Y/

Succinct Sets

(Golomb, Elias-Fano)

Niv Dayan - CS 25, Research Topics in Da
\ “
\ \ —

'
\ \ —_

So far, we looked at approximate sets

Filters

Filters

@

False positive Eliminate
Compact
rate € storage access

How about exact sets?

How about exact sets?

N ltems of Universe U

How about exact sets?

N [tems of Universe U
No false positives or negatives

Examples of exact sets?

Universe:

ltems:

T
\
5

Universe: UofT Students

ltems: In this course

T
\
5

Universe: UofT Students Table rows

ltems: IN this course Deleted

.'I"
-

Universe UofT Students Table rows Docs

containing

ltems IN this course Deleted
keyword

Represent using as little space as possible

T
\
5

Universe UofT Students Table rows Docs

containing

ltems IN this course Deleted
keyword

keywords

DocCs: 1 2 3

dog
cat

keywords

Return all documents containing “cat”

DocCs: 1 2 3

dog bat
cat cat

Inverted Index

Key Docs

dog pat
cat cat

Key Docs

Search.cat —mMmmm

Key Docs

Search: cat & dog 4

Intersection
(merge-sort)

Search:
cat & dog

Part of how search engines work :)

Key Docs

Intersection
(merge-sort)

Search:
cat & dog

The lists can be long!

Key Docs

dog 1,2,4,7,10,11 ...

cat 2,3,4,6,10,12 ...
pbat 3,6,9, 14, 16, 26 ...

The lists can be long!

Key Docs

dog 1,2,4,7,10,11 ...

cat 2,3,4,6,10,12 ...
pbat 3,6,9, 14, 16, 26 ...

How to store doc lists as succinctly as possible?

Assumptions

Assumptions

Bounded

Universe

Assumptions

Bounded unique integer ID
Universe per item

Assumptions

Bounded uniqgue integer ID

Universe ber item No duplicates

Set Implementations?

Set Implementations?

Query Insert

Unordered

array
Query O(N)
Insert O(1)

Query
Insert

Unordered
array

O(N)
O(1)

Ordered
array

O(log2N)
O(N)

l

Query
Insert

Unordered
array

O(N)
O(1)

Ordered Binary
array Tree
O(logz2N) O(logzN)

O(N) O(logz=N)

l &

Query
Insert

Unordered
array

O(N)
O(1)

Ordered
array

O(logz2N)
O(N)

l

Binary Hash
Tree Table
O(logz2N) O(1)
O(logz2N) O(1)

A

Query
Insert

Unordered
array

O(N)
O(1)

Ordered Binary

array Tree
O(logz2N) O(logz2N)
O(N) O(log2N)

=l A

Query
Insert

Space?

Unordered
array

O(N)
O(1)

Ordered
array

O(logz2N)
ONN)

Binary
Tree

O(logz2N)
O(logz2N)

Query
Insert

Space

Unordered Ordered Binary Hash

array array Tree Table
O(N) O(logzN) O(logzN) O(1)
O(1) O(N) O(logzN) O(1)

r . »

> N - log2(U) bits

Unordered Ordered Binary Hash

array array Tree Table Bitmap
Query O(N) O(logz2N) O(logz2N) O(1) O(1)
Insert O(1) O(N) O(logzN) O(1) O(1)

r e ————

Space > N - logz(U) bits U bits

Full Keys Structures Bitmap

Query O(N) O(logz2N) O(logz2N) O(1) O(1)
Insert 0(1) O(N) O(logzN) O(1) O(1)

+

Space > N - logz(U) bits U bits

Space

1

Full Keys

N - logz(U)

Bitmap

Space

Which to use if we only care about space?

1

Full Keys

N - logz(U)

Bitmap

Which to use if we only care about space?

> S

Full Keys Bitmap

N -log2(U)=U

R T

Full Keys Bitmap

1

Full Keys
U

log2(U)

N <

Bitmap

1

Full Keys

Bitmap
U

log2(U)

N >

We’re done. Home time

’/gs\\

min(N - logz(U), U)

Though not quite :)

’/gs\\

min(N - logz(U), U)

Revisit Space Lower Bound for Exact Set

Revisit Space Lower Bound for Exact Set

Out of Universe U, store N entries

(U choose N) combinations

log2(U choose N) Dbits

to encode a unique combination

|
0 H—_‘
|
- (U
N)!) bits

How to simplify?

