/ —

Research Topics In Database Management

Bigger, Faster, and Stronger Systems

Niv Dayan

Who am 1?

> 12 years of research experience in data structures & algorithms for databases

https://www.nivdayan.net/

Who am 1?

> 12 years of research experience in data structures & algorithms for databases

In academia

IT University

of Copenhagen

Who am 1?

> 12 years of research experience in data structures & algorithms for databases

In academia And In industry

() PLiOPS

EXTREME DATA PROCESSOR

IT University

of Copenhagen

This course combines both

Theory Practice

For data structures & algorithms for databases

Who are you?

Who are you?

Undergrad Grad

Who are you”? Prerequisites...

Who are you”? Prerequisites...

Operating Systems

Concurrency & synchronization
File systems, virtual memory

Who are you”? Prerequisites...

Operating Systems

Concurrency & synchronization
File systems, virtual memory

Design and Analysis of Data Structures
Binary trees, sorting, hash tables, priority queues, Big-O analysis

Who are you”? Prerequisites...

Operating Systems

Concurrency & synchronization
File systems, virtual memory

Design and Analysis of Data Structures Database Internals e.g., (CSC443)

Binary trees, sorting, hash tables, priority Storage, buffer pools, B-trees, transactions,
queues, Big-O analysis write-ahead logging, query processing, etc.

Who are you? Prerequisites...

Operating Systems

Concurrency & synchronization
File systems, virtual memory

Design and Analysis of Data Structures Database Internals e.g., (CSC443)
Binary trees, sorting, hash tables, priority Storage, buffer pools, B-trees, transactions,
queues, Big-O analysis write-ahead logging, query processing, etc.

Solid programming skills in C, C++, Java, or at least Python

Background Knowledge

CSC443 is Will let you
All lectures
background for some know what to
. recorded
topics catch up on

% 8 I

https://www.nivdayan.net/database-system-technology-csc443

Data Structures Seminar

Nl
=Q| LR

Reading =20-30 Small Research
Papers Project

Data Structures Seminar

Nl
=Q| L x

Reading =20-30 Small Research
Papers Project

Hardware-
efficient

Theoretically
efficient

Data

Structures

Hardware-
efficient

Theoretically
efficient

Data

Structures

Important for your maturity as engineers/researchers who
can achieve high performance

Why read papers?

Reading papers Get research Employ the state of
IS a sKill ideas the art
A 0 Qo

Website

a UNIVERSITY OF

CSC2525 < TORONTO

Research Topics
in Database
Management

Instructor: Niv Dayan
Lectures: Wednesday 15:00-17:00 (UC 85)

Office Hours: after each class "A\k

https://www.nivdayan.net/research-topics-in-database-management-csc2525

12 Class Sessions

Use the first two lectures wisely

Dynamic Arrays & Enjoy the material?
Filter Data you're In the right
Structures place

Use the first two lectures wisely

Dynamic Arrays & Enjoy the material?
Filter Data you’re In the right
Structures place

Participation

You are required to Read papers In Participate in
attend each class advance class discussions

A W

Project

Implement & Proposals due by
evaluate mid-Feb

¥ &

Project

Implement & Proposals due by You may start
evaluate mid-Feb earlier

Implement &
evaluate

¢

Project

Proposals due by
mid-Feb

&4

More on this later

You may start
earlier

Written Exam

Likely April 7-8 or 30

Likely 2 hours :
(Before/after exam period)

Grade Components

(1) Project Report & Code

(2) Oral exam

Grade Components

(1) Project Report & Code

(2) Oral exam

Precise breakdown to be announced later

Office Hours

Right after
class

o

Post questions for everyone’s benefit!

We’ll record classes, but you must still attend.

