Y/

Storing Sorted String

(RocksDB, Delta Compression, LZ77, Huffman Coding, etc)

WA

25 Research Topics in D tabaé‘e' Management
\ - ' .

\
'

B

Niv Dayan - CS

\

\ T ’

Last Week - Succinct Sets

ast Week - Succinct Sets

N integers out
of Universe U

ast Week - Succinct Sets

N integers out Sorting Enables
of Universe U Compression

Sorting Enables Compression

Delta Compression

w. Golomb Codes Elias Fano

oV O

:'@":

C

Sorting Enables Compression

Delta Compression

w. Golomb Codes Elias Fano

O\ O

C v

Encode distances between
adjacent sorted integers

Sorting Enables Compression

Delta Compression

w. Golomb Codes Elias Fano
oV O
’,{L I
C Vv
Encode distances between Encode common prefixes of

adjacent sorted integers adjacent integers implicitly

Assumptions from Last Time

Assumptions from Last Time

Bounded unique

Universe integer keys No duplicates

Assumptions from Last Time

Bounded unique

Universe integer keys No duplicates

What if none of these hold?

Today’s Assumptions

Unbounded
Universe

Today’s Assumptions

Unbounded Var-length
Universe String keys

Today’s Assumptions

Unbounded Var-length Duplicates
Universe String keys allowed

L4
iy

Unbounded Var-length Duplicates
Universe String keys allowed

i
& T

Key-value pairs

Unbounded
Universe

Key-value pairs

Var-length
String keys

&5
&

Static

Duplicates
allowed

i i
i i

Unbounded
Universe

Key-value pairs

Var-length
String keys

&5
&

Static

Duplicates
allowed

i i
i i

Storage

Max

Block device Iinterface

9

Reading/writing from storage at units of less than =4KB does not pay off.

1 KB read
0 — Max

Block device interface

9

Reading/writing from storage at units of less than =4KB does not pay off.

1 KB read
0 — Max

Disk: head movement o
dominates g

Reading/writing from storage at units of less than =4KB does not pay off.

1 KB read
0 — Max

Disk: head movement o
dominates k4

Minimum page read is
4 KB

organize data into 4KB pages. Read/write at 4KB granularity

Reads T l Writes
0 Max

9

How to store sorted static var-length kv-pairs in these pages?

-

Application?

Application - LSM-Trees

Application - LSM-Trees

Cassandra
HBase

Couchbase

merge-sort

Only sequential writes a

B —
=
==

\
\
\
= — . i
i
N [
/
1
y/
/
/
,
,
/4
’

Inserts
of kv-pairs
v

o B

sort & flush }

-

sort & flush sorted runs

bufter —

sort-merge

o B

exponentially increasing capacities

\

oldest

newestto

.------------ -;-------------------

fence
pomters

On e
Q

fence pointers Run

Page O Page 1 Page 2

17 15 { 3 6 7 10 12 15 19 20

First key of each page

1 7 15 1 3 6 7 10 12 15 19 20

First key of each page
binary search

17 15 { 3 6 7 10 12 15 19 20

one storage access

——

N
)
;\\\.\
>A
1

{7 15 { 3 6 7 10 12 15 19 20

Compress

{7 15 1 3 6 7 10 12 15 19 20

Why Compress Data in Storage?

Why Compress Data in Storage”

-« e &)

S~

Space Bandwidth Improve
efficiency SSD lifetime

Why Compress Data in Storage?

* = D

S~

Space Bandwidth Improve
efficiency SSD lifetime

Downsides?

Compression Downsides

CPU for
de/compression

Compression Downsides

CPU for But since data is in
de/compression storage, I/0 rather than
CPU is the bottleneck

RocksDB

Case Study

Combines many
Techniques

(95

Used in Practice

L7 7

Delta
Encoding

Agenda

Huffman
coding

Restarts

Dictionary
training

Page Hash

Index

4

Page Sizing
How to pack var-length entries into a page?

Full

ety O > ey

4KB

Nexteiy O — |__Empy

As long as next entry fits, add it

Noxtontry | —> [Empy

But what if it’s too big?