James Stirling
1692 - 1770

U! |
l0g2 (m) bits

Stirling’s
approximation:

X!z\/z-n-x-(—)x

€

U!

le —_—
Stirli W i
Spproximat Nl
Ximation o A
: . |

»

slil:r?pin "
lify

X!%\/2~ﬂ~X~()X

€

[e EEE—

9

. U!

) =
N
- log
2
(U/N) +N
- log
2(e)

\
- (U-N)

Omitted last time

U! l

ogo (——)= N-log2(U/N) + N - logz(e)

NI - (U - N

Omitted last time
Important this time

l

N - log2(U/N) + N - logz(e)

:

Bits / Entry Lower Bound
log2(U/ N) + logz(e)

Bits / Entry Lower Bound
log2(U/N) + 1.44

1

Full keys

log2(U)

Bitmap

U/N

N

| ower Bound

log2(U/N) + 1.44

B 2

Full keys Bitmapp . ower Bound

l0go(U) U/N log2(U /N) + 1.44

Can we have a data structure that approaches the
lower bound for any N and U?

Run-Length
Golomb Codes

N

Elias-Fano
Encoding

200 x 200

Golomb Coding (1960s)

Solomon W. Golomb

1932 - 2016
USC

Golomb Coding (1960s

Solomon W. Golom Was into game design
1932 - 2016 Inspired Tetris

USC

Golomb Coding

Good when smaller

Encodes var- Fewer bits for entries
. values are more
length integers closer to zero
common
|_<—>J / o%@ -
OERE
RAAAMALE ke

Golomb Coding

Good when smaller

Encodes var- Fewer bits for entries
. values are more
length integers closer to zero
common
l_(_> J / O%@ o
OERE
RAAAAMLE ke

Generalizes Unary Codes

Unary Coding Recap

Dec Unary

0

10

110
1110
11110
111110
1111110

GO O =~ WO N = O

Dec Unary Freaq.

0 0 1/2
1 10 1/4
2 110 1/8
3 1110 1/16
4 11110 1/32
5 111110 1/64
6 1111110 1/128

Dec

o O~ W N =+ O

Unary

0

10

110
1110
11110
111110
1111110

Avg. code length?

Freaq.

1/2
1/4
1/8
1/16
1/32
1/64
1/128

Dec

o O~ W N =+ O

Unary

0]

[10]

1110
1110]
11110
111110]
1111110

Avg. code length?

Freaq.

1/2
1/4
1/8
1/16
1/32
1/64
1/128

2 bits

Dec Unary Freq.

0 0] V.
1 10| - 1/4

% 110 - 1/8

3 1110 . 1/16
4 11110 - 1/32
5 111110 - 1/64
6 1111110 - 1/128

Avg. code length? 2 bits Optimal

What if the frequencies decrease stepwise?

N

Dec Unary Freq.

0

10

110
1110
11110
111110
1111110

o Orw. b WO DN =+ O

What if the frequencies decrease stepwise?

Dec Unary Freq.
0 1/4
10 1/4

110
1110
11110
111110
1111110

o Orw. b WO DN =+ O

What if the frequencies decrease stepwise?

Dec Unary Freq.
0 1/4
10 1/4
110 1/8
1110 1/8

11110
111110
1111110

o Orw. b WO DN =+ O

What if the frequencies decrease stepwise?

Dec Unary Freq.
0 0 1/4
1 10 1/4
2 110 1/8
3 1110 1/8
4 11110 1/16
5 111110 1/16
0 1111110

What if the frequencies decrease stepwise?

Dec Unary Freq.
0 0 1/4
1 10 1/4
2 110 1/8
3 1110 1/8
4 11110 1/16
5 111110 1/16
0 1111110 1/32

What if the frequencies decrease stepwise?

