
Niv Dayan - CSC2525 Research Topics in Database Management

Storing Sorted Strings
(RocksDB, Delta Compression, LZ77, Huffman Coding, etc)

Last Week - Succinct Sets

Last Week - Succinct Sets

N integers out
of Universe U

Last Week - Succinct Sets

N integers out
of Universe U

Sorting Enables
Compression

Sorting Enables Compression

Elias FanoDelta Compression
w. Golomb Codes

Sorting Enables Compression

Elias Fano

Encode distances between
adjacent sorted integers

Delta Compression
w. Golomb Codes

Sorting Enables Compression

Encode distances between
adjacent sorted integers

Elias Fano

Encode common prefixes of
adjacent integers implicitly

Delta Compression
w. Golomb Codes

Assumptions from Last Time

Assumptions from Last Time

unique
integer keys

Bounded
Universe No duplicates

Assumptions from Last Time

Bounded
Universe No duplicates

What if none of these hold?

unique
integer keys

Today’s Assumptions

Unbounded
Universe

Today’s Assumptions

Unbounded
Universe

Var-length
String keys

Today’s Assumptions

Unbounded
Universe

Duplicates
allowed

Var-length
String keys

Key-value pairs

Unbounded
Universe

Duplicates
allowed

Var-length
String keys

Key-value pairs

Unbounded
Universe

Duplicates
allowed

Var-length
String keys

Static

Unbounded
Universe

Duplicates
allowed

Var-length
String keys

Key-value pairs Static Storage

Block device interface

0 Max

Reading/writing from storage at units of less than ≈4KB does not pay off.

Block device interface

0 Max
1 KB read

Reading/writing from storage at units of less than ≈4KB does not pay off.

0 Max
1 KB read

Disk: head movement
dominates

0 Max
1 KB read

Disk: head movement
dominates

Minimum page read is
4 KB

Reading/writing from storage at units of less than ≈4KB does not pay off.

organize data into 4KB pages. Read/write at 4KB granularity

0 Max

4 KB Pages …

Reads Writes

0 Max
…

How to store sorted static var-length kv-pairs in these pages?

Application?

Application - LSM-Trees

Application - LSM-Trees

RocksDB

Cassandra

HBase

…

Couchbase

1 3 6

2 4 5

1 2 3 4 5 6

buffer merge-sort

Only sequential writes

buffer

level of kv-pairs
Inserts

buffer

0

1

level

sort & flush run

buffer

0

1

level

sort & flush sorted runs…

buffer0

1

2

sort-merge

buffer0

1

2

3

level

exponentially increasing capacities

level 1

level 2

level 3

one I/O per run

buffer0

1

2

3

level

newest to
oldest

get(X)

buffer0

1

2

3

level

binary searching

X

get(X)

buffer
fence

pointers one access per run

get(X)

2

3

level

1 3 6 7 10 12 15 19 201 7 15

fence pointers Run

Page 0 Page 1 Page 2

2

3

level

1 3 6 7 10 12 15 19 201 7 15

First key of each page

2

3

level

1 3 6 7 10 12 15 19 201 7 15

binary search
First key of each page

2

3

level

1 3 6 7 10 12 15 19 201 7 15

one storage access

2

3

level

1 3 6 7 10 12 15 19 201 7 15

Compress

Why Compress Data in Storage?

Why Compress Data in Storage?

Space
efficiency Bandwidth Improve

SSD lifetime

Downsides?

Space
efficiency Bandwidth Improve

SSD lifetime

Why Compress Data in Storage?

Compression Downsides

CPU for
de/compression

Compression Downsides

CPU for

de/compression

But since data is in
storage, I/O rather than
CPU is the bottleneck

Case Study

RocksDB Combines many
Techniques

Used in Practice

LZ77 Dictionary
training

Huffman
coding

Page
Sizing

Delta
Encoding Restarts Page Hash

Index

Agenda

How to pack var-length entries into a page?

Empty

FullFull

Next entry

4KB

Page Sizing

As long as next entry fits, add it

Empty

FullFull

Next entry

But what if it’s too big?

