
Research Topics in Database Management

Niv Dayan

Bigger, Faster, and Stronger Systems

Who am I?

> 12 years of research experience in data structures & algorithms for databases

https://www.nivdayan.net/

Who am I?

In academia

> 12 years of research experience in data structures & algorithms for databases

Who am I?

In academia And in industry

> 12 years of research experience in data structures & algorithms for databases

Theory Practice

This course combines both

For data structures & algorithms for databases

Who are you?

Who are you?

GradUndergrad

Prerequisites…Who are you?

Prerequisites…Who are you?

Operating Systems
Concurrency & synchronization

File systems, virtual memory

Design and Analysis of Data Structures
Binary trees, sorting, hash tables, priority queues, Big-O analysis

Prerequisites…Who are you?

Operating Systems
Concurrency & synchronization

File systems, virtual memory

Prerequisites…Who are you?

Design and Analysis of Data Structures
Binary trees, sorting, hash tables, priority

queues, Big-O analysis
Storage, buffer pools, B-trees, transactions,
write-ahead logging, query processing, etc.

Database Internals e.g., (CSC443)

Operating Systems
Concurrency & synchronization

File systems, virtual memory

Design and Analysis of Data Structures
Binary trees, sorting, hash tables, priority

queues, Big-O analysis

Prerequisites…Who are you?

Solid programming skills in C, C++, Java, or at least Python

Operating Systems
Concurrency & synchronization

File systems, virtual memory

Storage, buffer pools, B-trees, transactions,
write-ahead logging, query processing, etc.

Database Internals e.g., (CSC443)

Background Knowledge

CSC443 is
background for some

topics

All lectures
recorded

Will let you
know what to
catch up on

https://www.nivdayan.net/database-system-technology-csc443

Data Structures Seminar

Small Research
Project

Reading ≈20-30
Papers

Small Research
Project

Reading ≈20-30
Papers

Data Structures Seminar

Data
Structures

Theoretically
efficient

Hardware-
efficient

Data
Structures

Theoretically
efficient

Hardware-
efficient

Important for your maturity as engineers/researchers who
can achieve high performance

Why read papers?

Reading papers
is a skill

Get research
ideas

Employ the state of
the art

Website

https://www.nivdayan.net/research-topics-in-database-management-csc2525

12 Class Sessions

Use the first two lectures wisely

Dynamic Arrays &
Filter Data
Structures

Enjoy the material?
you’re in the right

place

Enjoy the material?
you’re in the right

place

Use the first two lectures wisely

Dynamic Arrays &
Filter Data
Structures

Participation

You are required to
attend each class

Read papers in
advance

Participate in
class discussions

Project

Implement &
evaluate

Proposals due by
mid-Feb

Project

Implement &
evaluate

Proposals due by
mid-Feb

You may start
earlier

Project

More on this later

Implement &
evaluate

Proposals due by
mid-Feb

You may start
earlier

Written Exam

Likely 2 hours Likely April 7-8 or 30
(Before/after exam period)

Grade Components

(1) Project Report & Code

(2) Oral exam

Grade Components

Precise breakdown to be announced later

(1) Project Report & Code

(2) Oral exam

Office Hours

Right after
class

Post questions for everyone’s benefit!

We’ll record classes, but you must still attend.

level

And now to our first lecture

Niv Dayan

Dynamic Arrays
CSC2525 Research Topics in Database Management

Arrays

0 1 2 3 4 5 6 7

Arrays

0 1 2 3 4 5 6 7

Fixed width slots

0 1 2 3 4 5 6 7

Fixed width slots
e.g., integers or floating points

7 3 8 4 5 13 9 6

0 1 2 3 4 5 6 7

Fixed width slots
Or pointers to complex types

0 1 2 3 4 5 6 7

put(3,) p

Supports random access

0 1 2 3 4 5 6 7

get(3)

p

p

Supports random access

0 1 2 3 4 5 6 7

Overflow error (e.g., java)

get(8)

0 1 2 3 4 5 6 7

Overflow error (e.g., java)

get(8)

Undefined behavior (e.g., C++)

How to keep inserting when out of space?