Option 1: Seal page and waste space

Full

Option 1: Seal page and waste space

ﬁ pages are aligned on SSD. Each can be read with one I/0

IQ waste some space

Option 2: allow variable-sized pages

Full

oxtentry | > [empy

Option 2: allow variable-sized pages
block_size_deviation: 10%

Full

oxtentry | > [empy

Full

Seal. Smaller
than 4KB

Full

Next entry

If Empty < 10%

Start new Seal. Smaller
page than 4KB

Full

Next entry —>

If Empty < 10%

Full

Let the page be larger than 4KB

If Empty > 10%

Next entry

Hence, RocksDB pages are =<4KB but exhibit variation

SSD pages

Hence, RocksDB pages are =4KB but exhibit variation

[6 no wasted space
[@ no SSD page alignment -> possibly 2x read-amplification

LSM pages [:m

SSD pages

But suppose compression rate is X (e.g., X=4)

LSM pages Ulm

SSD pages

LSM pages

SSD pages

But suppose compression rate is X (e.g., X=4)

only read 1 + 1/X pages on avg. as some DB
pages are fully contained in SSD pages

LA

L7 7

Delta
Encoding

Agenda

Huffman
coding

Restarts

Dictionary
training

Page Hash

Index

4

Delta Encoding

Remove common prefixes of adjacent sorted keys

VAN

Delta Encoding

Remove common prefixes of adjacent sorted keys

VAN

Now with strings as opposed to integers :)

AAABCD AAABCEF AAABD

AAABCD AAABCEF AAABD

5 bytes
match

AAABCD AAABCEF AAABD

4 bytes
match

How to encode common prefixes?

AAABCD AAABCEF AAABD

For each key add two fields: shared_bytes S
unshared_bytes U

AAABCD AAABCEF AAABD

For each key add two fields: shared_bytes S
unshared_bytes U

S U AAABCD S U AAABCEF S U AAABD

For each key add two fields: shared_bytes S
unshared_bytes U

0 6 AAABCD 5 2 AAABCEF 4 1 AAABD

0 6 AAABCD 5 2 AAABCEF 4 1 AAABD

~N

Remove redundant prefixes

0 6 AAABCD

5 2 EF

4

1

D

0 6 AAABCD

Any issues?

5 2 EF

4

1

D

How to encode the un/shared fields?

0 6 AAABCD 5 2 EF

4

1

D

How to encode the un/shared fields?
Fixed-sized integer (L bytes)?

0 6 AAABCD 5 2 EF

4

1

D

How to encode the un/shared fields?
Fixed-sized integer (L bytes)?
2L bytes per key & can encode keys of at most 2L bytes

I\

0 6 AAABCD 5 2 EF 4 1 D

How to encode the un/shared fields?
Fixed-sized integer (L bytes)?
2L bytes per key & can encode keys of at most 2L bytes

I I

Wasteful for small keys Restrictive

0 6 AAABCD 5 2 EF 4 1 D

Solutions?

How to encode the un/shared fields?
Fixed-sized integer (L bytes)?
2L bytes per key & can encode keys of at most 2L bytes

I I

Wasteful for small keys Restrictive

0 6 AAABCD 5 2 EF 4 1 D

Varint

1 byte
> —eo——@
1 bit 7 bits

Varint

1 byte
*-—o— @
1 bit 7 bits

Continuation Data

(Is there another
byte?)

E.Q., encode 123, in binary: 1111011
*-—o—@

1 bit 7 bits

E.Q., encode 123, in binary: 0O 1111011
*-—o——@

1 bit 7 bits

E.g., encode 123, in binary: 0 1111011
*-—o——@

1 bit 7 bits

E.g., encode 1234, in binary: 10011010010

E.g., encode 123, in binary: 0 1111011
*-—o——@

1 bit 7 bits

E.g., encode 1234, in binary: 1001 1010010
> —eo —o—o——9
1bit 7Dbits 1bit 7 bits

Split into 7 bit chunks

E.g., encode 123, in binary: 0 1111011
*-—o——@

1 bit 7 bits

E.g., encode 1234, in binary: 0001001 1010010
*~—o ——— oo ————»
1bit 7bits 1Dbit 7 Dbits