Empty

FullFull

Next entry

Option 1: Seal page and waste space

Empty

FullFull

Empty

FullFull

Empty

FullFull

Empty

FullFull

pages are aligned on SSD. Each can be read with one I/O

waste some space

Option 1: Seal page and waste space

FullFull

Option 2: allow variable-sized pages

Next entry Empty

FullFull

block_size_deviation: 10%

Next entry

Option 2: allow variable-sized pages

Empty

FullFull

If Empty < 10% Next entry

FullFull

If Empty < 10%

Next entry

Seal. Smaller
than 4KB

FullFull

If Empty < 10%

Next entry

Start new
page

Seal. Smaller
than 4KB

FullFull

If Empty > 10% Next entry

FullFull

If Empty > 10%

Let the page be larger than 4KB

Next entry

Hence, RocksDB pages are ≈4KB but exhibit variation

SSD pages

LSM pages

no wasted space
no SSD page alignment -> possibly 2x read-amplification

SSD pages

LSM pages

Hence, RocksDB pages are ≈4KB but exhibit variation

SSD pages

LSM pages

But suppose compression rate is X (e.g., X=4)

SSD pages

LSM pages

But suppose compression rate is X (e.g., X=4)

only read 1 + 1/X pages on avg. as some DB
pages are fully contained in SSD pages

LZ77 Dictionary
training

Huffman
coding

Page
Sizing

Delta
Encoding Restarts Page Hash

Index

Agenda

level

Delta Encoding

Remove common prefixes of adjacent sorted keys

level

Delta Encoding

Remove common prefixes of adjacent sorted keys

Now with strings as opposed to integers :)

level

AAABCD AAABCEF AAABD

level

5 bytes
match

AAABCD AAABCEF AAABD

level

4 bytes
match

AAABCD AAABCEF AAABD

level

How to encode common prefixes?

AAABCD AAABCEF AAABD

level

For each key add two fields: shared_bytes S

AAABCD AAABCEF AAABD

unshared_bytes U

level

S U S U S UAAABCD AAABCEF AAABD

For each key add two fields: shared_bytes S
unshared_bytes U

0 6 5 2 4 1AAABCD AAABCEF AAABD

For each key add two fields: shared_bytes S
unshared_bytes U

level

Remove redundant prefixes

0 6 5 2 4 1AAABCD AAABCEF AAABD

EF D0 6 5 2 4 1AAABCD

Any issues?

D0 6 4 1AAABCD EF5 2

How to encode the un/shared fields?

D0 6 4 1AAABCD EF5 2

How to encode the un/shared fields?
Fixed-sized integer (L bytes)?

D0 6 4 1AAABCD EF5 2

2L bytes per key & can encode keys of at most 2L bytes

How to encode the un/shared fields?
Fixed-sized integer (L bytes)?

D0 6 4 1AAABCD EF5 2

Wasteful for small keys Restrictive

EF D0 6 5 2 4 1AAABCD

2L bytes per key & can encode keys of at most 2L bytes

How to encode the un/shared fields?
Fixed-sized integer (L bytes)?

Solutions?

D0 6 4 1AAABCD

Wasteful for small keys Restrictive

2L bytes per key & can encode keys of at most 2L bytes

How to encode the un/shared fields?
Fixed-sized integer (L bytes)?

EF5 2

level

Varint

7 bits1 bit

1 byte

level

(Is there another
byte?)