0 1 2 3 4 5 6 7

… … … … … … … …

put(8, p)

0 1 2 3 4 5 6

… … … … … … … …

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Allocate

7

How to keep inserting when out of space?

put(8, p)

0 1 2 3 4 5 6

… … … … … … … …

0 1 2 3 4 5 6 7

… … … … … … … …

8 9 10 11 12 13 14 15

Copy
7

put(8, p)

0 1 2 3 4 5 6

… … … … … … … …

0 1 2 3 4 5 6 7

… … … … … … … …

8 9 10 11 12 13 14 15

7

Deallocate

put(8, p)

0 1 2 3 4 5 6 7

… … … … … … … …

8 9 10 11 12 13 14 15

put(8, p)

Static int nums[4] = {0, 0 ,0 ,0};

C++ offers static & dynamic arrays

Dynamic std::vector<int> vec;

C++ offers static & dynamic arrays

 std::vector<int> vec;
 for (int i = 0; i < 10; ++i) {

 vec.push_back(i);
 std::cout << "Added " << i << ", size: " << vec.size()

 << ", capacity: " << vec.capacity() << std:end;

 }

C++ offers static & dynamic arrays

Resize if we exceed capacity std::vector<int> vec;
 for (int i = 0; i < 10; ++i) {

 vec.push_back(i);
 std::cout << "Added " << i << ", size: " << vec.size()

 << ", capacity: " << vec.capacity() << std:end;

 }

C++ offers static & dynamic arrays

Element Size Capacity
0 1 1
1 2 2
2 3 4
3 4 4
4 5 8
5 6 8
6 7 8
7 8 8
8 9 16
9 10 16

 std::vector<int> vec;
 for (int i = 0; i < 10; ++i) {

 vec.push_back(i);
 std::cout << "Added " << i << ", size: " << vec.size()

 << ", capacity: " << vec.capacity() << std:end;

 }

C++ offers static & dynamic arrays

Element Size Capacity
0 1 1
1 2 2
2 3 4
3 4 4
4 5 8
5 6 8
6 7 8
7 8 8
8 9 16
9 10 16

Uses Growth Factor 2

 std::vector<int> vec;
 for (int i = 0; i < 10; ++i) {

 vec.push_back(i);
 std::cout << "Added " << i << ", size: " << vec.size()

 << ", capacity: " << vec.capacity() << std:end;

 }

What if Growth Factor G is

too high too low? ?

e.g., 4
too highWhat if Growth Factor G is

… … … …

x4 space wasted after
expansion

e.g., 4
too highWhat if Growth Factor G is

… … … …

too high

Space-amplification
Data size

Physical space used=

What if Growth Factor G is

… … … …

too high

Space-amplification
Data size

Physical space used= = G

What if Growth Factor G is

… … … …

too high

Space-amplification = G Right after
expansion

What if Growth Factor G is

… … … …

too high

Max
Space-amplification = G + 1 During

expansion

What if Growth Factor G is

too low
e.g., 1.2

What if Growth Factor G is

too low
e.g., 1.2

What if Growth Factor G is

Insertion overheads increase

too low
e.g., 1.2

What if Growth Factor G is

too low

Write-amplification
Data size

Physical data written=

What if Growth Factor G is

too low

Write-amplification
Data size

Physical data written= = G
G - 1

What if Growth Factor G is

too low

Write-amplification
Data size

Physical data written= = G
G - 1

What if Growth Factor G is

Geometric
series sum

Growth factor G impact

Write-amplificationSpace-amplification

G+1 G
G - 1

Growth factor G impact

W
rit

e-
am

pl
ifi

ca
tio

n

Space-amplification

Growth factor 2 achieves a good balance

W
rit

e-
am

pl
ifi

ca
tio

n

Space-amplification

And now to new stuf

Alleviating trade-
off via indirection

Reusing Deallocated
Space

Reusing Deallocated Space
Assume G ≥ 2

ex
pa

ns
io

ns

Reusing Deallocated Space (G ≥ 2)
ex

pa
ns

io
ns

Deallocated

Reusing Deallocated Space (G ≥ 2)
ex

pa
ns

io
ns

Deallocated Can we reuse this space?

