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Operating Systems

Concurrency & synchronization
File systems, virtual memory

Design and Analysis of Data Structures Database Internals e.g., (CSC443)
Binary trees, sorting, hash tables, priority Storage, buffer pools, B-trees, transactions,
queues, Big-O analysis write-ahead logging, query processing, etc.

Solid programming skills in C, C++, Java, or at least Python



Background Knowledge
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All lectures
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Why read papers?

Reading papers Get research Employ the state of
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Website
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Research Topics
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Management

Instructor: Niv Dayan
Lectures: Wednesday 15:00-17:00 (UC 85)

Office Hours: after each class "A\k

https://www.nivdayan.net/research-topics-in-database-management-csc2525
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Participation

You are required to Read papers In Participate in
attend each class advance class discussions
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Written Exam

Likely April 7-8 or 30

Likely 2 hours :
(Before/after exam period)
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Post questions for everyone’s benefit!



We’ll record classes, but you must still attend.



And now to our first lecture
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Arrays

Fixed width slots
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Fixed width slots
e.d., integers or floating points
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Fixed width slots
Or pointers to complex types
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put(3,p)

l
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Supports random access



get(3) p
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Supports random access
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get(8)

Overflow error (e.g., java)

Undefined behavior (e.g., C++)



How to keep inserting when out of space?
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Deallocate l
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What if Growth Factor Gis too low
e.d., 1.2

Insertion overheads increase
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What if Growth Factor Gis too low

Physical data written
Write-amplification = ___3_/________________. = _.__9__.
Data size G-1
Geometric
series sum
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Growth factor G impact

Space-amplification Write-amplification

G+1 G



Write-amplification
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Growth factor G impact
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Growth factor 2 achieves a good balance
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Write-amplification
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And now to new stuff

Reusing Deallocated Alleviating trade-
Space off via indirection
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Reusing Deallocated Space

Assume G > 2
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Reusing Deallocated Space (G = 2)

E...........................: Dea"ocated space
. Can’t be reused by new array
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For which growth factor, do we perfectly reuse the space?




For which growth factor, do we perfectly reuse the space?

Applicable question across other data
structures, e.g., hash tables



Assumptions on memory allocator
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For which growth factor, do we perfectly reuse the space?

Sizeio + Size - Size ;

Subiject to: Sizeit _ _Sizeéi G
Size -0 Size -1

So—
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Clever ideas? ¢ 4
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Fibonacci Series
2 3 5 8

Sizeio» + Size -1

Size -1 Size ;

Size j-o Size -1

13 21

1170 - 1250
Italy
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Fibonacci Series
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Fibonacci Series
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Golden Spiral

Art Architecture Nature

The Great Wave

off Kanagawa Taj Mahal Nautilus Shell



Golden Spiral

Art Architecture Nature

And now also in computer science :)



Weird Properties
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Satisfies both:
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Write-Amplification

Memory addresses




Write-Amplification= ——
rite-Amplification G 1

0 Memory addresses




Write-Amplification= ——— =
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T Full + Empty
Space-Amplification = e - G=¢
u

0 Memory addresses




Deallocated

Max Space-Amp?



ForG< ¢

Deallocated + Full + Empty — 14+ G
Full

Max Space-Amp =



Max Space-Amp = 1+¢ = 2.61



Write-amp

Space-amp

Alternates
G to G+1



In the wild

Implementation

Growth factor

Java ArrayList 1.5
Python PyListObject ~1.125
Microsoft Visual C++ 2013 1.5
G++ 5.2.0 2
Clang 3.6 2
Facebook folly/FBVector 1.5
Rust Vec 2
Go slices between 1.25 and 2
Nim sequences 2
SBCL (Common Lisp) vectors 2
C# (NET 8) List 2



https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

Facebook folly/FBVector

https://github.com/facebook/folly/blob/main/folly/docs/FBVector.md

Real-world discussion of these issues



Facebook folly/FBVector

https://github.com/facebook/folly/blob/main/folly/docs/FBVector.md

Real-world discussion of these issues

Note that Facebook also makes their own memory allocator, so with
full control of the stack this can be more effective.
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Can we completely overcome this trade-off?