Data

1 byte

7 bits1 bit

Continuation

Varint

level

E.g., encode 123, in binary: 1111011
7 bits1 bit

level

7 bits1 bit
1111011E.g., encode 123, in binary: 0

E.g., encode 1234, in binary: 10011010010

7 bits1 bit
1111011E.g., encode 123, in binary: 0

7 bits1 bit 7 bits1 bit

Split into 7 bit chunks

7 bits1 bit
1111011E.g., encode 123, in binary:

E.g., encode 1234, in binary: 10100101001

0

Add padding

7 bits1 bit 7 bits1 bit

7 bits1 bit
1111011E.g., encode 123, in binary:

E.g., encode 1234, in binary: 000 10100101001

0

level

Add continuation bits

E.g., encode 123, in binary:

E.g., encode 1234, in binary:
7 bits1 bit 7 bits1 bit

1010010

7 bits1 bit
1111011

10010001 0

0

level

E.g., encode 123, in binary:

E.g., encode 1234, in binary:
7 bits1 bit 7 bits1 bit

1010010

7 bits1 bit
1111011

10010001 0

0

Lose 1/8 space but get flexibility

level

Back to the example:

0 6 5 2 4 1AAABCD EF D

level

Back to the example:

0 6 5 2 4 1AAABCD EF D

Encode as varints

level

1 varint byte represents count of up to 27 = 128

0 6 5 2 4 1AAABCD EF D

Encode as varints

level

1 varint byte represents count of up to 27 = 128

0 6 5 2 4 1AAABCD EF D

Keys are typically smaller than 128 bytes

level

0 6 5 2 4 1AAABCD EF D

Typically 1 byte each

1 varint byte represents count of up to 27 = 128

Keys are typically smaller than 128 bytes

level

0 6 5 2 4 1AAABCD EF D

Typically 1 byte each

1 varint byte represents count of up to 27 = 128

Keys are typically smaller than 128 bytes

But can still support keys larger than 128 bytes :)

KV-Pair Encoding

shared_bytes unshared_bytes value_bytes key_delta value

varint varint varint char[unshared_bytes] char[value_bytes]

shared_bytes unshared_bytes value_bytes key_delta value

varint varint varint char[unshared_bytes] char[value_bytes]

Focused on these so far

KV-Pair Encoding

Entire Key-Value Pair Encoding

shared_bytes unshared_bytes value_bytes key_delta value

varint varint varint char[unshared_bytes] char[value_bytes]

Value size also encoded as varint, but not delta encoded

Entire Key-Value Pair Encoding

Any performance issues?

shared_bytes unshared_bytes value_bytes key_delta value

varint varint varint char[unshared_bytes] char[value_bytes]

potentially decode whole page to answer a query

<Key, value><Key, value> <Key, value><Key, value> <Key, value>…

4KB page

<Key, value>…

Suppose a query targets the
last KV-pair in a 4 KB page

<Key, value><Key, value> <Key, value><Key, value>

potentially decode whole page to answer a query

We must potentially decode an entire block to answer a query

<Key, value><Key, value><Key, value><Key, value> <Key, value>…

Suppose a query targets the
last KV-pair in a 4 KB page

Must traverse and decode whole
page due to delta encoding

Buffer pool

….

4KB4KB4KB 4KB 4KB

As we maintain this page format in the buffer pool, it may
significantly slow down queries to hot keys

Buffer pool

….

4KB4KB4KB 4KB 4KB

As we maintain this page format in the buffer pool, it may
significantly slow down queries to hot keys

Solutions?

LZ77 Dictionary
training

Huffman
coding

Page
Sizing

Delta
Encoding Restarts Page Hash

Index

Restarts

4 KB page

Restart 1 Restart 2 Restart 3
Restart
Pointers

Restarts

K entries per restart.

Restart 1 Restart 2 Restart 3
Restart

Pointers

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

Restarts

Restarts are variable-length (if entries are var-length)

Restart 1 Restart 2 Restart 3
Restart

Pointers

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

K entries per restart.