Total deallocated space

Total allocated space
=

 - 1

Reusing Deallocated Space (G ≥ 2)

<

Total deallocated space

Total allocated space

Reusing Deallocated Space (G ≥ 2)

Deallocated space
Can’t be reused by new array

Reusing Deallocated Space (G ≥ 2)

Deriving Max Space-Amp

unusedused

unused

Deriving Max Space-Amp

G

G
G - 1

used

Max Space-Amp = G
used

used + unused += G
G - 1

2G
G - 1Max Space-Amp =

used
used + unused =

= 4 for G = 2
2G

G - 1
Max Space-Amp =

used
used + unused =

Suppose we use small size ratio,
e.g., G = 1.2

Suppose we use small size ratio,
e.g., G = 1.2

ex
pa

ns
io

ns

Suppose we use small size ratio,
e.g., G = 1.2

Deallocated

Suppose we use small size ratio,
e.g., G = 1.2

<

Total deallocated space

Total allocated space

Suppose we use small size ratio,
e.g., G = 1.2

Reuse is possible

Suppose we use small size ratio,
e.g., G = 1.2

Wasted space

Suppose we use small size ratio,
e.g., G = 1.2

Wasted space

Could have expanded
by larger factor

For which growth factor, do we perfectly reuse the space?

For which growth factor, do we perfectly reuse the space?

Applicable question across other data
structures, e.g., hash tables

Assumptions on memory allocator

Assumptions:

Memory addresses0

Contiguous allocation

Memory addresses0

Assumptions: Contiguous allocation

Memory addresses0

Assumptions: Contiguous allocation

Memory addresses0

Assumptions: Contiguous allocation

Memory addresses0

Assumptions: Contiguous allocation

Memory addresses0

Reuse when possible
Assumptions: Contiguous allocation

Memory addresses0

Deallocated

To allocate

Reuse when possible
Assumptions: Contiguous allocation

Memory addresses0

Reuse when possible
Assumptions: Contiguous allocation

Memory addresses0

Deallocate as we copy (simplistic)

Expand

Reuse when possible
Assumptions: Contiguous allocation

Memory addresses0

Expand

Deallocate as we copy (simplistic)
Reuse when possible

Assumptions: Contiguous allocation

Memory addresses0

copied

Deallocate as we copy (simplistic)
Reuse when possible

Assumptions: Contiguous allocation

Memory addresses0

Deallocate as we copy (simplistic)
Reuse when possible

Assumptions: Contiguous allocation

Memory addresses0

Deallocate as we copy
Reuse when possible

Assumptions: Contiguous allocation

Can’t expand in-place

Memory addresses0

Deallocate as we copy
Reuse when possible

Assumptions: Contiguous allocation

Can’t expand in-place

Expand

Memory addresses0

Deallocate as we copy
Reuse when possible

Assumptions: Contiguous allocation

Can’t expand in-place

Memory addresses0

Deallocate as we copy
Reuse when possible

Assumptions: Contiguous allocation

Can’t expand in-place

Expand

Memory addresses0

Deallocate as we copy
Reuse when possible

Assumptions: Contiguous allocation

Can’t expand in-place

Expand

Memory addresses0

Deallocate as we copy
Reuse when possible

Assumptions: Contiguous allocation

Can’t expand in-place

For which growth factor, do we perfectly reuse the space?

For which growth factor, do we perfectly reuse the space?

=Size i-2 + Size i-1 Size i

For which growth factor, do we perfectly reuse the space?

Subject to:

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

For which growth factor, do we perfectly reuse the space?

Subject to:

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

Clever ideas?

Fibonacci Series
1 1 2 3 5 8 13 21

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

Fibonacci Series
1 1 2 3 5 8 13 21

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

1170 - 1250
Italy

Fibonacci Series
1 1 2 3 5 8 13 21+ =

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

Fibonacci Series
1 1 2 3 5 8 13 21+ =

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

Fibonacci Series
1 1 2 3 5 8 13 21+ =

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

Fibonacci Series
1 1 2 3 5 8 13 21+ =

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

Satisfies this:

Fibonacci Series
1 1 2 3 5 8 13 21

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

1

Fibonacci Series
1 1 2 3 5 8 13 21

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

2

Fibonacci Series
1 1 2 3 5 8 13 21

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

1.5

Fibonacci Series
1 1 2 3 5 8 13 21

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

1.666

Fibonacci Series
1 1 2 3 5 8 13 21

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

1.6

Fibonacci Series
1 1 2 3 5 8 13 21

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

1.625

Fibonacci Series
1 1 2 3 5 8 13 21

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

1.625

Fibonacci Series
1 1 2 3 5 8 13 21

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

1.615

Fibonacci Series

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

1 1 2 3 5 8 13 21 34 55 89 144

1.618

Fibonacci Series
1 1 2 3 5 8 13 21 34 55 89 144

1.618

Ratio converges to the “Golden Ratio” ɸ

Fibonacci Series
1 1 2 3 5 8 13 21 34 55 89 144

1.618033988749....Ratio converges to the “Golden Ratio” ɸ =

Fibonacci Series
1 1 2 3 5 8 13 21 34 55 89 144

1 + 5
2

Ratio converges to the “Golden Ratio” ɸ =

Golden Spiral

1 + 5
2

Ratio converges to the “Golden Ratio” ɸ =

1 + 5
2

Ratio converges to the “Golden Ratio” ɸ =

Golden Spiral

x

x

Golden Spiral

x·ɸ

x·ɸ

x

Golden Spiral

x·ɸ

x·ɸ2

x·ɸ

x·ɸ2

x

Golden Spiral

x·ɸ

x·ɸ2

x·ɸ

x·ɸ2 x·ɸ3

x·ɸ3

x

Golden Spiral

x·ɸ

x·ɸ2

x·ɸ

x·ɸ2 x·ɸ3

x·ɸ3

x·ɸ4

Art

Golden Spiral

The Great Wave
off Kanagawa

Art Architecture

Golden Spiral

The Great Wave
off Kanagawa Taj Mahal

Art Architecture Nature

Golden Spiral

The Great Wave
off Kanagawa Taj Mahal Nautilus Shell

Art Architecture Nature

Golden Spiral

And now also in computer science :)

Weird Properties

ɸ = ɸ2 - 1 = 1
ɸ-1

Expand Array by Golden Ratio (G = ɸ = 1.61…)

Expand Array by Golden Ratio (G = ɸ = 1.61…)

=Size i-2 + Size i-1 Size i

Size i-1

Size i-2

Size i =
Size i-1

G=

Satisfies both:

Expand Array by Golden Ratio (G = ɸ = 1.61…)

Memory addresses0

x

Expand Array by Golden Ratio (G = ɸ = 1.61…)

x

x·ɸ

Memory addresses0

Expand Array by Golden Ratio (G = ɸ = 1.61…)

x x·ɸ

Memory addresses0

Expand Array by Golden Ratio (G = ɸ = 1.61…)

x x·ɸ

x·ɸ2

Memory addresses0

Expand Array by Golden Ratio (G = ɸ = 1.61…)

x·ɸ2

Memory addresses0

Expand Array by Golden Ratio (G = ɸ = 1.61…)

x·ɸ2

x·ɸ3

Memory addresses0

Expand Array by Golden Ratio (G = ɸ = 1.61…)

x·ɸ2 x·ɸ3

Memory addresses0

Expand Array by Golden Ratio (G = ɸ = 1.61…)

x·ɸ2 x·ɸ3

x·ɸ4

Memory addresses0

Expand Array by Golden Ratio (G = ɸ = 1.61…)

x·ɸ4

And so on…

Memory addresses0

Write-Amplification

x·ɸ4

Memory addresses0

Write-Amplification =
G

G - 1

x·ɸ4

Memory addresses0

Write-Amplification =
G

G - 1 =
ɸ

ɸ - 1

Memory addresses0

Write-Amplification =
G

G - 1 =
ɸ

ɸ - 1 = ɸ + 1

Memory addresses0

Space-Amplification?

Memory addresses0

Space-Amplification?

Full Empty

Memory addresses0

Full + Empty
 = G = ɸSpace-Amplification =

Full

Memory addresses0

Full EmptyDeallocated

Max Space-Amp?

