
Sphinx: A Succinct Perfect Hash Index for x86
Sajad Faghfoor Maghrebi

University of Toronto
Canada

smaghrebi@cs.toronto.edu

Niv Dayan
University of Toronto

Canada
nivdayan@cs.toronto.edu

ABSTRACT
Many modern key-value stores rely on an in-memory index to map
the location of each data entry in storage. The size of this index
often becomes a memory bottleneck that makes it difficult to scale
the system to large data sizes. To address this problem, the state-
of-the-art approach is to structure this index as a succinct perfect
hash table using only ≈ 4 bits per key. The downside is that the
hash table encoding is computationally expensive to parse and may
harm overall system performance.

We introduce Sphinx, a succinct perfect hash table reengineered
for high performance on commodity CPUs. Sphinx is encoded in
a manner that lends itself to efficient access using rank and select
primitives, and it uses auxiliary metadata to decode common hash
table slots instantaneously. Sphinx is also expandable and paral-
lelizable. We compare Sphinx to the best alternatives and show
that it leads to a 2x reduction in query latency, update latency, and
memory footprint.

PVLDB Reference Format:
Sajad Faghfoor Maghrebi and Niv Dayan. Sphinx: A Succinct Perfect Hash
Index for x86 . PVLDB, 14(1): XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/sfmqrb/sphinx.

1 INTRODUCTION
Log-Structured Hash Tables. A Log-Structured Hash Table (LSH-
Table) [2, 9, 15, 16, 49, 50] is a data structure that optimizes for
storage bandwidth by making all write I/Os long and sequential.
It performs all modification operations (insertions, updates, and
deletes) out-of-place by first buffering them in memory. When the
buffer is full, its contents are flushed into an append-only log in
storage. To support queries, there is an in-memory index that maps
each key to the location of the corresponding key-value entry in
the log. There is also a garbage-collection mechanism to reclaim
space occupied by entries that have been updated or deleted.

LSH-tables go by many colloquial names, including index+log
and circular logs. The core idea traces back to the Log-Structured
File System [39, 47, 48], though this idea has found myriad other
applications (e.g., in cloud management [8, 38, 52] and flash transla-
tion layers [24, 28, 51]). In the database community, LSH-tables

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

have become a popular data structure for key-value stores for
SSDs [9, 25, 28], persistent memory [10, 53, 54, 57, 58], and dis-
aggregated memory [31, 33, 59].

Fingerprint Indexes. The index of an LSH-table consumes a hefty
memory footprint as it stores a mapping from every entry’s key to
its address in storage. To save space, many designs store a finger-
print (i.e., a short hash digest) for each key instead of the key itself
[2, 9, 15, 50]. The downside of such fingerprint indexes is that they
introduce false positives due to fingerprint collisions. These false
positives lead to redundant I/Os that increase latency. While it is
possible to limit false positives using longer fingerprints, doing so
entails a higher memory footprint. As such, most existing LSH-table
indexes exhibit a contention between latency and memory.

Delta Hash Table. The recent Delta Hash Table (DHT) [14] is an
LSH-table index that eliminates false positives for queries to existing
keys while at the same time taking less space than fingerprint
indexes. DHT is a perfect hash table that resolves collisions for
keys that coincide within the same hash slot. It does this by storing
only the offset of the first bit that differentiates between their hash
values. DHT encodes these offsets within a slot using a succinct
trie. As a result, it can fully distinguish between all existing keys
using ≈ 4 bits per entry.

However, DHT exhibits significant CPU overheads. The reason
is that each trie is a succinct variable-length data structure that
must be decoded bit by bit. These computational costs counteract
the benefits of eliminating false positives, resulting in high latency.
Thus, DHT was initially proposed and implemented for use by FP-
GAs. Yet, many applications cannot afford specialized hardware.
This begs the following question: Is it possible for an LSH-table
index to simultaneously achieve (1) no false positives, (2) a mod-
est memory footprint, and (3) high computational efficiency on
commodity CPUs?

Contributions. We introduce Sphinx: Succinct Perfect Hash
Index for x86. Sphinx is a hash table that fully distinguishes be-
tween all keys in the dataset without storing the actual keys. Simi-
larly to DHT, it uses a trie structure to differentiate between the
hashes of keys that coincide within the same hash slot. However, it
is engineered for speed on commodity x86 CPUs. It does so by en-
coding the tries in a manner that lends itself to hardware-optimized
traversal using rank and select primitives. We also show that the
trie structures follow a known and skewed distribution. This allows
using an auxiliary data structure to decode common trie shapes
instantaneously. In addition, we make the following contributions:

• We show how to expand Sphinx smoothly to scale its size
in proportion to the data size.

• We support storing a variable-length number of reserve
hash bits for each key in the index to reduce insertion

https://doi.org/XX.XX/XXX.XX
https://github.com/sfmqrb/sphinx
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

costs, save I/Os during expansions, and mitigate the cost of
queries to non-existing keys.

• We resolve block overflows while maintaining a high load
factor by hashing overflowing entries across several possi-
ble extension blocks.

• We compare Sphinx to a slew of other indexing data struc-
tures for LSH-tables and demonstrate its superior memory
footprint and latency for queries, insertions and updates.

• We parallelize Sphinx and benchmark its performance in a
multi-threaded environment.

While this paper focuses on LSH-table as its application, Sphinx
can benefit any application of perfect hash tables including disaggre-
gated key-value stores [33], OLAP engines [22], internal memory
indexing [6], and packet processing [26, 35].

2 BACKGROUND
Log-Structured Hash-Table (LSH-Table). LSH-table is a data
structure that stores key-value pairs and supports put(key, value),
query(key), and delete(key) commands. A put command either in-
serts a new key-value pair or updates the value associated with
an existing key. A query returns the most recent value associated
with a given key. A deletion ensures that subsequent queries do
not return any value associated with a given key.

Figure 1 illustrates the high-level design. All put and delete
operations are handled out-of-place by first adding an entry to
an in-memory buffer, typically structured as a hash table. In case
of a delete, the value is a tombstone. To restrict memory footprint
and recovery overheads, the buffer is assigned a limited capacity.
Whenever it fills up, its entries are flushed to an append-only log
in storage. This approach optimizes write throughput by ensuring
that all storage writes are long and sequential.

To allow a query to find a matching data entry in the log, there
is an in-memory index mapping each key to the storage location of
the corresponding data entry [49]. A get command first searches
the buffer for an entry with a matching key. If it does not find one, it
searches the index. If it finds a matching key in the index, it follows
a pointer to the location of the entry in storage.

As deletions and updates are performed out-of-place, they inval-
idate data entries in the log. Eventually, there is a need to reclaim
space taken up by such obsolete data entries. To this end, LSH-table
periodically migrates live entries from older regions of the log to
the front so that these older regions can be rewritten. This process
is known as garbage collection [9, 49].
Fingerprint Indexes. The choice of data structure for the index
of LSH-table is crucial, affecting the system’s memory footprint
and overall performance. Many systems use hash tables as their
index [2, 9, 15, 16, 49, 50]; however, when used to store full keys
[32, 34, 49] or large key hashes [50], they consume a lot of memory.

To restrict memory overheads, most LSH-tables store a short
fingerprint for each entry instead of the full key, along with a
pointer to the location of the entry in storage [2, 9, 15, 50]. We
refer to such indexes as fingerprint indexes. They can leverage
compact data structures like Quotient [5, 18, 42, 43] or Cuckoo
Filters [7, 21, 55] by storing an address alongside each fingerprint.

At the same time, fingerprint indexes introduce complications.
A queried key may match a fingerprint of a different key. This is

Figure 1: LSH-table streamlines data to storage and stores the
location of data entries within an in-memory index.

known as a false positive, and it results in redundant I/Os to storage.
Such false positives degrade average and tail latency. Generally,
a fingerprint index with fingerprints of length 𝐹 bits entails an
overhead of 1 + 2−𝐹 storage I/Os - one to retrieve the target entry
and 2−𝐹 additional I/Os due to false positives.

Fingerprint matches can also occur during a put operation, either
because there is already an existing entry with the same key or
because of collisions with different keys (i.e., false positives). To
check which of these cases occurred for a given fingerprint match,
we must follow the pointer of the existing entry to storage to check
its full key. If the full keys match, it means that the put operation is
an update. We, therefore, modify the mapping entry in the index
to point to the location of the updated key-value entry, thus invali-
dating the older entry. If no full key match is identified across all
matching fingerprints, the put operation is an insertion, and so a
new mapping entry is added to the index. We refer to this check as
a read-before-write operation as it entails one storage I/O for each
matching fingerprint on the write path.

Adaptive Fingerprint Indexes. Some fingerprint indexes elimi-
nate false positives by disambiguating colliding fingerprints. They
do so by enlarging [4, 56] or rehashing the conflicting fingerprint [30,
36]. These adaptations require additional metadata, which may be
compressed at a cost of additional latency. Yet another approach
is to add the full key of a colliding entry into a dictionary data
structure rather than adding its fingerprint into the fingerprint
index [33, 46]. Any operation (i.e., query, put or delete) first checks
the dictionary for a full key match before checking the index for a
fingerprint match. While such designs eliminate false positives and
thus exhibit no redundant storage I/Os, they require using longer
fingerprints to prevent too many fingerprint collisions in order to
bound the dictionary’s size.

Expanding Fingerprint Indexes. As more data is inserted into
an LSH-table, its fingerprint index must expand to accommodate
more mapping entries. However, a fingerprint index cannot rehash
its mapping entries into a larger hash table because it does not
store the original keys. As a result, many fingerprint indexes are
pre-allocated with a large, fixed capacity from the get-go.

Recent expandable filters such as InfiniFilter [13] and Aleph
Filter [12] address this issue. They expand by transferring one bit
from each fingerprint to the entry’s slot address to remap the entry
into a 2x larger hash table. Crucially, they also support variable-
length fingerprints to allow setting longer fingerprints to newer
entries. This keeps the false-positive rate stable. We use them in
our experimental evaluation in Section 4 to represent the most
competitive fingerprint indexes.

2

2.1 Delta Hash Table
The Delta Hash Table (DHT) is a recent index for LSH-tables de-
signed to eliminate false positives while taking up less memory
than fingerprint indexes. DHT is a dynamic perfect hash table that
resolves all collisions using succinct tries.

DHT is an array of fixed-sized blocks. Each block contains a
fixed number of adjacent variable-length slots (64 by default). DHT
stores an average of at most one entry per slot. However, each slot
can contain zero or more entries to accommodate variability in
the number of entries that get hashed to different slots. We refer
to DHT as being at capacity when the overall number of entries
equals the overall number of slots.

