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Filters

So far, we looked at approximate sets



Compact

Filters

False positive 
rate ε

Eliminate 
storage access



How about exact sets? 



N Items of Universe U

How about exact sets? 



N Items of Universe U

How about exact sets? 

No false positives or negatives



exact sets? 

Universe: 

Items:

Examples of 
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Deleted



UofT Students

in this course 

Docs

containing 
keyword

Table rows

Deleted

Represent using as little space as possible 

Universe

Items



Docs: …
dog dog

cat
bat
cat

1 2 3

keywords



Docs: 1 2 3

keywords

dog dog
cat

bat
cat



Docs: 1 2 3
dog dog

cat
bat
cat

Return all documents containing “cat”



Inverted Index

1 2 3
dog dog

cat
bat
cat

dog

cat

bat

1, 2

2, 3

3

Key Docs



dog

cat

bat

1, 2

2, 3

3

Search: cat

Key Docs



dog

cat

bat

1, 2

2, 3

3

Search: cat & dog

Key Docs



dog

cat

bat

1, 2

2, 3

3

Search: 

cat & dog

2

Intersection 
(merge-sort)

Key Docs



dog

cat

bat

1, 2

2, 3

3

Search: 

cat & dog

2

Intersection

(merge-sort)

Key Docs

Part of how search engines work :)



dog

cat

bat

1, 2, 4, 7, 10, 11 …

2, 3, 4, 6, 10, 12 …

3, 6, 9, 14, 16, 26 …

The lists can be long! 

Key Docs



dog

cat

bat

1, 2, 4, 7, 10, 11 …

2, 3, 4, 6, 10, 12 …

3, 6, 9, 14, 16, 26 …

The lists can be long! 

How to store doc lists as succinctly as possible?

Key Docs



Assumptions



Assumptions

Bounded 
Universe



Assumptions

unique integer ID 
per item

Bounded 
Universe



Assumptions

unique integer ID 
per item

Bounded 
Universe No duplicates



Set Implementations?



Set Implementations?

Query Insert



Unordered 
array

O(N)
O(1)

Query
Insert



Unordered 
array

Ordered 
array

O(N)
O(1)

O(log2N)
O(N)

Query
Insert



Unordered 
array

Ordered 
array

Binary 
Tree

O(N)
O(1)

O(log2N)
O(log2N)

O(log2N)
O(N)

Query
Insert



Unordered 
array

Ordered 
array

Binary 
Tree

Hash 
Table

O(N)
O(1)

O(log2N)
O(log2N)

O(1)
O(1)

O(log2N)
O(N)

Query
Insert



Unordered 
array

Ordered 
array

Binary 
Tree

Hash 
Table

O(N)
O(1)

O(log2N)
O(log2N)

O(1)
O(1)

Query
Insert

Bitmap

O(1)
O(1)

O(log2N)
O(N)



Unordered 
array

Ordered 
array

Binary 
Tree

Hash 
Table

O(N)
O(1)

O(log2N)
O(log2N)

O(1)
O(1)

Query
Insert

Bitmap

O(1)
O(1)

O(log2N)
O(N)

Space?



Unordered 
array

Ordered 
array

Binary 
Tree

Hash 
Table

O(N)
O(1)

O(log2N)
O(log2N)

O(1)
O(1)

Query
Insert

Bitmap

O(1)
O(1)

O(log2N)
O(N)

Space  > N · log2(U) bits



Unordered 
array

Ordered 
array

Binary 
Tree

Hash 
Table

O(N)
O(1)

O(log2N)
O(log2N)

O(1)
O(1)

Query
Insert

Bitmap

O(1)
O(1)

O(log2N)
O(N)

 > N · log2(U) bits U bitsSpace



O(N)
O(1)

O(log2N)
O(log2N)

O(1)
O(1)

Query
Insert

Bitmap

O(1)
O(1)

O(log2N)
O(N)

 > N · log2(U) bits U bits

Full Keys Structures

Space



Full Keys Bitmap

Space N · log2(U) U



Which to use if we only care about space?

