Tutorial on Circular Logs &
Cuckoo Filters

Database System Technology

Cuckoo Filter

false positive rate: ~ 2-M+3
Memory accesses for |
positive query |
Memory accesses for 5
negative query
Insertion cost O(1)
Deletes? 1.5

Storing Payloads? Yes

Bloom filter

-M - In(2)

M - In(2)

N/A

N/A

Cuckoo Filter

m:

A AN
<o [N S | | G N

Cuckoo Filter

1
1
¥ (OOEwC) -)

Index size =N * (P + K) " a
N = data size
P = pointer size = O(logz N/B)
—> K = key size = Q(logz2 N)
a = collision resolution overheads =0.8 — =0.95

Our goal was
reducing this

1
<o R | IS | N G

Index size =N * (P + M)/ a

N = data size
P = pointer size = O(logz N/B)
— K = key size = Q(log2 N) —» M bits / entry
a = collision resolution overheads =0.8 — =0.95

Our goal was
reducing this

1
<o R | IS | N G

Implication of Using a Filter on Insertions/Deletes/Updates

1
<o R | IS | N G

Implication of Using a Filter on Insertions/Deletes/Updates

Suppose we insert key Y that has a matching fingerprint to existing key X (FPx=FPy)

insert(Y)

1
=
1
¥ (O . O

Implication of Using a Filter on Insertions/Deletes/Updates

Suppose we insert key Y that has a matching fingerprint to existing key X

insert(Y)

|

1
: |

" ((DEw) -

Need to set up pointerto Y

Implication of Using a Filter on Insertions/Deletes/Updates

Suppose we insert key Y that has a matching fingerprint to existing key X

insert(Y)
Due to fingerprint match,

we orphan entry X l

m:

\> l

Need to set up pointerto Y

Implication of Using a Filter on Insertions/Deletes/Updates

Suppose we insert key Y that has a matching fingerprint to existing key X

insert(Y)
Due to fingerprint match,

we orphan entry X l

m:

\> l

Orphaned

Need to set up pointerto Y

Implication of Using a Filter on Insertions/Deletes/Updates

Suppose we insert key Y that has a matching fingerprint to existing key X

To safeguard against orphaning, we must issue read-before-write

insert(Y)

!
m:

l Check key l

" (COew] -

Need to set up pointerto Y

Implication of Using a Filter on Insertions/Deletes/Updates

Suppose we insert key Y that has a matching fingerprint to existing key X

To safeguard against orphaning, we must issue read-before-write

4

N T—

Updates/
Deletes:

Insert:

Gets:
Scan:

Memory
(bits / entry)

Circular Log w.
Cuckoo Filter

]
W i — W

O(1+2-M+3) reads & O(GC/B) writes

O(2-M+3) read & O(GC/B) writes
O(1+2-M+3)
O(N/B)

O(log2(N/B) + M))

(excluding checkpointing)

Basic LSM-tree w. Circular Log w.

Monkey Cuckoo Filter
0)
T 000
my COC OC C—_JCO 3

ggg?:_y O(log2(N/P) / B) reads & writes O(1+2-M+3) reads & O(GC/B) writes

Insert: O(log2(N/P) / B) reads & writes O(2-M+3) read & O(GC/B) writes
Gets: O(1+2-M" In@2)) O(1+2-M+3)

Scan: O(log2 N/P + S/B) O(N/B)

Memory 5 k/B + M) O(log2(N/B) + M))

(bits / entry)

Basic LSM-tree w. Circular Log w.

Monkey Cuckoo Filter
0)
T 000
my COC OC C—_JCO 3

ggg?:_y O(log2(N/P) / B) reads & writes O(1+2-M+3) reads & O(GC/B) writes

Insert: O(log2(N/P) / B) reads & writes O(2-M+3) read & O(GC/B) writes
Gets: O(1+2-M*In(2)) O(1+2-M+3)

Scan: O(log2 N/P + S/B) O(N/B)

Memory

(bits / entry) O(K/B + M) O(log2(N/B) + M))

Recovery Swift Longer

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must

expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.

ldeally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

Cuckoo filter

0
—>

Growth

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must

expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.

ldeally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

Migrate entries

Cuckoo filter Create new filter of double the size

<
= Log

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must

expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.

ldeally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

Challenge: we do not have the full keys to rehash. We only have fingerprints.

Migrate entries

Cuckoo filter Create new filter of double the size

<

Log

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.
ldeally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

Challenge: we do not have the full keys to rehash. We only have fingerprints.

Approach: view fingerprint and first bucket address as components of the same hash

address fingerprint
*—o—o

hash(X) = 01001 001110

- Jjc]

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.
ldeally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

Challenge: we do not have the full keys to rehash. We only have fingerprints.