Keys to be inserted to DHT are hashed into a 16-byte digest
consisting of three parts: the block ID, slot ID, and fingerprint.
The block ID and slot ID map the entry to a given slot within a
given block. The fingerprint is used for collision resolution when
multiple keys reside within the same slot and spans the rest of the
hash. Overflowing blocks are managed using chaining. Since slots
are variable-length while blocks are fixed-length, a block must be
scanned to locate the slot corresponding to a given entry.

Delta Trie. To resolve hash collisions, any slot containing two or
more entries employs a data structure called delta trie. A delta trie
distinguishes the fingerprints within a slot without storing the full
fingerprints. Each internal node in this trie represents the most
significant fingerprint bit that distinguishes between the two sets
of fingerprints in its left and right sub-trees. Figure 2 Part (A) gives
an example of a delta trie containing five fingerprints FP1 to FP5.
The root node directs FP1 and FP3 to the left sub-tree and FP2, FP4,
and FP5 to the right sub-tree due to the difference in their most
significant bit. Moving down, FP1 and FP3 diverge at the third bit
(i.e., at Node 𝑏). Similarly, FP4 and FP5 diverge from FP2 at Node 𝑐
due to the difference in their second bit. Finally, FP4 and FP5 are
different along their fourth bit at Node 𝑑 . The resulting order of leaf
nodes in the trie reflects sorting based on the keys’ fingerprints.

Physical Slot Encoding. A slot and its delta trie are succinctly
encoded to conserve space. Figure 2 Part (B) shows the encoding of
the delta trie from Figure 2 Part (A). The encoding is composed of
three self-delimiting fields: size, structure, and index.

Size Field. The size field counts the number of entries in the slot
using 0-terminated unary encoding. It uses unary encoding since
each slot contains an average of at most one entry. This keeps the
field small (i.e., at most 2 bits on average).

Structure Field. This field encodes the topology of the delta trie.
Each internal node is represented using two bits: one for the left
child and one for the right. A bit is set to 1 if the corresponding
child is an internal node and 0 if it is a leaf. These bits are arranged
in depth-first order, starting from the root. In Figure 2 Part (B), for
example, the initial two bits of the structure field (i.e., 11) corre-
spond to the root node and indicate that both of its children are also
internal nodes. The following two bits 00 for Node b indicate that
both of its children are leaves. Node c’s bits are 01 as only its right
child is an internal node. For the last internal node d, the bits should
be 00 as both of its children are leaf nodes, yet we do not need to
explicitly encode these bits. The reason is that the last internal
node in a depth-first order always has two leaf children, and so we

(A)

(B)

Figure 2: (A) depicts five keys sorted by the first differenti-
ating bit of their fingerprints (FP𝑖), with the fingerprints on
the left and the corresponding delta trie on the right. (B) il-
lustrates the physical encoding of the delta trie.

avoid encoding these bits to save space. Thus, the structure field is
materialized only for slots with three or more entries.
Index Field. For each internal node, the index field encodes the
position of the most significant (leftmost) bit that differentiates the
fingerprints in its two sub-trees. Similarly to the structure field, it is
arranged in depth-first order. For the trie in Figure 2, for example,
the values to be encoded by this field are 0, 2, 1 and 3 in that order.

Note that the index field for any internal node other than the
root is greater than the index field of its parent by at least 1. Thus,
for each non-root internal node, DHT only encodes the difference
between that node’s index and its parent. This is done using unary
encoding where 0 denotes a difference of 1, 10 denotes 2, 110 de-
notes 3, etc. In Figure 2 Part (B), for example, the encoding is 0 for
Node a, 10 for Node b, 0 for Node c, and 10 for Node d.
Full Block Example. Figure 3 Part (B) depicts a block with four
slots storing the six entries in Part (A). The entries get mapped
to each of the four slots based on the Slot IDs of their hashes. As
shown, Slot 0 contains one entry, Slot 1 contains two entries, Slot 2
is empty, and Slot 3 contains three entries. Only Slots 1 and 3 require
a delta trie (Part (D) of the figure) as they each contain two or more
entries. This means that for Slots 0 and 2, there are no structure or
index fields. For Slot 1, there is no need to store a structure field
either because it only contains two entries. The slots are stored
contiguously within the block. For each slot, the size, structure,
and index fields are adjacent. While these fields are variable-length,
each of them is self-delimiting, thus uniquely decodable.
Trie Store and Payload Store. The size, structure and index fields
for the different slots are stored within a part of the block that
we refer to as the Trie Store. In Figure 3 Part (B), the Trie Store
consists of 18 bits, and its last two bits are unused. The Trie Store
effectively orders all entries within the block based on their hashes.
It is followed by a Payload Store, which contains pointers to the
location of the corresponding data entries in storage. The payloads
are ordered based on the hashes of their corresponding keys. Thus,
to obtain the payload associated with a given key, we can infer
the offset of the entry’s hash within the sorted order from the Trie
Store and fetch the matching payload from the Payload Store.
Guarantees. When DHT is at capacity, most slots only contain
zero or one entry. Hence, most slot encodings are small, allowing
DHT’s Trie Store to achieve 3-4 bits/entry memory footprint at
capacity [14]. In addition, DHT exhibits no false positives when
querying for existing keys since it fully distinguishes between all
existing keys’ hashes. In contrast, fingerprint indexes require more
memory and incur false positives when querying for existing keys.

3

Payload StoreTrie StorePayload StoreTrie Store
(A) (B) (C) (D)

Figure 3: (A) shows the hashes of six keys, where the first two bits encode the slot ID and the rest form the fingerprint. (B)
depicts the DHT block design with 4 slots, encoding these keys in the Trie Store and storing sorted payloads in the Payload
Store. (C) presents the Sphinx block design with 4 slots, storing the same keys in the Trie Store and sorted payloads in the
Payload Store. It consists of a 4-bit Slot Bitmap Segment, indicating whether the trie is empty, followed by a Slot Size Segment
for slot sizes and a Delta Trie Segment encoding the topology of each trie. (D) shows the corresponding tries for slot1 and slot3.

PayloadMemoryOverhead.While the Trie Store is highlymemory-
efficient, the Payload Store’s pointers to the log could significantly
increase the memory overhead, overshadowing index’s low mem-
ory cost by pointer storage. To address this, the same work that
introduces DHT [14] also proposes a pointer compression scheme.

The pointer compression scheme relies on sorting the contents
of the LSH-table’s buffer by the hash of each key. Consequently,
the storage-based log comprises multiple chunks of sorted entries,
each created by a single buffer flush. Each key is indexed to the
ID of the chunk containing it and the index that does this is called
the Global Index. Since chunks are larger than a single page, each
chunk can be uniquely identified using fewer bits than a standard
pointer. Within each chunk, another index (a DHT instance) maps
each key to the specific page containing it, known as the Local
Index. Because entries in the log are sorted by hash, they follow
the same order as the local DHT instance, allowing pointers within
it to be delta encoded. Specifically, for each entry, the page offset
is stored in unary encoding relative to the preceding entry. Given
that each entry is typically smaller than a disk page, the average
size of this unary encoding is only 1-2 bits per entry.

This compression scheme reduces the average pointer size from
4 bytes to under 2 bytes. With smaller pointers, index metadata
becomes a significant contributor to the overall memory footprint.
Although orthogonal to our focus on computational challenges,
we implement this scheme on top of Sphinx, motivating our total
memory footprint. We detail the memory footprints in Section 4.
Sizing Blocks. As with any hash table design, the number of en-
tries mapped to each block is variable and approximately follows a
Poisson distribution [29, 45]. This variability poses a challenge in
achieving high memory utilization, as some blocks may overflow
while others remain underutilized. The DHT design further exacer-
bates this issue by making the slots variable in length. To address
this challenge, DHT employs large blocks, each containing dozens
of slots (64 slots per block in practice). This approach reduces the
variability in the cumulative size of the slots and enables high block
utilization while limiting the probability and length of overflows.
Core Challenge: Computational Overheads.DHT’s many mem-
ory optimizations come at the cost of computational efficiency. To
access a specific slot, all preceding slots within the block must
be traversed first. To make things worse, each slot and its con-
stituent fields are of variable length, requiring a bit-by-bit traversal
to decode. This process entails many branch mispredictions, which

further increase CPU costs. Due to these overheads, DHT was
originally designed for FPGAs [14]. However, many applications
cannot afford customized hardware. This begs the following re-
search question: is it possible for an LSH-table index to achieve a
modest memory footprint (3-4 bits per entry), no false positives,
and high computational efficiency, all at the same time?

Additional Challenges. In addition to the above core challenge,
DHT exhibits several other limitations relative to fingerprint in-
dexes. (1) DHT is statically sized and cannot expand in proportion
to the data size. As a result, it is allocated with a fixed capacity
from the system’s get-go and consumes a lot of space until it fills
up. This can defeat the point of the many memory optimizations
it proposes. (2) As only the least number of necessary fingerprint
bits are preserved to distinguish between existing keys, a query
targeting a non-existing key has a higher chance of matching some
existing entry, leading to a false positive. (3) Similarly, as fewer
fingerprint bits are maintained for existing entries, an insertion is
more likely to match some existing key’s hash and thereby result in
a read-before-write operation. Sphinx systematically tackles each
of the above problems.

3 SPHINX
Sphinx is a succinct dynamic perfect hash table that improves on
DHT along several fronts. It is encoded succinctly yet in a manner
that lends itself to CPU-friendly rank/select commands (Section 3.1).
It introduces the notion of a Decoder, a compact, cache-resident data
structure containing precomputed metadata that swiftly decodes
the bitwise representation of common delta tries (Section 3.2). It
maintains a high load factor by grouping blocks into block groups,
each with its own extension blocks, into which overflowing entries
are hashed and stored (Section 3.3). It limits I/Os for insertions and
zero-result queries by storing extra fingerprint bits, referred to as
Reserve Bits, alongside each entry to quickly rule out the existence
of a key in question (Section 3.4). It uses a fine-grained expansion
algorithm that limits I/O by leveraging fingerprint metadata within
the index (Section 3.5). It supports multi-threading (Section 3.6).