Restarts

Restart 1 Restart 2 Restart 3
Restart

Pointers

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

Restart delta encoding in each of these

Restarts

end page contains pointers to start of each restart

Restart 1 Restart 2 Restart 3
Restart

Pointers

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

Pointer 1
Pointer 2
Pointer 3

Restarts

Can binary search first key in each restart

Restart 1 Restart 2 Restart 3
Restart

Pointers

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

Pointer 1
Pointer 2
Pointer 3

Restart 1 Restart 2 Restart 3
Restart

Pointers

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

Pointer 1
Pointer 2
Pointer 3

Faster queries (don’t have to traverse/decode the whole page)

Restart 1 Restart 2 Restart 3
Restart

Pointers

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

Pointer 1
Pointer 2
Pointer 3

More space (for restarting delta encodings and storing pointers)

Faster queries (don’t have to traverse/decode the whole page)

Restart 1 Restart 2 Restart 3
Restart

Pointers

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

<Key, value>
<Key, value>

<Key, value>
…

Pointer 1
Pointer 2
Pointer 3

Faster queries (don’t have to traverse/decode the whole page)

Can we be even faster?

LZ77 Dictionary
training

Huffman
coding

Page
Sizing

Delta
Encoding Restarts Page Hash

Index

Restart 1 … Restart K Restart

Pointers

Pointer 1

…

Pointer K

Page Hash
Index

Restart 1 … Restart K Restart

Pointers

Pointer 1

…

Pointer K

Page Hash
Index

Tries to map each key to
its restart pointer offset

Page Hash Index

Page Hash Index

8 bit width (identifies at
most 256 restarts)

As many slots as
entries in page

8 bit width (identifies at
most 256 restarts)

Empty
Empty
Empty
Empty

Empty

Empty
…

Empty
Empty
Empty
Empty

Empty
…

Key X in
Restart 0 hash(X) 0

Empty
Empty

2
Empty

Empty
…

Key Y in
Restart 2 hash(Y)

0

Empty
Empty

Empty

Empty
…

Key Z in
Restart 5 hash(Z) collision :)

2

0

Empty
Empty

Empty

Cancelled

Empty
…

hash(Z)

collision cancels a slot
(using special symbol, e.g., 11111111)

Key Z in
Restart 5

2

Cancelledquery(Z) hash(Z) Binary search
as usual

Empty
Empty

Empty

Empty
…

collision cancels a slot

(using special symbol, e.g., 11111111)

2

Cancelled

query(Y) hash(Y) 2 jump to restart 2

Cancelled

Non-cancelled slots guarantee we
jump to the correct location

2 jump to restart 2query(Y) hash(Y)

Cancelled

What’s the likelihood to hit a non-cancelled slot?

2 jump to restart 2query(Y) hash(Y)

With 1 entry
Cancelled

Empty
How many buckets are

What’s the likelihood to hit a non-cancelled slot?

?

?
?

With 1 entry
Cancelled

Empty

Poisson distribution

How many buckets are

λ=1

With 1 entry
Cancelled

Empty

Poisson distribution

P(λ, 0)
P(λ, 1)

1 - P(λ, 0) - P(λ, 1)
How many buckets are

λ=1

With 1 entry
Cancelled

How many buckets are:
Empty

Poisson distribution

e-1 = 0.37

1 - 2 · e-1 = 0.26

λ=1

e-1 = 0.37

With 1 entry
Cancelled

How many buckets are:
Empty e-1 = 0.37

1 - 2 · e-1 = 0.26
e-1 = 0.37

What’s the likelihood of query to existing key hitting a non-cancelled slot?

P(With 1 entry) + P(cancelled)

Cancelled

How many buckets are:
Empty e-1 = 0.37

1 - 2 · e-1 = 0.26
e-1 = 0.37

P(With 1 entry)

With 1 entry

What’s the likelihood of query to existing key hitting a non-cancelled slot?

P(With 1 entry) + P(cancelled)

Cancelled

How many buckets are:
Empty e-1 = 0.37

1 - 2 · e-1 = 0.26
e-1 = 0.37

P(With 1 entry)

With 1 entry

0.37 + 0.26
0.37

= = 0.59

What’s the likelihood of query to existing key hitting a non-cancelled slot?

P(With 1 entry) + P(cancelled)

Cancelled

How many buckets are:
Empty e-1 = 0.37

1 - 2 · e-1 = 0.26
e-1 = 0.37

Challenge: how to improve this?