Add padding

E.g., encode 123, in binary: 0 1111011
*-—o——@

1 bit 7 bits

E.g., encode 1234, in binary: 1 0001001 O 1010010
——o ————o o @
1bit 7bits 1Dbit 7 bits

Add continuation bits

Lose 1/8 space but get flexibility

E.g., encode 123, in binary: 0 1111011
~— o @
1 bit 7 bits
E.Q., encode 1234, Iin binary: 1 0001001 O 1010010
> — —o—o——9

1bit 7bits 1bit 7 bits

Back to the example:

0 6 AAABCD 5 2 EF

4

1

D

Back to the example:

0 6 AAABCD 5 2 EF

Encode as varints

4

1

D

1 varint byte represents count of up to 27 =128

0 6 AAABCD 5 2 EF 4 1 D

Encode as varints

1 varint byte represents count of up to 27 = 128

Keys are typically smaller than 128 bytes

0 6 AAABCD 5 2 EF 4 1 D

1 varint byte represents count of up to 27 = 128
Keys are typically smaller than 128 bytes
Typically 1 byte each

/\

0 6 AAABCD 5 2 EF 4 1 D

1 varint byte represents count of up to 27 = 128
Keys are typically smaller than 128 bytes
Typically 1 byte each

/\

0 6 AAABCD 5 2 EF 4 1 D

But can still support keys larger than 128 bytes :)

KV-Pair Encoding

shared_bytes unshared_bytes value_bytes key _delta value

varint varint varint char[unshared_bytes] char|value_bytes]

KV-Pair Encoding

shared_bytes unshared_bytes value_bytes key _delta value

varint varint varint char[unshared_bytes] char|value_bytes]

Focused on these so far

Entire Key-Value Pair Encoding

shared_bytes unshared_bytes value_bytes key_delta value

varint varint varint char[unshared_bytes] char|[value_bytes]

Value size also encoded as varint, but not delta encoded

Entire Key-Value Pair Encoding

shared_bytes unshared_bytes value_bytes key_delta value

varint varint varint char[unshared_bytes] char|value_bytes]

Any performance issues?

potentially decode whole page to answer a query

potentially decode whole page to answer a query

<Key, value><Key, value> <Key, value> <Key, value> .. <Key, value>

Suppose a query targets the
last KV-pair in a 4 KB page

We must potentially decode an entire block to answer a query

<Key, value><Key, value><Key, value><Key, value> <Key, value>

T

Must traverse and decode whole Suppose a query targets the
page due to delta encoding last KV-pair in a 4 KB page

Buffer pool

4KB 4KB 4KB 4KB 4KB

As we maintain this page format in the buffer pool, it may
significantly slow down queries to hot keys

Buffer pool

4KB 4KB 4KB 4KB

As we maintain this page format in the buffer pool, it may
significantly slow down queries to hot keys

Solutions?

L7 7

Delta
Encoding

Huffman
coding

Restarts

Dictionary
training

Page Hash

Index

4

Restarts

Restart
Restart 1 Restart 2 Restart 3 Pointers

4 KB page

Restarts

Restart

Restart 1 Restart 2 Restart 3 Pointers
<Key, value> <Key, value> <Key, value>
<Key, value> <Key, value> <Key, value>
<Key, value> <Key, value> <Key, value>

K entries per restart.

Restarts

Restart 1 Restart 2 Restart 3
<Key, value> <Key, value> <Key, value>
<Key, value> <Key, value> <Key, value>
<Key, value> <Key, value> <Key, value>

K entries per restart.
Restarts are variable-length (if entries are var-length)

Restart
Pointers

Restarts

Restart 1 Restart 2 Restart 3
<Key, value> <Key, value> <Key, value>
<Key, value> <Key, value> <Key, value>
<Key, value> <Key, value> <Key, value>

Restart delta encoding in each of these

Restart
Pointers

Restarts

Restart

Restart 1 Restart 2 Restart 3 Pointers
<Key, value> <Key, value> <Key, value> Pointer 1
<Key, value> <Key, value> <Key, value> Pointer 2
Pointer 3

<Key, value> <Key, value> <Key, value>

__/

end page contains pointers to start of each restart

Restarts

Restart 1 Restart 2 Restart 3
<Key, value> <Key, value> <Key, value>
<Key, value> <Key, value> <Key, value>
<Key, value> <Key, value> <Key, value>