Write-amp
O = NN W &6 O OO N O

0 o 10 15

Space-amp



Suppose we could expand without copying everything:



Suppose we could expand without copying everything:



Suppose we could expand without copying everything:

Promise: write-amp of ???

space-amp of ?7??



Suppose we could expand without copying everything:

Promise: write-amp of =1

space-amp of =1



Add a layer of indirection

Directory ....
ooors L1 L LT T TILTT T



get(i)

Directory ....
oos L L LI LTI T
blocks



get(i) Data block = |i / data block size ]

Directory ....
b[I)oac;[le(ls D:D::] .... ....



get(i) Data block = [ i/ data block size ]
offset within =1 % data block size

Directory ....
b[I)oac;[le(ls D:D::] .... ....



get(5) Data block = 15/4] =1
offset within=5 % 4 =1

Directory ....
b[I)oac;[le(ls D:D::] .... ....



Expand?

Directory ....
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Expand?

Add
.... data blgi‘ll(vto

directory
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Expand? Expand directory if
we need more space




Expand? Expand directory if
we need more space
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Downside: 2 memory hops per access
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Downside: 2 memory hops per access

Mitigation: directory must fit in L1 cache

HEEN
HEEEREEEEREEEEREEER

Typical L1 cache size:
16-128 KB per core



directory size?
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: : Data size
directory size =

Data block size

HEEN
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. . Data size
directory size = ———— - Q(N)

Data block size

HEEN
HEEEREEEEREEEEREEER

Risk: data blocks are initialized too small
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. . Data size
directory size = ———— - Q(N)

Data block size

HEEN
HEEEREEEEREEEEREEER

Risk: data blocks are Initialized too small

Directory may outgrow the L1 cache

Solution?



Resizable Arrays in Optimal Time and Space
Algorithms and Data Structures Symposium, 1999

Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. lan Munro, and Robert Sedgewick

HEEN
HEEEREEEEREEEEREEER



Resizable Arrays in Optimal Time and Space

HEEN
L L] L]

Data blocks should
grow In size



Resizable Arrays in Optimal Time and Space

HEEN
L L] L]

Data blocks should ~__ =~ Directory grows
grow In size more slowly
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O(J/N) data blocks




O(JN) pointers

HEEN
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O(JN) data blocks




O(JN) pointers 2x when full

11 -1
B ] ]



O(2/N) pointers

11 -1
B ] ]



O(JN) pointers
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O(JN) pointers

HEEN
L L] L]

O(JN) slots



O(JN) pointers

HEEN
L L] L]

Waste at most
O(JN) slots



Max space amp = O(/N) + O(/N) = O(JN)

HEEN
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Max space amp = O(/N)
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Challenges: How to grow blocks to meet these properties?



Max space amp = O(/N)

HEEN
L L] L]

Challenges: How to grow blocks to meet these properties”?

Inferring which block contains which array offset?



Multiple levels
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vl O

lv| 1

lv] 2

vl 3

vl 4

In every pair of subsequent levels k and k+1

Size of arrays doubles at level k

D # arrays doubles at level k+1
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lvl i contains 21K72]1 blocks, each with 21K/2] slots



lvl i contains 2LK21 blocks, each with 2/K21 s|ots
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lvl i contains 2LK21 blocks, each with 2/K21 s|ots

# levels: log2 N

D # data blocks?



lvl i contains 2LK21 blocks, each with 2/K21 s|ots

# levels: log2 N
vl O D # data blocks? Most are here

vi1 G

vi2 [T ][T1

s ETTTILTTT

via [ TTTI[TTTILLTITILTTT]
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D # data blocks? 2llogN/2]
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lvl i contains 2LK21 blocks, each with 2/K21 s|ots

# levels: logz N
D # data blocks? O(JN)

------- . # slots in largest block? 2I/K/2]



vl O

lv| 1

lv] 2

vl 3

vl 4

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

# levels: log2 N

D # data blocks? O(JN)