Full Keys Bitmap

N · log2(U) USpace



N · log2(U) = U

Which to use if we only care about space?

Full Keys Bitmap



N  =     
log2(U) 

U

Full Keys Bitmap



N  <     
log2(U) 

U

Full Keys Bitmap



N  >     
log2(U) 

U

Full Keys Bitmap



We’re done. Home time

min(  N · log2(U),   U  )



Though not quite :)

min(  N · log2(U),   U  )



Revisit Space Lower Bound for Exact Set



Revisit Space Lower Bound for Exact Set

Out of Universe U, store N entries



(U choose N) combinations 



(U choose N)

to encode a unique combination

log2 bits



(                        )log2 bits
U!

N! · (U - N)!



(                        )log2 bits
U!

N! · (U - N)!

How to simplify?



(                        )log2 bits
U!

N! · (U - N)!

James Stirling
1692 - 1770



(                        )log2 bits
U!

N! · (U - N)!

Stirling’s

X! ≈ 2 ⋅ π ⋅ X ⋅ ( X
e )

X
approximation:



(                        )log2 bits
U!

N! · (U - N)!

Stirling’s

X! ≈ 2 ⋅ π ⋅ X ⋅ ( X
e )

X
approximation: Plug in & 

simplify 



N · log2(U / N) (                        ) ≈log2
U!

N! · (U - N)!
+ N · log2(e) 



N · log2(U / N) (                        ) ≈log2
U!

N! · (U - N)!
+ N · log2(e) 

Omitted last time



N · log2(U / N) (                        ) ≈log2
U!

N! · (U - N)!
+ N · log2(e) 

Important this time
Omitted last time



log2(U / N) +  log2(e)

Bits / Entry Lower Bound



Bits / Entry Lower Bound

log2(U / N) +  1.44



Lower BoundFull keys Bitmap

U/Nlog2(U) log2(U / N) +  1.44



Can we have a data structure that approaches the 
lower bound for any N and U? 

Lower BoundFull keys Bitmap

U/Nlog2(U) log2(U / N) +  1.44



Run-Length  
Golomb Codes

Agenda

Elias-Fano 
Encoding

200 × 200



Golomb Coding (1960s)

Solomon W. Golomb
1932 - 2016

USC



Was into game design 
Inspired Tetris

Solomon W. Golomb
1932 - 2016

USC

Golomb Coding (1960s)



Golomb Coding

Encodes var-
length integers

Fewer bits for entries 
closer to zero

Good when smaller 
values are more 

common



Golomb Coding

Encodes var-
length integers

Fewer bits for entries 
closer to zero

Good when smaller 
values are more 

common

Generalizes Unary Codes



Unary Coding Recap 



Unary

0
1
2
3
4
5
6

0
10
110
1110
11110
111110
1111110

Dec



Unary

0
10
110
1110
11110
111110
1111110

Dec Freq.

1/2
1/4
1/8
1/16

0
1
2
3
4
5
6

1/32
1/64
1/128



Unary

0
10
110
1110
11110
111110
1111110

Dec Freq.

1/2
1/4
1/8
1/16

0
1
2
3
4
5
6

1/32
1/64
1/128

Avg. code length?



Unary

|0|
|10|
|110|
|1110|
|11110|
|111110|
|1111110|

Dec Freq.

1/2
1/4
1/8
1/16

0
1
2
3
4
5
6

1/32
1/64
1/128

·
·
·
·
·
·
·

Avg. code length? 2 bits 



Unary

|0|
|10|
|110|
|1110|
|11110|
|111110|
|1111110|

Dec Freq.

1/2
1/4
1/8
1/16

0
1
2
3
4
5
6

1/32
1/64
1/128

·
·
·
·
·
·
·

Avg. code length? 2 bits Optimal



Unary

0
10
110
1110
11110
111110
1111110

Dec Freq.

0
1
2
3
4
5
6

What if the frequencies decrease stepwise? 



Unary

0
10
110
1110
11110
111110
1111110

Dec Freq.

1/4
1/4

0
1
2
3
4
5
6

What if the frequencies decrease stepwise? 