Dec Unary Freq.
0 0 1/4
1 10 1/4
2 110 1/8
3 1110 1/8
4 11110 1/16
5 111110 1/16
0 1111110 1/32

Avg. code length? 3.5 bits

Let step size be M (e.g., M = 2)

Dec Unary Freq.
0 0 1/4
1 10 1/4
2 110 1/8
3 1110 1/8
4 11110 1/16
5 111110 1/16
0 1111110 1/32

Let step size be M (e.g., M = 4)

Dec Unary Freq.
0 0 1/8
1 10 1/8
2 110 1/8
3 1110 1/8
4 11110 1/16
5 111110 1/16
0 1111110 1/16

Let step size be M (e.g., M = 4)

Dec Unary Freq.
0 0 1/8
1 10 1/8
2 110 1/8
3 1110 1/8
4 11110 1/16
5 111110 1/16
0 1111110 1/16

Avg. code length? 6.5 bits

Can you improve on unary for large steps? (M > 1)

Dec Unary Freq.
0 1/4
10 1/4
110 1/8
1110 1/8

11110 1/16
111110 1/16
1111110 1/32

O Ornw. b WO DN =+ O

(1) Adjust unary to match step size

Dec Unary Freq.
0 0 1/4
1 0 1/4
2 10 1/8
3 10 1/8
4 110 1/16
5 110 1/16
0 1110 1/32

(2) Add binary code to identify items in same step

Dec Unary Binary Freq.
0 0 1/4
1 0 1/4
2 10 1/8
3 10 1/8
4 110 1/16
5 110 1/16
0 1110 1/32

(2) Add binary code to identify items in same step

Dec Unary Binary Freq.
0 0 0 1/4
1 0 1 1/4
2 10 0 1/8
3 10 1 1/8
4 110 0 1/16
5 110 1 1/16
0 1110 0 1/32

Dec

GO O =~ WO N = O

Unary

10
10
110
110
1110

Binary

o -4+ O =42 O = 0

log2(M) bits

Freq.
1/4
1/4
1/8
1/8
1/16
1/16
1/32

Dec Unary Binary Freq.

0 0 0 1/4
1 0 1 1/4
2 10 0 1/8
3 10] 1/8
4 110 0 1/16
5 110] 1/16
6 1110 0 1/32

Avg. code length?

Dec Unary Binary Freq.

0 0 0 1/4
1 0] 1/4
2 10 0 1/8
3 10 1 1/8
4 110 0 1/16
5 110 1 1/16
6 1110 0 1/32

Avg. code length? 3 bits

Dec Unary Binary Freq.

0 0 0 1/4
1 0] 1/4
2 10 0 1/8
3 10 1 1/8
4 110 0 1/16
5 110 1 1/16
6 1110 0 1/32

o

Avg. code length? 3 bits < 3.5 bits with unary

How about step size M =4

Dec Unary Binary Freq.
0 0 0 1/8
1 0 1 1/8
2 10 0 1/8
3 10 1 1/8
4 110 0 1/16
5 110 1 1/16
6 1110 0 1/16

How about step size M =4

Dec Unary Binary Freq.
0 0 00 1/8
1 0 01 1/8
2 0 10 1/8
3 0 11 1/8
4 10 00 1/16
5 10 01 1/16
6 10 10 1/16

How about step size M =4

Dec Unary
0 0
1 0
2 0
3 0
4 10
5 10
0 10

Avg. code length?

Binary
00
01
10
11
00
01
10

4 bits

Freq.
1/8
1/8
1/8
1/8

1/16

1/16

1/16

< 6.5 with unary

Golomb coding integer X given step size M

Unary part Binary part

Golomb coding integer X given step size M

Unary Binary
| X/M | X mod M

Golomb coding integer X given step size M
e.g., X=100, M = 16

Unary Binary
| X/M | X mod M

Golomb coding integer X given step size M
e.g., X=100, M = 16

Unary Binary
| X/M | X mod M
1100/16] =6

1111110

Golomb coding integer X given step size M
e.g., X=100, M = 16

Unary Binary
| X/M | X mod M
[100/16] =6 100 mod 16 = 4

1111110 0100

Golomb coding integer X given step size M
e.g., X=100, M = 16

Unary Binary
| X/M | X mod M

code: 11111100100

What if step is not a power of 2? e.g.,M =3

What if step is not a power of 2?

Unary Binary
0 00
0 01
0 10
10 00
10 01
10 10

110 00

e.g., M =3

What if step is not a power of 2?

Unary Binary
0 00
0 01
0 10
10 00
10 01
10 10
110 00

Avg. code length:

e.g., M =3

Freaq.