3.1 Block Structure and Efficient Parsing
Similarly to DHT, Sphinx consists of fixed-sized blocks of variable-
length slots. Unlike DHT, Sphinx’s block design lends itself to effi-
cient rank/select commands. The rank(b, i) command counts the

4

Algorithm 1 Find the Payload corresponding to a Key
Inputs:

hash: hash of the queried key
Output: payload index corresponding to the queried key, −1 if no match is found

1: blockID, slotID, FP← extract(hash)
2: trieStore, payloadStore← Blocks[blockID]
3: if not trieStore[slotID] then
4: Return −1
5: end if
6: occupiedSlotsBefore← rank(trieStore[0 : SLOTCNT − 1], slotID)
7: numEntriesBefore← select(trieStore[SLOTCNT :], occupiedSlotsBefore) + 1
8: numEntriesEnd← select(trieStore[SLOTCNT :], occupiedSlotsBefore + 1) + 1
9: slotSize← numEntriesEnd − numEntriesBefore
10: if slotSize = 1 then
11: Return numEntriesBefore
12: end if
13: occupiedSlots← rank(trieStore[0 : SLOTCNT − 1], SLOTCNT)
14: onesSlotBitmapSeg← occupiedSlots
15: onesSlotSizeSeg← occupiedSlots
16: onesDeltaTrieSeg← 2 × (numEntriesBefore − occupiedSlotsBefore)
17: onesBefore← onesSlotBitmapSeg + onesSlotSizeSeg + onesDeltaTrieSeg
18: numOnesDeltaTrie← 2 × (slotSize − 1)
19: startDeltaTrie← select(trieStore, onesBefore) + 1
20: endDeltaTrie← select(trieStore, onesBefore + numOnesDeltaTrie)
21: index← decodeDeltaTrie(trieStore, FP, startDeltaTrie, endDeltaTrie, slotSize)
22: Return payloadStore[numEntriesBefore + index]

number of set bits (1s) from the start of Bitmap 𝑏 up to and exclud-
ing Index 𝑖 . The select(b, i) command finds the offset of the 𝑖th set bit
in Bitmap 𝑏. These operations can be efficiently implemented using
specialized CPU instructions, as shown later in this section. We
show how to use these commands to traverse a block one word at a
time rather than one bit at a time. The main challenge is encoding
the block in a way that allows us to quickly skip to the correct slot
without having to traverse every preceding bit. Our new encoding
uses slightly more space—roughly 0.3 bits per entry—but improves
parsing speed by an order of magnitude on commodity CPUs.
Structure Overview. Sphinx is organized into 2𝑥 blocks, each
containing 2𝑦 slots. To map a key, the first 𝑥 bits of its hash are
used to identify the block, followed by the next 𝑦 bits to identify
a slot within that block. Each block consists of a Trie Store and a
Payload Store. The Trie Store succinctly maps a key’s hash to its
offset within the sorted order of hashes in a block. The Payload
Store organizes the payloads of all keys in the block contiguously
based on the order of the keys’ hashes. A payload is a pointer to
the corresponding data entry in storage.

A block consists of 64 slots, each storing an average of at most
one entry. The large number of entries per block restricts occupancy
variability and keeps overflows small on average. Each Trie Store
consists of 256 bits to be both word and cache aligned. A Trie Store
occupies ≈ 4 bits/entry.
Query Algorithm & Running Example. Algorithm 1 takes the
hash of a key as input. Its output is the corresponding payload in
the Payload Store. To find this offset, the algorithm traverses the
Trie Store to find this payload’s offset. At a high level, Lines 3-9
obtain the number of entries in the target slot, while Lines 13-20
find the starting and ending position of the slot’s delta trie if it
exists. The notation 𝑏 [𝑥 : 𝑦] represents a substring of Bitmap 𝑏

beginning at the 𝑥 th bit and including all bits up to and including
the 𝑦th bit. SLOTCNT denotes the number of slots in a block (i.e.,
64 slots).

We explain the query algorithm and block structure with the
running example using Figure 3 Part (C). The figure illustrates a

small block consisting of 18 bits and four slots, i.e., 4.5 bits per slot
on average. These slots contain one, two, zero, and three entries,
respectively. Suppose the user queries for a key corresponding to
ℎ𝑎𝑠ℎ5 = 11100 in Figure 3 Part (A). The first two bits, 11 = 3, map
the key to Slot 3. The remaining three bits, 100, form the fingerprint.
The hashes ℎ𝑎𝑠ℎ4, ℎ𝑎𝑠ℎ5, and ℎ𝑎𝑠ℎ6 are all mapped to Slot 3. 𝐻𝑎𝑠ℎ5
has an offset of 1 within the target slot and an offset of 4 within the
block as a whole.
Slot Bitmap Segment. Each Trie Store begins with a Slot Bitmap,
which contains one bit per slot to indicate if it is non-empty. In
Figure 3 Part (C), the bitmap is set to 1101, indicating that Slot 2 is
empty and the rest are non-empty. Lines 3–5 of Algorithm 1 check
the bitmap and terminate the algorithm if the target slot is empty.
Otherwise, we obtain the number of occupied (i.e., non-empty) slots
preceding the target slot using a rank command (Line 6). In our
running example, Line 6 returns 2, indicating that there are two
non-empty slots before Slot 3, our target.
Slot Size Segment.After the Slot Bitmap, Sphinx stores the number
of entries in each non-empty slot using a 1-delimited unary code.
These codes are laid out contiguously, with the length of each unary
code matching the number of entries in the corresponding slot. We
refer to each code as the size field of the corresponding slot. In
Figure 3 Part (C), size3 represents the number of entries in Slot 3. It
is encoded as 001, indicating that this slot contains three entries.

Lines 7 to 9 of Algorithm 1 employ select commands to find the
delimiters of the size fields of the target slot and the slot immediately
preceding it. By adding one to each of these delimiter positions, we
obtain the number of entries before the target slot and the number
of entries up to the end of the target slot, respectively (i.e., 3 and 6
in the running example). By subtracting these values in Line 9, we
obtain the target slot size (i.e., 3 in our example).

For a slot with only one entry, there is no delta trie. Thus, there
is no need for further traversal of the Trie Store; the payload index
can be inferred directly based on the starting offset of the target
slot. Lines 10–12 verify if the current slot has exactly one entry,
returning the count of preceding entries as the payload index. In
our running example, Line 11 is skipped because Slot 3 contains
multiple entries.
Delta Trie Segment. For slots with two or more entries, Sphinx
stores a delta trie, which consists of a structure field and an index
field. As shown in Figure 3 Part (C), these fields are laid out adja-
cently for each slot and contiguously within the Trie Store. The
challenge is to find the starting and ending bit offsets of these fields
for a given slot. Our solution is to infer the number of 1s within
the Trie Store prior to the target slot’s delta trie. We then employ
the select command to skip directly to the target delta trie based
on the number of prior 1s.
Skipping the Slot Bitmap and Slot Size Segments. The number
of 1s within the Slot Bitmap Segment and Slot Size Segment is each
equivalent to the number of occupied slots in the block. In Line 13
of Algorithm 1, we count the number of occupied slots within the
Trie Store using a rank command on the Slot Bitmap Segment. We
record that this is the number of 1s to be skipped within the Slot
Bitmap Segment and Slot Size Segment in Lines 14 and 15.

In our running example, the rank command in Line 13 indicates
that there are three occupied slots within the block. We indeed

5

Algorithm 2 Rank Implementation over 256 bits
inputs: bitmap B, bit position pos
1: numSetBits← 0, offset← 0
2: for each 64-bit word𝑊 in 𝐵:
3: 𝑝𝑜𝑝 ← POPCNT(𝑊)
4: if offset + 64 ≥ 𝑝𝑜𝑠 then Return rank64(𝑊,𝑝𝑜𝑠 − offset) + numSetBits
5: numSetBits← numSetBits + 𝑝𝑜𝑝
6: offset← offset + 64

observe that the total number of 1s within the Slot Bitmap and Slot
Size Segments is 3 · 2 = 6.

Number of 1s in a Delta Trie. Next, to reach the beginning of
the target delta trie, our parsing algorithm must infer how many 1s
there exist across all delta tries of slots preceding the delta trie of
the target slot. As a building block for this process, we must infer
the number of 1s in a delta trie based on the number of entries
within the corresponding slot.

Unlike DHT, each unary counter within the index field in Sphinx
is 1-delimited, so it contains exactly one bit set to 1. For a delta trie
with 𝑛 entries, there are 𝑛 − 1 internal nodes and, thus, 𝑛 − 1 unary
codes within the index field. Hence, for a slot with 𝑛 entries, the
index field contains 𝑛 − 1 bits set to 1s.

Next, recall that the structure field exists only for a slot that
contains three or more entries. When there are exactly three en-
tries, this field is encoded as 10 or 01, meaning there is one set bit.
Each additional entry in the slot adds one internal node and thus
one additional set bit. For a slot with 𝑛 entries, the structure field
contains 𝑛 − 2 set bits.

Overall, for a slot with 𝑛 entries, we have a total of 2𝑛− 3 set bits
when 𝑛 ≥ 2, and 0 otherwise. For example, the delta trie for Slot 3
in Figure 3 Part (C) is represented as 1011, where the first two bits
correspond to the structure field and the latter two represent the
index field. In this example, we have 𝑛 = 3. Our formula correctly
indicates that there are 2𝑛 − 3 = 3 set bits within Slot 3’s delta trie.

Delimiter Field. For a slot with two or more entries, the expression
2𝑛 − 3 accurately provides the number of 1s that the slot’s delta trie
contributes to the Delta Trie Segment. For a slot with only one entry,
however, there is no delta trie. Such slots do not contribute any 1s to
the Delta Trie Segment. The issue is that for a slot with 1 entry, the
expression 2𝑛−3 yields −1 instead of 0. Hence, the expression 2𝑛−3
cannot be used out-of-the-box to predict how many bits within the
Delta Trie Segment to skip, as it would underestimate the number
of 1s before the target slot on account of slots containing one entry.

To fix this problem, we introduce one additional bit to delimit
each delta trie within the Delta Trie Segment. In Figure 3 Part (C),
there are two delta tries within the Trie Store, each of which is
delimited by a 1. Accounting for this delimiter, the number of bits
set to 1 within a delta trie becomes 2𝑛 − 2 for 𝑛 ≥ 1. Crucially, this
expression correctly returns 0 when 𝑛 = 1, capturing the fact that
a slot with a single entry does not have a delta trie. The delimiter
field keeps each slot uniquely decodable as it consists of a single
bit in a predictable location.