Unary

0
10
110
1110
11110
111110
1111110

Dec Freq.

1/4
1/4
1/8
1/8

0
1
2
3
4
5
6

What if the frequencies decrease stepwise? 



Unary

0
10
110
1110
11110
111110
1111110

Dec Freq.

1/4
1/4
1/8
1/8

0
1
2
3
4
5
6

1/16
1/16

What if the frequencies decrease stepwise? 



Unary

0
10
110
1110
11110
111110
1111110

Dec Freq.

1/4
1/4
1/8
1/8

0
1
2
3
4
5
6

1/16
1/16
1/32

What if the frequencies decrease stepwise? 



Unary
0
10
110
1110
11110
111110
1111110

Dec Freq.
1/4
1/4
1/8
1/8

0
1
2
3
4
5
6

1/16
1/16
1/32

What if the frequencies decrease stepwise? 

Avg. code length? 3.5 bits 



Unary
0
10
110
1110
11110
111110
1111110

Dec Freq.
1/4
1/4
1/8
1/8

0
1
2
3
4
5
6

1/16
1/16
1/32

Let step size be M (e.g., M = 2)



Unary
0
10
110
1110
11110
111110
1111110

Dec Freq.
0
1
2
3
4
5
6

Let step size be M (e.g., M = 4)

1/8
1/8
1/8
1/8
1/16
1/16
1/16



Unary
0
10
110
1110
11110
111110
1111110

Dec Freq.
0
1
2
3
4
5
6

Avg. code length? 6.5 bits 

Let step size be M (e.g., M = 4)

1/8
1/8
1/8
1/8
1/16
1/16
1/16



Unary
0
10
110
1110
11110
111110
1111110

Dec
0
1
2
3
4
5
6

Can you improve on unary for large steps? (M > 1)

Freq.
1/4
1/4
1/8
1/8
1/16
1/16
1/32



Unary
0
0
10
10
110
110
1110

Dec Freq.
0
1
2
3
4
5
6

(1) Adjust unary to match step size

1/4
1/4
1/8
1/8
1/16
1/16
1/32



UnaryDec Freq.
0
1
2
3
4
5
6

(2) Add binary code to identify items in same step

Binary
0
0
10
10
110
110
1110

1/4
1/4
1/8
1/8
1/16
1/16
1/32



UnaryDec Freq.
0
1
2
3
4
5
6

Binary
0
0
10
10
110
110
1110

1/4
1/4
1/8
1/8
1/16
1/16
1/32

0
1
0
1
0
1
0

(2) Add binary code to identify items in same step



UnaryDec Freq.
0
1
2
3
4
5
6

Binary
0
0
10
10
110
110
1110

1/4
1/4
1/8
1/8
1/16
1/16
1/32

0
1
0
1
0
1
0

log2(M) bits



UnaryDec Freq.
0
1
2
3
4
5
6

Binary
0
0
10
10
110
110
1110

1/4
1/4
1/8
1/8
1/16
1/16
1/32

0
1
0
1
0
1
0

Avg. code length?