1/6
1/6
1/6
1/12
1/12
1/12
1/24

4 bits

What if step is not a power of 27? e.g., M =3

Unary Binary
0 00
0 O
0 10
10 00
10 O
10 10
110 00

Are we being wasteful?

Unary Binary
0 00

2 bits to represent 3

0 01 symbols per step
0 10
10 00
10 01
10 10

110 00

Binary

00

2 bits to represent 3
01
0 sSymbols per step

[log2(M) |

Binary

00

2 bits to represent 3
01
0 sSymbols per step

[log2(M)] Can we optimize
ceiling away?

Binary

10
11

[log2(M) |

Binary
0

10 5/3 = 1.66 bits / code
11

[log2(M) |

Binary
0
10 5/3 = 1.66 bits / code

11 J
log2(M) =

(log2(3) = 1.58)

Truncated Binary

Dec Encoding (e.g., M = 3)
0 0
1 10

2 11

Truncated Binary

Dec Encoding (e.g., M = 3)
0 0
1 10
2 11

Crucial that no code is prefix of
another code. Why?

Truncated Binary

Dec Encoding (e.g., M = 3)
0 0
1 10
2 11

Crucial that no code is prefix of
another code. Why?

To decode unambiguously

Truncated Binary

Dec Encoding (e.g., M = 3)
0 0
1 01

2 11

This would make things harder :)

Truncated Binary
Dec Encoding (e.g., M = 3)

0 0
1 10
2 11

Lets see examples for different step sizes

Dec

W N = O

Truncated Binary
Encoding (e.g., M = 4)
00
01

10
11

Truncated Binary

Dec Encoding (e.g., M = 5)
0 00
1 01
2 10
3 110
4 111

Truncated Binary
Dec Encoding (e.g., M = 6)

00
01
100
101

110
111

orh o WO NN = O

Truncated Binary
Dec Encoding (e.g., M = 7)
00

010
011

100
101
110
111

O 01 ~h WO DN = O

Truncated Binary
Dec Encoding (e.g., M = 8)

000
001

010
011

100
101
110
111

o O O A WO NN = O

Back to example with M =3

Unary Binary Freq.
0 0 1/6
0 10 1/6
0 1 1/6
10 0 1/12
10 10 1/12

10 11 1/12
110 0 1/24

Back to example with M =3

Unary Binary Freq.
0 0 1/6
O 10 1/6
0 11 1/6
10 O 1/12
10 10 1/12
10 1 112
110 0 1/24

Avg. code length? 3.66 bits < 4 bit

How to use Golomb Coding for Exact Set Compression?

MU

How to use Golomb Coding for Exact Set Compression?

0100100000100100

View set as bitmap

Encode distances between 1s

1

*—o

0100100000100100

Encode distances between 1s

1 2

e

0100100000100100

Encode distances between 1s

1 2 o

*—eo—o ——o

0100100000100100

Encode distances between 1s

1 2 5 2

o o o o

0100100000100100

Encode distances between 1s

1 2 5 2

o o o o

0100100000100100

Run-Length Encoding

Use Golomb encoding with M = U/N

1 2 5 2

*—eo—o ——=»

0100100000100100

Avg. distance between 1s

‘
Use Golomb encoding with M = U/N

1 2 5 2

o o o

0100100000100100

Use Golomb encoding withM=U/N=16/4=4

1 2 5 2

>~ —o ——¢ ——— @ —

0100100000100100

Use Golomb encoding with M =U/N =4

1 2 5 2

—eo —9o ——— o —9

0100100000100100

Use Golomb encoding with M =U/N =4

1 2 5 2

—eo —9o ——— o —9

0100100000100100

Use Golomb encoding with M =U/N =4

001 010 1001 010

N | /
1 2 5 2

—eo —9o ——— o —9

0100100000100100

Use Golomb encoding with M =U/N =4

0010101001010

1 2 5 2

—eo —9o ——— o —9

0100100000100100

Use Golomb encoding with M =U/N =4

13 bits

*~——————— o

0010101001010

16 bits

r -——

0100100000100100

Avg. code length with respect to N and U?

Unary? Binary?

Avg. code length with respect to N and U?