And now to our first lecture

Y/

L/

-

Dynamic Arra

CSC2525 Research Topics'in DatabaseManagement

\\AEVET

Arrays

Arrays

Fixed width slots
*—e

HEEREEEN

Fixed width slots
e.d., integers or floating points

rlefelefs]nle]e

Fixed width slots
Or pointers to complex types

HEEREEEN

l l
S I

put(3,p)

l
HEEREEEN

Supports random access

get(3) p

N/

Supports random access

get(8)

|

Overflow error (e.g., java)

get(8)

Overflow error (e.g., java)

Undefined behavior (e.g., C++)

How to keep inserting when out of space?

put(8, p)

e 6 o o

L

‘ L

HEN 1. PY
e o o ..

How to keep inserting when out of space”?

put(8, p)

e 6 o o

L

‘ L

HEN 1. PY
e o o ..

Allocate

HEEEEEEEEEEEEEER

put(8, p)

e 6 o o

L

‘ L

HEN 1. PY
e o o ..

put(8, p)

Deallocate l

e 6 o o

L

‘ L

EEE 1. °
1

e o o ..

put(8, p)

l

C++ offers static & dynamic arrays

Static int nums[4] = {0, @0 ,0 ,0};

Dynamic std::vector<int> vec;

C++ offers static & dynamic arrays

std::vector<int> vec;
0:1<10;
vec.push_back(i);

C++ offers static & dynamic arrays

std::vector<int> vec; Resize if we exceed capacity

0;i<10; /
vec.push_back(i);

C++ offers static & dynamic arrays

Element Size Capacity

o
—

1

std::vector<int> vec;

0:1<10;

vec.push_back(i);

OO NOO OB~ W
Q|00 0|~ BN

16

OO NO| OB~ |WIND =

—
o

16

C++ offers static & dynamic arrays

Element Size Capacity

o
—

1

std::vector<int> vec;

0:1<10;

vec.push_back(i);

OO NOO OB~ W
O 0|0 0 ~|H~ DN

OO NO| OB~ |WIND =

—h
o
G
o O

Uses Growth Factor 2

What if Growth Factor G is

too high? too low?

What if Growth Factor Gis too high
e.g., 4

HEpEEEEEEEN

What if Growth Factor Gis too high
e.g., 4

x4 space wasted after
" expansion

What if Growth Factor Gis too high

Physical space used
Space-amplification ___!________E________.

Data size

7 T

What if Growth Factor Gis too high

Physical space used

Space-amplification = G

Data size

7 T

What if Growth Factor Gis too high

Right after

G .
expansion

Space-amplification

7 T

What if Growth Factor Gis too high

Max During
e ae = G+ 1 .
Space-amplification expansion

7 T

What if Growth Factor Gis too low
e.d., 1.2

What if Growth Factor Gis too low
e.d., 1.2

HEpEEEREEEEEEEEEN

What if Growth Factor Gis too low
e.d., 1.2

Insertion overheads increase

HEpEEEREEEEEEEEEN

What if Growth Factor Gis too low

Physical data written
Write-amplification = 2o oo cotd WHRET

Data size

HEpEEEREEEEEEEEEN

What if Growth Factor Gis too low

Physical data writt
Write-amplification = . Jooa datawrtten G
Data size G-1

HEpEEEREEEEEEEEEN

What if Growth Factor Gis too low

Physical data written
Write-amplification = ___3_/________________. = _.__9__.
Data size G-1
Geometric
series sum

HEpEEEREEEEEEEEEN

Growth factor G impact

Space-amplification Write-amplification

G+1 G

Write-amplification

O NN W S 00O N O

Growth factor G impact

‘—.ﬁ

o 10

Space-amplification

15

Growth factor 2 achieves a good balance

‘—.ﬁ

Write-amplification
O = NN W &6 O OO N O

0 o 10 15

Space-amplification

And now to new stuff

Reusing Deallocated Alleviating trade-
Space off via indirection

(LS

T

expansions

Reusing Deallocated Space

Assume G > 2

Reusing Deallocated Space (G = 2)

suolsuedxs

expansions

Reusing Deallocated Space (G = 2)

oY Can we reuse this space?

