD performance and lifetime.

Principle 3: Prioritize Reads over Writes

Writes take longer to execute than reads and 0
may also entail write-amplification. This
degrades SSD performance and lifetime.

Study data structures that
entail fewer writes at the
expense of more reads.

Principle 4: Reads/Writes should be page aligned

Reading a misaligned page triggers 2 flash 0
reads

Updating a misaligned page triggers 2 flash

reads and 2 flash writes

Principle 5: Asynchronous I/Os for the win

Internal parallelism of SSD makes

asynchronous I/O faster than

synchronous I/0

asynchronous

synchronous

\
=
\
/
\
/
time

Principle 6: Defragmentation on SSDs?

Co-locate

Principle 6: Defragmentation on SSDs is a Bad Idea

Random read I/Os are fast, so

relocating parts of a file to be close
does not significantly improve read

Speed.

A

On the other hand, it contributes to Co-locate
write-amplification and consumes the

device’s lifetime.

02 Week 2: Storage Devices

This week will take a deep look at the memory hierarchy. As we will see throughout the course, the properties of the memory
hierarchy give rise to how modern databases are architected.

For information on storage, read Chapter 8 Part 8.1, and Chapter 9 Parts 9.1 and 9.2.

As you will notice, the textbook was written before SSDs became popular. | have written some background on SSDs here. Please
study this carefully.

You may also skim the following article.

02 Week 2: Storage Devices

This week will take a deep look at the memory hierarchy. As we will see throughout the course, the properties of the memory
hierarchy give rise to how modern databases are architected.

For information on storage, read Chapter 8 Part 8.1, and Chapter 9 Parts 9.1 and 9.2.

As you will notice, the textbook was written before SSDs became popular. | have written some background on SSDs here. Please

study this carefully. T

You may also skim the following article.

Important reading

Reasoning About SSD Write-Amplification - CSC443H1 Database
System Technology — Niv Dayan

Pages and Erase Units. An SSD based on NAND flash memory consists of multiple pages, each
approximately 4KB. Reads and writes take place at the granularity of pages. Pages are organized
into erase units, and they must be written sequentially within an erase unit (consisting of
hundreds to thousands of pages). To update a physical page, we must erase the entire erase
unit that the page belongs to. Erase units have a finite lifetime: they can only be erased a
certain number of times befare they become too error-prone to store data reliably.

QOut-of-Place Updates. SSDs are therefore designed to prevent having to erase and rewrite an
entire erase unit every time we want to update the contents of an individual page. It does this
by updating pages out-of-place. Specifically, it uses some metadata to mark the original version
of the page as invalid, and it writes the new version of the page on some erase unit with free
space. The SSD maintains a mapping table from the logical address of each phase to its physical
address within the SSD. Overall, each page can have one of three states: free, valid, or invalid.

Garbage Collection. As updates take place, more physical pages within the SSD get marked as

invalid. Eventually, as the SSD runs out of free space, we must reclaim space taken up by invalid
naces tn accommaodate mnre 1indates from the annlicatinn. The SSD does this hv nerfarminge

Different types of flash devices

All use flash memory and (roughly) work as described above

NVMe M2

= ;: SAMSUNG ':‘
- SSD980 i; :

NVME SSD SATA SSD USB stick SD card

Faster Cheaper

Phase-Change
memory

Discontinued

Faster

2 0 £ @ ¢

disk

Shingled
disks

New

Tape

Archival

Research

Cheaper

On Friday we'll look at RAID