Restart
Pointers

Pointer 1
Pointer 2
Pointer 3

_\—/

Can binary search first key in each restart

Restart

Restart 1 Restart 2 Restart 3 Pointers
<Key, value> <Key, value> <Key, value> Pointer 1
<Key, value> <Key, value> <Key, value> Pointer 2

Pointer 3
<Key, value> <Key, value> <Key, value>

|ﬂ7 Faster queries (don’t have to traverse/decode the whole page)

Restart

Restart 1 Restart 2 Restart 3 Pointers
<Key, value> <Key, value> <Key, value> Pointer 1
<Key, value> <Key, value> <Key, value> Pointer 2

Pointer 3
<Key, value> <Key, value> <Key, value>

|ﬂ7 Faster queries (don’t have to traverse/decode the whole page)

@ More space (for restarting delta encodings and storing pointers)

Restart

Restart 1 Restart 2 Restart 3 Pointers
<Key, value> <Key, value> <Key, value> Pointer 1
<Key, value> <Key, value> <Key, value> Pointer 2

Pointer 3
<Key, value> <Key, value> <Key, value>

|ﬂ7 Faster queries (don’t have to traverse/decode the whole page)

Can we be even faster?

L7 7

Delta
Encoding

Huffman
coding

Restarts

Dictionary
training

Page Hash

IndeXx

4

Restart Page Hash
Pointers Index

Pointer 1
Pointer K

Restart 1 Restart K

Restart 1 Restart K Restart Page Hash
Pointers Index

Pointer 1

Pointer K

IS SSIZr

Tries to map each key to
its restart pointer offset

Page Hash Index

Page Hash Index

8 bit width (identifies at

most 256 restarts)
e

8 bit width (identifies at
most 256 restarts)
9

As many slots as
entries In page

Key X in
Restart0 ~—> hash(X) —

Key Y In
Restart2 ~—* hash(Y) —

Key Z in
Restart5 - hash(Z)

collision :)

collision cancels a slot
(using special symbol, e.g., 11111111)

Empty
Empty

Empty

Key Z in
Cancelled

Empty

collision cancels a slot

(using special symbol, e.g., 11111111)

query(Z) — hash(/)

—

Empty
Empty

Empty

Cancelled

Empty

—

Binary search
as usual

query(Y) — hash(Y) — —» jump to restart 2

Cancelled

Non-cancelled slots guarantee we
jump to the correct location

query(Y) =—» hash(Y) —» —» jump to restart 2

Cancelled

What’s the likelihood to hit a non-cancelled slot?

query(Y) =—» hash(Y) —» —» jump to restart 2

Cancelled

What's the likelihood to hit a non-cancelled slot?

How many buckets are With 1 entry | ?

Cancelled |?

/I

Poisson distribution
A=1

Empty

How many buckets are

With 1 entry

Cancelled

/I

Poisson distribution

A=1
/ Empty P(A, O)
How many buckets are < With 1 entry P(A, 1)

Cancelled 1-P(A, 0) - P(A, 1)

Poisson distribution

A=1
Empty e1=0.37
How many buckets are: With 1 entry e1=0.37

Cancelled 1-2-e1=0.26

What'’s the likelihood of query to existing key hitting a non-cancelled slot?

Empty e1=0.37
How many buckets are: With 1 entry e1=0.37

Cancelled 1-2-e1=0.26

What’s the likelihood of query to existing key hitting a non-cancelled slot?

P(With 1 entry)
P(With 1 entry) + P(cancelled)

Empty e1=0.37
How many buckets are: With 1 entry e1=0.37

Cancelled 1-2-e1=0.26

What’s the likelihood of query to existing key hitting a non-cancelled slot?

P(With 1 entry) 0.37 _ 050
P(With 1 entry) + P(cancelled) =~ 0.37 + 0.26 |
Empty e1=0.37
How many buckets are: With 1 entry e1=0.37

Cancelled 1-2-e1=0.26

Challenge: how to improve this?

