Recovery
CSC443H1 Database System Technology

Niv Dayan

Last stretch for the project!

\\

Z

(Deadline on Dec 1st)

TA & Normal Office this Thursday
In both BA5233 and BA5230

3-4 pm 6-7 pm

Last lecture today

Last lecture today

)

One hour lecture followed by tutorial questions

Please do the course evaluation!

13

ACID Transactions

Atomicity Consistency Isolation Durability
@ E Og
All or Transition across Not corrupted by Recover from

nothing consistent states concurrency failure

What Endangers the ACID properties?

Concurrency System Failure

@

What Endangers the ACID properties”?

Concurrency System Failure

1l @

Last week Today

System Failure

Media failure Power failure Data center failure

@

B

System Failure

Media failure Power failure Data center failure

@

B

RAID (covered)

System Failure

Media failure Power failure Data center failure

@

RAID (covered) Logging

B

System Failure

Media failure Power failure Data center failure

@

-l

RAID (covered) Logging Replication

Example: A=A-100
Bank transfer B=B+ 100

A=A-100

Example: : Zb
Bank transfer Power Tails ()

B=B+ 100

If the update to account A is saved to disk,
money disappears from the system

A=A-100

Example: : Zb
Bank transfer Power fails ()

B=B+ 100

If the update to account A is saved to disk,
money disappears from the system

A=A-100

Example: Power falls
Bank transfer

B=B+ 100

What’s a high level solution?

Solution outline: (1) wrap this up as a transaction

Start transaction
A=A-100
B=B+ 100

End transaction

Solution outline: (1) wrap this up as a transaction
(2) write changes to by each transaction in a log

Start transaction
A=A-100

B=B+ 100
End transaction

log: an append-only file in storage

Solution outline: (1) wrap this up as a transaction
(2) write changes to by each transaction in a log

(3) after power fails, scan log and cancel effects of
uncommitted transactions

Start transaction
A=A-100
B=B+ 100

End transaction

Solution outline: (1) wrap this up as a transaction
(2) write changes to by each transaction in a log

(3) after power fails, scan log and cancel effects of
uncommitted transactions

Start transaction
A=0 A=A-100

Database

Solution outline: (1) wrap this up as a transaction
(2) write changes to by each transaction in a log

(3) after power fails, scan log and cancel effects of
uncommitted transactions

Start transaction
A:O+100 A:A-'IOO

Database

Solution outline: (1) wrap this up as a transaction
(2) write changes to by each transaction in a log

(3) after power fails, scan log and cancel effects of
uncommitted transactions

Start transaction
A=A-100

Database

Two Types of logging with different trade-offs

Undo Redo

O C

Two Types of logging with different trade-offs

Undo Redo

O C

random |/Os holds memory

Undo Redo Redo/Redo

O C

Addresses both

random |/Os holds memory
problems!

Undo logging:

Invariant: If transactions is marked as committed in the log, all of
Iits changes are persisted in storage

Undo logging:

Invariant: If transactions is marked as committed in the log, all of
Its changes are persisted In storage

Consequence: to recover, undo effects of uncommitted transactions

Undo logging:

Invariant: If transactions is marked as committed in the log, all of
Its changes are persisted In storage

Consequence: to recover, undo effects of uncommitted transactions

Corollary: no constraints on buffer pool eviction policy

Undo logging:

{a)

Buffer pool Log buffer

Database log

Undo logging:

Assume relational database

Writes Buffer pool Log buffer

Database

Undo logging: Transaction T1
A=A-100
B=B+ 100

Buffer pool Log buffer

Database log

Undo logging: Transaction T1
A=A-100
B=B+ 100

<T1, start>

Buffer pool Log buffer

Database l0g

Undo logging: Transaction T1
A=A-100
B=B+ 100

Lock both items

<T1, start>

Buffer pool Log buffer

Database l0g

Undo logging: Transaction T1
A=A-100
B=B+ 100

Write before-images to log

S ™

<T1, start>
<T1, A, 100>

<T1, B, 100>

Buffer pool Log buffer

Database l0g

Undo logging: Transaction T1
A=A-100
B=B+ 100

<T1, start>
<T1. A 100> Log flushes

<T1 B 100> whenever it
o fills up

Buffer pool Log buffer

Database l0g

Undo logging: Transaction T1
A=A-100
B=B+ 100

However, to commit any transaction, we force flush the log.