P(With 1 entry)

With 1 entry

0.37 + 0.26
0.37

= = 0.59

LZ77 Dictionary
training

Huffman
coding

Page
Sizing

Delta
Encoding Restarts Page Hash

Index

LZ77 - Lempel-Ziv 1977

Abraham Lempel Jacob Ziv
1936 - 2023

Technion
1931 - 2023

Technion

LZ77 - Lempel-Ziv 1977

data values aren’t sorted but
often contain redundancy

delta encoding is only
for sorted keys.

<K1, Hello> <K2, Hell> <K3, Jello>

K1 Hello K2 Hell K3 Jello

View whole page as string of characters

Slide a window over input string and eliminates repeating substrings

K1 Hello K2 Hell K3 Jello

H e l l o H e l l J e l l o

Principles

H e l l o H e l l J e l l o

Principles

Consider a substring

H e l l o H e l l J e l l o

[substring we have seen] [new character]

Any substring can be viewed as:

H e l l o H e l l J e l l o

Any substring can be viewed as:

[substring we have seen] [new character]

H e l l o H e l l J e l l o

Any substring can be viewed as:

[substring we have seen] [new character]

H e l l o H e l l J e l l o

Represent as triplet

<4,3,o>

Backwards
offset Length New

Char

H e l l o H e l l J e l l o

Is this a good idea if data doesn’t have much redundancy?

<4,3,o>

Backwards

offset Length New

Char

H e l l o H e l l J e l l o

Transform string into sequence of triplets

<4,3,o>

Backwards

offset Length New

Char

H e l l o H e l l J e l l o

Full Example

Example

Search

Lookahead

H e l l o H e l l J e l l o

Example

Search

Lookahead

Overlap initially, but usually consecutive

H e l l o H e l l J e l l o

Search

Lookahead

Initialize pointer to start of string

H e l l o H e l l J e l l o

H e l l o H e l l J e l l o

<0,0,H>

Backwards
offset Length New

Char

Search

Lookahead

For every substring we haven’t seen yet, generate triplet

H e l l o H e l l J e l l o

<0,0,H>

Backwards
offset Length New

Char

Search

Lookahead

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<0,0,l>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<1,1,><0,0,l>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<1,1,o><0,0,l>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<1,1,o> <5,1,><0,0,l>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<5,2,><0,0,l><1,1,o>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<5,3,><0,0,l><1,1,o>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<5,4,><0,0,l><1,1,o>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<5,4,J><0,0,l><1,1,o>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<5,4,J> <4,1,><0,0,l><1,1,o>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<4,2,><5,4,J><0,0,l><1,1,o>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<4,3,><5,4,J><0,0,l><1,1,o>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<4,3,o><5,4,J><0,0,l><1,1,o>

H e l l o H e l l J e l l o

<0,0,e><0,0,H>

Search

Lookahead

<4,3,o> <0,0,end><5,4,J><0,0,l><1,1,o>

H e l l o H e l l J e l l o

<0,0,e><0,0,H> <0,0,end> We’re done :)<4,3,o><5,4,J><0,0,l><1,1,o>

H e l l o H e l l J e l l o

<0,0,e><0,0,H> <0,0,end><4,3,o><5,4,J><0,0,l><1,1,o>

What trade-off do the window sizes control? :)

Search

Lookahead

H e l l o H e l l J e l l o

<0,0,e><0,0,H> <0,0,end><4,3,o><5,4,J><0,0,l><1,1,o>

What trade-off do the window sizes control? :)

Search

Lookahead

Larger window -> slower compression & higher compression rate

H e l l o H e l l J e l l o

<0,0,e><0,0,H> <0,0,end><4,3,o><5,4,J><0,0,l><1,1,o>

Should they ever be differently sized? :)

Search

Lookahead

H e l l o H e l l J e l l o

<0,0,e><0,0,H> <0,0,end><4,3,o><5,4,J><0,0,l><1,1,o>

Should they ever be differently sized? :)

Search

Lookahead

Perhaps to look backwards more at the expense of compressing smaller units

LZ77: Basis of most modern compression libraries

Snappy LZ4 ZSTD

<backwards offset, length, char>

How big is each field in an LZ77 triplet?