UnaryDec Freq.
0
1
2
3
4
5
6

Binary
0
0
10
10
110
110
1110

1/4
1/4
1/8
1/8
1/16
1/16
1/32

0
1
0
1
0
1
0

Avg. code length? 3 bits 



UnaryDec Freq.
0
1
2
3
4
5
6

Binary
0
0
10
10
110
110
1110

1/4
1/4
1/8
1/8
1/16
1/16
1/32

0
1
0
1
0
1
0

Avg. code length? 3 bits <  3.5 bits with unary 



UnaryDec Freq.
0
1
2
3
4
5
6

Binary
0
0
10
10
110
110
1110

0
1
0
1
0
1
0

How about step size M = 4

1/8
1/8
1/8
1/8
1/16
1/16
1/16



UnaryDec Freq.
0
1
2
3
4
5
6

Binary
0
0
0
0
10
10
10

00
01
10
11
00
01
10

How about step size M = 4

1/8
1/8
1/8
1/8
1/16
1/16
1/16



UnaryDec Freq.
0
1
2
3
4
5
6

Binary
0
0

10
10
10

00
01
10
11
00
01
10

How about step size M = 4

1/8
1/8
1/8
1/8
1/16
1/16
1/16

Avg. code length? 4 bits <  6.5 with unary 

0
0



Unary part Binary part 

Golomb coding integer X given step size M



⌊X/M⌋ X mod M

Unary Binary 

Golomb coding integer X given step size M



e.g., X=100, M = 16 

⌊X/M⌋ X mod M

Unary Binary 

Golomb coding integer X given step size M



e.g., X=100, M = 16 

⌊100/16⌋ = 6
1111110

⌊X/M⌋ X mod M

Unary Binary 

Golomb coding integer X given step size M



e.g., X=100, M = 16 

100 mod 16 = 4
0100

⌊X/M⌋ X mod M

Unary Binary 

Golomb coding integer X given step size M

⌊100/16⌋ = 6
1111110



e.g., X=100, M = 16 

1111110 0100code:

⌊X/M⌋ X mod M

Unary Binary 

Golomb coding integer X given step size M



What if step is not a power of 2? e.g., M = 3



What if step is not a power of 2? e.g., M = 3

Unary Binary
0
0
0
10
10
10
110

00
01
10
00
01
10
00



What if step is not a power of 2? e.g., M = 3

Unary Binary
0
0
0
10
10
10
110

00
01
10
00
01
10
00

Avg. code length: 4 bits 

Freq.
1/6
1/6
1/6
1/12
1/12
1/12
1/24



What if step is not a power of 2? e.g., M = 3

Unary Binary
0
0
0
10
10
10
110

00
01
10
00
01
10
00

Are we being wasteful?



Binary
00
01
10

2 bits to represent 3 
symbols per step

Unary
0
0
0
10
10
10
110

00
01
10
00



Binary
00
01
10

2 bits to represent 3 
symbols per step

⌈log2(M)⌉



Binary
00
01
10

2 bits to represent 3 
symbols per step

Can we optimize 
ceiling away?

⌈log2(M)⌉



Binary
0
10
11

⌈log2(M)⌉



Binary
0
10
11

5/3 = 1.66 bits / code

⌈log2(M)⌉



Binary
0
10
11

5/3 = 1.66 bits / code

log2(M) ≈
(log2(3) = 1.58)



Truncated Binary 
Encoding (e.g., M = 3)Dec

0
10
11

0
1
2



Truncated Binary 
Encoding (e.g., M = 3)Dec

0
10
11

0
1
2

Crucial that no code is prefix of 
another code. Why?



Truncated Binary 
Encoding (e.g., M = 3)Dec

0
10
11

0
1
2

Crucial that no code is prefix of 
another code. Why?

To decode unambiguously



Truncated Binary 
Encoding (e.g., M = 3)Dec

0
01
11

0
1
2

This would make things harder :)



Truncated Binary 
Encoding (e.g., M = 3)Dec

0
10
11

0
1
2

Lets see examples for different step sizes 



Truncated Binary 
Encoding (e.g., M = 4)Dec

00
01
10

0
1
2

113



Truncated Binary 
Encoding (e.g., M = 5)Dec

00
01
10
110
111

0
1
2
3
4



Truncated Binary 
Encoding (e.g., M = 6)

100
101
110
111

00
01

Dec

0
1
2

5

3
4



Truncated Binary 
Encoding (e.g., M = 7)Dec

0
1
2

5
6

00
010

100
101
110
111

011
3
4



Truncated Binary 
Encoding (e.g., M = 8)Dec

0
1
2

5
6

000

010

100
101
110
111

011

8

001

3
4



Unary
0
0
0
10
10
10
110

Freq.
1/6
1/6
1/6
1/12
1/12
1/12
1/24

Binary
0
10
11
0
10
11
0

Back to example with M = 3



Avg. code length? 3.66 bits <  4 bit

Freq.
1/6
1/6
1/6
1/12
1/12
1/12
1/24

Back to example with M = 3

Unary
0
0
0
10
10
10
110

Binary
0
10
11
0
10
11
0



How to use Golomb Coding for Exact Set Compression?