<T1, start>
<T1, A, 100>
<T1, B, 100>
Force
Buffer pool Log buffer Flush

Database l0g

Undo logging: Transaction T1
A=A-100
B=B+ 100

Now force
Storage Buffer pool Log buffer
update

<T1, start>
<T1, A, 100>
<T1, B, 100>

Database

Undo logging: Transaction T1
A=A-100
B=B+ 100

Set commit record
\ 4

<T1, commit>

Buffer pOO| Log buffer Flush

<T1, start>
<T1, A, 100>
<T1, B, 100>

Database

Undo logging: Transaction T1
A=A-100
B=B+ 100

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

<T1, commit>

Database

Undo logging:

(1) write before-image for any changed value to log buffer
(2) force flush log

(3) force the changed data into storage

(4) add commit record to log buffer & force flush again

Recovery Undo logging:

Suppose power fails after we save the value of B to
storage but before we save the value of A

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Database

Recovery Undo logging:

We lose all contents in memory

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Database

Recovery Undo logging:

We lose all contents in memory

How do we recover?

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Database

Recovery Undo logging:

During recovery, we traverse the log backwards

Buffer pool Log buffer

<T1, start>

<T1, B, 100>

Database

Recovery Undo logging:

Undo any operation of an uncommitted transaction

Undo
Load Buffer pool \ Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Database

Recovery Undo logging:

Undo any operation of an uncommitted transaction

Undo

Buffer pool \ Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Database

Recovery Undo logging:

Undo any operation of an uncommitted transaction

Flush <‘ Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Database

Recovery Undo logging:

Buffer pool

Database

Set rollback record
\ 4

<11, rollback>

Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

Recovery Undo logging:

Why do we need this rollback record?

Buffer pool Log buffer > Flush

<T1, start>
<T1, A, 100>
<T1, B, 100>

<T1, rollback>

Database

Recovery Undo logging:

Why do we need this rollback record?

It saves us work if power fails again so we don’t undo B again

Buffer pool Log buffer > Flush

<T1, start>
<T1, A, 100>
<T1, B, 100>

<T1, rollback>

Database

Recovery Undo logging:

We are now done. It’s as if the original transaction never executed.

Buffer pool Log buffer

<T1, start>
<T1, A, 100>
<T1, B, 100>

<11, rollback>

Database

How much of the log must we traverse during recovery?

traverse

log

How much of the log must we traverse during recovery?

All of it, there may be a transaction from the very beginning that hasn’t
committed.

traverse

log

How much of the log must we traverse during recovery?

All of it, there may be a transaction from the very beginning that hasn’t
committed.

How can we bound recovery time without having to traverse the whole log?

traverse

log

Checkpointing

Log buffer

Checkpointing

(1) Stop accepting new transactions & wait until all existing ones commit

Log buffer

Checkpointing

(1) Stop accepting new transactions & wait until all existing ones commit
(2) flush log to storage

Log buffer > Flush

Checkpointing

(1) Stop accepting new transactions & wait until all existing ones commit
(2) flush log to storage
(3) add checkpoint record to log buffer and flush again

<checkpoint>

Log buffer > Flush

commits

Checkpointing

(1) Stop accepting new transactions & wait until all existing ones commit
(2) flush log to storage
(3) add checkpoint record to log buffer and flush again

Log buffer

During next recovery, only traverse log up commits
to first checkpoint record we encounter

<checkpoint>

UNDO Logging steps

(1) write before-image for any changed value to log buffer
(2) force flush log
(3) force the changed data into storage

(4) add commit record to log buffer & force flush again

UNDO Logging steps

(1) write before-image for any changed value to log buffer
(2) force flush log
(3) force the changed data into storage

(4) add commit record to log buffer & force flush again

Any performance issues?

Many random 1/Os

(1) write before-image for any changed value to log buffer
(2) force flush log
(3) force the changed data into storage

(4) add commit record to log buffer & force flush again

Two sync I/Os

(1) write before-image for any changed value to log buffer
(2) force flush log

(3) force the changed data into storage

(4) add commit record to log buffer & force flush again

Undo Redo Redo/Redo

O C

random 1/Os

Redo logging:

Invariant: If transactions is not marked as committed in the log In
storage, none of its changes have been persisted to the database

Redo logging:

Invariant: If transactions is not marked as committed in the log In
storage, none of its changes have been persisted to the database

Consequences: (1) buffer pool cannot evict uncommitted (dirty) data

Redo logging:

Invariant: If transactions is not marked as committed in the log In
storage, none of its changes have been persisted to the database

Consequences: (1) buffer pool cannot evict uncommitted (dirty) data

(2) while recovering, we can ignore uncommitted transactions

Redo logging:

Invariant: If transactions is not marked as committed in the log In
storage, none of its changes have been persisted to the database