Reusing Deallocated Space (G = 2)

oo Total deallocated space

Reusing Deallocated Space (G = 2)

S Total deallocated space
A

Reusing Deallocated Space (G = 2)

E...........................: Dea"ocated space
. Can’t be reused by new array

HEEEEERN

Deriving Max Space-Amp

r unused

used unused

Deriving Max Space-Amp

Max Space-Amp =

used + unused

used

Max Space-Amp =

used + unused

used

Max Space-Amp = S
use

used + unused

Suppose we use small size ratio,
e.g.,G=12

expansions

¥ N\ ¥\

Suppose we use small size ratio,
e.g.,G=12

L[]
HER
HEEN

Suppose we use small size ratio,
e.g.,G=12

Suppose we use small size ratio,
e.g.,G=12

: Total deallocated space
oooooooooooooooo 'o o o o V

[:m Total allocated space

Suppose we use small size ratio,
e.g.,G=12

D::I:D Reuse is possible

Suppose we use small size ratio,
e.g.,G=12

Wasted space
*—

Suppose we use small size ratio,
e.g.,G=12

Wasted space
*—

D::I:D' T Could have expanded
et by larger factor

For which growth factor, do we perfectly reuse the space?

For which growth factor, do we perfectly reuse the space?

Applicable question across other data
structures, e.g., hash tables

Assumptions on memory allocator

Assumptions:

Contiguous allocation

Memory addresses

Assumptions:

Contiguous allocation

Memory addresses

Assumptions:

Contiguous allocation

Memory addresses

Assumptions:

Contiguous allocation

Memory addresses

Assumptions:

Contiguous allocation

Memory addresses

Assumptions:

Contiguous allocation

Reuse when possible

Memory addresses

Assumptions: Contiguous allocation

Reuse when possible

To allocate

0 Memory addresses

Assumptions:

Contiguous allocation

Reuse when possible

Memory addresses

Assumptions: Contiguous allocation

Reuse when possible

Deallocate as we copy (simplistic)

0 Memory addresses

Assumptions: Contiguous allocation

Reuse when possible

Deallocate as we copy (simplistic)

0 Memory addresses

Assumptions: Contiguous allocation

Reuse when possible

Deallocate as we copy (simplistic)

0 Memory addresses

Assumptions: Contiguous allocation

Reuse when possible

Deallocate as we copy (simplistic)

0 Memory addresses

Assumptions:

Contiguous allocation
Reuse when possible

Deallocate as we copy

Can’t expand in-place

Memory addresses

Assumptions: Contiguous allocation
Reuse when possible

Deallocate as we copy

Can’t expand in-place

0 Memory addresses

Assumptions: Contiguous allocation
Reuse when possible

Deallocate as we copy

Can’t expand in-place

0 Memory addresses

Assumptions:

Contiguous allocation
Reuse when possible

Deallocate as we copy

Can’t expand in-place

Memory addresses

Assumptions:

Contiguous allocation
Reuse when possible

Deallocate as we copy

Can’t expand in-place

Memory addresses

Assumptions:

Contiguous allocation
Reuse when possible

Deallocate as we copy

Can’t expand in-place

Memory addresses

For which growth factor, do we perfectly reuse the space?

For which growth factor, do we perfectly reuse the space?

Sizei2 + Size .1 Size ;

For which growth factor, do we perfectly reuse the space?

Sizei2 + Size .1 Size ;

Subiject to: Sizei1 _ _Sizei_ G
Size -2 Size i-1

For which growth factor, do we perfectly reuse the space?