How to use Golomb Coding for Exact Set Compression?

View set as bitmap

0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0



Encode distances between 1s

1
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0



Encode distances between 1s

1 2
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0



Encode distances between 1s

1 52
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0



Encode distances between 1s

21 52
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0



Encode distances between 1s

21 52
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

Run-Length Encoding



Use Golomb encoding with M = U/N

21 52
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0



Use Golomb encoding with M = U/N

21 52
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

Avg. distance between 1s



21 52
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

Use Golomb encoding with M = U/N = 16 / 4 = 4



21 52
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

Use Golomb encoding with M = U/N = 4



21 52
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

Use Golomb encoding with M = U/N = 4

Dec Golomb
0
1
2
3
4
5

000
001
010
011
1000
1001



21 52
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

Use Golomb encoding with M = U/N = 4

001 010 1001 010
Dec Golomb

0
1
2
3
4
5

000
001
010
011
1000
1001



21 52
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

Use Golomb encoding with M = U/N = 4

0010101001010



0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

Use Golomb encoding with M = U/N = 4

0010101001010
13 bits

16 bits



Avg. code length with respect to N and U?

Unary? Binary?



Avg. code length with respect to N and U?

Unary? Binary?
≈ log2(U/N)

By definition of how we set M



Avg. code length with respect to N and U?

Unary? Binary?
≈ log2(U/N)≈ 1.5

Assuming set bits are evenly spaced



Avg. code length with respect to N and U?

Unary? Binary?
≈ log2(U/N)

Assuming set bits are evenly spaced
Most common unary codes are 0 and 10

≈ 1.5



Avg. code length with respect to N and U?

Unary? Binary?
≈ log2(U/N)

Assuming set bits are evenly spaced
Most common unary codes are 0 and 10

Avg. of 1 and 2 bits is 1.5

≈ 1.5



Avg. code length with respect to N and U?

Unary? Binary?
log2(U/N)

Skew may bring this up to 2

≈ ≈ 1.5



≈ 1.5 + log2(U/N)

Lower Bound

1.44 + log2(U/N) Bits /entry

Golomb



≈ 1.5 + log2(U/N)

Lower Bound

1.44 + log2(U/N) Bits /entry

Almost hitting lower bound for any N and U :)

Golomb



≈ 1.5 + log2(U/N)log2(U)

Golomb

Approaches this 
for small N

Full keys



≈ 1.5 + log2(U/N)log2(U)

GolombFull keys

Approaches this 
for large N

U/N

Bitmap



≈ 1.5 + log2(U/N)log2(U)

GolombFull keys

U/N

Bitmap

Enables trade-offs in-between :)



≈ 1.5 + log2(U/N)

Golomb

Problem?



≈ 1.5 + log2(U/N)

Golomb

Problem? Checking if element at given offset takes O(N) time



Golomb 
Coding

Agenda

Elias - Fano 
Encoding

Roaring 
Bitmaps

200 × 200



Efficient Storage and Retrieval by 
Content and Address of Static Files

On the Number of Bits Required to 
Implement an Associative Memory.

Robert Mario Fano

1974 1971

Peter Elias



Robert Mario FanoPeter Elias

1923 - 2001 1917 - 2016
MIT MIT

Pioneers of information theory 



Encoding Intuition



Encoding Intuition

Decimal


1

2

12

15

Binary


0001

0010

1100

1111



Binary


00 01

00 10

11 00

11 11

Decimal


1

2

12

15

High-order bits repeat



Decimal

0

1

2

3

12

13

14

15

Binary

000  0

000  1

001  0

001  1

110  0

110  1

111  0

111  1

With denser keys, more repetition



000   0

000   1

001   0

001   1

110   0

110   1

111   0

111   1

Encode prefix 
implicitly 

(Compress)



000   0

000   1

001   0

001   1

110   0

110   1

111   0

111   1

Encode suffix 
Explicitly

Encode prefix 
implicitly 

(Compress)