P(With 1 entry) 0.37 _ 059
P(With 1 entry) + P(cancelled) =~ 0.37 + 0.26 |
Empty e1=0.37
How many buckets are: With 1 entry e1=0.37

Cancelled 1-2-e1=0.26

Delta
Encoding

Huffman
coding

Restarts

Dictionary
training

Page Hash

Index

4

LZ77 - Lempel-Ziv 1977

Abraham Lempel Jacob Ziv

1936 - 2023 1931 - 2023
Technion Technion

LZ77 - Lempel-Ziv 1977

delta encoding is only data values aren’t sorted but
for sorted keys. often contain redundancy

RS

\\Il/

\&

K1 Hello K2 Hell K3 Jello

View whole page as string of characters

Slide a window over input string and eliminates repeating substrings

K1 Hello K2 Hell K3 Jello

Principles

HelloHelllJello

Principles

Consider a substring

HelloHelllJello

*——o

Any substring can be viewed as:

[substring we have seen| [hew character]

HelloHelllJello

——o

Any substring can be viewed as:

[substring we have seen] [new character]

\

*—e

HelloHellJello

——o

Any substring can be viewed as:

[substring we have seen] [new character]

Vo

*—e

HelloHelllJello

——o

Represent as triplet

*—o -9
HelloHelllJello
*———9
<4,3,0>

Backwards New

offset Length Char

Is this a good idea if data doesn’t have much redundancy?

*—o e
HelloHelllello
> ——e
<4.3,0>
Backwards ength New
offset Char

Transform string into sequence of triplets

*—o e
HelloHelllello
> ——e
<4.3,0>
Backwards ength New
offset Char

Full Example

>——

HelloHelllello

Example

Lookahead
A

Search
A

HelloHelllello

Example

Lookahead
A
Search

A
HelloHelllello

Overlap initially, but usually consecutive

Lookahead
A

Search
A

HelloHelllello

t

Initialize pointer to start of string

For every substring we haven’t seen yet, generate triplet

Lookahead
A

Search
A

HelloHelllJello

t

<0,0,H>
Backwards Length New

offset Char

Lookahead
A

Search
A

HelloHelllJello

t

<0,0,H>

7 TN

Backwards | enath New
offset 9 Char

Lookahead
A

Search
A

HelloHelllello

t

<0,0,H> <0,0,e>

Lookahead
A

Search
A

HelloHelllello

t

<0,0,H><0,0,e> <0,0,l>

Lookahead
A

Search
A

HelloHelllello

t

<0,0,H><0,0,e><0,0,|> <1,1>

Lookahead
A

Search
A

HelloHelllello

t

<0,0,H><0,0,e><0,0,|> <1,1,0>

| ookahead
—
Search

A
HelloHelllJello

t

<0,0,H><0,0,e><0,0,I><1,1,0> <5,1,>

| ookahead
—
Search

A
HelloHellJello

t

<0,0,H><0,0,e><0,0,I><1,1,0> <5,2,>

| ookahead
—
Search

A
HelloHelllello

t

<0,0,H><0,0,e><0,0,I><1,1,0> <5,3,>

| ookahead
—
Search

A
HelloHelllello

t

<0,0,H><0,0,e><0,0,I><1,1,0> <5,4,>

| ookahead
—
Search

A
HelloHelllello

t

<0,0,H><0,0,e><0,0,I><1,1,0> <5,4,J>

Lookahead
A

Search
A

HelloHellJello

t

<0,0,H><0,0,e><0,0,I><1,1,0><5,4,J> <4,1,>

Lookahead
A

Search
A

HelloHelllello

t

<0,0,H><0,0,e><0,0,I><1,1,0><5,4,J> <4,2,>

Lookahead
A

Search
A

HelloHelllello

t

<0,0,H><0,0,e><0,0,I><1,1,0><5,4,J> <4,3,>

Lookahead
A

Search
A

HelloHelllello

t

<0,0,H><0,0,e><0,0,I><1,1,0><5,4,J> <4,3,0>

Lookahead
A

Search
A

HelloHelllello

t

<0,0,H><0,0,e><0,0,I><1,1,0><5,4,J><4,3,0> <0,0,end>

HelloHelllello

<0,0,H><0,0,e><0,0,I><1,1,0><5,4,J><4,3,0><0,0,end> We’re done)