------- . # slots in largest block? O(JN)



vl O

lv| 1

lv] 2

vl 3

vl 4

lvl i contains 2LK21 blocks, each with 2/K21 s|ots

# levels: log2 N

D # data blocks? O(JN)

[I] D:] At most O(JN)

: 3 unused space



vl O

lv| 1

lv] 2

vl 3

vl 4

Directory with O(/N) pointers

AlBICIDIEIFIGIRL I [
[A]
(B[
el ] bl ] At most O(yN)
........................... unused space
Illl FL [ [ ] P



vl O

lv| 1

lv] 2

vl 3

vl 4

At most half O({JN) unused space

AIB[CID[E[FIG[H[1TJ]...[ ]

[C[ ] O] 1: At most O(N)

unused space
Illl F[ T [ |: P



vl O

lv| 1

lv] 2

vl 3

vl 4

AIB[CID[E[FIG[H[1TJ]...[ ]

:'3 Max extra space: O(JN) + O(/N)

= O(J/N)



vl O

lv| 1

lv] 2

vl 3

vl 4

AIB[CID[E[FIG[H[1TJ]...[ ]

z ; Max space-amp: = O(1+1/JN
Bl | P P (1+1/JN)



vl O

lv| 1

lv] 2

vl 3

vl 4

How to access slot in O(1) time?

AIB[CID[E[FIG[H[1TJ]...[ ]
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get(12)

[ TTTTTTT]

>———o

..... (1) # blocks to skip In
AL ; smaller levels - tricky



get(12)

[ TTTTTTT]

E)] (1) (2) # blocks to skip In
------- - target level
’






(3) # slots to sklp within
target block



How to do steps 1 to 3
super fast?



fo O



Identify target level k



2]

Identify target level k
k=|logz(i + 1)]



Identify target level k
k=1log2(12 + 1)] =3



2]

ldentify target level k
k=1logz(i + 1) ]|

[

slow
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ldentify target level k
k= lloga(i + 1)]

"

Type casting - also slow



2]

ldentify target level k
kK= 1loga(i + 1) ]

Insight?



[W ldentify target level k

2]

k= lloga(i + 1) ]

Insight: log2 amounts to finding
Index of most significant digit



2]

ldentify target level k
k=1logz(i + 1)]

= sizeof(i) - 1 - clz(i+1)



2]

ldentify target level k
k=1logz(i + 1)]

= sizeof(i) - 1 - clz(i+1)

1
Integer
length In bits



ldentify target level k
k=1logz(i + 1)]

= sizeof(i) - 1 - clz(i+1)
.t

Specialized CPU
command for #
leading zeros



get(00001100)

2]

ldentify target level k
k=1logz(i + 1)]

= sizeof(i) - 1 - clz(i+1)

8 -1-4=3



ldentify target level k
k=1logz(i + 1)]

= sizeof(i) - 1 - clz(i+1)

~1 ns rather than =7ns



# blocks in levels 0 to k-1?



# blocks In levels 0 to k-1

= 21k2] . (2 + (k mod 2)) - 2



# blocks In levels 0 to k-1

— 2lk2] - (2 + (k mod 2)) - 2

Original paper gets this
wrong, fixed credit to
Hyuhng Min



# blocks In levels 0 to k-1

=2k2] . (2 + (k mod 2)) - 2
1
Intuition: number of new

data blocks grows every
other level



[TTTITTTITIT] #blocksinlevels 0 to k-1

E)] (1) = 21k2] . (2 + (k mod 2)) - 2
AL : Level k # Blocks
RN ES: : 0
................ 1 1
Bojaot R
.............. A
[7]8]o10] [ri[12[13[14]: - M
6 14
7 22




# blocks In levels 0 to k-1

= 21k2] - (2 + (k mod 2)) - 2

=

Integer division is slow



# blocks In levels 0 to k-1

= 2Lk2] . (2 + (k mod 2)) - 2

T

Power Is slow



2]

# blocks In levels 0 to k-1

— 2lk2] - (2 + (k mod 2)) - 2

How to speed up?