Using this new expression, we can compute the number of 1s
preceding the target delta trie within the Delta Trie Segment on
the basis of (1) the total number of entries preceding the target
slot from Line 6, and (2) the number of occupied slots preceding
the target slot from Line 7. We do so in Line 16 of Algorithm 1. In

Algorithm 3 Select Implementation over 256 bits
inputs: bitmap B, target bit i
1: numSetBits← 0, offset← 0
2: for each 64-bit word𝑊 in 𝐵:
3: 𝑝𝑜𝑝 ← POPCNT(𝑊)
4: if numSetBits + 𝑝𝑜𝑝 ≥ 𝑖 then Return select64(𝑊, 𝑖 − numSetBits) + offset
5: numSetBits← numSetBits + 𝑝𝑜𝑝
6: offset← offset + 64

Line 17, we add up the total number of 1s in the Trie Store as a
whole before the target delta trie.

In our running example, there are three preceding entries and
two occupied slots before the target slot. Plugging these numbers
into Line 16, we infer that there are 2 · (3 − 2) = 2 bits to skip
within the Delta Trie Segment prior to the target slot’s delta trie.
Including the 1s from the Slot Bitmap and Slot Size Segments, there
are exactly 8 bits set to 1 preceding the target delta trie (Line 17).

Finding The Delta Trie Boundary. Line 19 of Algorithm 1 em-
ploys the select command to derive the offset of the target slot’s
delta trie. We also locate the end of the target delta trie in Line 20
by employing a select command on the sum of the number of pre-
ceding 1s and the number of 1s within the target delta trie from
Line 18. In our example, Line 19 indicates that the target delta trie
begins at bit offset 13 within the Trie Store. From Line 18, we know
that the number of bits within the target delta trie is 4. We use this
to infer that the end of the target run is at offset 17 in Line 20.

Inserts/Updates. When writing an entry, Sphinx reuses much of
the logic and code from Algorithm 1. It calculates the target slot’s
size (Lines 6–9) using constant-time rank/select commands. If the
slot is empty, it flips its bit in the Slot Bitmap Segment to 1, inserts
a 1 into the Slot Size Segment at the offset found in Line 7, and
inserts the new payload into the Payload Store at the same offset.

If the slot is non-empty, Sphinx again uses hardware-optimized
rank/select commands to locate the start of the trie (Lines 13–19).
Since tries only disambiguate already-inserted keys and cannot tell
whether the incoming key is new or an update, Sphinx performs
a single read-before-write, incurring one I/O. It then either over-
writes the existing payload or, for an insertion, identifies the first
differentiating bit between hashes, updates the trie, and inserts the
payload at the offset in Line 22. Note that the trie is shallow and
not too costly to update. To make room for the revised trie and slot
size, Sphinx performs fast shifts over the 256-bit confined block,
operating at word granularity with bitwise masking to preserve
unchanged bits. It also uses compiler-optimized AVX-512 memmove
operations to move the payloads to clear space for an insertion.

Since insertion or update follows a fixed sequence of instruc-
tions over a bounded number of words, it runs in constant time.
Expansions do occur only after exponentially many inserts, yielding
amortized constant complexity (see Section 3.5).

Deletions. Deleting a key acts similarly to the insertion algorithm.
Sphinx issues exactly one read-before-write to confirm the pres-
ence of the key in question in the log. On a match, it decrements
slot’s size in the Slot Size Segment, clears the slot bit in the Slot
Bitmap Segment if it becomes empty, and trims the corresponding
trie. Finally, it reclaims space by shifting the block’s content left
using the same hardware-optimized shift explained before. Like an
insertion, a deletion runs in constant time.

6

Fast Rank and Select. Rank and select on a 64-bit word can be
implemented efficiently using x86 bit manipulation instructions
[23, 41, 42]. The implementations are as follows:

rank64(𝑤𝑜𝑟𝑑, 𝑝𝑜𝑠) = POPCNT(𝑤𝑜𝑟𝑑 & (2𝑝𝑜𝑠 − 1))1

select64(𝑤𝑜𝑟𝑑, 𝑖) = TZCNT(PDEP(2𝑖−1, 𝑤𝑜𝑟𝑑))2

For Sphinx, we extend these commands to operate over a 256-bit
Trie Store in Algorithms 2 and 3. For the rank command, given a
position 𝑝𝑜𝑠 , the algorithm iterates over each 64-bit word of 𝐵 using
the POPCNT instruction to count the number of set bits until it
locates the word containing the 𝑝𝑜𝑠th bit. We then apply the rank64
command on this word and return the number of 1s seen so far.

For the select command, Algorithm 3 also first iterates over
each 64-bit word. It counts the number of bits within them using
POPCNT until it finds the word containing the 𝑖th set bit based on
the number of 1s seen so far. We then apply the select64 command
on this word and return the 𝑖th bit’s overall offset.

To further optimize these commands, we consolidate multiple
calls into a single traversal of each block, eliminating redundant in-
struction execution. In other words, rather than executing separate
rank/select commands, like those in Lines 19 and 20 of Algorithm 1,
we merge them in a way that considers previously calculated inter-
mediate values. As a result, we enable a single-pass iteration per
block to retrieve all required information.

We also attempted to accelerate these commands using SIMD
vectorization. However, since Algorithm 2 and Algorithm 3 operate
on at most four words with a few parallelizable instructions, the
added overhead resulted in higher latency. We also experimented
with loop unrolling for Algorithms 2 yet found that the compiler
already does that automatically.
Memory Analysis. The only space overhead that Sphinx adds
to the Trie Store compared with DHT is the delimiter field. To
analyze this overhead, note that the number of entries per slot
follows a Poisson distribution with a mean 𝜆 ≤ 1 (with 𝜆 = 1 at
capacity). Hence, the probability that a slot requires a Delimiter Bit
is 1 − Pr[𝑋 ≤ 1] ≤ 0.28. Rounding up, each entry contributes
an average of at most 0.3 bits/entry to the Trie Store. In theory, this
slightly increases the propensity of a Trie Store to overflow, though
the impact is practically negligible as shown in Section 4.
Summary. By adopting the new block structure and parsing the
Trie Store word by word rather than bit by bit, we can find a slot’s
delta trie far more efficiently. Next, we focus on how to decode the
contents of a delta trie efficiently once we have found it.

3.2 Decoding Delta Tries
Once a query arrives at a slot with two or more entries, it must
decode the slot’s trie to infer the correct offset of the entry’s pay-
load in the Payload Store. This section shows how to decode most
tries without a bit-bit-bit traversal or incurring branch mispredic-
tions. We exploit the fact that the slots in Sphinx follow a Poisson
distribution, similar to any hash table. Hence, most tries only have
2-4 entries while larger tries are vanishingly rare (≈ 1%). Thus,
we design a data structure called a Decoder that allows to quickly
decode the most common delta tries while resorting to a bit-by-bit
traversal only for uncommon tries. The Decoder is a small hash
table wherein each entry consists of three fields.

Delta Trie Mask Offsets

(B)(A)
a

b

(C)a
c
b

Figure 4: The trie with three entries in Part (A) has the corre-
sponding Decoder entry in Part (B). Part (C) depicts the same
trie as in Part (A) with a non-differentiating node c.

Delta Trie Field. The first field is the 16-bit key of the hash table.
It contains delta trie encodings as they appear in the Trie Store. For
example, consider the trie in Figure 4 Part (A). The structure field
of this trie is 01 while the indexes field is 101. Appending these,
the overall encoding is 01101. We pad this encoding with eleven 1s
to fill up the length of the field, as shown in Part (B) of the figure.
Mask Field. The Mask Field is a bitmap consisting of 16 bits. The
bit at offset 𝑖 is set to 1 for every differentiating bit offset within
the trie. For example, in Figure 4 Part (A), the bits at offsets 0 and 2
differentiate between the three entries in this trie. Hence, the bits at
these two offsets are set to 1s in the corresponding mask field. We
use this bitmap to extract the relevant bits from the fingerprint of
a queried key using the Parallel Extract Command (PEXT), which
extracts bits from its first operand (i.e., the fingerprint) using the
Mask given as the second operand.
Offsets Field. The Offsets Field contains an entry for every possible
permutation of the differentiating bits of the trie. Each permutation
corresponds to one possible setting of these bits, which maps a
fingerprint with this permutation of differentiating bits to an offset
within the trie’s sorted order. In Figure 4 Part (B), for example,
the bits at offsets 0 and 2 of a queried key’s fingerprint may be
00, 01, 10 or 11. The Offsets Field indicates that for each of these
permutations, the corresponding offset is 0, 0, 1 and 2, respectively.
Query Workflow. Suppose a query searches the Trie Store as
explained in Section 3.1 and arrives at a delta trie such as the one in
Figure 4 Part (A). We first pad the trie encoding with 1s and search
the Decoder for a matching entry. If we find one, we apply the PEXT
command on the key’s fingerprint and the decoder entry’s mask.
For example, if the key’s fingerprint begins with 100, applying the
PEXT command on it with the mask in Part (A) yields 10, or two, as
the result. We then access the entry at index 2 of the Offsets field to
obtain 1, meaning that the queried key maps to offset 1 within the
slot. We add this to the number of preceding entries in the block to
obtain the matching offset in the Payload Store.

If a query does not find a matching Decoder entry (i.e., in ≈ 1%
of the cases), it resorts to a bit-by-bit traversal of the delta trie as
described in the DHT paper [14].
Implementation & Size.As the decoder is static and only needs to
be constructed once prior to the system’s deployment, we do a brute-
force search for a hash function that causes each decoder entry to
map to a unique bucket. To allow this brute-force search to succeed
in tractable time, we over-provision the hash table by 75% (i.e., 512
buckets and 128 valid entries). Despite this over-provisioning, the
decoder only takes up to 4KB and thus comfortably fits in the L1
cache. At the same time, the decoder is collision-free, meaning it
does not incur the typical overheads and branch mispredictions
of collision resolution methods such as chaining or linear probing.

7

We devised a hash function using only XOR, bit shifts, and AND
operations, which are cheaper than the multiplication, addition, or
division used in standard hash functions.
Selecting Most Frequent Tries. Given a delta trie, we aim to
determine its probability to decide whether caching its decoder is
beneficial. This probability is given by the following formula, which
we break down and illustrate step-by-step:

𝑃 =
(︁
𝑒−1
𝑛!