Deallocated + Full + Empty
Full

= G1 +

For G < ɸ

Max Space-Amp =

ɸ1 + = 2.61Max Space-Amp =

Write-amp Space-amp

G
G - 1G > ɸ G+G

G - 1

G < ɸ G
G - 1 G to G+1

Alternates

In the wild
Implementation Growth factor

Java ArrayList 1.5
Python PyListObject ~1.125
Microsoft Visual C++ 2013 1.5
G++ 5.2.0 2
Clang 3.6 2

1.5
Rust Vec 2
Go slices between 1.25 and 2
Nim sequences 2
SBCL (Common Lisp) vectors 2
C# (.NET 8) List 2

Facebook folly/FBVector

Source: https://en.wikipedia.org/wiki/Dynamic_array#Growth_factor

https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

Facebook folly/FBVector

https://github.com/facebook/folly/blob/main/folly/docs/FBVector.md

Real-world discussion of these issues

Facebook folly/FBVector

https://github.com/facebook/folly/blob/main/folly/docs/FBVector.md

Real-world discussion of these issues

Note that Facebook also makes their own memory allocator, so with
full control of the stack this can be more effective.

And now to new stuf

Alleviating trade-
off via indirection

Reusing Deallocated
Space

Can we completely overcome this trade-off?

W
rit

e-
am

p

Space-amp

?

Suppose we could expand without copying everything:

Array

Suppose we could expand without copying everything:

Array Extra

Suppose we could expand without copying everything:

Promise: write-amp of ???

Array Extra

space-amp of ???

Suppose we could expand without copying everything:

Promise:

Array Extra

write-amp of ≈1
space-amp of ≈1

Data
blocks

Directory

Add a layer of indirection

get(i)

Data

blocks

Directory

Data block = ⌊i / data block size⌋ get(i)

Data

blocks

Directory

get(i)

Data

blocks

Directory

offset within = i % data block size
Data block = ⌊i / data block size⌋

Data block = ⌊5 / 4⌋ = 1get(5)

Data

blocks

Directory

offset within = 5 % 4 = 1

Expand?

Data

blocks

Directory

Expand?

Add new
data block to

directory

Expand? Expand directory if
we need more space

Expand? Expand directory if
we need more space

Downside?

Downside: 2 memory hops per access

Downside: 2 memory hops per access
Mitigation?

Downside: 2 memory hops per access
Mitigation: directory must fit in L1 cache

Downside: 2 memory hops per access
Mitigation: directory must fit in L1 cache

Typical L1 cache size:
16-128 KB per core

directory size?

directory size = Data size
Data block size

Risk: data blocks are initialized too small

directory size = Data size
Data block size

O(N)=

Risk: data blocks are initialized too small

directory size = Data size
Data block size

O(N)=

Directory may outgrow the L1 cache

Risk: data blocks are initialized too small

directory size = Data size
Data block size

O(N)=

Directory may outgrow the L1 cache

Solution?

Resizable Arrays in Optimal Time and Space
Algorithms and Data Structures Symposium, 1999

Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. Ian Munro, and Robert Sedgewick

Data blocks should
grow in size

Resizable Arrays in Optimal Time and Space

Data blocks should
grow in size

Directory grows
more slowly

Resizable Arrays in Optimal Time and Space

O(√N) data blocks

O(√N) data blocks

O(√N) pointers

…

O(√N) pointers 2x when full

…

O(2√N) pointers

…

O(√N) pointers

O(√N) slots

O(√N) pointers

O(√N) pointers

Waste at most
O(√N) slots

Max space amp = O(√N) + O(√N) = O(√N)

Challenges: How to grow blocks to meet these properties?

Max space amp = O(√N)

Challenges:
Inferring which block contains which array offset?

Max space amp = O(√N)

How to grow blocks to meet these properties?

Multiple levels

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

exponential capacities

1 slotlvl 0

lvl 1

lvl 2

lvl 3

lvl 4

In every pair of subsequent levels k and k+1

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

Size of arrays doubles at level k

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

In every pair of subsequent levels k and k+1

Size of arrays doubles at level k
arrays doubles at level k+1lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

In every pair of subsequent levels k and k+1

arrays doubles at level k+1
Size of arrays doubles at level k

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

In every pair of subsequent levels k and k+1

arrays doubles at level k+1
Size of arrays doubles at level k

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

In every pair of subsequent levels k and k+1

lvl 0

lvl 1

lvl 2

lvl 3

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots

lvl 4

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

2⌊0/2⌋ = 1

2⌊1/2⌋ = 1

2⌊2/2⌋ = 2

2⌊3/2⌋ = 2
2⌊4/2⌋ = 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

2⌈0/2⌉ = 1

2⌈1/2⌉ = 2

2⌈2/2⌉ = 2

2⌈3/2⌉ = 4
2⌈4/2⌉ = 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots
levels?

