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Memory accesses for 
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false positive rate:

Cuckoo Filter
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negative query 2 2
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Live bytes Buffer
Cuckoo Filter

<fingerprint, pointer>
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Live bytes Buffer
Cuckoo Filter

<FP(X), pointer>

<X, V>



…

Live bytes Buffer

Index size = N * (P + K) * α

Cuckoo Filter

Our goal was 
reducing this

N = data size

P = pointer size = O(log2 N/B)

K = key size = Ω(log2 N) 
α = collision resolution overheads  ≈0.8       ≈0.95
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Live bytes Buffer

Index size = N * (P + M) / α

Cuckoo Filter

Our goal was 
reducing this

N = data size

P = pointer size = O(log2 N/B)

K = key size = Ω(log2 N)          M bits / entry 
α = collision resolution overheads  ≈0.8       ≈0.95
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Live bytes Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

Cuckoo Filter



…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X (FPX=FPy) 

Live bytes
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Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X 

Live bytes

<Y, VY>

Need to set up pointer to Y



…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X 

Live bytes

<Y, VY>

Due to fingerprint match, 
we orphan entry X

Need to set up pointer to Y



…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X 

Live bytes

<Y, VY>

Due to fingerprint match, 
we orphan entry X

Orphaned

Need to set up pointer to Y



…

Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

insert(Y)

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X 

Live bytes

<Y, VY>

Check key

Need to set up pointer to Y

To safeguard against orphaning, we must issue read-before-write
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Buffer

Implication of Using a Filter on Insertions/Deletes/Updates 

<FPX, PX>

<X, VX>

Suppose we insert key Y that has a matching fingerprint to existing key X 

Live bytes

<Y, VY>

To safeguard against orphaning, we must issue read-before-write

<FPy, Py>



O(1+2-M+3) reads & O(GC/B) writes

O(1+2-M+3)

O(log2(N/B) + M))

O(N/B)

O(2-M+3) read & O(GC/B) writes

Updates/

Deletes:

Gets:

Memory

(bits / entry)

Circular Log w. 
Cuckoo Filter

Scan:

Insert:
 (excluding checkpointing)



Circular Log w. 
Cuckoo Filter

O(1+2-M+3) reads & O(GC/B) writes

O(1+2-M+3)

O(log2(N/B) + M))

O(N/B)

O(2-M+3) read & O(GC/B) writes

Updates/

Deletes:

Gets:

Memory

(bits / entry)

Scan:

Insert:

Basic LSM-tree w. 
Monkey

O(log2(N/P) / B) reads & writes 

O(1+2-M * ln(2))

O(K/B + M)

O(log2 N/P + S/B)

O(log2(N/P) / B) reads & writes 



Circular Log w. 
Cuckoo Filter

O(1+2-M+3) reads & O(GC/B) writes

O(1+2-M+3)

O(log2(N/B) + M))

O(N/B)

O(2-M+3) read & O(GC/B) writes

Updates/

Deletes:

Gets:

Memory

(bits / entry)

Scan:

Insert:

Basic LSM-tree w. 
Monkey

O(log2(N/P) / B) reads & writes 

O(1+2-M * ln(2))

O(K/B + M)

O(log2 N/P + S/B)

O(log2(N/P) / B) reads & writes 

Recovery Swift Longer



Cuckoo filter

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 

Question 1 - Expanding Cuckoo Filters

Growth

Log



Cuckoo filter

Question 1 - Expanding Cuckoo Filters

Create new filter of double the size

Migrate entries 

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 

Log



Cuckoo filter

Question 1 - Expanding Cuckoo Filters

Create new filter of double the size

Migrate entries 

Challenge: we do not have the full keys to rehash. We only have fingerprints. 

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 

Log



Question 1 - Expanding Cuckoo Filters

Challenge: we do not have the full keys to rehash. We only have fingerprints. 

Approach: view fingerprint and first bucket address as components of the same hash 

hash(X) = 01001 001110 
fingerprintaddress

00111001001

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

hash(X) = 01001 001110 

001110
01001

Challenge: we do not have the full keys to rehash. We only have fingerprints. 

Approach: view fingerprint and first bucket address as components of the same hash 

fingerprintaddress

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

hash(X) = 01001 001110 

001110
01001

To migrate, transfer one bit from fingerprint to address 

010010
01110

fingerprintaddress

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

hash(X) = 010010 01110 

To migrate, transfer one bit from fingerprint to address 

01110

Can still find in constant time in resulting filter 

001110
01001

fingerprintaddress

010010

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

Complication: in a cuckoo filter an entry can be in one of two buckets, 
the canonical address and the alternative address. Only the canonical 

address should be viewed as a part of the original hash.

Canonical or alternative address? 

address
Alternative = address

Canonical XOR h(fingerprint)

001110
01001

hash(X) = 010010 01110 
fingerprintaddress

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

Complication: in a cuckoo filter an entry can be in one of two buckets, 
the canonical address and the alternative address. Only the canonical 

address should be viewed as a part of the original hash.

001110
01001

0

Solution: add a bit to indicate whether the current address is canonical 
or alternative. If alternative, switch to canonical via XOR. 

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 



Question 1 - Expanding Cuckoo Filters

Every time we double the data size, we lose one bit from 
all fingerprints. Hence, the false positive rate increases:

01110001110
Longer 


fingerprint
Shorter 


fingerprint

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 

O( 2 -M + 3 + log(N) ) 



Question 1 - Expanding Cuckoo Filters

01110001110
Longer 


fingerprint
Shorter 


fingerprint

A Cuckoo filter is allocated with a fixed capacity. As a circular log grows, we must 
expand its cuckoo filter to map more data. Devise a Cuckoo filter expansion algorithm. 
Ideally, this algorithm should maintain constant time performance and not have to read 
any data from storage. Comment on any trade-offs or downsides. 