)︁
·
(︂ 𝑚∏︂
𝑗=1

2−𝑘
(𝑗) +1

)︂
·
(︂𝑛−1∏︂
𝑖=1

(︃𝑘 (𝑖)
𝑙
+ 𝑘 (𝑖)𝑟

𝑘
(𝑖)
𝑙

)︃
· 2−(𝑘

(𝑖)
𝑙
+𝑘 (𝑖)𝑟))︂

. (1)

Firstly, the number of entries (𝑛) follows a Poisson distribution
with a mean of 1 at capacity [37], giving us the leftmost term
in Equation 1. For instance, Figure 4 Part (C) contains 3 entries,
yielding 𝑒−1

3! ≈ 0.06.
Next, we consider the trie topology, composed of nodes that

either differentiate between fingerprints (differentiating nodes) or
pass them along to deeper differentiating nodes. Non-differentiating
nodes, through which 𝑘 > 1 fingerprints pass, require all finger-
prints to share the same bit at the node’s index. Thus, the probability
for each non-differentiating node is 2−𝑘 · 2, giving us the second
term in Equation 1 after accounting for all𝑚 of them. In Figure 4
Part (C), Node c is the only non-differentiating node with two
entries (𝑘 = 2), resulting in probability 2−2+1 = 1

2 .
For a differentiating node, let 𝑘𝑙 and 𝑘𝑟 represent the number

of fingerprints going left (bit 0) and right (bit 1), respectively. We
select 𝑘𝑙 fingerprints from a total of 𝑘𝑙 + 𝑘𝑟 , yielding

(︁𝑘𝑙+𝑘𝑟
𝑘𝑙

)︁
possi-

bilities, each with a probability of 2−(𝑘𝑙+𝑘𝑟) . The product of all 𝑛−1
differentiating nodes gives us the final component of Equation 1.
For instance, at Node a, one fingerprint goes left and two right,
resulting in probability

(︁3
1
)︁
· 2−3 = 3

8 . Similarly, Node b, with one
fingerprint on each side, has probability

(︁2
1
)︁
· 2−2 = 1

2 .
Therefore, the total probability of the trie in the example is the

product of all these calculated probabilities: 0.06 · 12 ·
3
8 ·

1
2 = 0.0056.

We store within the decoder an entry for each of the 128 most
frequent tries that occur.

3.3 Overflow Management
When blocks reach their size limit, block overflows occur. DHT
uses chaining, which increases cache misses. In contrast, Sphinx
groups several blocks (i.e., a block group) and collectively manages
their overflows chain-free. Overflowing slots are redirected to a
few blocks (i.e., extension blocks), keeping them near their original
blocks, eliminating pointers and improving memory utilization.

By default, a block group comprises 64 adjacent blocks and serves
as the unit of expansion: when an extension block overflows, its
block group expands (see Section 3.5). A directory array [20, 34]
tracks these groups by their IDs (i.e., group IDs). During an overflow,
Sphinx relocates overflowing slots one by one into an extension
block until the original block can contain the remainder. The count
of overflowing slots is encoded in unary at the end of the original
Trie Store: Bit 255 starts as 1 to signal no overflow; each overflow
shifts the set bit left (10, 100, etc.). TZCNT [1, 27] instantly counts
overflows by counting trailing zeros.
Extension Blocks. By default, each group contains four extension
blocks. Each extension block consists of an ExBlock (i.e., a regular
block that stores overflowing slots) and a 128-bit Metadata bitset

Block Overflow SizeBlock Bitmap

slotID:
blockID:(B)(A)

ext.
blockID

0
slotID:

blockID:

1

blockID overflowing slotsblock un
use

d

un
use

d
0
1
2
3

Figure 5: (A) shows 4 blocks, where blocks 0, 1, and 3 have
three, two, and one overflowing slots. (B) depicts how the two
extension blocks organize their Metadata for these six slots.

divided into two 64-bit fields: the Block Bitmap, which marks which
of the group’s 64 blocks overflow into this extension block, and
the Block Overflow Size, which records how many slots each block
overflows here. The ExBlock stores overflowing slots in the same
order indicated by the Metadata, allowing their new slot IDs to
map directly to Metadata positions. Metadata decoding relies on
the same rank/select commands as Lines 6-9 of Algorithm 1.

The number of extension blocks per group is tunable: too few
cause premature expansion, while toomanywaste space. To find the
sweat spot, we estimate the average number of overflowing entries
per Trie Store and Payload Store, separately. In the Trie Store, each
block holds 64 entries, each using under ≈3.3 bits; an additional
0.7 bits per entry is reserved to absorb variation, so the expected
overflow is under 0.2 entries, which is effectively negligible. In
the Payload Store, each block can hold up to 64 payloads. Under a
Poisson distribution with 𝜆 = 64, the expected overflow is 𝐸 [(𝑋 −
64)𝑋>64] ≈ 3.19, where 𝑋 is the number of payloads in the Payload
Store. With 64 blocks per group and 64 payload slots per extension
block, ⌈ 3.19×6464 ⌉ = 4 extension blocks effectively cover overflows.

When Slot 𝑗 in Block 𝑖 (with 0 ≤ 𝑖, 𝑗 < 64) overflows, we assign
it to Extension Block (𝑖 + 𝑗) mod 4 and insert it immediately after
any prior overflows from smaller block IDs (or, if in the same block,
larger slot IDs). This deterministic scheme evenly spreads overflows
across the four extension blocks per block group, maintaining a
95% per-group load factor before expansion.

As a simplified example, Figure 5 shows four blocks and two
extension blocks. Each overflowing slot spills to Extension Block
(𝑖+ 𝑗) mod 2. Blocks 0, 1, and 3 have three, two, and one overflowing
slots, respectively. In Block 0, Slots 63, 62, and 61 are redirected to
ExBlock 1, 0, and 1; in Block 1, Slots 62 and 63 go to ExBlock 1 and
0; and Block 3’s single overflow is assigned to ExBlock 0.

3.4 Reserve Bits
The design of Sphinx as we have seen it so far only encodes the
bits that differentiate among the hashes of existing keys. This ap-
proach requires ≈ 4 bits / entry while ensuring at most 1 I/O for
updates/deletes/queries to existing keys. This is a significant im-
provement over Fingerprint filters, which require at least 𝐹 bits / en-
try and thus entail 1+2−𝐹 read I/Os per each queries/updates/delete.
However, Sphinx so far also has a disadvantage relative to finger-
print filters. A query to a non-existing key or an insertion of a new
key will always match some existing key and lead to one read I/O,
similarly to DHT [14]. In contrast, fingerprint filters only perform
a read I/O with a probability of 2−𝐹 in case of a false positive for
these operations. To bridge this gap, we augment Sphinx with a

8

Table 1: Average number of read I/Os per operation. 𝐹 denotes
the number of fingerprint bits stored.

Operation fingerprint filters DHT Sphinx

Query (existing key) 1 + 2−𝐹 1 1
Query (non-existing key) 2−𝐹 1 2−𝐹
Insertion 2−𝐹 1 2−𝐹
Update 1 + 2−𝐹 1 1
Deletion 1 + 2−𝐹 1 1

few extra hash bits for each key, i.e., Reserve Bits, to improve the
performance of insertions and zero-result queries for applications
that require lower overheads for these cost metrics.

The Reserve Bits are the highest-order bits of the fingerprints,
i.e., the bits of the key’s hash that come right after the slot address.
Checking these Reserve Bits during an insertion and query allows
ruling out the existence of the key and thus avoid a storage access.
Sphinx allows storing a configurable number of Reserve Bits. Using
𝐹 Reserve Bits reduces the read I/O cost per insertion and zero-
result query from 1 to 2−𝐹 I/Os on average. Thus, the Reserve Bits
allow Sphinx to navigate the same trade-offs as fingerprint filters
with respect to memory vs. the I/O cost of insertions and zero-result
queries. At the same time, Sphinx is still different from fingerprint
filters in that the performance of updates/delete/queries to existing
keys is still strictly one read I/O as these operations use the Trie
Store rather than the Reserve Bits. Table 1 summarizes these costs
for fingerprint filters, DHT, and Sphinx. As shown, Sphinx enjoys
the best of both worlds from DHT and fingerprint filters.

Sphinx stores the Reserve Bits for each entry adjacently to its
payload within the Payload Store. Thus, accessing the Reserve Bits
does not entail an additional cache miss. In the next subsection,
we describe the particular encoding for the Reserve Bits and how
Sphinx uses it to improve expansion efficiency.

3.5 Expansion
As more entries are inserted into Sphinx, it eventually expands to
accommodate more entries. Sphinx expands at the fine granularity
of a block group (see Section 3.3) to prevent performance slumps,
similarly to extendible hashing [20]. When a block group is full, we
remap its entries into two separate block groups, and we keep track
of all block groups using an expandable directory. However, Sphinx
faces a challenge for efficient expansion relative to plain extendible
hashing. As it does not store the full data keys, it cannot simply
rehash them across a larger address space. A naive solution is to
reread every key from storage and rehash it, though this would
be expensive. DHT dealt with this problem by allocating a very
large statically sized hash table, yet this approach requires a lot of
memory from the getgo and restricts the maximum data size [14].

Sphinx addresses this challenge by re-purposing more hash bits
from the Trie Store and Reserve Bits whenever possible. It also
encodes the Reserve Bits field in a manner that allows opportunis-
tically obtaining more hash bits during queries to save I/Os for
the next few expansions. These techniques are inspired by recent
expandable filter data structures [3, 12, 13, 40, 44].
Re-Purposing Bits. In order to remap each entry during expansion
to one of two new block groups, one additional hash bit is needed.
Sphinx handles this by lending the most significant bit (MSB) from
the block ID to the group ID, the MSB from the slot ID to the block

ID, and the MSB from the fingerprint to the Slot ID. Whenever
possible, Sphinx infers the most significant fingerprint bit from the
delta trie or from the Reserve bits, as described below. Only if the
most significant fingerprint bit is not encoded, Sphinx resorts to
reading an entry from storage to extract it.
Reserve Bits Encoding. While the Reserve Bits field in Sphinx
is fixed-length, it consists of two variable-length sub-fields. The
first is a 1-delimited unary encoded age counter, which counts how
many expansions ago a given entry was inserted. The remaining
bits are the most significant fingerprint bits of the hash. For exam-
ple, in the following 3-bit encoding 110, the leftmost one indicates
the entry was just inserted and the remaining two bits 10 are the
most significant fingerprint bits. After the first expansion, the en-
coding becomes 010 as the unary counter is incremented and the
most significant fingerprint bit becomes a part of the slot address.
After one additional expansion, the encoding becomes 001. At this
point, we have no more fingerprint bits left. The advantage of this
variable-length encoding is that while fingerprints are repurposed
during expansion, newer entries after the expansion can be set the
maximum number Reserve Bits to save I/Os in future expansions.
Expansion Algorithm. The expansion algorithm traverses the
slots in a block group one by one and deals with each slot according
to three cases. (Case 1) If a slot is empty, no action is required.
(Case 2) For a single-entry slot, one bit is repurposed from the
Reserve Bits if it exists. If there are nomore fingerprint bits available
for this entry, though, the original key is retrieved from the log.