<backwards offset, length, char>

log2(search buffer size)

How big is each field in an LZ77 triplet?

<backwards offset, length, char>

log2(lookahead buffer size)

<backwards offset, length, char>

?

<backwards offset, length, char>

1 byte for ASCII

1-4 bytes for UTF-8

What’s the runtime with respect to:

The number of characters N

H e l l o H e l l J e l l o

Search window
size W

What’s the runtime with respect to:

The number of characters N

H e l l o H e l l J e l l o

O(N · W)

Search window

size W

Trade-off governed by window size

O(N · W)
CPUCompression

rate

LZ77 Dictionary
training

Huffman
coding

Page
Sizing

Delta
Encoding Restarts Page Hash

Index

Consider the following compressed sequence

<0,0,A><0,0,C> <5,4,A><5,4,B><1,4,A><0,0,B> …

<0,0,A><0,0,C> <5,4,A><5,4,B><1,4,A><0,0,B>

There may be some patterns in the backwards offset

…

<0,0,A><0,0,C> <5,4,A><5,4,B><1,4,A><0,0,B>

Some lengths may repeat more frequently

0 4

…

<0,0,A><0,0,C> <5,4,A><5,4,B><1,4,A><0,0,B>

Some characters may repeat more than others

…

<0,0,A><0,0,C> <5,4,A><5,4,B><1,4,A><0,0,B> …

Can we assign smaller codes to more frequent symbols?

A - 1
B - 01
C - 00

Example:

Huffman Coding (HF)

Frequent symbols Smaller codes

Huffman Coding (HF)

Frequent symbols

Infrequent symbols

Smaller codes

Longer codes

Huffman Coding (HF)

Frequent symbols

Infrequent symbols

Smaller codes

Goal: encode each symbol succinctly using the symbol’s relative frequency

Longer codes

Huffman Coding (HF)

Frequent symbols

Infrequent symbols

In contrast, LZ77 removes repeating substrings

Smaller codes

Goal: encode each symbol succinctly using the symbol’s relative frequency

Longer codes

Huffman Coding

B C A A C C B A B B C A D E C A A C B C B B C A B A B A A D

Huffman Coding

Character:

Histogram: 10 9 8 2 1

A B C D E

B C A A C C B A B B C A D E C A A C B C B B C A B A B A A D

Huffman Coding

A - 10 B - 9

Let each character be a subtree

C - 8 D - 2 E - 1

C - 8 D - 2 E - 1

Connect sub-trees with lowest cumulative frequency

3

A - 10 B - 9

A - 10 B - 9

C - 8

D - 2 E - 1

Connect sub-trees with lowest cumulative frequency

3

11

A - 10 B - 9

C - 8

D - 2 E - 1

3

11

19

A - 10 B - 9 C - 8

D - 2 E - 1

3

1119

30

Remove frequency labels

A B C

D E

Label edges with zeros and ones

A B C

D E

01

01 01

01

The code for each entry is given by its path from the room

A B C

D E

01

01 01

01

The code for each entry is given by its path from the room

A - 11 B - 10 C - 01

D - 001 E - 000

01

01 01

01

A - 11
B - 10
C - 01
D - 001
E - 000

Final codes

A - 11
B - 10
C - 01
D - 001
E - 000

Prefix code - no code is a prefix of another code

A - 11
B - 10
C - 01
D - 001
E - 000

Prefix code - no code is a prefix of another code
Allows to uniquely decode a bit string

A - 11
B - 10
C - 01
D - 001
E - 000

More frequent symbols are assigned smaller codes

A - 11
B - 10
C - 01
D - 001
E - 000

More frequent symbols are assigned smaller codes
Optimal avg. code length

A - 11
B - 10
C - 01
D - 001
E - 000

Construction Algorithm & Runtime?