Sizeio + Size - Size ;

Subiject to: Sizeit _ _Sizeéi G
Size -0 Size -1

So—
WA
Clever ideas? ¢ 4

Fibonacci Series
1 1 2 3 5 8 13 21

Sizeio» + Size -1 Size ;

Sizei1 . Size G

Size j-o Size -1

1

1

Fibonacci Series
2 3 5 8

Sizeio» + Size -1

Size -1 Size ;

Size j-o Size -1

13 21

1170 - 1250
Italy

Size

|
),

Fibonacci Series
1+1=2 3 5 8 13 21

Sizeio» + Size -1 Size ;

Sizei1 . Size G

Size j-o Size -1

Fibonacci Series
1 1+42=3 5 8 13 21

Sizeio» + Size -1 Size ;

Sizei1 . Size G

Size j-o Size -1

Fibonacci Series
1 1 2+43=5 8 13 21

Sizeio» + Size -1 Size ;

Sizei1 . Size G

Size j-o Size -1

Fibonacci Series
1 1 2+43=5 8 13 21

Satisfiesthis: =+ Sizei2 + Size -1 Size ;

Sizei1 . Size G

Size i Size -1

Fibonacci Series

1 1 2 3 &5 8 13 21

4
1

Sizeio» + Size -1 Size ;

Sizei1 . Slize; G
Size -0 Size i-1

Fibonacci Series

1 1 2 3 &5 8 13 21

4
2

Sizeio» + Size -1 Size ;

Sizei1 . Slize; G
Size -0 Size i-1

Fibonacci Series

1 1 2 3 &5 8 13 21

)\
1.5

Sizeio» + Size -1 Size ;

Sizei1 . Slize; G
Size -0 Size i-1

Fibonacci Series

1 1 2 3 &5 8 13 21

)\
1.666

Sizeio» + Size -1 Size ;

Sizei1 . Slize; G
Size -0 Size i-1

Fibonacci Series

1 1 2 3 &5 8 13 21

1.6

Sizeio» + Size -1 Size ;

Sizei1 . Slize; G
Size -0 Size i-1

Fibonacci Series

1 1 2 3 &5 8 13 21

1.625

Sizeio» + Size -1 Size ;

Sizei1 . Slize; G
Size -0 Size i-1

Fibonacci Series

1 1 2 3 &5 8 13 21

1.625

Sizeio» + Size -1 Size ;

Sizei1 . Slize; G
Size -0 Size i-1

Fibonacci Series

1 1 2 3 &5 8 13 21

1.615

Sizeio» + Size -1 Size ;

Sizei1 . Slize; G
Size -0 Size i-1

2

3

5

Fibonacci Series

8

Size i

13

Size -1

Size i

+

21 34

Size -1

Size ;

Size -1

0o

89 144

1.618

Size

Fibonacci Series

1 1 2 3 5 8 13 21 34 55 89 144

1.618

Ratio converges to the “Golden Ratio” ¢

Fibonacci Series

1 1 2 3 5 8 13 21 34 55 89 144

Ratio converges to the “Golden Ratio” ¢ = 1.618033988749....

Fibonacci Series

1 1 2 3 5 8 13 21 34 55 89 144

1 +4/5

2

Ratio converges to the “Golden Ratio” ¢ =

Golden Spiral

1 +4/5

Ratio converges to the “Golden Ratio” ¢ = >

Golden Spiral

X

1 +4/5

Ratio converges to the “Golden Ratio” ¢ = >

Golden Spiral

Golden Spiral

Golden Spiral
x.¢2 x.¢3

Golden Spiral
x.¢2 x.¢3

Golden Spiral

Art

The Great Wave
off Kanagawa

Golden Spiral

Art Architecture

The Great Wave

off Kanagawa Taj Mahal

Golden Spiral

Art Architecture Nature

The Great Wave

off Kanagawa Taj Mahal Nautilus Shell

Golden Spiral

Art Architecture Nature

And now also in computer science :)

Weird Properties

Expand Array by Golden Ratio (G =¢ = 1.61...)

Expand Array by Golden Ratio (G=¢ =1.61...)