For a slot containingmultiple entries, the algorithm distinguishes
two cases: (Case 3-1) If the first differentiating bit is at Index 0, the
delta trie is effectively partitioned into two groups, one with fin-
gerprints beginning with 0 and the other with 1. This inherent
grouping directly determines the new slot IDs for all entries within
the slot. (Case 3-2) If the first differentiating bit occurs at an in-
dex greater than 0, all fingerprints share the same initial bit (i.e.,
identical MSB). In this scenario, an entry is randomly selected, and
its MSB is evaluated through its Reserve Bits, if available, or by a
single log access to resolve the first bit of the fingerprint.
Rejuvenation Operations. Sphinx may fetch an older entry from
storage, whether during a regular query, a read-before-write in
an insertion, or the expansion process itself. We treat this as an
opportunity to rehash the key while extracting it from the log,
replenishing its Reserve Bits. This reduces the cost of future expan-
sions by avoiding additional storage accesses. We find that under
standard workloads, rejuvenation operations will replenish most
fingerprint bits, leading to largely I/O-free expansions.

3.6 Concurrency
Sphinx’s directory layout naturally enables parallelism because
operations within one group never interfere with others. We parti-
tion groups among worker threads according to their group IDs,
ensuring entries are evenly distributed. A fast, concurrent, lock-free
queue [17] hands off tasks from the main thread to each worker,
so every thread can process its own queue independently, and for
operations confined within a group no locks are needed.

After a block group expands or contracts, we briefly acquire
a lock to update the directory’s entries or, if necessary, resize it.
Other threads continue using the original directory throughout this

9

Figure 6: Sphinx eliminates false positives, uses at most half
the memory of other baselines, and maintains a stable mem-
ory footprint while scaling.

process, since updates to the entries occur in separate slots and the
switch to the resized directory happens via a single atomic pointer
swap. This design keeps the critical section brief.

4 EVALUATION
We evaluate Sphinx against several baselines representative of state-
of-the-art indexes for LSH-tables. We show the benefits of Sphinx
across different platforms and use cases by conducting experiments
on an NVMe SSD, on Optane persistent memory, and in-memory.

Platform 1.We run the purely in-memory and SSD benchmarks
on a Precision 5860 Tower running Ubuntu 22.04. It features an Intel
Xeon W7-2495X (24 cores/48 threads, 2.5 GHz) with CPU caches
of 1.9 MB L1, 48 MB L2, and 45 MB L3, along with 64 GB of RAM.
Storage includes a 512 GB SK Hynix PC801 NVMe SSD (OS drive)
and a 2 TB Samsung 980 PRO SSD (benchmark drive).

Platform 2. We run Optane benchmarks on a SYS-620U-TNR sys-
tem running Ubuntu 22.04, which has a 960 GB Samsung MZ1L2960
SSD as its OS drive. It is powered by dual Intel Xeon Silver 4314
CPUs (32 cores/64 threads, 2.4 GHz) with CPU caches of 2.5 MB L1,
40 MB L2, and 48 MB L3. There are 256 GB of RAM and 496 GB of
Intel Optane Persistent Memory 200 Series module.

Baselines.We compare Sphinx against six baselines representative
of the state-of-the-art LSH-table indexes. The Rank-and-Select Quo-
tient Filter (RSQF) [42] represents mainstream fingerprint indexes
that suffer from a rapidly increasing false positive rate (FPR) as
the index expands. Aleph Filter [12] is built on top of RSQF and
supports variable-length fingerprints. This allows assigning longer
fingerprints to newer entries, giving it a more scalable FPR. We
use the C++ implementation from [19] for RSQF and Aleph Filter,
which supports storing a payload alongside each fingerprint. In
the Adaptive Aleph Filter baseline, we combine Aleph Filter with a
dictionary of full keys to resolve fingerprint collisions and eliminate
false positives when querying for existing keys, as described in Sec-
tion 2. Next, we implemented DHT [14] in C++ since the original
implementation is closed-source and designed for FPGAs. Because
DHT is statically sized, we add DHT-expandable, a variant of DHT
that expands similarly to Sphinx to allow an apples-to-apples com-
parison with other expandable baselines.

Across all experiments, RSQF is initialized with 15-bit finger-
prints. It loses one fingerprint bit in each expansion and by the end
of each experiment, its fingerprints run out of bits. Aleph Filter
is assigned 5-bit fingerprints to keep it as competitive as possible

Figure 7: Compressing pointers reduces the pointer overhead
and signifies the total memory efficiency of Sphinx.

with Sphinx’s memory budget. The Adaptive Aleph Filter is as-
signed 7-bit fingerprints to limit fingerprint collisions, preventing
the dictionary from blowing up the memory footprint. Several ex-
periments benchmark some Sphinx variants with Reserve Bits. All
indexes expand once their expansion granularity reaches ≈ 95%
load factor.
Experiment 1: Memory Usage vs. FPR. Figure 6 measures mem-
ory footprint and false positive rate as the data grows. We employ
uniformly distributed insertions, though other workloads lead to
similar results. The query workload targets uniformly random ex-
isting entries. The fluctuations in the number of bits per entry for
most baselines are due to being nearly full before expanding and
dropping to half full after.

Sphinx dominates the other baselines in this experiment. Its
memory footprint is the lowest, and it exhibits a zero FPR. While
DHT also exhibits a zero FPR, it has the highest initial memory
footprint because it is statically sized. RSQF’s memory footprint
decreases throughout the experiment due to its shrinking finger-
prints, yet this leads to its FPR skyrocketing. Aleph Filter maintains
a stable memory footprint and scalable FPR, though it is dominated
by Sphinx. The Adaptive Aleph Filter also has a zero FPR through
a significantly higher memory footprint than Sphinx.
Experiment 2: Total Memory Usage. Figure 7 details the total
memory overhead of Sphinx before and after applying the pointer
compression scheme introduced in [14] as the dataset grows. In
full mode, Sphinx uses 32-bit absolute pointers and requires ≈ 40
bits/entry, with pointers consuming over 35 bits.

In compressed mode, however, Sphinx compacts these pointers
and configures each chunk to approximately 8 MB (tunable in our
implementation), reducing the total memory overhead to about 20
bits/key. Of this, roughly 9 bits come from the Trie Stores, split
evenly between the global and local index. The remaining overhead
stems from the Payload Stores: up to 9 bits for chunk IDs in the
global index and ≈ 2 bits for delta-encoded page offsets in the local
index. Applying the compression scheme halves total memory use
and restores metadata as a significant part of the index footprint,
rather than letting pointers dominate. Buffer is excluded from this
figure as its memory becomes negligible as the dataset grows.
Experiment 3: In-Memory Performance Evaluation. Figure 8
reports average and 99th-percentile latency for queries, updates,
and insertions, with insertion cost including expansion. Our goal
is to capture the CPU overhead for these operations by isolating
index manipulation from I/O latency, so both the index and the
dataset reside in memory.

10

Figure 8: Inmemory, Sphinx variants achieve the lowest tail and average query/update latency, and stay competitive in insertion.

Figure 9: On Optane, Sphinx variants are fastest; on SSD, they match or beat all baselines by avoiding false positives.

Figure 10: (A) Sphinx leads to substantial benefits with SSD
under workload skew. (B) Sphinx scales well with threads.

Across all metrics, latency increases as the index outgrows CPU
caches. DHT and DHT-expandable show the highest latency due to
their bit-by-bit block traversal. Initially, DHT is faster than DHT-
expandable, as it stays mostly empty until the latter half of the
insertions. Once filled, their performance converges as expected,
given their similar inefficient parsing strategies. RSQF and Aleph
Filter show rising average and tail latency due to false positives trig-
gering extra log accesses. While Adaptive Aleph Filter avoids false
positives, it still incurs overhead from accessing both dictionary
and filter. Furthermore, the use of linear probing during insertions
in RSQF, Aleph Filter, and Adaptive Aleph Filter can lead to multiple
entry shifts, significantly inflating their tail latencies.

In contrast, Sphinx variants achieve the lowest average and tail
latencies for both queries and updates, thanks to their false-positive-
free design, CPU-efficient parsing, and cache alignment. Sphinx also
remains competitive in average insertion latency and delivers the
best tail insertion latency due to its hardware-optimized traversal

Figure 11: Sphinx maintains stable tail latency even in ex-
treme percentiles.

and tightly confined Trie Store. This holds even though it incurs an
additional read-before-write, an overhead avoided by fingerprint-
based methods. Sphinx-4 sidesteps most of these read-before-writes
and outperforms all baselines across the board.
Experiment 4: Performance Evaluation over Optane/SSD. We
now move the dataset to Optane and SSD and evaluate query and
update latency. Later, we evaluate insertion latency in Experiment 8.
DHT’s static size makes it qualitatively different from the other
baselines, so we replace it with DHT-expandable.

In the Optane setting, shown in the first row of Figure 9, all base-
lines exhibit similar trends to the in-memory benchmarks. Sphinx
variants continue to outperform the others, although average la-
tency increases due to the slower storage medium.

On SSD, shown in the second row of Figure 9, RSQF, and Aleph
Filter are further penalized because each false positive triggers an
additional expensive I/O operation. In this experiment, Adaptive
Aleph Filter, DHT-expandable, and Sphinx variants perform best,

11

Figure 12: Sphinx-4 consistently outperforms Aleph across all metrics as data scales, benefiting from Reserve Bits’ efficiency
gains, while Sphinx variants remain stable and Aleph degrades.

Figure 13: Sphinx exceeds 95% load factor while keeping the
most stable and lowest insertion latency.

with only a slight difference between Sphinx and DHT-expandable
under a uniform workload. As we show next, however, Sphinx still
leads to substantial benefits with SSD under workload skew, which
is the more common case for real-world workloads.

We also note that Experiments 3 and 4 using YCSB’s 50%/50%
update-query mix under Zipfian skew [11] yielded similar results.
Experiment 5: Under Workload Skew. We evaluate Sphinx
against DHT-expandable on an SSD with a block cache in mem-
ory, varying the fraction of queries hitting the cache. Each query
still traverses the index to locate the target page before accessing
it from the cache. We report the speedup as DHT-expandable’s
latency divided by Sphinx’s.