Encoding

Partition universe based on first ⌈log2(N)⌉ bits of keys



Encoding

creates P partitions, where 2N >P≥N and P is power of 2
Partition universe based on first ⌈log2(N)⌉ bits of keys



Encoding

Partition universe based on first ⌈log2(N)⌉ bits of keys

N=4

Universe:

creates P partitions, where 2N >P≥N and P is power of 2



Encoding

Partition universe based on first ⌈log2(N)⌉ bits of keys

N=4

Universe:

creates P partitions, where 2N >P≥N and P is power of 2



Encoding

Universe:

Partition universe based on first ⌈log2(N)⌉ bits of keys

N=8

creates P partitions, where 2N >P≥N and P is power of 2



Universe:

log2(P) bits partition ID corresponds to prefix of entries in the partition

000 001 010 011 100 101 110 111Prefixes:



Consider # entries in each partition

1 1 3 0 2 0 1 0



Encode in Unary

10 10 1110 0 110 0 10 0

Consider # entries in each partition

1 1 3 0 2 0 1 0



Store contiguously: 10 10 1110 0 110 0 10 0



Store contiguously: 10 10 1110 0 110 0 10 0
P + N bits



Store contiguously: 10 10 1110 0 110 0 10 0

# 0s = # partition

P + N bits



Store contiguously: 10 10 1110 0 110 0 10 0

# 1s = # entries
# 0s = # partitions

P + N bits



10 10 1110 0 110 0 10 0
unary prefix counts



10 10 1110 0 110 0 10 0
unary prefix counts

suffixes: 01 11 00 01 11 00 01 10



10 10 1110 0 110 0 10 0

Store contiguously: 01 11 00 01 11 00 01 10

unary prefix counts



10 10 1110 0 110 0 10 0

01 11 00 01 11 00 01 10

unary prefix counts

binary suffixes



10 10 1110 0 110 0 10 0

01 11 00 01 11 00 01 10

unary prefix counts

binary suffixes: log2(U) - log2(P)



10 10 1110 0 110 0 10 0

01 11 00 01 11 00 01 10

unary prefix counts

binary suffixes: log2(U/P)



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

unary prefix counts binary suffixes

Concatenate:



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

unary prefix counts binary suffixes

Size (bits): P + N N · log2(U/P)



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

unary prefix counts binary suffixes

Size (bits): P + N N · log2(U/P)

This is precise! Not an average :)



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Size (bits): P + N N · log2(U/P)

Can fit in a fixed amount of space allocated in advance



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Size (bits): P + N N · log2(U/P)

Since 2N >P≥N, plug N for P 



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Size (bits): 2 N N · log2(U/N)



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Size (bits / entry): 2 log2(U/N)



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Size (bits / entry): 2 + log2(U/N)



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Size (bits / entry): 2 + log2(U/N)

Tight upper bound



2 + log2(U/N)

Elias-Fano

Size (bits / entry):



Golomb

1.5 + log2(U/N)2 + log2(U/N)

Elias-Fano

Size (bits / entry): >



Golomb

1.5 + log2(U/N)2 + log2(U/N)

Elias-Fano

Size (bits / entry): >

faster to access 



Golomb

1.5 + log2(U/N)2 + log2(U/N)

Elias-Fano

Size (bits / entry): >

faster to access. Why? 



What element is at offset i of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

0
-11 Counter:

0 Counter:

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

0
01 Counter:

0 Counter:

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

1
01 Counter:

0 Counter:

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

1
11 Counter:

0 Counter:

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

2
11 Counter:

0 Counter:

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

2
21 Counter:

0 Counter:

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

2
31 Counter:

0 Counter:

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

2
3

000 001 010 011 100 101 110 111Prefixes:

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

010

Fetch 3rd suffix

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00      11 00 01 10

010Concatenate: 01

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0

01001We’re done :)

01 11 00      11 00 01 10

What element is at offset 3 of the sorted order?



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Rank & Select

Worst case 
lookup

Traverse 2 · N bits One random access



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Rank & Select

Worst case 
lookup

Traverse 2 · N bits <  N 1.5 + N log2(U/N)
w. run-length Golomb



Traverse 2 · N bits

10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Can we make this faster?