Sizei» + Size -1 Size ;

Satisfies both:
Sizei1 . Slize; G

Size i Size -1

Expand Array by Golden Ratio (G=¢ =1.61...)

0 Memory addresses

Expand Array by Golden Ratio (G=¢ =1.61...)

0 Memory addresses

Expand Array by Golden Ratio (G=¢ =1.61...)

0 Memory addresses

Expand Array by Golden Ratio (G=¢ =1.61...)

............

0 Memory addresses

Expand Array by Golden Ratio (G=¢ =1.61...)

0 Memory addresses

Expand Array by Golden Ratio (G=¢ =1.61...)

0 Memory addresses

Expand Array by Golden Ratio (G=¢ =1.61...)

0 Memory addresses

Expand Array by Golden Ratio (G=¢ =1.61...)

0 Memory addresses

Expand Array by Golden Ratio (G=¢ =1.61...)

0 Memory addresses

Write-Amplification

Memory addresses

Write-Amplification= ——
rite-Amplification G 1

0 Memory addresses

Write-Amplification= ——— =

0 Memory addresses

Write-Amplification= —— = ‘&;‘c‘l')—;i' = ¢+ 1

0 Memory addresses

Space-Amplification?

Memory addresses

Space-Amplification?

Memory addresses

T Full + Empty
Space-Amplification = e - G=¢
u

0 Memory addresses

Deallocated

Max Space-Amp?

ForG< ¢

Deallocated + Full + Empty — 14+ G
Full

Max Space-Amp =

Max Space-Amp = 1+¢ = 2.61

Write-amp

Space-amp

Alternates
G to G+1

In the wild

Implementation

Growth factor

Java ArrayList 1.5
Python PyListObject ~1.125
Microsoft Visual C++ 2013 1.5
G++ 5.2.0 2
Clang 3.6 2
Facebook folly/FBVector 1.5
Rust Vec 2
Go slices between 1.25 and 2
Nim sequences 2
SBCL (Common Lisp) vectors 2
C# (NET 8) List 2

https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

Facebook folly/FBVector

https://github.com/facebook/folly/blob/main/folly/docs/FBVector.md

Real-world discussion of these issues

Facebook folly/FBVector

https://github.com/facebook/folly/blob/main/folly/docs/FBVector.md

Real-world discussion of these issues

Note that Facebook also makes their own memory allocator, so with
full control of the stack this can be more effective.

And now to new stuff

Reusing Deallocated Alleviating trade-
Space off via indirection

(LS

T

Can we completely overcome this trade-off?

Write-amp
O = NN W &6 O OO N O

0 o 10 15

Space-amp

Suppose we could expand without copying everything:

Suppose we could expand without copying everything:

Suppose we could expand without copying everything:

Promise: write-amp of ???

space-amp of ?7??

Suppose we could expand without copying everything:

Promise: write-amp of =1

space-amp of =1

Add a layer of indirection

Directory
ooors L1 L LT T TILTT T

get(i)

Directory
oos L L LI LTI T
blocks

get(i) Data block = |i / data block size]

Directory
b[I)oac;[le(ls D:D::]

get(i) Data block = [i/ data block size]
offset within =1 % data block size

Directory
b[I)oac;[le(ls D:D::]

get(5) Data block = 15/4] =1
offset within=5 % 4 =1

Directory
b[I)oac;[le(ls D:D::]

Expand?

Directory
kj§§§s [:]::]::I::] |||“|||||||| III“IIII'II'

Expand?

Add
.... data blgi‘ll(vto

directory

HEEEREEEEREEEEREEER

Expand? Expand directory if
we need more space

Expand? Expand directory if
we need more space

HEEEEE
HEEEREEEEREEEEREEER

Downside: 2 memory hops per access

HEEN
HEEEREEEEREEEEREEER

Downside: 2 memory hops per access

Mitigation?