A - 11
B - 10
C - 01
D - 001
E - 000

O(s · log2(s))

Algorithm: Use priority queue to always give two
sub-trees with lowest frequency

Runtime: For S symbols

<0,0,A><0,0,C> <5,4,A><5,4,B><1,4,A><0,0,B> …

Back to LZ77

Suppose we now have triplets

…

A - 1
B - 01
C - 00

Back to LZ77

Suppose we now have triplets

And we have Huffman codes

<0,0,A><0,0,C> <5,4,A><5,4,B><1,4,A><0,0,B>

…

A - 1
B - 01
C - 00

Plug the Huffman codes into the triplets

<0,0,A><0,0,C> <5,4,A><5,4,B><1,4,A><0,0,B>

…

Plug the Huffman codes into the triplets

<0,0,1><0,0,00> <5,4,1><5,4,01><1,4,1><0,0,01>

…<0,0,1><0,0,00> <5,4,1><5,4,01><1,4,1><0,0,01>

Improves compression rate

Degrades de/compression speed. Why?

…<0,0,1><0,0,00> <5,4,1><5,4,01><1,4,1><0,0,01>

Triplets are not byte-aligned
Building the Huffman tree takes time

Decompressing each code requires a Huffman tree search

Improves compression rate

Degrades de/compression speed. Why?

LZ77 Dictionary
Training

Huffman
coding

Page
Sizing

Delta
Encoding Restarts Page Hash

Index

Dictionary Training

<K1, Hello> <K2, Hell> <K3, Jello>

LZ77 + Huffman eliminates redundancy in a single page

<K4, Hello> <K5, Hell> <K6, Jello>

But the same redundancy may exist across multiple adjacent pages

<K1, Hello> <K2, Hell> <K3, Jello>

Dictionary Training

<K4, Hello> <K5, Hell> <K6, Jello>

But the same redundancy may exist across multiple adjacent pages

How can we eliminate redundancy across pages to improve the compression rate?

<K1, Hello> <K2, Hell> <K3, Jello>

Example:

H e l l o H e l l J e l l o

<0,0,e><0,0,H> <0,0,end><4,3,o><5,4,J><1,1,o><0,0,l>

H e l l o H e l l J e l l o

<0,0,e><0,0,H> <0,0,end><4,3,o><5,4,J><1,1,o><0,0,l>

Example:

H e l l o H e l l J e l l o

<0,0,e><0,0,H> <0,0,end><4,3,o><5,4,J><1,1,o><0,0,l>

H e l l o H e l l J e l l o

<14,14,end>

Fewer triplets if we could compress relative to redundancy we have already seen

Capture redundancy in a dictionary

Dictionary

Page Z… Page YPage X …… …

Compress each page using LZ77 with respect to dictionary

Dictionary Page Z

Compress each page using LZ77 with respect to dictionary

Dictionary Page Z

Needs to fit in the L1 or L2 caches

Dictionary Scopes

Dict

…

…

…

Dictionary Scopes

We can have one dictionary for the whole LSM-tree

SST SST

…

…

…

Dictionary Scopes

We can have one dictionary for the whole LSM-tree
Problem: data distribution vary across/within levels and change over time

SST SST

Dict

…

…

…

Dictionary Scopes

We can have one dictionary for the whole LSM-tree
Problem: data distribution vary across/within levels and change over time

Updating the dictionary is problematic for decompression

SST SST

Dict

Dict …

…

Dict …

Dictionary Scopes

We can also have a dictionary per level

SST SST

Dict

Dict …

…

Dict …

Train new dictionary during compaction

Compaction

Dictionary Scopes

We can also have a dictionary per level

SST SST

Dict

Dict …

…

Dict …

But the data distribution per level may also vary

SST SST

Dict

…

RocksDB trains dictionary per SST, which is a spatial partition of a level

SST SST

Dict 1 Dict 2

Blocks

How is the dictionary trained?

SST

Sample All K-mers

Count-min

Frequent k-mers

(approximate

histogram)

LZ77 Dictionary
training

Huffman
coding

Page
Sizing

Delta
Encoding Restarts Page Hash

Index

Thank you!