Rank & Select

Common primitive commands 
that can be sped up

Frame a lookup in 
terms of these



Selectx(i): return position of ith bit set to x in bitmap 



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Position 5

Select1(3): return position of 3rd bit set to 1 in bitmap 



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

rankx(i): return # bits set to x up to position i

Selectx(i): return position of ith bit set to x in bitmap 



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

rank0(5): return # bits set to 0 up to position 5

Return 2

Selectx(i): return position of ith bit set to x in bitmap 



prefix of ith element in Elias Fano  =

10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

# zeros before ith 1



Select1(i) - i 

prefix of ith element in Elias Fano  =

10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

# zeros before ith 1

=



Select1(i) - i 

prefix of ith element in Elias Fano  =

10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

# zeros before ith 1

=

# bits before # 1 before



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

Select1(3) - 3 

prefix of 3rd element in Elias Fano  = # zeros before 3rd 1

=



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

5 - 3 

prefix of 3rd element in Elias Fano  = # zeros before 3rd 1

=



10 10 1110 0 110 0 10 0 01 11 00 01 11 00 01 10

2

prefix of 3rd element in Elias Fano  = # zeros before 3rd 1

=



2prefix of ith element  =

000 001 010 011 100 101 110 111Prefixes:



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0

Making Rank Fast



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0

Partition (e.g., into cache lines, 512 bits)



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0

Count # 1s to left of each partition

2



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0
2 5

Count # 1s to left of each partition



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0
2 5 7

Count # 1s to left of each partition



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0
2 5 7

Rank1(10)?

0



1  0  1  0  1  1  1  0          1  0  1  1  0  0
2 7

Rank1(10) = 5 + 0 + 1 = 6

0



1  0  1  0  1  1  1  0          1  0  1  1  0  0
2 7

Counters take space 
(e.g., 2 B per cache line)

rank in O(1)

0



How about select? e.g. select1(1)

1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0
2 5 70



How about select? e.g. select1(1)

1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0
2 5 70

Binary search 
counters

Scan 



2 5 70

Select in O(log2(N)) Can we do better?

1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0

Store samples of select results

select1(4) select1(8) select1(12)select1(0)



Store samples of select results

0
select1(4) select1(8) select1(12)select1(0)

1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0



Store samples of select results

6
select1(4) select1(8) select1(12)select1(0)

0

1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0

6
select1(4) select1(8) select1(12)select1(0)

0 13



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0

…
…

…

How to handle select(6)?

6
select1(4) select1(8) select1(12)select1(0)

0 13



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0

How to handle select(5)?

…6
select1(4) select1(8) select1(12)select1(0)

0 13



1  0  1  0  1  1  1  0  0  1  1  0  1  1  0  0 …

Select in O(1) time assuming next bit is close 

How to handle select(5)?

…6
select1(4) select1(8) select1(12)select1(0)

0 13



1  0  1  0  1  1  1  0  0  0  0  0  0  0  0  0 …

How to handle select(5)?

…6
select1(4) select1(8) select1(12)select1(0)

0 13

However, next 1 can be far



There are ways of fixing this, but we can also resort to binary 
search as before if so

1  0  1  0  1  1  1  0  0  0  0  0  0  0  0  0 …

How to handle select(5)?

…6
select1(4) select1(8) select1(12)select1(0)

0 13

However, next 1 can be far



1.5+log2(U/N)log2(U)

Sorted Array Golomb

U/N

Bitmap

Enables trade-offs in-between :)

Bits

Elias Fano

2+log2(U/N)



1.5+log2(U/N)log2(U)

Sorted Array Golomb

U/N

Bitmap

Enables trade-offs in-between :)

Bits

Elias Fano

2+log2(U/N)

Access O(1) O(1) O(1)O(N)



1.5+log2(U/N)log2(U)

Sorted Array Golomb

U/N

Bitmap

Enables trade-offs in-between :)

Bits

Elias Fano

2+log2(U/N)

Access

Insert

O(1) O(1) O(1)

O(N) O(N)

O(N)

O(1)O(N)



Thanks! 