HEEN
HEEEREEEEREEEEREEER

Downside: 2 memory hops per access

Mitigation: directory must fit in L1 cache

HEEN
HEEEREEEEREEEEREEER

Downside: 2 memory hops per access

Mitigation: directory must fit in L1 cache

HEEN
HEEEREEEEREEEEREEER

Typical L1 cache size:
16-128 KB per core

directory size?

HEEE
HEEEREEEEREEEEREEEE

: : Data size
directory size =

Data block size

HEEN
HEEEREEEEREEEEREEER

. . Data size
directory size = ———— - Q(N)

Data block size

HEEN
HEEEREEEEREEEEREEER

Risk: data blocks are initialized too small

. . Data size
directory size = ———— - Q(N)

Data block size

HEEN
HEEEREEEEREEEEREEER

Risk: data blocks are Initialized too small

Directory may outgrow the L1 cache

. . Data size
directory size = ———— - Q(N)

Data block size

HEEN
HEEEREEEEREEEEREEER

Risk: data blocks are Initialized too small

Directory may outgrow the L1 cache

Solution?

Resizable Arrays in Optimal Time and Space
Algorithms and Data Structures Symposium, 1999

Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. lan Munro, and Robert Sedgewick

HEEN
HEEEREEEEREEEEREEER

Resizable Arrays in Optimal Time and Space

HEEN
L L] L]

Data blocks should
grow In size

Resizable Arrays in Optimal Time and Space

HEEN
L L] L]

Data blocks should ~__ =~ Directory grows
grow In size more slowly

HEEN
L L] L]

O(J/N) data blocks

O(JN) pointers

HEEN
L L] L]

O(JN) data blocks

O(JN) pointers 2x when full

11 -1
B]]

O(2/N) pointers

11 -1
B]]

O(JN) pointers

HEEEpEsEEE
L L] I e B

O(JN) pointers

HEEN
L L] L]

O(JN) slots

O(JN) pointers

HEEN
L L] L]

Waste at most
O(JN) slots

Max space amp = O(/N) + O(/N) = O(JN)

HEEN
L L] L]

Max space amp = O(/N)

HEEN
L L] L]

Challenges: How to grow blocks to meet these properties?

Max space amp = O(/N)

HEEN
L L] L]

Challenges: How to grow blocks to meet these properties”?

Inferring which block contains which array offset?

Multiple levels

In every pair of subsequent levels k and k+1

vl O

vl 1

lv] 2

vl 3

vl 4

In every pair of subsequent levels k and k+1

Size of arrays doubles at level k

In every pair of subsequent levels k and k+1

Size of arrays doubles at level k

D # arrays doubles at level k+1

In every pair of subsequent levels k and k+1

Size of arrays doubles at level k

D # arrays doubles at level k+1

vl O

lv| 1

lv] 2

vl 3

vl 4

In every pair of subsequent levels k and k+1

Size of arrays doubles at level k

D # arrays doubles at level k+1

vl i contains 21K/2] blocks, each with 21K/2] s|lots

vl i contains 21K/’2] blocks, each with 21K721 s|ots

lvl i contains 21K72]1 blocks, each with 21K/2] slots

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels?

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels: log2 N

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels: log2 N

D # data blocks?

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels: log2 N
vl O D # data blocks? Most are here

vi1 G

vi2 [T][T1

s ETTTILTTT

via [TTTI[TTTILLTITILTTT]

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels: loga N —

D # data blocks? 2K~

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels: loga N —

D # data blocks? 2llogN/2]

vl O

lv| 1

lv] 2

vl 3

vl 4

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels: log2 N

D # data blocks? O({N)

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels: log2 N

D # data blocks? O(JN)

------- . # slots in largest block?