Approach: view fingerprint and first bucket address as components of the same hash

address fingerprint
*—o—o

hash(X) = 01001 001110

o) (]

01001

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must

expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.

ldeally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

To migrate, transfer one bit from fingerprint to address

address fingerprint

*——o——o

hash(X) = 01001 001110
S

| oot1110 01110
01001 010010

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must

expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.

ldeally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

To migrate, transfer one bit from fingerprint to address

address fingerprint Can still find in constant time in resulting filter
———o—+o

hash(X) = 010010 01110 /\

| oot1110 01110
01001 010010

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must

expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.

ldeally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

Complication: in a cuckoo filter an entry can be in one of two buckets,
the canonical address and the alternative address. Only the canonical
address should be viewed as a part of the original hash.

address fingerprint

> ———0—— o Alternative Canonical . .
hash(X) = 010010 01110 address - address *°n hifingerprint)
L (001110

01001

4—— (Canonical or alternative address?

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must

expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.

ldeally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

Complication: in a cuckoo filter an entry can be in one of two buckets,
the canonical address and the alternative address. Only the canonical
address should be viewed as a part of the original hash.

Solution: add a bit to indicate whether the current address is canonical
or alternative. If alternative, switch to canonical via XOR.

l

0 001110

01001

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.
|deally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

Every time we double the data size, we lose one bit from O(2 -M+3+logN))
all fingerprints. Hence, the false positive rate increases:

/’_\
001110 01110

Longer Shorter
fingerprint fingerprint

Question 1 - Expanding Cuckoo Filters

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm.
|deally, this algorithm should maintain constant time performance and not have to read
any data from storage. Comment on any trade-offs or downsides.

Every time we double the data size, we lose one bit from O(N - 2-M:3)
all fingerprints. Hence, the false positive rate increases:

/’_\
001110 01110

Longer Shorter
fingerprint fingerprint

Question 2 - Cuckoo Filter for LSM-tree

As we have seen, the expected worst case query cost over Bloom filters for a
basic LSM-tree is O(L + M), where L is the number of levels and M is the number
of bits per entry. (Assume only unique entries in the tree).
(A) How can we employ a cuckoo filter to achieve constant time?
(B) What are the implications on the false positive rate and memory footprint?
Any downsides compared to plain Bloom filters?

data Filters # hash accesses

Question 2 - Cuckoo Filter for LSM-tree

As we have seen, the expected worst case query cost over Bloom filters for a
basic LSM-tree is O(L + M), where L is the number of levels and M is the number
of bits per entry. (Assume only unique entries in the tree).
(A) How can we employ a cuckoo filter to achieve constant time?
(B) What are the implications on the false positive rate and memory footprint?
Any downsides compared to plain Bloom filters?

Level data Unified Cuckoo filter
1
2 X
3 Y

<Fingerprint, level>

Question 2 - Cuckoo Filter for LSM-tree

As we have seen, the expected worst case query cost over Bloom filters for a
basic LSM-tree is O(L + M), where L is the number of levels and M is the number
of bits per entry. (Assume only unique entries in the tree).
(A) How can we employ a cuckoo filter to achieve constant time?
(B) What are the implications on the false positive rate and memory footprint?
Any downsides compared to plain Bloom filters?

Unified Cuckoo filter

Filter accesses: O(1)
False positive rate: O(2-M+3)

Memory (bits/entry) O(M + logz(L))

Construction: O(L) <M bit Fingerprint, level>

Question 2 - Cuckoo Filter for LSM-tree

As we have seen, the expected worst case query cost over Bloom filters for a
basic LSM-tree is O(L + M), where L is the number of levels and M is the number
of bits per entry. (Assume only unique entries in the tree).
(A) How can we employ a cuckoo filter to achieve constant time?
(B) What are the implications on the false positive rate and memory footprint?
Any downsides compared to plain Bloom filters?

Unified Cuckoo filter With Bloom filters
Filter accesses: O(1) O(M+L)
False positive rate: O(2-M+3) O(L - 2-M-In(2))
Memory (bits/entry) OM + logao(L)) O(M)

Construction: O(L) O(L - M)

Question 2 - Cuckoo Filter for LSM-tree

As we have seen, the expected worst case query cost over Bloom filters for a
basic LSM-tree is O(L + M), where L is the number of levels and M is the number
of bits per entry. (Assume only unique entries in the tree).
(A) How can we employ a cuckoo filter to achieve constant time?
(B) What are the implications on the false positive rate and memory footprint?
Any downsides compared to plain Bloom filters?

Unified Cuckoo filter With Bloom filters Monkey
Filter accesses: O(1) O(M+L) O(M+L)
False positive rate: O(2-M+3) O(L - 2-M-In(2)) O(2-M-In(2))
Memory (bits/entry) O(M + logzo(L)) O(M) O(M)
Construction: O(L) O(L - M) O(L - (L + M))

(This memory analysis here only account for the filters and not the tence pointers (internal nodes) being stored in memory)

Question 3 - Hot/Cold Data Separation

Consider a circular log where the physical capacity consists of 70% static data
(never updated), 10% hot data, and 20% over-provisioning.
(A) Estimate a lower bound and upper bound for write-amplification
assuming no hot/cold data separation.
(B) Estimate write-amplification assuming perfect hot/cold data separation.