Figure 10 Part (A) shows the results for buffer pool sizes equal to
5% and 10% of the data size. As the hit rate (proportion of queries
targeted cached entries) increases from 60% to 99% on the x-axis,
more of the overall system overhead shorts from I/Os to CPU. From
a hit rate of 90% and onwards, which is common for real-world
skewed workloads, Sphinx provides a speedup improvement be-
tween 10% and 35%. This demonstrates that even in systems where
I/O cost is very expensive, the CPU optimizations for Sphinx are
still worthwhile, given the skew in real-world workloads.
Experiment 6: Tail Latency. In this experiment, we measure tail
latency more comprehensively on both Optane and SSD settings,
comparing Sphinx to Aleph Filter, the state-of-the-art fingerprint
index. As shown in Figure 11, Aleph Filter exhibits mounting tail
latency as several false positives can take place for each query in
rare cases. The tail latency of Aleph Filter worsens in both settings
for more extreme tail percentiles. In contrast, Sphinx avoids false
positives and thus exhibits predictable and almost flat query latency
across the board.
Experiment 7: Concurrency. Figure 10 Part (B) shows Sphinx-
4 and Sphinx under increasing numbers of worker threads. Each

point is the median of three runs inserting and querying 4 mil-
lion uniformly random 16-byte key-value pairs. Sphinx-4 achieves
higher single-threaded insertion throughput due to its Reserve Bits,
which reduce read-before-writes and I/O during expansions. Both
systems scale similarly with thread count. Query throughput grows
with more threads until saturating SSD random read bandwidth.
Insertions scale too but remain 10–30% slower than queries for
Sphinx, as they require read-before-writes and occasionally trigger
expansions and buffer flushes. Since all queries target existing keys,
Sphinx-4 and Sphinx perform identically in query throughput.

Experiment 8: Using Reserve Bits. Figure 12 evaluates Sphinx
variants on an SSD under uniformly distributed insertions and
queries as the data size grows. We test four versions, each using
a different number of Reserve Bits (0, 2, 4, and 6), and compare
them to Aleph Filter, the most memory-efficient baseline. For each
variant, we measure maximum memory per entry, insertion latency
(including expansion), and zero-result query latency—reporting
both average and tail latency for non-existing keys.

Reserve Bits significantly improve Sphinx’s insert latency by
reducing read-before-writes and I/O during expansions. Similarly,
they improve performance for queries targeting non-existing keys
by, again, ruling out the existence of the key and avoiding the
need to search for it in the log. We observe that Aleph Filter’s
performance across the different metrics gradually deteriorates
with increasing data size and FPR, and that Sphinx-4 outperforms
Aleph Filter across all metrics, including insertion.

Experiment 9: Load Factor. Figure 13 shows the load factor during
insertions until the index reaches capacity. Load factor is defined as
the ratio of stored data to total physical space. We measure this over
an index with size of a block group, the expansion unit in Sphinx,
for fair comparison. RSQF and Adaptive Aleph Filter reach over 95%
load factor but suffer sharp spikes in insertion latency beyond that
point. DHT maintains flatter latency but starts higher and worsens
as it expands faster than it fills, ending below 70% load factor. In
contrast, Sphinx exceeds 95% load factor while maintaining the
lowest and most stable insertion latency.

5 CONCLUSION
We introduced Sphinx, a succinct, perfect hash table optimized
for high performance on commodity CPUs. Future work could ex-
plore designing an ARM-compatible version of Sphinx and further
investigate the trade-offs introduced by Reserve Bits.

12

REFERENCES
[1] AMD, Inc. 2024. AMD64 Architecture Programmer’s Manual, Volume 3: General-

Purpose and System Instructions. https://www.amd.com/content/dam/amd/en/
documents/processor-tech-docs/programmer-references/24594.pdf

[2] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. 2009. FAWN: A Fast Array of Wimpy
Nodes. In Proceedings of the 22nd ACM Symposium on Operating Systems Princi-
ples (SOSP). 1–14.

[3] Jim Apple. 2022. Stretching your data with taffy filters. Software: Practice and
Experience 52 (08 2022), 2349–2367. https://doi.org/10.1002/spe.3129

[4] Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson,
Samuel McCauley, and Shikha Singh. 2018. Bloom Filters, Adaptivity, and the
Dictionary Problem. arXiv:1711.01616 [cs.DS] https://arxiv.org/abs/1711.01616

[5] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C.
Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane,
and Erez Zadok. 2012. Don’t thrash: how to cache your hash on flash. Proc. VLDB
Endow. 5, 11 (July 2012), 1627–1637. https://doi.org/10.14778/2350229.2350275

[6] Fabiano C. Botelho, Anísio Lacerda, Guilherme Vale Menezes, and Nivio Ziviani.
2011. Minimal perfect hashing: A competitive method for indexing internal
memory. Information Sciences 181, 13 (2011), 2608–2625. https://doi.org/10.
1016/j.ins.2009.12.003 Including Special Section on Databases and Software
Engineering.

[7] Alex D. Breslow and Nuwan S. Jayasena. 2018. Morton filters: faster, space-
efficient cuckoo filters via biasing, compression, and decoupled logical sparsity.
Proc. VLDB Endow. 11, 9 (May 2018), 1041–1055. https://doi.org/10.14778/3213880.
3213884

[8] Wei Cao, Xiaojie Feng, Boyuan Liang, Tianyu Zhang, Yusong Gao, Yunyang
Zhang, and Feifei Li. 2021. LogStore: A Cloud-Native and Multi-Tenant Log
Database. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD ’21). Association for ComputingMachinery,
New York, NY, USA, 2464–2476. https://doi.org/10.1145/3448016.3457565

[9] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski,
Jordan Hunter, and Michael F. Barnett. 2018. FASTER: A Concurrent Key-Value
Store with In-Place Updates. In Proceedings of the 2018 International Conference
on Management of Data (SIGMOD). 275–290.

[10] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, YangWang, and Jiwu Shu. 2020.
FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS ’20). Association for Computing Machinery, New York,
NY, USA, 1077–1091. https://doi.org/10.1145/3373376.3378515

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)
(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154.
https://doi.org/10.1145/1807128.1807152

[12] Niv Dayan, Ioana Bercea, and Rasmus Pagh. 2024. Aleph Filter: To Infinity in
Constant Time. arXiv preprint arXiv:2404.04703 (2024).

[13] Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh. 2023. Infinifilter:
Expanding filters to infinity and beyond. Proceedings of the ACM on Management
of Data 1, 2 (2023), 1–27.

[14] Niv Dayan, Moshe Twitto, Yuval Rochman, Uri Beitler, Itai Ben Zion, Edward
Bortnikov, Shmuel Dashevsky, Ofer Frishman, Evgeni Ginzburg, Igal Maly, Avra-
ham (Poza) Meir, Mark Mokryn, Iddo Naiss, and Noam Rabinovich. 2021. The
end of Moore’s law and the rise of the data processor. Proc. VLDB Endow. 14, 12
(jul 2021), 2932–2944. https://doi.org/10.14778/3476311.3476373

[15] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: High throughput
persistent key-value store. Proceedings of the VLDB Endowment 3, 1-2, 1414–1425.

[16] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2011. SkimpyStash: RAM space
skimpy key-value store on flash-based storage. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data. 25–36.

[17] Cameron Desrochers. [n.d.]. ConcurrentQueue: An industrial-strength lock-
free queue for C++. https://github.com/cameron314/concurrentqueue. GitHub
repository. Accessed: 2025-02-19.

[18] Peter C Dillinger and Panagiotis Manolios. 2009. Fast, all-purpose state storage.
In Model Checking Software: 16th International SPIN Workshop, Grenoble, France,
June 26-28, 2009. Proceedings 16. Springer, 12–31.

[19] Navid Eslami and Niv Dayan. 2024. Memento Filter: A Fast, Dynamic, and Robust
Range Filter. Proc. ACM Manag. Data 2, 6, Article 244 (Dec. 2024), 27 pages.
https://doi.org/10.1145/3698820

[20] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong. 1979.
Extendible hashing—a fast access method for dynamic files. ACM Trans. Database
Syst. 4, 3 (Sept. 1979), 315–344. https://doi.org/10.1145/320083.320092

[21] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.
2014. Cuckoo Filter: Practically Better Than Bloom. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and Technologies
(Sydney, Australia) (CoNEXT ’14). Association for Computing Machinery, New

York, NY, USA, 75–88. https://doi.org/10.1145/2674005.2674994
[22] Kevin P Gaffney and Jignesh M Patel. 2024. Is Perfect Hashing Practical for

OLAP Systems?. In CIDR.
[23] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro. 2005.

Practical implementation of rank and select queries. In Poster Proc. Volume of
4th Workshop on Efficient and Experimental Algorithms (WEA). CTI Press and
Ellinika Grammata Greece, 27–38.

[24] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: a flash trans-
lation layer employing demand-based selective caching of page-level address
mappings. SIGPLAN Not. 44, 3 (March 2009), 229–240. https://doi.org/10.1145/
1508284.1508271

[25] Longzhe Han, Yeonseung Ryu, and Keunsoo Yim. 2006. CATA: a garbage col-
lection scheme for flash memory file systems. In Proceedings of the Third Inter-
national Conference on Ubiquitous Intelligence and Computing (Wuhan, China)
(UIC’06). Springer-Verlag, Berlin, Heidelberg, 103–112. https://doi.org/10.1007/
11833529_11

[26] Zhuo Huang, Jih-Kwon Peir, and Shigang Chen. 2011. Approximately-perfect
hashing: Improving network throughput through efficient off-chip routing table
lookup. Proceedings - IEEE INFOCOM, 311 – 315. https://doi.org/10.1109/INFCOM.
2011.5935158

[27] Intel Corporation. 2024. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. https://cdrdv2.intel.com/v1/dl/getContent/671200

[28] Juwon Kim, Minsu Kim, Muhammad Danish Tehseen, Joontaek Oh, and Youjip
Won. 2022. IPLFS: Log-Structured File System without Garbage Collection. In
2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association,
Carlsbad, CA, 739–754. https://www.usenix.org/conference/atc22/presentation/
kim-juwon

[29] Harald Lang, Thomas Neumann, Alfons Kemper, and Peter Boncz. 2019.
Performance-optimal filtering: Bloom overtakes Cuckoo at high throughput.
Proc. VLDB Endow. 12, 5 (Jan. 2019), 502–515. https://doi.org/10.14778/3303753.
3303757

[30] David J. Lee, Samuel McCauley, Shikha Singh, and Max Stein. 2021. Telescop-
ing Filter: A Practical Adaptive Filter. In 29th Annual European Symposium on
Algorithms (ESA 2021) (Leibniz International Proceedings in Informatics (LIPIcs)),
Petra Mutzel, Rasmus Pagh, and Grzegorz Herman (Eds.), Vol. 204. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 60:1–60:18.
https://doi.org/10.4230/LIPIcs.ESA.2021.60