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels: logz N
D # data blocks? O(JN)

------- . # slots in largest block? 2I/K/2]

vl O

lv| 1

lv] 2

vl 3

vl 4

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels: log2 N

D # data blocks? O(JN)

------- . # slots in largest block? O(JN)

vl O

lv| 1

lv] 2

vl 3

vl 4

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

levels: log2 N

D # data blocks? O(JN)

[I] D:] At most O(JN)

: 3 unused space

vl O

lv| 1

lv] 2

vl 3

vl 4

Directory with O(/N) pointers

AlBICIDIEIFIGIRL I [
[A]
(B[
el] bl] At most O(yN)
........................... unused space
Illl FL [[] P

vl O

lv| 1

lv] 2

vl 3

vl 4

At most half O({JN) unused space

AIB[CID[E[FIG[H[1TJ]...[]

[C[] O] 1: At most O(N)

unused space
Illl F[T [|: P

vl O

lv| 1

lv] 2

vl 3

vl 4

AIB[CID[E[FIG[H[1TJ]...[]

:'3 Max extra space: O(JN) + O(/N)

= O(J/N)

vl O

lv| 1

lv] 2

vl 3

vl 4

AIB[CID[E[FIG[H[1TJ]...[]

z ; Max space-amp: = O(1+1/JN
Bl | P P (1+1/JN)

vl O

lv| 1

lv] 2

vl 3

vl 4

How to access slot in O(1) time?

AIB[CID[E[FIG[H[1TJ]...[]

get(12)

get(12)

[TTTTTTT]

>———o

..... (1) # blocks to skip In
AL ; smaller levels - tricky

get(12)

[TTTTTTT]

E)] (1) (2) # blocks to skip In
------- - target level
’

(3) # slots to sklp within
target block

How to do steps 1 to 3
super fast?

fo O

Identify target level k

2]

Identify target level k
k=|logz(i + 1)]

Identify target level k
k=1log2(12 + 1)] =3

2]

ldentify target level k
k=1logz(i + 1)]|

[

slow

2]

ldentify target level k
k= lloga(i + 1)]

"

Type casting - also slow

2]

ldentify target level k
kK= 1loga(i + 1)]

Insight?

[W ldentify target level k

2]

k= lloga(i + 1)]

Insight: log2 amounts to finding
Index of most significant digit

2]

ldentify target level k
k=1logz(i + 1)]

= sizeof(i) - 1 - clz(i+1)

2]

ldentify target level k
k=1logz(i + 1)]

= sizeof(i) - 1 - clz(i+1)

1
Integer
length In bits

ldentify target level k
k=1logz(i + 1)]

= sizeof(i) - 1 - clz(i+1)
.t

Specialized CPU
command for #
leading zeros

get(00001100)

2]

ldentify target level k
k=1logz(i + 1)]

= sizeof(i) - 1 - clz(i+1)

8 -1-4=3

ldentify target level k
k=1logz(i + 1)]

= sizeof(i) - 1 - clz(i+1)

~1 ns rather than =7ns

blocks in levels 0 to k-1?

blocks In levels 0 to k-1

= 21k2] . (2 + (k mod 2)) - 2

blocks In levels 0 to k-1

— 2lk2] - (2 + (k mod 2)) - 2

Original paper gets this
wrong, fixed credit to
Hyuhng Min

blocks In levels 0 to k-1

=2k2] . (2 + (k mod 2)) - 2
1
Intuition: number of new

data blocks grows every
other level

[TTTITTTITIT] #blocksinlevels 0 to k-1

E)] (1) = 21k2] . (2 + (k mod 2)) - 2
AL : Level k # Blocks
RN ES: : 0
................ 1 1
Bojaot R
.............. A
[7]8]o10] [ri[12[13[14]: - M
6 14
7 22

blocks In levels 0 to k-1

= 21k2] - (2 + (k mod 2)) - 2

=

Integer division is slow

blocks In levels 0 to k-1

= 2Lk2] . (2 + (k mod 2)) - 2

T

Power Is slow

2]

blocks In levels 0 to k-1

— 2lk2] - (2 + (k mod 2)) - 2

How to speed up?