Lookahead
—
Search

A
HelloHelllello

<0,0,H><0,0,e><0,0,I><1,1,0><5,4,J><4,3,0><0,0,end>

What trade-off do the window sizes control? :)

Lookahead
—
Search

A
HelloHelllello

<0,0,H><0,0,e><0,0,I><1,1,0><5,4,J><4,3,0><0,0,end>

What trade-off do the window sizes control? :)

Larger window -> slower compression & higher compression rate

Should they ever be differently sized? :)

Lookahead
—
Search

A
HelloHelllello

<0,0,H><0,0,e><0,0,I><1,1,0><5,4,J><4,3,0><0,0,end>

Should they ever be differently sized? :)

Perhaps to look backwards more at the expense of compressing smaller units

Lookahead
—
Search
-

HelloHelllello

<0,0,H><0,0,e><0,0,I><1,1,0><5,4,J><4,3,0><0,0,end>

LZ77: Basis of most modern compression libraries

Snappy LZ4 ZSTD

How big is each field in an LZ77 triplet?

<backwards offset, length, char>

How big is each field in an LZ77 triplet?

<backwards offset, length, char>

T

logz(search buffer size)

<backwards offset, length, char>

T

log2(lookahead buffer size)

<backwards offset, length, char>

T

?

<backwards offset, length, char>

T

1 byte for ASCII
1-4 bytes for UTF-8

What’s the runtime with respect to:

Search window

size W
> —————9

HelloHelllJello

The number of characters N

What’s the runtime with respect to:

Search window

size W
> —————9

HelloHelllJello

 —— e e
The number of characters N

O(N - W)

Trade-off governed by window size

Compression CPU
rate O(N - W)

L7 7

Delta
Encoding

Huffman
coding

Restarts

Dictionary
training

Page Hash

Index

4

Consider the following compressed sequence

<0,0,C><0,0,A><0,0,B><1,4,A><5,4B><5,4, A>

<0,0,C><0,0,A><0,0,B><1,4,A><5,4B><5,4 A>

\/

There may be some patterns in the backwards offset

<0,0,C><0,0,A><0,0,B><1,4A><54B><5,4A>
0 4

Some lengths may repeat more frequently

<0,0,C><0,0,A><0,0,B><1,4,A><5,4,B><5,4,A>

~_]

Some characters may repeat more than others

Can we assign smaller codes to more frequent symbols?

<0,0,C><0,0,A><0,0,B><1,4,A><5,4,B><5,4,A>

Example: A -1
B - 01
C-00

Huffman Coding (HF)

Frequent symbols —» Smaller codes

Huffman Coding (HF)

Frequent symbols —» Smaller codes

Infrequent symbols — Longer codes

Huffman Coding (HF)

Frequent symbols —» Smaller codes

Infrequent symbols — Longer codes

Goal: encode each symbol succinctly using the symbol’s relative frequency

Huffman Coding (HF)

Frequent symbols —» Smaller codes

Infrequent symbols — Longer codes

Goal: encode each symbol succinctly using the symbol’s relative frequency

In contrast, LZ77 removes repeating substrings

Huffman Coding

BCAACCBABBCADECAACBCBBCABABAAD

Huffman Coding

BCAACCBABBCADECAACBCBBCABABAAD

Character: A B C D E

Histogram: 10 9 8 2 1

A-10

Huffman Coding

Let each character be a subtree

B-9 C-8 D -2

E-1

Connect sub-trees with lowest cumulative frequency

3

N\

A-10 B-9 C-8 D -2 E-1

Connect sub-trees with lowest cumulative frequency

11

/N

C-8 3

N\

A-10 B-9 D -2 E -1

A-10

19

B-9

11

C-8

D -2

E -1

A-10

19

B-9

30

C-8

11

D -2

E -1

Remove frequency labels

Label edges with zeros and ones

The code for each entry is given by its path from the room

The code for each entry is given by its path from the room

A-11 B -10 C - 01

D - 001 E - 000

Final codes

A-11
B-10
C - 01
D - 001
E - 000

Prefix code - no code Is a prefix of another code

A-11
B-10
C - 01
D - 001
E - 000

Prefix code - no code is a prefix of another code

Allows to uniquely decode a bit string

A-11
B-10
C - 01
D - 001
E - 000

A-11 <+—

B-10 <&— More frequent symbols are assighed smaller codes
C-01 <—

D - 001

E - 000

A-11
B-10
C - 01
D - 001
E - 000

More frequent symbols are assigned smaller codes

Optimal avg. code length

A-11
B-10
C - 01
D - 001
E - 000

Construction Algorithm & Runtime?