Unary? Binary?
~ |092(U/N)

By definition of how we set M

Avg. code length with respect to N and U?

Unary? Binary?
~ 1.5 ~ logz(U/N)

Assuming set bits are evenly spaced

Avg. code length with respect to N and U?

Unary? Binary?
~ 1.5 ~ logz(U/N)

Assuming set bits are evenly spaced
Most common unary codes are 0 and 10

Avg. code length with respect to N and U?

Unary? Binary?
~ 1.5 ~ logz(U/N)

Assuming set bits are evenly spaced
Most common unary codes are 0 and 10
Avg. of 1and 2 bitsis 1.5

Avg. code length with respect to N and U?

Unary? Binary?
~ 1.5 ~ logz(U/N)

I

Skew may bring this up to 2

Golomb Lower Bound

Bits /entry ~ 1.5 + logz(U/N) 1.44 + log2(U/N)

Golomb L ower Bound

Bits /entry ~ 1.5 + log2(U/N) 1.44 + log2(U/N)

Almost hitting lower bound for any N and U :)

Full keys Golomb

log2(U) ~ 1.5 + log2(U/N)

_/

Approaches this
for small N

Full keys Golomb Bitmap

0g2(U) ~ 1.5 + logz2(U/N) U/N

\/’

Approaches this
for large N

Enables trade-offs in-between :)

Full keys Golomb Bitmap

0g2(U) ~ 1.5 + loga(U/N) U/N

Problem?

|

Golomb

~ 1.5 + log2(U/N)

Problem? Checking if element at given offset takes O(N) time

|

Golomb

~ 1.5 + log2(U/N)

Golomb Elias - Fano Roaring
Coding Encoding Bitmaps

NS &

Peter Elias Robert Mario Fano

Efficient Storage and Retrieval by On the Number of Bits Required to
Content and Address of Static Files Implement an Associative Memory.

1974 1971

Peter Elias Robert Mario Fano

1923 - 2001 1917 - 2016
MIT MIT

Pioneers of information theory

Encoding Intuition

Encoding Intuition

Decimal Binary
1 0001
2 0010

12 1100
15 1111

Decimal Binary

] 00 O1

2 00 10

12 11 00

15 11 11
T

High-order bits repeat

Decimal Binary

0 000 O
1 000 1
2 001 0
3 001 1
12 110 O
13 110
14 111 0
15 111
1

With denser keys, more repetition

Encode prefix

Implicitly \
(Compress)

000 O
000 1
001 O
001 1
110 O
110 1
111 O
111 1

Encode prefix Encode suffix

implicitly \ f Explicitly
(Compress)

000 O
000 1
001 O
001 1
110 O
110 1
111 O
111 1

Encoding

Partition universe based on first [logo(N)] bits of keys

Encoding

Partition universe based on first [logo(N)] bits of keys

creates P partitions, where 2N >P=>=N and P is power of 2

Encoding

Partition universe based on first [logo(N)] bits of keys

creates P partitions, where 2N >P>=N and P is power of 2

- @ o0 @
niverse: b}>———— — 00001

N=

Encoding

Partition universe based on first [logo(N)] bits of keys

creates P partitions, where 2N >P>=N and P is power of 2

. o0 [
Universe:

N=

Encoding

Partition universe based on first [logo(N)] bits of keys

creates P partitions, where 2N >P>=N and P is power of 2

. @ 00 ® O @
Universe:

N=

log2(P) bits partition ID corresponds to prefix of entries in the partition

- ® oo0 o o °
Universe:

Prefixes: 000 001 010 011 100 101 110 111

Consider # entries in each partition

1
10

Consider # entries in each partition
Encode in Unary

1 3 0 2 0
10 1110 0 110 0

Store contiguously: 1010111001100100

P + N bits
—————

Store contiguously: 1010111001100 100

P + N bits
———

Store contiguously: 1010111001100100

0s = # partition

Store contiguously:

P + N bits
—

1010111001100100

Os = # partitions
1s = # entries

unary prefix counts
1010111001100 100

unary prefix counts
1010111001100100

suffixes: 0_1 1_1 OO 01 .11 0(_) Q1 10

= = . = g . " =
- - “ - .. - L] -
. . . . " .
= = * = o [} u =
u u . u A . " u
. . . . N . » .
= = . = . . n =
u u . u g . » u
. n .