Consequences: (1) buffer pool cannot evict uncommitted (dirty) data
(2) while recovering, we can ignore uncommitted transactions

(3) Must redo committed transactions if their changes have
not been flushed

Redo logging: Transaction
A=A-100
B=B+ 100

Buffer pool Log buffer

Database l0g

Redo logging: Transaction
A=A-100
B=B+ 100

<T1, start>

Buffer pool Log buffer

Database l0g

Redo logging: Transaction
A=A-100
B=B+ 100

Write after-image of each item to log

S ™

<T1, start>
<T1, A, 0>

<T1, B, 200>

Buffer pool Log buffer

Database l0g

Redo logging: Transaction
A=A-100
B=B+ 100

Write commit record

S ™

<T1, start>
<I1, A, 0>

<T1, B, 200>
<T1, commit>

Buffer pool Log buffer

Database l0g

Redo logging: Transaction
A=A-100
B=B+ 100

Not allowed to evict until log buffer flushes

<T1, start>
<I1, A, 0>

<T1, B, 200>
<T1, commit>

Log buffer

Database l0g

Redo logging: Transaction
A=A-100
B=B+ 100

<T1, start>
<I1, A, 0>

<T1, B, 200>
<T1, commit>

Buffer pOO| Log buffer Flush

Database l0g

Redo logging: Transaction
A=A-100
B=B+ 100

Buffer pOO| Log buffer Flush

<T1, start>
<T1, A, 0>
<T1, B, 200>

<T1, commit>

Database

Redo logging: Transaction
A=A-100
B=B+ 100

Transaction is now committed

Buffer pool Log buffer

<T1, start>
<T1, A, 0>
<T1, B, 200>

<T1, commit>

Database

Redo logging: Transaction
A=A-100
B=B+ 100

Now allowed to evict at leisure

evict <‘ Buffer pool Log buffer

<T1, start>
<T1, A, 0>
<T1, B, 200>

<T1, commit>

Database

Redo logging: Transaction
A=A-100
B=B+ 100

Note that we don’t have to force all changes to storage at once
(A stays in memory in this example)

Buffer pool Log buffer

<T1, start>
<T1, A, 0>
<T1, B, 200>

<T1, commit>

Database

Redo logging: Transaction
A=A-100
B=B+ 100

The buffer evicts committed data autonomously based on clock or LRU

Buffer pool Log buffer

<T1, start>
<T1, A, 0>
<T1, B, 200>

<T1, commit>

Database

Recovery with Redo logging:

To recover, traverse log forward, replying effects of all
committed transactions

Buffer pool Log buffer

reply

Database l0g

Recovery with Redo logging:

To recover, traverse log forward, replying effects of all
committed transactions

Buffer pool Log buffer

reply

Database l0g

Recovery with Redo logging:

@ Suppose the transaction was not committed and power failed

A=0

Buffer pool Log buffer

<T1, start>
<T1, A, 0>
<11, B, 200>

Database

Recovery with Redo logging:

Suppose the transaction was not committed and power failed
If there is no commit, nothing to do as we know modified

versions didn’t reach storage

Buffer pool Log buffer

<T1, start>
<T1, A, 0>
<11, B, 200>

Database

Recovery with Redo logging:

add rollback record

Buffer pool Log buffer

<T1, start>
<T1, A, 0>
<11, B, 200>

<T1, rollback>

Database

Recovery with Redo logging:

Now, suppose the transaction committed but power
failed before all changes reached storage
Buffer pool Log buffer

<T1, start>
<T1, A, 0>
<11, B, 200>

<T1, commit>

Database

Recovery with Redo logging:

Now, suppose the transaction committed but power
falled before all changes reached storage

How to recover?

Buffer pool Log buffer

<T1, start>
<T1, A, 0>
<11, B, 200>

<T1, commit>

Database

Recovery with Redo logging:

Now, suppose the transaction committed but power
falled before all changes reached storage

Replay
Load Buffer pool \ Log buffer

<T1, start>
<T1, A, 0>
<T1, B, 200>

<T1, commit>

Database

Recovery with Redo logging:

Now, suppose the transaction committed but power
falled before all changes reached storage

Eventually
evicted < Buffer pOOI Log buffer

<T1, start>
<T1, A, 0>
<T1, B, 200>

<T1, commit>

Database

Recovery with Redo logging:

Now, suppose the transaction committed but power
falled before all changes reached storage

Buffer pool Log buffer

<T1, start>
<T1, A, 0>
<T1, B, 200>

<T1, commit>

Database

Does not force data into storage

1) write after-image for any changed value to log buffer
2) keep changed data in buffer pool

3) add commit record to log buffer & flush

4) flush changed data to storage at leisure

(
(
(
(

Does not force data into storage

1) write after-image for any changed value to log buffer
2) keep changed data in buffer pool

3) add commit record to log buffer & flush

4) flush changed data to storage at leisure

(
(
(
(

Problem?