# blocks In levels 0 to k-1

_ 21k2] . (2 4+ (k mod 2)) - 2

Insight: division &

1= 3 exponentiation by 2 can be done

with bitwise operators



2]

# blocks In levels 0 to k-1

— 2lk2] - (2 + (k mod 2)) - 2

= 21k2] . (2 4 (k & 1)) - 2

T

“and” with 1




# blocks In levels 0 to k-1

— 2lk2] - (2 + (k mod 2)) - 2

= 2(k>>1) . (2 4+ (k & 1)) - 2

T

Shift by 1 bit to right



[TTTITTTITIT] #blocksinlevels 0 to k-1

2]

— 2lk2] - (2 + (k mod 2)) - 2

=(1<<(k>1)- 2+(k&1))-2

T

Shift to left



[TTTITTTITIT] #blocksinlevels 0 to k-1

2]

— 2lk2] - (2 + (k mod 2)) - 2

=(1<<(k>1)-2+Kk&1))-2

~0.6 ns rather than =10ns



....... , Lesson: design structure such that
(12 any log, division, or exponentiation is

eiiiiiiiiil.. ~ base 2 to support fast CPU operations



(3) slot offset in target block



# block # slot
0..01 bits x bits y

| + 1 bit representation



get(00001100)

# block # slot
0..01 bits x bits y

| + 1 bit representation



00001100 + 1

¢
:E)]': (1) (2
# block # slot
' 0..01 bits x bits y



00001101

¢
:E)]': (1) (2
# block # slot
' 0..01 bits x bits y



¢
:@E (1) (2
# block # slot
0..01 bits X bits y
"""" 00001 1 01



¢
:’@E (1) (2)
# block # slot
0..01 bits X bits y
....................... | k/2 | [k/2]



— 09—
:E)]': (1) (2
# block # slot
0..01 bits x bits y
....................... K>> 1 (k+1)>>1



# block # slot
0..01 bits X bits y

r >

K>> 1 (K+1)>>"1

Slot offset  ((i+1) & ((1 <<y) - 1)




# block # slot
0..01 bits x bits y

o S ———

K>> 1 (K+1)>>1

Slot offset ((iI+1) & ((1 << y) - 1)

........................... Mask to only
IBBI .EE.. keep vy least

significant bits



SESSEEEN " Dlock #slor
0..01 bits x bits y

G >——9

K>> 1 (K+1)>>1

Slot offset ((i+1) & (1 << y) - 1)
Block offset ((i+1) >>vy) & ((1 << x) - 1)




SEESEEEE fDlock #slor
0..01 bits x bits y

>G>

K>> 1 (K+1)>>1

Slot offset ((i+1) & (1 << y) - 1)
Block offset ((i+1)>>y) & ((1 << Xx) - 1)

IBBI [12[13[14]: . !
........................... Shlft to least
significant bits

position




SESSEEEN " Dlock #slor
0..01 bits x bits y

G >——9

K>> 1 (K+1)>>1

Slot offset ((i+1) & (1 << y) - 1)
Block offset ((i+1) >>vy) & ((1 << x) - 1)

IBEII 1[12[13[14]: !
........................... Mask to Only
keep x least

significant bits




# block # slot
0..01 bits x bits y

>G>

K>> 1 (K+1)>>1

Slot offset ((i+1) & (1 << y) - 1)
Block offset ((i+1) >>vy) & ((1 << x) - 1)

(3) We’re done :)



Write-amp Space-amp Read-amp

iIndirection O(1+N-0-5) O(1+N-0-5) O(1)



Indirection

No indirection

Write-amp

O(1+N-0-5)

Space-amp

O(1+N-0-5)

O(G)

Read-amp

O(1)



Indirection

No indirection
G>¢

No Indirection
G<o

Write-amp

O(1+N-0-5)

Space-amp

O(1+N-0-5)

G to G+1

Read-amp

O(1)



Thank you :)