unary prefix counts
1010111001100100

Store contiguously: 01110001 110001 10

unary prefix counts
1010111001100100

binary suffixes
01110001 11000110

unary prefix counts
1010111001100100

binary suffixes: logz(U) - logz(P)
0111 000111000110

unary prefix counts
1010111001100100

binary suffixes: logz2(U/P)
0111000111 0001 10

unary prefix counts binary suffixes

Concatenate: 1010111001100100201 110001110001 10

unary prefix counts binary suffixes

1010111001100100201 110001110001 10

Size (bits): P+N N - log2(U/P)

unary prefix counts binary suffixes

1010111001100100201 110001110001 10

Size (bits): P+N N - logz(U/P)

This is precise! Not an average 3)

Can fit in a fixed amount of space allocated in advance

1010111001100100201 110001110001 10

Size (bits): P+N N - logo(U/P)

1010111001100100201 110001110001 10

Size (bits): P+N N - logo(U/P)

N\ /

Since 2N >P>N, plug N for P

1010111001100100201 110001110001 10

Size (bits): 2N N - log2(U/N)

1010111001100100201 110001110001 10

Size (bits / entry): 2 log2(U/N)

1010111001100100201 110001110001 10

Size (bits / entry): 2 + log2(U/N)

1010111001100100201 110001110001 10

Size (bits / entry): 2 + log2(U/N)
Tight upper bound

Elas-Fano

Size (bits / entry): 2 + log2(U/N)

Elias-Fano Golomb

Size (bits / entry): 2 + log2(U/N) > 1.5 + log2(U/N)

Elias-Fano Golomb

Size (bits / entry): 2 + logo(U/N) > 1.5 + logo(U/N)

[

faster to access

Elias-Fano Golomb

Size (bits / entry): 2 + logo(U/N) > 1.5 + logo(U/N)

[

faster to access. Why?

What element is at offset 1 of the sorted order?

What element is at offset 3 of the sorted order?

1010111001100100201 110001110001 10

® ——

What element is at offset 3 of the sorted order?

1010111001100100201 110001110001 10

1

OCounter: O
1 Counter: -1

What element is at offset 3 of the sorted order?

1010111001100100:01 110001 11 0001 10

1

0 Counter: 0
1 Counter: 0

What element is at offset 3 of the sorted order?

1010111001100100:01 110001 11 0001 10

0 Counter: 1
1 Counter: 0

What element is at offset 3 of the sorted order?

1010111001100100:01 110001 11 0001 10

0 Counter: 1
1 Counter: 1

What element is at offset 3 of the sorted order?

1010111001100100201 110001110001 10

0 Counter: 2
1 Counter: 1

What element is at offset 3 of the sorted order?

1010111001100100201 110001110001 10

0 Counter: 2
1 Counter: 2

What element is at offset 3 of the sorted order?

1010111001100100201 110001110001 10

0 Counter: 2
1 Counter: 3

What element is at offset 3 of the sorted order?

1010111001100100201 110001110001 10

1

2
3

Prefixes: 000 001 010 011 100 101 110 111

What element is at offset 3 of the sorted order?

1010111001100100:01 110001 11 00 01 10

1

Fetch 3rd suffix

® ——

010

What element is at offset 3 of the sorted order?

1010111001100100:011100 110001 10

Concatenate: 01001

® ——

What element is at offset 3 of the sorted order?

1010111001100100:011100 110001 10

We’re done 3) 01001

® ——

Rank & Select

1010111001100100?01 110001110001 10
——mPm

Worst case Traverse 2-Nbits One random access

lookup

® ——

Rank & Select

1010111001100100?01 110001110001 10
——mPm

Traverse 2 - N bits < N 1.5 + N log2(U/N)
w. run-length Golomb

Worst case
lookup

® ——

1010111001100100?01 110001110001 10
——mPm

Traverse 2 - N bits

T

Can we make this faster?