Any problems with Redo logging?

Holds up memory

(1) write after-image for any changed value to log buffer
(2) keep changed data in buffer pool

(3) add commit record to log buffer & flush

(4) flush changed data to storage at leisure

Undo Redo Undo/Redo

O C

random |/Os holds memory

Undo Redo Redo/Redo

©S C

random 1/Os holds memory Addresses both
problems!

Undo/Redo logging:

Invariant: for any data persisted to storage, its before and after
Images must first be persisted in the log

Undo/Redo logging:

Invariant: for any data persisted to storage, its before and after
Images must first be persisted in the log

data item granularity rather than transaction-level granularity :)

Undo/Redo logging:

Invariant: for any data persisted to storage, its before and after
Images must first be persisted in the log

Consequence: To recover, undo uncommitted transactions
& redo committed transactions

Undo/Redo logging:

Invariant: for any data persisted to storage, its before and after
Images must first be persisted in the log

Consequence: To recover, undo uncommitted transactions
& redo committed transactions

Corollary: cannot evict dirty data item to storage for which log entry was not
already written

Undo/redo logging: Transaction T1
A=A-100
B=B + 100

Buffer pool Log buffer

Database l0g

Undo logging: Transaction T1
A=A-100
B=B+ 100

<T1, start>

Buffer pool Log buffer

Database l0g

Undo logging: Transaction T1
A=A-100
B=B+ 100

Write before & after image to log

<T1, start>
<T1, A, 100, 0>

Buffer pool Log buffer

Database l0g

Undo logging: Transaction T1
A=A-100
B=B+ 100

Suppose log flushes due to other transaction

Buffer pool Log buffer Flush

<T1, start>
<T1, A, 100, 0>

Database

Undo logging: Transaction T1
A=A-100
B=B+ 100

We are now allowed to evict A if buffer pool needs to

Evict

Buffer pool Log buffer

<T1, start>
<T1, A, 100, 0>

Database

Undo logging: Transaction T1
A=A-100
B=B+ 100

We are now allowed to evict A if buffer pool needs to
we do not need to keep changed data in memory like undo logging :)

Evict

Buffer pool Log buffer

<T1, start>
<T1, A, 100, 0>

Database

Undo logging: Transaction T1

A=A-100
B=B+ 100
@ If power fails at this point, we could undo change to A using log
B =100
Buffer pool Log buffer

<T1, start>
<T1, A, 100, 0>

Database

Undo logging: Transaction T1
A=A-100
B=B+ 100

Otherwise, continue with the transaction

<T1, B, 100, 200>
<T1, commit>

B =200

Buffer pool Log buffer

<T1, start>
<T1, A, 100, 0>

Database

Undo logging: Transaction T1
A=A-100
B=B+ 100

B =200

Flush
Buffer pool Log buffer

<T1, start>
<T1, A, 100, 0>
<T1, B, 100, 200>

<T1, commit>

Database

Undo logging: Transaction T1
A=A-100
B=B+ 100

Do do not now need to force changed data into storage like undo logging :)

B =200

Flush
Buffer pool Log buffer

<T1, start>
<T1, A, 100, 0>
<T1, B, 100, 200>

<T1, commit>

Database

Undo logging: Transaction T1

A=A-100
B=B+ 100
@ Suppose power now fails before we save B to storage
B =200
Buffer pool Log buffer

<T1, start>
<T1, A, 100, 0>
<11, B, 100, 200>

<T1, commit>

Database

Undo logging: Transaction T1
A=A-100
B=B+ 100

(Suppose power now fails before we save B to storage
How to recover B?

Buffer pool Log buffer

<T1, start>
<T1, A, 100, 0>
<11, B, 100, 200>

<T1, commit>

Database

Undo logging: Transaction T1
A=A-100
B=B+ 100

(Suppose power now fails before we save B to storage
How to recover B?

Replay
Load Buffer pool \ Log buffer

<T1, start>
<T1, A, 100, 0>
<T1, B, 100, 200>

<T1, commit>

Database

Undo/Redo logging rules

(1) write before and after-image for any changed value to log buffer
(2) before modifying item on disk, must flush log record
(3) when transaction is finished, flush commit record

Undo Redo Redo/Redo

S C

random 1/Os holds memory Address both
problems!

Tutorial on Recovery
beings now :)