blocks In levels 0 to k-1

_ 21k2] . (2 4+ (k mod 2)) - 2

Insight: division &

1= 3 exponentiation by 2 can be done

with bitwise operators

2]

blocks In levels 0 to k-1

— 2lk2] - (2 + (k mod 2)) - 2

= 21k2] . (2 4 (k & 1)) - 2

T

“and” with 1

blocks In levels 0 to k-1

— 2lk2] - (2 + (k mod 2)) - 2

= 2(k>>1) . (2 4+ (k & 1)) - 2

T

Shift by 1 bit to right

[TTTITTTITIT] #blocksinlevels 0 to k-1

2]

— 2lk2] - (2 + (k mod 2)) - 2

=(1<<(k>1)- 2+(k&1))-2

T

Shift to left

[TTTITTTITIT] #blocksinlevels 0 to k-1

2]

— 2lk2] - (2 + (k mod 2)) - 2

=(1<<(k>1)-2+Kk&1))-2

~0.6 ns rather than =10ns

....... , Lesson: design structure such that
(12 any log, division, or exponentiation is

eiiiiiiiiil.. ~ base 2 to support fast CPU operations

(3) slot offset in target block

block # slot
0..01 bits x bits y

| + 1 bit representation

get(00001100)

block # slot
0..01 bits x bits y

| + 1 bit representation

00001100 + 1

¢
:E)]': (1) (2
block # slot
' 0..01 bits x bits y

00001101

¢
:E)]': (1) (2
block # slot
' 0..01 bits x bits y

¢
:@E (1) (2
block # slot
0..01 bits X bits y
"""" 00001 1 01

¢
:’@E (1) (2)
block # slot
0..01 bits X bits y
....................... | k/2 | [k/2]

— 09—
:E)]': (1) (2
block # slot
0..01 bits x bits y
....................... K>> 1 (k+1)>>1

block # slot
0..01 bits X bits y

r >

K>> 1 (K+1)>>"1

Slot offset ((i+1) & ((1 <<y) - 1)

block # slot
0..01 bits x bits y

o S ———

K>> 1 (K+1)>>1

Slot offset ((iI+1) & ((1 << y) - 1)

........................... Mask to only
IBBI .EE.. keep vy least

significant bits

SESSEEEN " Dlock #slor
0..01 bits x bits y

G >——9

K>> 1 (K+1)>>1

Slot offset ((i+1) & (1 << y) - 1)
Block offset ((i+1) >>vy) & ((1 << x) - 1)

SEESEEEE fDlock #slor
0..01 bits x bits y

>G>

K>> 1 (K+1)>>1

Slot offset ((i+1) & (1 << y) - 1)
Block offset ((i+1)>>y) & ((1 << Xx) - 1)

IBBI [12[13[14]: . !
........................... Shlft to least
significant bits

position

SESSEEEN " Dlock #slor
0..01 bits x bits y

G >——9

K>> 1 (K+1)>>1

Slot offset ((i+1) & (1 << y) - 1)
Block offset ((i+1) >>vy) & ((1 << x) - 1)

IBEII 1[12[13[14]: !
........................... Mask to Only
keep x least

significant bits

block # slot
0..01 bits x bits y

>G>

K>> 1 (K+1)>>1

Slot offset ((i+1) & (1 << y) - 1)
Block offset ((i+1) >>vy) & ((1 << x) - 1)

(3) We’re done :)

Write-amp Space-amp Read-amp

iIndirection O(1+N-0-5) O(1+N-0-5) O(1)

Indirection

No indirection

Write-amp

O(1+N-0-5)

Space-amp

O(1+N-0-5)

O(G)

Read-amp

O(1)

Indirection

No indirection
G>¢

No Indirection
G<o

Write-amp

O(1+N-0-5)

Space-amp

O(1+N-0-5)

G to G+1

Read-amp

O(1)

Thank you :)