Invalid data

Cold data
Hot data

SR St
OoON

Write-amp

O N B O O

Garbage-Collection Write-Amplification

—

0.2 04 0.6 0.8
logical data size / physical capacity

— -

—o—Real WA for Uniformly Random Writes
—o—Worst-Case Model

Uniformly Random Writes Model

|4 LP Worst case
1 —-L/P
{4 1 L/P _
> ' 1_7/p Uniformly random

L = logical data size

P = physical data size

Garbage-Collection Write-Amplification

[P 4T Worst case
1 —L/P P—-L
| L/P | L _
1 +— =1+ Uniformly random

L = logical data size

P = physical data size

Garbage-Collection Write-Amplification

L/P 4T . L Worst case
1 —L/P P—-L O
L/P 1 L 1 L :
=1+—- —1+—.— Uniformly random
1 —-L/P 2 P-L 2 0

L = logical data size
P = physical data size

O = Overprovisioned space (P-L)

Question 3 - Hot/Cold Data Separation

Consider a circular log where the physical capacity consists of 70% static data
(never updated), 10% hot data, and 20% over-provisioning.

(A) Estimate a lower bound and upper bound for write-amplification
assuming no hot/cold data separation.

Invalid data

1 +

Cold data Worst case WA:
Hot data

]
-+
D= Qf =

Q|

Uniformly random:

Question 3 - Hot/Cold Data Separation

Consider a circular log where the physical capacity consists of 70% static data
(never updated), 10% hot data, and 20% over-provisioning.

(A) Estimate a lower bound and upper bound for write-amplification
assuming no hot/cold data separation.

1 +

Let C=0.7, H=0.1 and 0=0.2 Worst case WA:

]
|
= Qe

Q|

Uniformly random:

Question 3 - Hot/Cold Data Separation

Consider a circular log where the physical capacity consists of 70% static data
(never updated), 10% hot data, and 20% over-provisioning.

(A) Estimate a lower bound and upper bound for write-amplification
assuming no hot/cold data separation.

Let C=0.7, H=0.1 and O=0.2 In worst-case, same amount of live
data in each area

Worst case WA: =] +—

Question 3 - Hot/Cold Data Separation

Consider a circular log where the physical capacity consists of 70% static data
(never updated), 10% hot data, and 20% over-provisioning.

(A) Estimate a lower bound and upper bound for write-amplification
assuming no hot/cold data separation.

Let C=0.7, H=0.1 and O=0.2 In worst-case, same amount of live
data In each area

L H+C

0.8
Upper bound: =14+— =1+ 1 + =

=5
0, 0, 0.2

Question 3 - Hot/Cold Data Separation

Consider a circular log where the physical capacity consists of 70% static data
(never updated), 10% hot data, and 20% over-provisioning.

(A) Estimate a lower bound and upper bound for write-amplification
assuming no hot/cold data separation.

Let C=0.7, H=0.1 and O=0.2 For lower bound, let’s use our uniform
workload distribution estimation.

Older data
D —

0 SDEDED - -

Garbage-collect Uniformly random: =1+

Question 3 - Hot/Cold Data Separation

Consider a circular log where the physical capacity consists of 70% static data
(never updated), 10% hot data, and 20% over-provisioning.

(A) Estimate a lower bound and upper bound for write-amplification
assuming no hot/cold data separation.

Let C=0.7, H=0.1 and O=0.2 For lower bound, let’s use our uniform
workload distribution estimation.

Older data
4.________________________.

It works as a Lower bound since static data
Garbage -collect can only increase fraction of valid data in
areas we garbage-collect

Question 3 - Hot/Cold Data Separation

Consider a circular log where the physical capacity consists of 70% static data
(never updated), 10% hot data, and 20% over-provisioning.

(A) Estimate a lower bound and upper bound for write-amplification
assuming no hot/cold data separation.

Let C=0.7, H=0.1 and O=0.2 For lower bound, let’s use our uniform
workload distribution estimation.

Older data
D —

" IO EE - e

Lower bound: =1+—- =1+—- =1 +

Question 3 - Hot/Cold Data Separation

Consider a circular log where the physical capacity consists of 70% static data
(never updated), 10% hot data, and 20% over-provisioning.

(A) Estimate a lower bound and upper bound for write-amplification assuming
no hot/cold data separation.
(B) Estimate write-amplification assuming perfect hot/cold data separation.

Let C=0.7, H=0.1 and 0=0.2 For hot/cold separation estimation, assume all
over-provisioned space is applied on hot areas.

Hot data + over—provisioning Cold data

Garbage-collect

Question 3 - Hot/Cold Data Separation

Consider a circular log where the physical capacity consists of 70% static data
(never updated), 10% hot data, and 20% over-provisioning.

(A) Estimate a lower bound and upper bound for write-amplification assuming
no hot/cold data separation.
(B) Estimate write-amplification assuming perfect hot/cold data separation.

Let C=0.7, H=0.1 and 0=0.2 For hot/cold separation estimation, assume all
over-provisioned space is applied on hot areas.

Hot data + over—provisioning Cold data

Estimation: =1 +