Every time we double the data size, we lose one bit from 
all fingerprints. Hence, the false positive rate increases:

O(N · 2-M+3)



As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

data Filters # hash accesses 

≈2
≈2

M · ln(2)



As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

data Unified Cuckoo filter

<Fingerprint, level>

FP(X), 2
FP(Y), 3

…
X

Y

Level

1
2
3



As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

<M bit Fingerprint, level>

FP(X), 2
FP(Y), 3

…

False positive rate:

Memory (bits/entry) O(M + log2(L)) 

Filter accesses:

Construction:

Unified Cuckoo filter

O(1) 

O(2-M+3) 

O(L)



As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

False positive rate:

Memory (bits/entry) O(M + log2(L)) 

Filter accesses:

Construction:

Unified Cuckoo filter With Bloom filters

O(M+L) 

O(L · 2-M · ln(2)) 

O(M) 

O(L · M) 

O(1) 

O(2-M+3) 

O(L)



As we have seen, the expected worst case query cost over Bloom filters for a 
basic LSM-tree is O(L + M), where L is the number of levels and M is the number 
of bits per entry. (Assume only unique entries in the tree).


(A) How can we employ a cuckoo filter to achieve constant time? 

(B) What are the implications on the false positive rate and memory footprint? 

Any downsides compared to plain Bloom filters? 

Question 2 - Cuckoo Filter for LSM-tree

Unified Cuckoo filter With Bloom filters

False positive rate:

Memory (bits/entry)

Filter accesses:

Construction:

Monkey

O(M+L) 

O(2-M · ln(2)) 

O(M) 

O(L · (L + M)) 

O(M + log2(L)) 

O(M+L) 

O(L · 2-M · ln(2)) 

O(M) 

O(L · M) 

O(1) 

O(2-M+3) 

O(L)
(This memory analysis here only account for the filters and not the fence pointers (internal nodes) being stored in memory)



Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 


(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Question 3 - Hot/Cold Data Separation

20%

10%
70%

Cold data

Invalid data

Hot data



Garbage-Collection Write-Amplification

1 +
1
2

⋅
L/P

1 − L/P

1 +
L/P

1 − L/P

L = logical data size

P = physical data size

Worst case

Uniformly random



Garbage-Collection Write-Amplification

1 +
1
2

⋅
L/P

1 − L/P

1 +
L/P

1 − L/P

L = logical data size

P = physical data size

Worst case

Uniformly random

= 1 +
L

P − L

= 1 +
1
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⋅
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P − L



Garbage-Collection Write-Amplification

L = logical data size

P = physical data size

Worst case

Uniformly random

= 1 +
L
O

= 1 +
1
2

⋅
L
O

1 +
1
2

⋅
L/P

1 − L/P

1 +
L/P

1 − L/P
= 1 +

L
P − L

= 1 +
1
2

⋅
L

P − L

O = Overprovisioned space (P-L)



(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Question 3 - Hot/Cold Data Separation

20%

10%
70%

Cold data

Invalid data

Hot data
Worst case WA:

Uniformly random:

= 1 +
L
O

= 1 +
1
2

⋅
L
O

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 Worst case WA:

Uniformly random:

= 1 +
L
O

= 1 +
1
2

⋅
L
O

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 

…

In worst-case, same amount of live 
data in each area

Worst case WA: = 1 +
L
O

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 



Question 3 - Hot/Cold Data Separation

Upper bound: 

Let C=0.7, H=0.1 and O=0.2 

= 1 +
H + C

O
= 1 +

0.8
0.2

= 5

…

In worst-case, same amount of live 
data in each area

= 1 +
L
O

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 For lower bound, let’s use our uniform 
workload distribution estimation. 

…

Garbage-collect

Older data

Uniformly random: = 1 +
1
2

⋅
L
O

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 For lower bound, let’s use our uniform 
workload distribution estimation. 

Garbage-collect

Older data

It works as a Lower bound since static data 
can only increase fraction of valid data in 

areas we garbage-collect

…

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 For lower bound, let’s use our uniform 
workload distribution estimation. 

…

Older data

Lower bound: = 1 +
1
2

⋅
H + C

O
= 1 +

1
2

⋅
0.8
0.2

= 3= 1 +
1
2

⋅
L
O

(A) Estimate a lower bound and upper bound for write-amplification 
assuming no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 



Question 3 - Hot/Cold Data Separation

(A) Estimate a lower bound and upper bound for write-amplification assuming 
no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 

Let C=0.7, H=0.1 and O=0.2 For hot/cold separation estimation, assume all 
over-provisioned space is applied on hot areas. 

Garbage-collect

Cold data

……

Hot data + over-provisioning



Question 3 - Hot/Cold Data Separation

Let C=0.7, H=0.1 and O=0.2 For hot/cold separation estimation, assume all 
over-provisioned space is applied on hot areas. 

Cold data

……

Hot data + over-provisioning

Estimation: = 1 +
1
2

⋅
H
O

= 1 +
1
2

⋅
0.1
0.2

= 1.25

(A) Estimate a lower bound and upper bound for write-amplification assuming 
no hot/cold data separation. 


(B) Estimate write-amplification assuming perfect hot/cold data separation. 

Consider a circular log where the physical capacity consists of 70% static data 
(never updated), 10% hot data, and 20% over-provisioning. 

= 1 +
1
2

⋅
L
O