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots
levels: log2 N

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots
levels: log2 N
data blocks?

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots

Most are here
levels: log2 N
data blocks?

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots

2⌊K/2⌋

levels: log2 N
data blocks?

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots

data blocks? 2⌊log N/2⌋

levels: log2 N

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots

O(√N)
levels: log2 N
data blocks?

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots
levels: log2 N

slots in largest block?
O(√N)# data blocks?

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots
levels: log2 N

slots in largest block?
O(√N)# data blocks?

2⌈K/2⌉

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots
levels: log2 N

slots in largest block?
O(√N)# data blocks?

O(√N)

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

lvl i contains 2⌊K/2⌋ blocks, each with 2⌈K/2⌉ slots
levels: log2 N

At most O(√N)
unused space

O(√N)# data blocks?

Directory with pointers
A

A

C D

G H I J

B C D E F G H I J

B

E F

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

At most O(√N)
unused space

O(√N)

At most half O(√N) unused space
A

A

C D

G H I J

B C D E F G H I J

B

E F

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

…

At most O(√N)
unused space

A

A

C D

G H I J

B C D E F G H I J

B

E F

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

…

Max extra space: O(√N) + O(√N) = O(√N)

A

A

C D

G H I J

B C D E F G H I J

B

E F

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

…

Max space-amp: = O(1+1/√N)

A
A

C D

G H I J

B C D E F G H I J

B

E F

lvl 0

lvl 1

lvl 2

lvl 3

lvl 4

…

How to access slot in O(1) time?

0

3 5

1

lvl 0

lvl 1

lvl 2

lvl 3

2

4 6

7 8 9 10 11 12 13 14

get(12)

0

3 5

1

lvl 0

lvl 1

lvl 2

lvl 3

2

4 6

7 8 9 10 11 12 13 14

(1) # blocks to skip in
smaller levels - tricky

get(12)

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(2) # blocks to skip in
target level

(1)

get(12)

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

Follow pointer

(2)(1)

get(12)

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(3) # slots to skip within
target block

(2)(1)

get(12)

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(3)

(2)(1)
How to do steps 1 to 3

super fast?

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

Identify target level k

get(i)

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

Identify target level k
k = ⌊log2(i + 1)⌋

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(12)

Identify target level k
k = ⌊log2(12 + 1)⌋ = 3

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

Identify target level k
k = ⌊log2(i + 1)⌋

slow

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

Identify target level k
k = ⌊log2(i + 1)⌋

Type casting - also slow

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

Identify target level k
k = ⌊log2(i + 1)⌋

Insight?

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

Identify target level k
k = ⌊log2(i + 1)⌋

Insight: log2 amounts to finding
index of most significant digit

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

Identify target level k

= sizeof(i) - 1 - clz(i+1)

k = ⌊log2(i + 1)⌋

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

Identify target level k
k = ⌊log2(i + 1)⌋

= sizeof(i) - 1 - clz(i+1)

Integer
length in bits

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

Identify target level k

= sizeof(i) - 1 - clz(i+1)

Specialized CPU
command for #
leading zeros

k = ⌊log2(i + 1)⌋

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(00001100)

Identify target level k

= sizeof(i) - 1 - clz(i+1)

k = ⌊log2(i + 1)⌋

8 - 1 - 4 = 3

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

Identify target level k

= sizeof(i) - 1 - clz(i+1)

k = ⌊log2(i + 1)⌋

≈1 ns rather than ≈7ns

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

blocks in levels 0 to k-1?

lvl 3 7 8 9 10 11 12 13 14

0

1

lvl 0

lvl 1

lvl 2

2

(1)

get(i)

blocks in levels 0 to k-1

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

3 54 6

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

Original paper gets this
wrong, fixed credit to

Hyuhng Min

blocks in levels 0 to k-1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

Intuition: number of new
data blocks grows every

other level

blocks in levels 0 to k-1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

Level k # Blocks
0 0
1 1
2 2
3 4
4 6
5 10
6 14
7 22
… …

blocks in levels 0 to k-1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

Integer division is slow

blocks in levels 0 to k-1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

blocks in levels 0 to k-1

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

Power is slow

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

blocks in levels 0 to k-1

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

How to speed up?