A-11
Algorithm: Use priority queue to always give two

B-10 sub-trees with lowest frequency
C - 01
D - 001 Runtime: O(s - logz(s)) For S symbols

E - 000

Back to LZ77

Suppose we now have triplets

<0,0,C><0,0,A><0,0,B><1,4,A><5,4B><5,4, A>

Back to LZ77

Suppose we now have triplets

<0,0,C><0,0,A><0,0,B><1,4,A><5,4B><5,4, A>

A-1
B - 01
C-00

And we have Huffman codes

Plug the Huffman codes into the triplets

<0,0,C><0,0,A><0,0,B><1,4A><5,4,B><5,4 A>

A-1
B - 01
C-00

Plug the Huffman codes into the triplets

<0,0,00><0,0,1><0,0,01><1,4,1><5,4,01><5,4 1>

<0,0,00><0,0,1><0,0,01><1,4,1><5,4,01><5,4 1>

ﬁ Improves compression rate

E@ Degrades de/compression speed. Why?

<0,0,00><0,0,1><0,0,01><1,4,1><5,4,01><5,4 1>

ﬁ Improves compression rate

E@ Degrades de/compression speed. Why?

Building the Huffman tree takes time
Triplets are not byte-alighed
Decompressing each code requires a Huffman tree search

L7 7

Delta
Encoding

Huffman
coding

Restarts

Dictionary
Training

Page Hash

Index

4

Dictionary Training

LZ77 + Huffman eliminates redundancy in a single page

<K1, Hello> <K2, Hell> <K3, Jello>

Dictionary Training

But the same redundancy may exist across multiple adjacent pages

<K1, Hello> <K2, Hell> <K3, Jello> <K4, Hello> <K5, Hell> <Ko, Jello>

But the same redundancy may exist across multiple adjacent pages

<K1, Hello> <K2, Hell> <K3, Jello> <K4, Hello> <K5, Hell> <Ko, Jello>

How can we eliminate redundancy across pages to improve the compression rate?

Example:

HelloHelllello HelloHelllello

<0,0,H>=<0,0,e><0,0,I><1,1,0><5,4,J><4,3,0><0,0,end><0,0,H>=<0,0,e><0,0,I><1,1,0><5,4,J><4,3,0><0,0,end>

Example:

HelloHelllello HelloHelllello

<0,0,H>=<0,0,e><0,0,I><1,1,0><5,4,J>=<4,3,0><0,0,end> <14,14,end>

"~

Fewer triplets if we could compress relative to redundancy we have already seen

Capture redundancy in a dictionary

- - - -

Compress each page using LZ77 with respect to dictionary

Compress each page using LZ77 with respect to dictionary

t

Needs to fit in the L1 or L2 caches

Dictionary Scopes

Dictionary Scopes

We can have one dictionary for the whole LSM-tree

@ < (T 1]
I B G R

Dictionary Scopes

We can have one dictionary for the whole LSM-tree

Problem: data distribution vary across/within levels and change over time

@ < (T 1]
I B G R

Dictionary Scopes

We can have one dictionary for the whole LSM-tree
Problem: data distribution vary across/within levels and change over time

Updating the dictionary is problematic for decompression

@ < (T 1]
I B G R

Dictionary Scopes

We can also have a dictionary per level

ssT| ... [ssT
s T 1.

Dictionary Scopes

We can also have a dictionary per level

Ga - ()

Compaction _

Train new dictionary during compaction

But the data distribution per level may also vary

ssT| ... [ssT
s T 1.

RocksDB trains dictionary per SST, which is a spatial partition of a level

Dict T Dict 2

| 1

How is the dictionary trained?

Sample All K-mers Frequent k-mers

(approximate
histogram)

L7 7

Delta
Encoding

Huffman
coding

Restarts

Dictionary
training

Page Hash

Index

4

Thank you!