Rank & Select

Common primitive commands Frame a lookup in
that can be sped up terms of these

Selectik(i): return position of ith bit set to x in bitmap

Selecti(3): return position of 31 bit set to 1 in bitmap

Position 5

1010111001100100:01 110001 11 00 01 10
e S —

Select«(): return position of ith bit set to x in bitmap

rankx(i): return # bits set to x up to position |

1010111001100100:01 110001 11 00 01 10
I

Select«(): return position of ith bit set to x in bitmap

ranko(9): return # bits set to O up to position 5

Return 2

— ,
1010111001100100:0111 0001 110001 10

|

prefix of ith element in Elias Fano = # zeros before it 1

1010111001100100:01 110001 11 00 01 10

prefix of ith element in Elias Fano = # zeros before ith 1

Select(i) - 1

1010111001100100:01 110001 11 00 01 10

prefix of it element in Elias Fano = # zeros before ith 1

Select(i) - 1

/N

bits before # 1 before

1010111001100100:01 110001 11 00 01 10

prefix of 3" element in Elias Fano = # zeros before 3d 1

= Selecti(3) -3

1010111001100100:01 110001 11 00 01 10

prefix of 3" element in Elias Fano = # zeros before 3d 1

- 5-3

1010111001100100:01 110001 11 00 01 10

prefix of 3" element in Elias Fano = # zeros before 3d 1

= 2

1010111001100100:01 110001 11 0001 10

prefix of thelement = 2

Prefixes: 000 001 010 011 100 101 110 111

Making Rank Fast

1010111001101 100

Partition (e.g., into cache lines, 512 bits)

1o10/1110/0110[1100

Count # 1s to left of each partition

>
1o10/11100110[1100

Count # 1s to left of each partition

> 5
1o10/11100110[1100

Count # 1s to left of each partition

> 5 7
1o10/11100110[1100

0 2 5 /

1o10/1110/0110[1100

-
Rank:(10)?

0 2 /

10101110 10[1100]

A
Ranki(10)=5+0+1=6

O G

rank in O(1) Counters take space
(e.g., 2 B per cache line)

0 2 /

10101110 10[1100]
—

How about select? e.g. selecti(1)

0 : 5 7
1o10/1110/0110[1100

How about select? e.g. selects(1)

Binary search
counters /\

5
]1010[1110]0110]1100]

—_—
Scan

Select in O(logz(N)) Can we do better?

0 : 5 7
1o10/1110/0110[1100

Store samples of select results

select1(0) selecti(4) selecti(8) selecti(12)

1o10/1110/0110[1100

Store samples of select results

selecti(0) selecti(4) selecti(8) selecti(12)
0

l

1o10/1110/0110[1100

Store samples of select results

selecti(0) selecti(4) selecti(8) selecti(12)
0 6

\

1o10/1110/0110[1100

select1(0) selecti(4) selecti(8) selecti(12)
0 0 13

N

1o10/1110/0110[1100

How to handle select(6)?

select1(0) selecti(4) selecti(8) selecti(12)
0 6 13

1o10/1110/0110[1100

How to handle select(5)?

~

select1(0) selecti(4) selecti(8) selecti(12)
0 6 13

\ o~
1o10/1110/0110[1100

How to handle select(5)?

~

select1(0) selecti(4) selecti(8) selecti(12)
0 6 13

v~
1o10/111000110[1100] -

Select in O(1) time assuming next bit is close

How to handle select(5)?

~

select1(0) selecti(4) selecti(8) selecti(12)
0 6 13

\ -

1o10/t110f0000j0000| -

However, next 1 can be far

How to handle select(5)?

~

select1(0) selecti(4) selecti(8) selecti(12)
0 6 13

\ -

1o10/t110f0000j0000| -

However, next 1 can be far

There are ways of fixing this, but we can also resort to binary
search as before If so

Enables trade-offs in-between :)

Sorted Array Golomb Elias Fano Bitmap

Bits loga(U) 1.5+log2(U/N) 2+log2(U/N) U/N

Enables trade-offs in-between :)

Sorted Array Golomb Elias Fano Bitmap
Bits loga(U) 1.5+log2(U/N) 2+logz(U/N) U/N

Access O(1) O(N) O(1) O(1)

Enables trade-offs in-between :)

Sorted Array Golomb Elias Fano Bitmap
Bits loga(U) 1.5+log2(U/N) 2+logz(U/N) U/N
Access O(1) O(N) O(1) O(1)

Insert O(N)

O(N) O(1)

Thanks!