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

Insight: division &
exponentiation by 2 can be done

with bitwise operators

blocks in levels 0 to k-1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

= 2⌊k/2⌋ · (2 + (k & 1)) - 2

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

“and” with 1

blocks in levels 0 to k-1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

= 2(k >> 1) · (2 + (k & 1)) - 2

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

Shift by 1 bit to right

blocks in levels 0 to k-1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

= (1 << (k >> 1)) · (2 + (k & 1)) - 2

Shift to left

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

blocks in levels 0 to k-1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

= (1 << (k >> 1)) · (2 + (k & 1)) - 2

= 2⌊k/2⌋ · (2 + (k mod 2)) - 2

≈0.6 ns rather than ≈10ns

blocks in levels 0 to k-1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

Lesson: design structure such that
any log, division, or exponentiation is

base 2 to support fast CPU operations

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

(2) block offset in target level

(3) slot offset in target block

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(i)

(2)
 # block

bits x

(3)

slot
bits y0..01

i + 1 bit representation

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

get(00001100)

(2)

(3)

0..01

i + 1 bit representation

 # block
bits x

slot
bits y

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

00001100 + 1

(2)

(3)

0..01
 # block

bits x
slot
bits y

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1)

00001101

(2)

(3)

0..01
 # block

bits x
slot
bits y

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1) (2)

(3)

01100001

0..01
 # block

bits x
slot
bits y

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1) (2)

(3)

⌈k/2⌉⌊k/2⌋

0..01
 # block

bits x
slot
bits y

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1) (2)

(3)

(k+1)>>1k >> 1

0..01
 # block

bits x
slot
bits y

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1) (2)

(3)

Slot offset ((i+1) & ((1 << y) - 1)

(k+1)>>1k >> 1

0..01
 # block

bits x
slot
bits y

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1) (2)

(3)

Slot offset ((i+1) & ((1 << y) - 1)

(k+1)>>1k >> 1

0..01
 # block

bits x
slot
bits y

Mask to only
keep y least

significant bits

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1) (2)

(3)

Slot offset ((i+1) & ((1 << y) - 1)

(k+1)>>1k >> 1

0..01
 # block

bits x
slot
bits y

Block offset ((i+1) >> y) & ((1 << x) - 1)

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1) (2)

(3)

((i+1) & ((1 << y) - 1)

0..01
 # block

bits x
slot
bits y

((i+1) >> y) & ((1 << x) - 1)

Shift to least
significant bits

position

Slot offset

Block offset

(k+1)>>1k >> 1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1) (2)

(3)

((i+1) & ((1 << y) - 1)

0..01
 # block

bits x
slot
bits y

((i+1) >> y) & ((1 << x) - 1)

Mask to only
keep x least

significant bits

Slot offset

Block offset

(k+1)>>1k >> 1

lvl 3 7 8 9 10 11 12 13 14

0

3 5

1

lvl 0

lvl 1

lvl 2

2

4 6

(1) (2)

(3)

((i+1) & ((1 << y) - 1)

0..01
 # block

bits x
slot
bits y

((i+1) >> y) & ((1 << x) - 1)

We’re done :)

Slot offset

Block offset

(k+1)>>1k >> 1

Write-amp Space-amp Read-amp

indirection O(1+N-0.5) O(1+N-0.5) O(1)

Write-amp Space-amp Read-amp

No indirection G
G - 1 1O(G)

indirection O(1+N-0.5) O(1+N-0.5) O(1)

Write-amp Space-amp

indirection

Read-amp

No indirection G
G - 1

1
G > ɸ

G+G
G - 1

No indirection
G < ɸ

G
G - 1 G to G+1 1

indirection O(1+N-0.5) O(1+N-0.5) O(1)

Thank you :)