[31] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng. 2023. ROLEX:
A Scalable RDMA-oriented Learned Key-Value Store for Disaggregated Mem-
ory Systems. In 21st USENIX Conference on File and Storage Technologies (FAST
23). USENIX Association, Santa Clara, CA, 99–114. https://www.usenix.org/
conference/fast23/presentation/li-pengfei

[32] Zhuoxuan Liu and Shimin Chen. 2023. Pea Hash: A Performant Extendible
Adaptive Hashing Index. Proc. ACM Manag. Data 1, 1, Article 108 (May 2023),
25 pages. https://doi.org/10.1145/3588962

[33] Zirui Liu, Xian Niu, Wei Zhou, Yisen Hong, Zhouran Shi, Tong Yang, Yuchao
Zhang, Yuhan Wu, Yikai Zhao, Zhuochen Fan, and Bin Cui. 2025. CuckooDuo:
Extensible Dynamic Perfect Hashing for RDMA-based Remote Memory KV
Store. In Proceedings of the 41st IEEE International Conference on Data Engineering
(ICDE). IEEE. https://pkuzhao.net/publication/cuckooduo/CuckooDuo.pdf

[34] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: scalable
hashing on persistent memory. Proc. VLDB Endow. 13, 8 (April 2020), 1147–1161.
https://doi.org/10.14778/3389133.3389134

[35] Yi Lu, Balaji Prabhakar, and Flavio Bonomi. 2006. Perfect hashing for network
applications. In 2006 IEEE International Symposium on Information Theory. IEEE,
2774–2778.

[36] Michael Mitzenmacher, Salvatore Pontarelli, and Pedro Reviriego. 2020. Adaptive
Cuckoo Filters. ACM J. Exp. Algorithmics 25, Article 1.1 (March 2020), 20 pages.
https://doi.org/10.1145/3339504

[37] Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press.

[38] Faisal Nawab, Vaibhav Arora, Divyakant Agrawal, and A. El Abbadi. 2015. Char-
iots: A Scalable Shared Log for Data Management in Multi-Datacenter Cloud
Environments. In International Conference on Extending Database Technology.
https://api.semanticscholar.org/CorpusID:16457773

[39] John Ousterhout and Fred Douglis. 1989. Beating the I/O bottleneck: a case
for log-structured file systems. SIGOPS Oper. Syst. Rev. 23, 1 (Jan. 1989), 11–28.
https://doi.org/10.1145/65762.65765

[40] Rasmus Pagh, Gil Segev, and Udi Wieder. 2013. How to Approximate A Set
Without Knowing Its Size In Advance. https://doi.org/10.48550/arXiv.1304.1188

[41] Prashant Pandey, Michael Bender, and Rob Johnson. 2017. A Fast x86 Implemen-
tation of Select. (06 2017). https://doi.org/10.48550/arXiv.1706.00990

[42] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. 2017. A
General-Purpose Counting Filter: Making Every Bit Count. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
775–787. https://doi.org/10.1145/3035918.3035963

13

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://doi.org/10.1002/spe.3129
https://arxiv.org/abs/1711.01616
https://arxiv.org/abs/1711.01616
https://doi.org/10.14778/2350229.2350275
https://doi.org/10.1016/j.ins.2009.12.003
https://doi.org/10.1016/j.ins.2009.12.003
https://doi.org/10.14778/3213880.3213884
https://doi.org/10.14778/3213880.3213884
https://doi.org/10.1145/3448016.3457565
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.14778/3476311.3476373
https://github.com/cameron314/concurrentqueue
https://doi.org/10.1145/3698820
https://doi.org/10.1145/320083.320092
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/1508284.1508271
https://doi.org/10.1145/1508284.1508271
https://doi.org/10.1007/11833529_11
https://doi.org/10.1007/11833529_11
https://doi.org/10.1109/INFCOM.2011.5935158
https://doi.org/10.1109/INFCOM.2011.5935158
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.usenix.org/conference/atc22/presentation/kim-juwon
https://www.usenix.org/conference/atc22/presentation/kim-juwon
https://doi.org/10.14778/3303753.3303757
https://doi.org/10.14778/3303753.3303757
https://doi.org/10.4230/LIPIcs.ESA.2021.60
https://www.usenix.org/conference/fast23/presentation/li-pengfei
https://www.usenix.org/conference/fast23/presentation/li-pengfei
https://doi.org/10.1145/3588962
https://pkuzhao.net/publication/cuckooduo/CuckooDuo.pdf
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.1145/3339504
https://api.semanticscholar.org/CorpusID:16457773
https://doi.org/10.1145/65762.65765
https://doi.org/10.48550/arXiv.1304.1188
https://doi.org/10.48550/arXiv.1706.00990
https://doi.org/10.1145/3035918.3035963

[43] Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-
Colton, and Rob Johnson. 2021. Vector Quotient Filters: Overcoming the
Time/Space Trade-Off in Filter Design. In Proceedings of the 2021 Interna-
tional Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 1386–1399.
https://doi.org/10.1145/3448016.3452841

[44] Prashant Pandey, Martín Farach-Colton, Niv Dayan, and Huanchen Zhang. 2024.
Beyond Bloom: A Tutorial on Future Feature-Rich Filters. In Companion of the
2024 International Conference on Management of Data (Santiago AA, Chile) (SIG-
MOD ’24). Association for Computing Machinery, New York, NY, USA, 636–644.
https://doi.org/10.1145/3626246.3654681

[45] Felix Putze, Peter Sanders, and Johannes Singler. 2010. Cache-, hash-, and space-
efficient bloom filters. ACM J. Exp. Algorithmics 14, Article 4 (Jan. 2010), 18 pages.
https://doi.org/10.1145/1498698.1594230

[46] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: a space-
efficient key-value storage engine for semi-sorted data. Proc. VLDB Endow. 10,
13 (Sept. 2017), 2037–2048. https://doi.org/10.14778/3151106.3151108

[47] Mendel Rosenblum and John KOusterhout. 1992. The design and implementation
of a log-structured file system. ACM Transactions on Computer Systems (TOCS)
10, 1 (1992), 26–52.

[48] Margo I Seltzer, Keith Bostic, Marshall K McKusick, Carl Staelin, et al. 1993. An
Implementation of a Log-Structured File System for UNIX.. In USENIX Winter.
307–326.

[49] Justin Sheehy and Dave Smith. 2010. Bitcask: A Log-Structured Hash Table for
Fast Key/Value Data. Basho White Paper.

[50] V Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, Andrew Good-
ing, Rajkumar Iyer, Ashish Shinde, and Thomas Lopatic. 2016. Aerospike: Archi-
tecture of a real-time operational dbms. Proceedings of the VLDB Endowment 9,
13 (2016), 1389–1400.

[51] Radu Stoica and Anastasia Ailamaki. 2013. Improving flash write performance
by using update frequency. Proc. VLDB Endow. 6, 9 (July 2013), 733–744. https:
//doi.org/10.14778/2536360.2536372

[52] Hoang TamVo, ShengWang, Divyakant Agrawal, Gang Chen, and Beng Chin Ooi.
2012. LogBase: a scalable log-structured database system in the cloud. Proc. VLDB
Endow. 5, 10 (June 2012), 1004–1015. https://doi.org/10.14778/2336664.2336673

[53] Lukas Vogel, Alexander van Renen, Satoshi Imamura, Jana Giceva, Thomas
Neumann, and Alfons Kemper. 2022. Plush: a write-optimized persistent log-
structured hash-table. Proc. VLDB Endow. 15, 11 (July 2022), 2895–2907. https:
//doi.org/10.14778/3551793.3551839

[54] Jing Wang, Youyou Lu, Qing Wang, Minhui Xie, Keji Huang, and Jiwu Shu. 2022.
Pacman: An Efficient Compaction Approach for Log-Structured Key-Value Store
on Persistent Memory. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). USENIX Association, Carlsbad, CA, 773–788. https://www.usenix.org/
conference/atc22/presentation/wang-jing

[55] Minmei Wang, Mingxun Zhou, Shouqian Shi, and Chen Qian. 2019. Vacuum
filters: more space-efficient and faster replacement for bloom and cuckoo filters.
Proc. VLDB Endow. 13, 2 (Oct. 2019), 197–210. https://doi.org/10.14778/3364324.
3364333

[56] Richard Wen, Hunter McCoy, David Tench, Guido Tagliavini, Michael A. Bender,
Alex Conway, Martin Farach-Colton, Rob Johnson, and Prashant Pandey. 2024.
Adaptive Quotient Filters. Proc. ACM Manag. Data 2, 4, Article 192 (Sept. 2024),
28 pages. https://doi.org/10.1145/3677128

[57] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX Conference on File
and Storage Technologies (FAST 16). USENIX Association, Santa Clara, CA, 323–
338. https://www.usenix.org/conference/fast16/technical-sessions/presentation/
xu

[58] Yitian Yang and Youyou Lu. 2023. NICFS: a file system based on persistent mem-
ory and SmartNIC. Frontiers of Information Technology & Electronic Engineering
24, 5 (2023), 675–687.

[59] Pengfei Zuo, Qihui Zhou, Jiazhao Sun, Liu Yang, Shuangwu Zhang, Yu Hua,
James Cheng, Rongfeng He, and Huabing Yan. 2022. RACE: One-sided RDMA-
conscious Extendible Hashing. ACM Trans. Storage 18, 2, Article 11 (April 2022),
29 pages. https://doi.org/10.1145/3511895

14

https://doi.org/10.1145/3448016.3452841
https://doi.org/10.1145/3626246.3654681
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.14778/3151106.3151108
https://doi.org/10.14778/2536360.2536372
https://doi.org/10.14778/2536360.2536372
https://doi.org/10.14778/2336664.2336673
https://doi.org/10.14778/3551793.3551839
https://doi.org/10.14778/3551793.3551839
https://www.usenix.org/conference/atc22/presentation/wang-jing
https://www.usenix.org/conference/atc22/presentation/wang-jing
https://doi.org/10.14778/3364324.3364333
https://doi.org/10.14778/3364324.3364333
https://doi.org/10.1145/3677128
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://doi.org/10.1145/3511895

	Abstract
	1 Introduction
	2 Background
	2.1 Delta Hash Table

	3 Sphinx
	3.1 Block Structure and Efficient Parsing
	3.2 Decoding Delta Tries
	3.3 Overflow Management
	3.4 Reserve Bits
	3.5 Expansion
	3.6 Concurrency

	4 Evaluation
	5 Conclusion
	References

